Home | History | Annotate | Download | only in JIT
      1 //===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the DefaultJITMemoryManager class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/ExecutionEngine/JITMemoryManager.h"
     15 #include "llvm/ADT/SmallPtrSet.h"
     16 #include "llvm/ADT/Statistic.h"
     17 #include "llvm/ADT/Twine.h"
     18 #include "llvm/Config/config.h"
     19 #include "llvm/IR/GlobalValue.h"
     20 #include "llvm/Support/Allocator.h"
     21 #include "llvm/Support/Compiler.h"
     22 #include "llvm/Support/Debug.h"
     23 #include "llvm/Support/DynamicLibrary.h"
     24 #include "llvm/Support/ErrorHandling.h"
     25 #include "llvm/Support/Memory.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include <cassert>
     28 #include <climits>
     29 #include <cstring>
     30 #include <vector>
     31 
     32 #if defined(__linux__)
     33 #if defined(HAVE_SYS_STAT_H)
     34 #include <sys/stat.h>
     35 #endif
     36 #include <fcntl.h>
     37 #include <unistd.h>
     38 #endif
     39 
     40 using namespace llvm;
     41 
     42 #define DEBUG_TYPE "jit"
     43 
     44 STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
     45 
     46 JITMemoryManager::~JITMemoryManager() {}
     47 
     48 //===----------------------------------------------------------------------===//
     49 // Memory Block Implementation.
     50 //===----------------------------------------------------------------------===//
     51 
     52 namespace {
     53   /// MemoryRangeHeader - For a range of memory, this is the header that we put
     54   /// on the block of memory.  It is carefully crafted to be one word of memory.
     55   /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
     56   /// which starts with this.
     57   struct FreeRangeHeader;
     58   struct MemoryRangeHeader {
     59     /// ThisAllocated - This is true if this block is currently allocated.  If
     60     /// not, this can be converted to a FreeRangeHeader.
     61     unsigned ThisAllocated : 1;
     62 
     63     /// PrevAllocated - Keep track of whether the block immediately before us is
     64     /// allocated.  If not, the word immediately before this header is the size
     65     /// of the previous block.
     66     unsigned PrevAllocated : 1;
     67 
     68     /// BlockSize - This is the size in bytes of this memory block,
     69     /// including this header.
     70     uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
     71 
     72 
     73     /// getBlockAfter - Return the memory block immediately after this one.
     74     ///
     75     MemoryRangeHeader &getBlockAfter() const {
     76       return *reinterpret_cast<MemoryRangeHeader *>(
     77                 reinterpret_cast<char*>(
     78                   const_cast<MemoryRangeHeader *>(this))+BlockSize);
     79     }
     80 
     81     /// getFreeBlockBefore - If the block before this one is free, return it,
     82     /// otherwise return null.
     83     FreeRangeHeader *getFreeBlockBefore() const {
     84       if (PrevAllocated) return nullptr;
     85       intptr_t PrevSize = reinterpret_cast<intptr_t *>(
     86                             const_cast<MemoryRangeHeader *>(this))[-1];
     87       return reinterpret_cast<FreeRangeHeader *>(
     88                reinterpret_cast<char*>(
     89                  const_cast<MemoryRangeHeader *>(this))-PrevSize);
     90     }
     91 
     92     /// FreeBlock - Turn an allocated block into a free block, adjusting
     93     /// bits in the object headers, and adding an end of region memory block.
     94     FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
     95 
     96     /// TrimAllocationToSize - If this allocated block is significantly larger
     97     /// than NewSize, split it into two pieces (where the former is NewSize
     98     /// bytes, including the header), and add the new block to the free list.
     99     FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
    100                                           uint64_t NewSize);
    101   };
    102 
    103   /// FreeRangeHeader - For a memory block that isn't already allocated, this
    104   /// keeps track of the current block and has a pointer to the next free block.
    105   /// Free blocks are kept on a circularly linked list.
    106   struct FreeRangeHeader : public MemoryRangeHeader {
    107     FreeRangeHeader *Prev;
    108     FreeRangeHeader *Next;
    109 
    110     /// getMinBlockSize - Get the minimum size for a memory block.  Blocks
    111     /// smaller than this size cannot be created.
    112     static unsigned getMinBlockSize() {
    113       return sizeof(FreeRangeHeader)+sizeof(intptr_t);
    114     }
    115 
    116     /// SetEndOfBlockSizeMarker - The word at the end of every free block is
    117     /// known to be the size of the free block.  Set it for this block.
