Home | History | Annotate | Download | only in internal
      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Authors: wan (at) google.com (Zhanyong Wan), eefacm (at) gmail.com (Sean Mcafee)
     31 //
     32 // The Google C++ Testing Framework (Google Test)
     33 //
     34 // This header file declares functions and macros used internally by
     35 // Google Test.  They are subject to change without notice.
     36 
     37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     39 
     40 #include "gtest/internal/gtest-port.h"
     41 
     42 #if GTEST_OS_LINUX
     43 # include <stdlib.h>
     44 # include <sys/types.h>
     45 # include <sys/wait.h>
     46 # include <unistd.h>
     47 #endif  // GTEST_OS_LINUX
     48 
     49 #if GTEST_HAS_EXCEPTIONS
     50 # include <stdexcept>
     51 #endif
     52 
     53 #include <ctype.h>
     54 #include <float.h>
     55 #include <string.h>
     56 #include <iomanip>
     57 #include <limits>
     58 #include <set>
     59 #include <string>
     60 #include <vector>
     61 
     62 #include "gtest/gtest-message.h"
     63 #include "gtest/internal/gtest-string.h"
     64 #include "gtest/internal/gtest-filepath.h"
     65 #include "gtest/internal/gtest-type-util.h"
     66 
     67 // Due to C++ preprocessor weirdness, we need double indirection to
     68 // concatenate two tokens when one of them is __LINE__.  Writing
     69 //
     70 //   foo ## __LINE__
     71 //
     72 // will result in the token foo__LINE__, instead of foo followed by
     73 // the current line number.  For more details, see
     74 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
     75 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
     76 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
     77 
     78 class ProtocolMessage;
     79 namespace proto2 { class Message; }
     80 
     81 namespace testing {
     82 
     83 // Forward declarations.
     84 
     85 class AssertionResult;                 // Result of an assertion.
     86 class Message;                         // Represents a failure message.
     87 class Test;                            // Represents a test.
     88 class TestInfo;                        // Information about a test.
     89 class TestPartResult;                  // Result of a test part.
     90 class UnitTest;                        // A collection of test cases.
     91 
     92 template <typename T>
     93 ::std::string PrintToString(const T& value);
     94 
     95 namespace internal {
     96 
     97 struct TraceInfo;                      // Information about a trace point.
     98 class ScopedTrace;                     // Implements scoped trace.
     99 class TestInfoImpl;                    // Opaque implementation of TestInfo
    100 class UnitTestImpl;                    // Opaque implementation of UnitTest
    101 
    102 // How many times InitGoogleTest() has been called.
    103 GTEST_API_ extern int g_init_gtest_count;
    104 
    105 // The text used in failure messages to indicate the start of the
    106 // stack trace.
    107 GTEST_API_ extern const char kStackTraceMarker[];
    108 
    109 // Two overloaded helpers for checking at compile time whether an
    110 // expression is a null pointer literal (i.e. NULL or any 0-valued
    111 // compile-time integral constant).  Their return values have
    112 // different sizes, so we can use sizeof() to test which version is
    113 // picked by the compiler.  These helpers have no implementations, as
    114 // we only need their signatures.
    115 //
    116 // Given IsNullLiteralHelper(x), the compiler will pick the first
    117 // version if x can be implicitly converted to Secret*, and pick the
    118 // second version otherwise.  Since Secret is a secret and incomplete
    119 // type, the only expression a user can write that has type Secret* is
    120 // a null pointer literal.  Therefore, we know that x is a null
    121 // pointer literal if and only if the first version is picked by the
    122 // compiler.
    123 char IsNullLiteralHelper(Secret* p);
    124 char (&IsNullLiteralHelper(...))[2];  // NOLINT
    125 
    126 // A compile-time bool constant that is true if and only if x is a
    127 // null pointer literal (i.e. NULL or any 0-valued compile-time
    128 // integral constant).
    129 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
    130 // We lose support for NULL detection where the compiler doesn't like
    131 // passing non-POD classes through ellipsis (...).
    132 # define GTEST_IS_NULL_LITERAL_(x) false
    133 #else
    134 # define GTEST_IS_NULL_LITERAL_(x) \
    135     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
    136 #endif  // GTEST_ELLIPSIS_NEEDS_POD_
    137 
    138 // Appends the user-supplied message to the Google-Test-generated message.
    139 GTEST_API_ std::string AppendUserMessage(
    140     const std::string& gtest_msg, const Message& user_msg);
    141 
    142 #if GTEST_HAS_EXCEPTIONS
    143 
    144 // This exception is thrown by (and only by) a failed Google Test
    145 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
    146 // are enabled).  We derive it from std::runtime_error, which is for
    147 // errors presumably detectable only at run time.  Since
    148 // std::runtime_error inherits from std::exception, many testing
    149 // frameworks know how to extract and print the message inside it.
    150 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
    151  public:
    152   explicit GoogleTestFailureException(const TestPartResult& failure);
    153 };
    154 
    155 #endif  // GTEST_HAS_EXCEPTIONS
    156 
    157 // A helper class for creating scoped traces in user programs.
    158 class GTEST_API_ ScopedTrace {
    159  public:
    160   // The c'tor pushes the given source file location and message onto
    161   // a trace stack maintained by Google Test.
    162   ScopedTrace(const char* file, int line, const Message& message);
    163 
    164   // The d'tor pops the info pushed by the c'tor.
    165   //
    166   // Note that the d'tor is not virtual in order to be efficient.
    167   // Don't inherit from ScopedTrace!