    118     void SetEndOfBlockSizeMarker() {
    119       void *EndOfBlock = (char*)this + BlockSize;
    120       ((intptr_t *)EndOfBlock)[-1] = BlockSize;
    121     }
    122 
    123     FreeRangeHeader *RemoveFromFreeList() {
    124       assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
    125       Next->Prev = Prev;
    126       return Prev->Next = Next;
    127     }
    128 
    129     void AddToFreeList(FreeRangeHeader *FreeList) {
    130       Next = FreeList;
    131       Prev = FreeList->Prev;
    132       Prev->Next = this;
    133       Next->Prev = this;
    134     }
    135 
    136     /// GrowBlock - The block after this block just got deallocated.  Merge it
    137     /// into the current block.
    138     void GrowBlock(uintptr_t NewSize);
    139 
    140     /// AllocateBlock - Mark this entire block allocated, updating freelists
    141     /// etc.  This returns a pointer to the circular free-list.
    142     FreeRangeHeader *AllocateBlock();
    143   };
    144 }
    145 
    146 
    147 /// AllocateBlock - Mark this entire block allocated, updating freelists
    148 /// etc.  This returns a pointer to the circular free-list.
    149 FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
    150   assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
    151          "Cannot allocate an allocated block!");
    152   // Mark this block allocated.
    153   ThisAllocated = 1;
    154   getBlockAfter().PrevAllocated = 1;
    155 
    156   // Remove it from the free list.
    157   return RemoveFromFreeList();
    158 }
    159 
    160 /// FreeBlock - Turn an allocated block into a free block, adjusting
    161 /// bits in the object headers, and adding an end of region memory block.
    162 /// If possible, coalesce this block with neighboring blocks.  Return the
    163 /// FreeRangeHeader to allocate from.
    164 FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
    165   MemoryRangeHeader *FollowingBlock = &getBlockAfter();
    166   assert(ThisAllocated && "This block is already free!");
    167   assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
    168 
    169   FreeRangeHeader *FreeListToReturn = FreeList;
    170 
    171   // If the block after this one is free, merge it into this block.
    172   if (!FollowingBlock->ThisAllocated) {
    173     FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
    174     // "FreeList" always needs to be a valid free block.  If we're about to
    175     // coalesce with it, update our notion of what the free list is.
    176     if (&FollowingFreeBlock == FreeList) {
    177       FreeList = FollowingFreeBlock.Next;
    178       FreeListToReturn = nullptr;
    179       assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
    180     }
    181     FollowingFreeBlock.RemoveFromFreeList();
    182 
    183     // Include the following block into this one.
    184     BlockSize += FollowingFreeBlock.BlockSize;
    185     FollowingBlock = &FollowingFreeBlock.getBlockAfter();
    186 
    187     // Tell the block after the block we are coalescing that this block is
    188     // allocated.
    189     FollowingBlock->PrevAllocated = 1;
    190   }
    191 
    192   assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
    193 
    194   if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
    195     PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
    196     return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
    197   }
    198 
    199   // Otherwise, mark this block free.
    200   FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
    201   FollowingBlock->PrevAllocated = 0;
    202   FreeBlock.ThisAllocated = 0;
    203 
    204   // Link this into the linked list of free blocks.
    205   FreeBlock.AddToFreeList(FreeList);
    206 
    207   // Add a marker at the end of the block, indicating the size of this free
    208   // block.
    209   FreeBlock.SetEndOfBlockSizeMarker();
    210   return FreeListToReturn ? FreeListToReturn : &FreeBlock;
    211 }
    212 
    213 /// GrowBlock - The block after this block just got deallocated.  Merge it
    214 /// into the current block.
    215 void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
    216   assert(NewSize > BlockSize && "Not growing block?");
    217   BlockSize = NewSize;
    218   SetEndOfBlockSizeMarker();
    219   getBlockAfter().PrevAllocated = 0;
    220 }
    221 
    222 /// TrimAllocationToSize - If this allocated block is significantly larger
    223 /// than NewSize, split it into two pieces (where the former is NewSize
    224 /// bytes, including the header), and add the new block to the free list.
    225 FreeRangeHeader *MemoryRangeHeader::
    226 TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
    227   assert(ThisAllocated && getBlockAfter().PrevAllocated &&
    228          "Cannot deallocate part of an allocated block!");
    229 
    230   // Don't allow blocks to be trimmed below minimum required size
    231   NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
    232 
    233   // Round up size for alignment of header.
    234   unsigned HeaderAlign = __alignof(FreeRangeHeader);
    235   NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
    236 
    237   // Size is now the size of the block we will remove from the start of the
    238   // current block.
    239   assert(NewSize <= BlockSize &&
    240          "Allocating more space from this block than exists!");
    241 
    242   // If splitting this block will cause the remainder to be too small, do not
    243   // split the block.
    244   if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
    245     return FreeList;
    246 
    247   // Otherwise, we splice the required number of bytes out of this block, form
    248   // a new block immediately after it, then mark this block allocated.
    249   MemoryRangeHeader &FormerNextBlock = getBlockAfter();
    250 
    251   // Change the size of this block.
    252   BlockSize = NewSize;
    253 
    254   // Get the new block we just sliced out and turn it into a free block.
    255   FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
    256   NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
    257   NewNextBlock.ThisAllocated = 0;
    258   NewNextBlock.PrevAllocated = 1;
    259   NewNextBlock.SetEndOfBlockSizeMarker();
    260   FormerNextBlock.PrevAllocated = 0;
    261   NewNextBlock.AddToFreeList(FreeList);
    262   return &NewNextBlock;
    263 }
    264 
    265 //===----------------------------------------------------------------------===//
    266 // Memory Block Implementation.
    267 //===----------------------------------------------------------------------===//
    268 
    269 namespace {
    270 
    271   class DefaultJITMemoryManager;
    272 
    273   class JITAllocator {
    274     DefaultJITMemoryManager &JMM;
    275   public:
    276     JITAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
    277     void *Allocate(size_t Size, size_t /*Alignment*/);
    278     void Deallocate(void *Slab, size_t Size);
    279   };
    280 
    281   /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
    282   /// This splits a large block of MAP_NORESERVE'd memory into two
    283   /// sections, one for function stubs, one for the functions themselves.  We
    284   /// have to do this because we may need to emit a function stub while in the
    285   /// middle of emitting a function, and we don't know how large the function we
    286   /// are emitting is.
    287   class DefaultJITMemoryManager : public JITMemoryManager {
    288   public:
    289     /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
    290     /// least this much unless more is requested. Currently, in 512k slabs.
    291     static const size_t DefaultCodeSlabSize = 512 * 1024;
    292 
    293     /// DefaultSlabSize - Allocate globals and stubs into slabs of 64K (probably
    294     /// 16 pages) unless we get an allocation above SizeThreshold.
    295     static const size_t DefaultSlabSize = 64 * 1024;
    296 
    297     /// DefaultSizeThreshold - For any allocation larger than 16K (probably
    298     /// 4 pages), we should allocate a separate slab to avoid wasted space at
    299     /// the end of a normal slab.
    300     static const size_t DefaultSizeThreshold = 16 * 1024;
    301 
    302   private:
    303     // Whether to poison freed memory.
    304     bool PoisonMemory;
    305 
    306     /// LastSlab - This points to the last slab allocated and is used as the
    307     /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
    308     /// stubs, data, and code contiguously in memory.  In general, however, this
    309     /// is not possible because the NearBlock parameter is ignored on Windows
    310     /// platforms and even on Unix it works on a best-effort pasis.
    311     sys::MemoryBlock LastSlab;
    312 
    313     // Memory slabs allocated by the JIT.  We refer to them as slabs so we don't
    314     // confuse them with the blocks of memory described above.
    315     std::vector<sys::MemoryBlock> CodeSlabs;
    316     BumpPtrAllocatorImpl<JITAllocator, DefaultSlabSize,
    317                          DefaultSizeThreshold> StubAllocator;
    318     BumpPtrAllocatorImpl<JITAllocator, DefaultSlabSize,
    319                          DefaultSizeThreshold> DataAllocator;
    320 
    321     // Circular list of free blocks.
    322     FreeRangeHeader *FreeMemoryList;
    323 
    324     // When emitting code into a memory block, this is the block.
    325     MemoryRangeHeader *CurBlock;
    326 
    327     uint8_t *GOTBase;     // Target Specific reserved memory
    328   public:
    329     DefaultJITMemoryManager();
    330     ~DefaultJITMemoryManager();
    331 
    332     /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
    333     /// last slab it allocated, so that subsequent allocations follow it.
    334     sys::MemoryBlock allocateNewSlab(size_t size);
    335 
    336     /// getPointerToNamedFunction - This method returns the address of the
    337     /// specified function by using the dlsym function call.
    338     void *getPointerToNamedFunction(const std::string &Name,
    339                                     bool AbortOnFailure = true) override;
    340 
    341     void AllocateGOT() override;
    342 
    343     // Testing methods.
    344     bool CheckInvariants(std::string &ErrorStr) override;
    345     size_t GetDefaultCodeSlabSize() override { return DefaultCodeSlabSize; }
    346     size_t GetDefaultDataSlabSize() override { return DefaultSlabSize; }
    347     size_t GetDefaultStubSlabSize() override { return DefaultSlabSize; }
    348     unsigned GetNumCodeSlabs() override { return CodeSlabs.size(); }
    349     unsigned GetNumDataSlabs() override { return DataAllocator.GetNumSlabs(); }
    350     unsigned GetNumStubSlabs() override { return StubAllocator.GetNumSlabs(); }
    351 
    352     /// startFunctionBody - When a function starts, allocate a block of free
    353     /// executable memory, returning a pointer to it and its actual size.
    354     uint8_t *startFunctionBody(const Function *F,
    355                                uintptr_t &ActualSize) override {
    356 
    357       FreeRangeHeader* candidateBlock = FreeMemoryList;
    358       FreeRangeHeader* head = FreeMemoryList;
    359       FreeRangeHeader* iter = head->Next;
    360 
    361       uintptr_t largest = candidateBlock->BlockSize;
    362 
    363       // Search for the largest free block
    364       while (iter != head) {
    365         if (iter->BlockSize > largest) {
    366           largest = iter->BlockSize;
    367           candidateBlock = iter;
    368         }
    369         iter = iter->Next;
    370       }
    371 
    372       largest = largest - sizeof(MemoryRangeHeader);
    373 
    374       // If this block isn't big enough for the allocation desired, allocate
    375       // another block of memory and add it to the free list.
    376       if (largest < ActualSize ||
    377           largest <= FreeRangeHeader::getMinBlockSize()) {
    378         DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
    379         candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
    380       }
    381 
    382       // Select this candidate block for allocation
    383       CurBlock = candidateBlock;
    384 
    385       // Allocate the entire memory block.
    386       FreeMemoryList = candidateBlock->AllocateBlock();
    387       ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
    388       return (uint8_t *)(CurBlock + 1);
    389     }
    390 
    391     /// allocateNewCodeSlab - Helper method to allocate a new slab of code
    392     /// memory from the OS and add it to the free list.  Returns the new
    393     /// FreeRangeHeader at the base of the slab.
    394     FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
    395       // If the user needs at least MinSize free memory, then we account for
    396       // two MemoryRangeHeaders: the one in the user's block, and the one at the
    397       // end of the slab.
    398       size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
    399       size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
    400       sys::MemoryBlock B = allocateNewSlab(SlabSize);
    401       CodeSlabs.push_back(B);
    402       char *MemBase = (char*)(B.base());
    403 
    404       // Put a tiny allocated block at the end of the memory chunk, so when
    405       // FreeBlock calls getBlockAfter it doesn't fall off the end.
    406       MemoryRangeHeader *EndBlock =
    407           (MemoryRangeHeader*)(MemBase + B.size()) - 1;
    408       EndBlock->ThisAllocated = 1;
    409       EndBlock->PrevAllocated = 0;
    410       EndBlock->BlockSize = sizeof(MemoryRangeHeader);
    411 
    412       // Start out with a vast new block of free memory.
    413       FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
    414       NewBlock->ThisAllocated = 0;
    415       // Make sure getFreeBlockBefore doesn't look into unmapped memory.
    416       NewBlock->PrevAllocated = 1;
    417       NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
    418       NewBlock->SetEndOfBlockSizeMarker();
    419       NewBlock->AddToFreeList(FreeMemoryList);
    420 
    421       assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
    422              "The block was too small!");
    423       return NewBlock;
    424     }
    425 
    426     /// endFunctionBody - The function F is now allocated, and takes the memory
    427     /// in the range [FunctionStart,FunctionEnd).
    428     void endFunctionBody(const Function *F, uint8_t *FunctionStart,
    429                          uint8_t *FunctionEnd) override {
    430       assert(FunctionEnd > FunctionStart);
    431       assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
    432              "Mismatched function start/end!");
    433 
    434       uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
    435 
    436       // Release the memory at the end of this block that isn't needed.
    437       FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
    438     }
    439 
    440     /// allocateSpace - Allocate a memory block of the given size.  This method
    441     /// cannot be called between calls to startFunctionBody and endFunctionBody.
    442     uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) override {
    443       CurBlock = FreeMemoryList;
    444       FreeMemoryList = FreeMemoryList->AllocateBlock();
    445 
    446       uint8_t *result = (uint8_t *)(CurBlock + 1);
    447 
    448       if (Alignment == 0) Alignment = 1;
    449       result = (uint8_t*)(((intptr_t)result+Alignment-1) &
    450                ~(intptr_t)(Alignment-1));
    451 
    452       uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
    453       FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
    454 
    455       return result;
    456     }
    457 
    458     /// allocateStub - Allocate memory for a function stub.
    459     uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
    460                           unsigned Alignment) override {
    461       return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
    462     }
    463 
    464     /// allocateGlobal - Allocate memory for a global.
    465     uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) override {
    466       return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
    467     }
    468 
    469     /// allocateCodeSection - Allocate memory for a code section.
    470     uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
    471                                  unsigned SectionID,
    472                                  StringRef SectionName) override {
    473       // Grow the required block size to account for the block header
    474       Size += sizeof(*CurBlock);
    475 
    476       // Alignment handling.
    477       if (!Alignment)
    478         Alignment = 16;
    479       Size += Alignment - 1;
    480 
    481       FreeRangeHeader* candidateBlock = FreeMemoryList;
    482       FreeRangeHeader* head = FreeMemoryList;
    483       FreeRangeHeader* iter = head->Next;
    484 
    485       uintptr_t largest = candidateBlock->BlockSize;
    486 
    487       // Search for the largest free block.
    488       while (iter != head) {
    489         if (iter->BlockSize > largest) {
    490           largest = iter->BlockSize;
    491           candidateBlock = iter;
    492         }
    493         iter = iter->Next;
    494       }
    495 
    496       largest = largest - sizeof(MemoryRangeHeader);
    497 
    498       // If this block isn't big enough for the allocation desired, allocate
    499       // another block of memory and add it to the free list.
    500       if (largest < Size || largest <= FreeRangeHeader::getMinBlockSize()) {
    501         DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
    502         candidateBlock = allocateNewCodeSlab((size_t)Size);
    503       }
    504 
    505       // Select this candidate block for allocation
    506       CurBlock = candidateBlock;
    507 
    508       // Allocate the entire memory block.
    509       FreeMemoryList = candidateBlock->AllocateBlock();
    510       // Release the memory at the end of this block that isn't needed.
    511       FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size);
    512       uintptr_t unalignedAddr = (uintptr_t)CurBlock + sizeof(*CurBlock);
    513       return (uint8_t*)RoundUpToAlignment((uint64_t)unalignedAddr, Alignment);
    514     }
    515 
    516     /// allocateDataSection - Allocate memory for a data section.
    517     uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
    518                                  unsigned SectionID, StringRef SectionName,
    519                                  bool IsReadOnly) override {
    520       return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
    521     }
    522 
    523     bool finalizeMemory(std::string *ErrMsg) override {
    524       return false;
    525     }
    526 
    527     uint8_t *getGOTBase() const override {
    528       return GOTBase;
    529     }
    530 
    531     void deallocateBlock(void *Block) {
    532       // Find the block that is allocated for this function.
    533       MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
    534       assert(MemRange->ThisAllocated && "Block isn't allocated!");
    535 
    536       // Fill the buffer with garbage!
    537       if (PoisonMemory) {
    538         memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
    539       }
    540 
    541       // Free the memory.
    542       FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
    543     }
    544 
    545     /// deallocateFunctionBody - Deallocate all memory for the specified
    546     /// function body.
    547     void deallocateFunctionBody(void *Body) override {
    548       if (Body) deallocateBlock(Body);
    549     }
    550 
    551     /// setMemoryWritable - When code generation is in progress,
    552     /// the code pages may need permissions changed.
    553     void setMemoryWritable() override {
    554       for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
    555         sys::Memory::setWritable(CodeSlabs[i]);
    556     }
    557     /// setMemoryExecutable - When code generation is done and we're ready to
    558     /// start execution, the code pages may need permissions changed.
    559     void setMemoryExecutable() override {
    560       for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
    561         sys::Memory::setExecutable(CodeSlabs[i]);
    562     }
    563 
    564     /// setPoisonMemory - Controls whether we write garbage over freed memory.
    565     ///
    566     void setPoisonMemory(bool poison) override {
    567       PoisonMemory = poison;
    568     }
    569   };
    570 }
    571 
    572 void *JITAllocator::Allocate(size_t Size, size_t /*Alignment*/) {
    573   sys::MemoryBlock B = JMM.allocateNewSlab(Size);
    574   return B.base();
    575 }
    576 
    577 void JITAllocator::Deallocate(void *Slab, size_t Size) {
    578   sys::MemoryBlock B(Slab, Size);
    579   sys::Memory::ReleaseRWX(B);
    580 }
    581 
    582 DefaultJITMemoryManager::DefaultJITMemoryManager()
    583     :
    584 #ifdef NDEBUG
    585       PoisonMemory(false),
    586 #else
    587       PoisonMemory(true),
    588 #endif
    589       LastSlab(nullptr, 0), StubAllocator(*this), DataAllocator(*this) {
    590 
    591   // Allocate space for code.
    592   sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
    593   CodeSlabs.push_back(MemBlock);
    594   uint8_t *MemBase = (uint8_t*)MemBlock.base();
    595 
    596   // We set up the memory chunk with 4 mem regions, like this:
    597   //  [ START
    598   //    [ Free      #0 ] -> Large space to allocate functions from.
    599   //    [ Allocated #1 ] -> Tiny space to separate regions.
    600   //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block.
    601   //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
    602   //  END ]
    603   //
    604   // The last three blocks are never deallocated or touched.
    605 
    606   // Add MemoryRangeHeader to the end of the memory region, indicating that
    607   // the space after the block of memory is allocated.  This is block #3.
    608   MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
    609   Mem3->ThisAllocated = 1;
    610   Mem3->PrevAllocated = 0;
    611   Mem3->BlockSize     = sizeof(MemoryRangeHeader);
    612 
    613   /// Add a tiny free region so that the free list always has one entry.
    614   FreeRangeHeader *Mem2 =
    615     (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
    616   Mem2->ThisAllocated = 0;
    617   Mem2->PrevAllocated = 1;
    618   Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize();
    619   Mem2->SetEndOfBlockSizeMarker();
    620   Mem2->Prev = Mem2;   // Mem2 *is* the free list for now.
    621   Mem2->Next = Mem2;
    622 
    623   /// Add a tiny allocated region so that Mem2 is never coalesced away.
    624   MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
    625   Mem1->ThisAllocated = 1;
    626   Mem1->PrevAllocated = 0;
    627   Mem1->BlockSize     = sizeof(MemoryRangeHeader);
    628 
    629   // Add a FreeRangeHeader to the start of the function body region, indicating
    630   // that the space is free.  Mark the previous block allocated so we never look
    631   // at it.
    632   FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
    633   Mem0->ThisAllocated = 0;
    634   Mem0->PrevAllocated = 1;
    635   Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
    636   Mem0->SetEndOfBlockSizeMarker();
    637   Mem0->AddToFreeList(Mem2);
    638 
    639   // Start out with the freelist pointing to Mem0.
    640   FreeMemoryList = Mem0;
    641 
    642   GOTBase = nullptr;
    643 }
    644 
    645 void DefaultJITMemoryManager::AllocateGOT() {
    646   assert(!GOTBase && "Cannot allocate the got multiple times");
    647   GOTBase = new uint8_t[sizeof(void*) * 8192];
    648   HasGOT = true;
    649 }
    650 
    651 DefaultJITMemoryManager::~DefaultJITMemoryManager() {
    652   for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
    653     sys::Memory::ReleaseRWX(CodeSlabs[i]);
    654 
    655   delete[] GOTBase;
    656 }
    657 
    658 sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
    659   // Allocate a new block close to the last one.
    660   std::string ErrMsg;
    661   sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : nullptr;
    662   sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
    663   if (!B.base()) {
    664     report_fatal_error("Allocation failed when allocating new memory in the"
    665                        " JIT\n" + Twine(ErrMsg));
    666   }
    667   LastSlab = B;
    668   ++NumSlabs;
    669   // Initialize the slab to garbage when debugging.
    670   if (PoisonMemory) {
    671     memset(B.base(), 0xCD, B.size());
    672   }
    673   return B;
    674 }
    675 
    676 /// CheckInvariants - For testing only.  Return "" if all internal invariants
    677 /// are preserved, and a helpful error message otherwise.  For free and
    678 /// allocated blocks, make sure that adding BlockSize gives a valid block.
    679 /// For free blocks, make sure they're in the free list and that their end of
    680 /// block size marker is correct.  This function should return an error before
    681 /// accessing bad memory.  This function is defined here instead of in
    682 /// JITMemoryManagerTest.cpp so that we don't have to expose all of the
    683 /// implementation details of DefaultJITMemoryManager.
    684 bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
    685   raw_string_ostream Err(ErrorStr);
    686 
    687   // Construct a the set of FreeRangeHeader pointers so we can query it
    688   // efficiently.
    689   llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
    690   FreeRangeHeader* FreeHead = FreeMemoryList;
    691   FreeRangeHeader* FreeRange = FreeHead;
    692 
    693   do {
    694     // Check that the free range pointer is in the blocks we've allocated.
    695     bool Found = false;
    696     for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
    697          E = CodeSlabs.end(); I != E && !Found; ++I) {
    698       char *Start = (char*)I->base();
    699       char *End = Start + I->size();
    700       Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
    701     }
    702     if (!Found) {
    703       Err << "Corrupt free list; points to " << FreeRange;
    704       return false;
    705     }
    706 
    707     if (FreeRange->Next->Prev != FreeRange) {
    708       Err << "Next and Prev pointers do not match.";
    709       return false;
    710     }
    711 
    712     // Otherwise, add it to the set.
    713     FreeHdrSet.insert(FreeRange);
    714     FreeRange = FreeRange->Next;
    715   } while (FreeRange != FreeHead);
    716 
    717   // Go over each block, and look at each MemoryRangeHeader.
    718   for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
    719        E = CodeSlabs.end(); I != E; ++I) {
    720     char *Start = (char*)I->base();
    721     char *End = Start + I->size();
    722 
    723     // Check each memory range.
    724     for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = nullptr;
    725          Start <= (char*)Hdr && (char*)Hdr < End;
    726          Hdr = &Hdr->getBlockAfter()) {
    727       if (Hdr->ThisAllocated == 0) {
    728         // Check that this range is in the free list.
    729         if (!FreeHdrSet.count(Hdr)) {
    730           Err << "Found free header at " << Hdr << " that is not in free list.";
    731           return false;
    732         }
    733 
    734         // Now make sure the size marker at the end of the block is correct.
    735         uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
    736         if (!(Start <= (char*)Marker && (char*)Marker < End)) {
    737           Err << "Block size in header points out of current MemoryBlock.";
    738           return false;
    739         }
    740         if (Hdr->BlockSize != *Marker) {
    741           Err << "End of block size marker (" << *Marker << ") "
    742               << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
    743           return false;
    744         }
    745       }
    746 
    747       if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
    748         Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
    749             << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
    750         return false;
    751       } else if (!LastHdr && !Hdr->PrevAllocated) {
    752         Err << "The first header should have PrevAllocated true.";
    753         return false;
    754       }
    755 
    756       // Remember the last header.
    757       LastHdr = Hdr;
    758     }
    759   }
    760 
    761   // All invariants are preserved.
    762   return true;
    763 }
    764 
    765 //===----------------------------------------------------------------------===//
    766 // getPointerToNamedFunction() implementation.
    767 //===----------------------------------------------------------------------===//
    768 
    769 // AtExitHandlers - List of functions to call when the program exits,
    770 // registered with the atexit() library function.
    771 static std::vector<void (*)()> AtExitHandlers;
    772 
    773 /// runAtExitHandlers - Run any functions registered by the program's
    774 /// calls to atexit(3), which we intercept and store in
    775 /// AtExitHandlers.
    776 ///
    777 static void runAtExitHandlers() {
    778   while (!AtExitHandlers.empty()) {
    779     void (*Fn)() = AtExitHandlers.back();
    780     AtExitHandlers.pop_back();
    781     Fn();
    782   }
    783 }
    784 
    785 //===----------------------------------------------------------------------===//
    786 // Function stubs that are invoked instead of certain library calls
    787 //
    788 // Force the following functions to be linked in to anything that uses the
    789 // JIT. This is a hack designed to work around the all-too-clever Glibc
    790 // strategy of making these functions work differently when inlined vs. when
    791 // not inlined, and hiding their real definitions in a separate archive file
    792 // that the dynamic linker can't see. For more info, search for
    793 // 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
    794 #if defined(__linux__) && defined(__GLIBC__)
    795 /* stat functions are redirecting to __xstat with a version number.  On x86-64
    796  * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat'
    797  * available as an exported symbol, so we have to add it explicitly.
    798  */
    799 namespace {
    800 class StatSymbols {
    801 public:
    802   StatSymbols() {
    803     sys::DynamicLibrary::AddSymbol("stat", (void*)(intptr_t)stat);
    804     sys::DynamicLibrary::AddSymbol("fstat", (void*)(intptr_t)fstat);
    805     sys::DynamicLibrary::AddSymbol("lstat", (void*)(intptr_t)lstat);
    806     sys::DynamicLibrary::AddSymbol("stat64", (void*)(intptr_t)stat64);
    807     sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64);
    808     sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64);
    809     sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64);
    810     sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64);
    811     sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64);
    812     sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit);
    813     sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod);
    814   }
    815 };
    816 }
    817 static StatSymbols initStatSymbols;
    818 #endif // __linux__
    819 
    820 // jit_exit - Used to intercept the "exit" library call.
    821 static void jit_exit(int Status) {
    822   runAtExitHandlers();   // Run atexit handlers...
    823   exit(Status);
    824 }
    825 
    826 // jit_atexit - Used to intercept the "atexit" library call.
    827 static int jit_atexit(void (*Fn)()) {
    828   AtExitHandlers.push_back(Fn);    // Take note of atexit handler...
    829   return 0;  // Always successful
    830 }
    831 
    832 static int jit_noop() {
    833   return 0;
    834 }
    835 
    836 //===----------------------------------------------------------------------===//
    837 //
    838 /// getPointerToNamedFunction - This method returns the address of the specified
    839 /// function by using the dynamic loader interface.  As such it is only useful
    840 /// for resolving library symbols, not code generated symbols.
    841 ///
    842 void *DefaultJITMemoryManager::getPointerToNamedFunction(const std::string &Name,
    843                                                          bool AbortOnFailure) {
    844   // Check to see if this is one of the functions we want to intercept.  Note,
    845   // we cast to intptr_t here to silence a -pedantic warning that complains
    846   // about casting a function pointer to a normal pointer.
    847   if (Name == "exit") return (void*)(intptr_t)&jit_exit;
    848   if (Name == "atexit") return (void*)(intptr_t)&jit_atexit;
    849 
    850   // We should not invoke parent's ctors/dtors from generated main()!
    851   // On Mingw and Cygwin, the symbol __main is resolved to
    852   // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
    853   // (and register wrong callee's dtors with atexit(3)).
    854   // We expect ExecutionEngine::runStaticConstructorsDestructors()
    855   // is called before ExecutionEngine::runFunctionAsMain() is called.
    856   if (Name == "__main") return (void*)(intptr_t)&jit_noop;
    857 
    858   const char *NameStr = Name.c_str();
    859   // If this is an asm specifier, skip the sentinal.
    860   if (NameStr[0] == 1) ++NameStr;
    861 
    862   // If it's an external function, look it up in the process image...
    863   void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
    864   if (Ptr) return Ptr;
    865 
    866   // If it wasn't found and if it starts with an underscore ('_') character,
    867   // try again without the underscore.
    868   if (NameStr[0] == '_') {
    869     Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
    870     if (Ptr) return Ptr;
    871   }
    872 
    873   // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf.  These
    874   // are references to hidden visibility symbols that dlsym cannot resolve.
    875   // If we have one of these, strip off $LDBLStub and try again.
    876 #if defined(__APPLE__) && defined(__ppc__)
    877   if (Name.size() > 9 && Name[Name.size()-9] == '$' &&
    878       memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) {
    879     // First try turning $LDBLStub into $LDBL128. If that fails, strip it off.
    880     // This mirrors logic in libSystemStubs.a.
    881     std::string Prefix = std::string(Name.begin(), Name.end()-9);
    882     if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false))
    883       return Ptr;
    884     if (void *Ptr = getPointerToNamedFunction(Prefix, false))
    885       return Ptr;
    886   }
    887 #endif
    888 
    889   if (AbortOnFailure) {
    890     report_fatal_error("Program used external function '"+Name+
    891                       "' which could not be resolved!");
    892   }
    893   return nullptr;
    894 }
    895 
    896 
    897 
    898 JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
    899   return new DefaultJITMemoryManager();
    900 }
    901 
    902 const size_t DefaultJITMemoryManager::DefaultCodeSlabSize;
    903 const size_t DefaultJITMemoryManager::DefaultSlabSize;
    904 const size_t DefaultJITMemoryManager::DefaultSizeThreshold;
    905