    168   ~ScopedTrace();
    169 
    170  private:
    171   GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
    172 } GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
    173                             // c'tor and d'tor.  Therefore it doesn't
    174                             // need to be used otherwise.
    175 
    176 namespace edit_distance {
    177 // Returns the optimal edits to go from 'left' to 'right'.
    178 // All edits cost the same, with replace having lower priority than
    179 // add/remove.
    180 // Simple implementation of the WagnerFischer algorithm.
    181 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
    182 enum EditType { kMatch, kAdd, kRemove, kReplace };
    183 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
    184     const std::vector<size_t>& left, const std::vector<size_t>& right);
    185 
    186 // Same as above, but the input is represented as strings.
    187 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
    188     const std::vector<std::string>& left,
    189     const std::vector<std::string>& right);
    190 
    191 // Create a diff of the input strings in Unified diff format.
    192 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
    193                                          const std::vector<std::string>& right,
    194                                          size_t context = 2);
    195 
    196 }  // namespace edit_distance
    197 
    198 // Calculate the diff between 'left' and 'right' and return it in unified diff
    199 // format.
    200 // If not null, stores in 'total_line_count' the total number of lines found
    201 // in left + right.
    202 GTEST_API_ std::string DiffStrings(const std::string& left,
    203                                    const std::string& right,
    204                                    size_t* total_line_count);
    205 
    206 // Constructs and returns the message for an equality assertion
    207 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
    208 //
    209 // The first four parameters are the expressions used in the assertion
    210 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
    211 // where foo is 5 and bar is 6, we have:
    212 //
    213 //   expected_expression: "foo"
    214 //   actual_expression:   "bar"
    215 //   expected_value:      "5"
    216 //   actual_value:        "6"
    217 //
    218 // The ignoring_case parameter is true iff the assertion is a
    219 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
    220 // be inserted into the message.
    221 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
    222                                      const char* actual_expression,
    223                                      const std::string& expected_value,
    224                                      const std::string& actual_value,
    225                                      bool ignoring_case);
    226 
    227 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
    228 GTEST_API_ std::string GetBoolAssertionFailureMessage(
    229     const AssertionResult& assertion_result,
    230     const char* expression_text,
    231     const char* actual_predicate_value,
    232     const char* expected_predicate_value);
    233 
    234 // This template class represents an IEEE floating-point number
    235 // (either single-precision or double-precision, depending on the
    236 // template parameters).
    237 //
    238 // The purpose of this class is to do more sophisticated number
    239 // comparison.  (Due to round-off error, etc, it's very unlikely that
    240 // two floating-points will be equal exactly.  Hence a naive
    241 // comparison by the == operation often doesn't work.)
    242 //
    243 // Format of IEEE floating-point:
    244 //
    245 //   The most-significant bit being the leftmost, an IEEE
    246 //   floating-point looks like
    247 //
    248 //     sign_bit exponent_bits fraction_bits
    249 //
    250 //   Here, sign_bit is a single bit that designates the sign of the
    251 //   number.
    252 //
    253 //   For float, there are 8 exponent bits and 23 fraction bits.
    254 //
    255 //   For double, there are 11 exponent bits and 52 fraction bits.
    256 //
    257 //   More details can be found at
    258 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
    259 //
    260 // Template parameter:
    261 //
    262 //   RawType: the raw floating-point type (either float or double)
    263 template <typename RawType>
    264 class FloatingPoint {
    265  public:
    266   // Defines the unsigned integer type that has the same size as the
    267   // floating point number.
    268   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
    269 
    270   // Constants.
    271 
    272   // # of bits in a number.
    273   static const size_t kBitCount = 8*sizeof(RawType);
    274 
    275   // # of fraction bits in a number.
    276   static const size_t kFractionBitCount =
    277     std::numeric_limits<RawType>::digits - 1;
    278 
    279   // # of exponent bits in a number.
    280   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
    281 
    282   // The mask for the sign bit.
    283   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
    284 
    285   // The mask for the fraction bits.
    286   static const Bits kFractionBitMask =
    287     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
    288 
    289   // The mask for the exponent bits.
    290   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
    291 
    292   // How many ULP's (Units in the Last Place) we want to tolerate when
    293   // comparing two numbers.  The larger the value, the more error we
    294   // allow.  A 0 value means that two numbers must be exactly the same
    295   // to be considered equal.
    296   //
    297   // The maximum error of a single floating-point operation is 0.5
    298   // units in the last place.  On Intel CPU's, all floating-point
    299   // calculations are done with 80-bit precision, while double has 64
    300   // bits.  Therefore, 4 should be enough for ordinary use.
    301   //
    302   // See the following article for more details on ULP:
    303   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
    304   static const size_t kMaxUlps = 4;
    305 
    306   // Constructs a FloatingPoint from a raw floating-point number.
    307   //
    308   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
    309   // around may change its bits, although the new value is guaranteed
    310   // to be also a NAN.  Therefore, don't expect this constructor to
    311   // preserve the bits in x when x is a NAN.
    312   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
    313 
    314   // Static methods
    315 
    316   // Reinterprets a bit pattern as a floating-point number.
    317   //
    318   // This function is needed to test the AlmostEquals() method.
    319   static RawType ReinterpretBits(const Bits bits) {
    320     FloatingPoint fp(0);
    321     fp.u_.bits_ = bits;
    322     return fp.u_.value_;
    323   }
    324 
    325   // Returns the floating-point number that represent positive infinity.
    326   static RawType Infinity() {
    327     return ReinterpretBits(kExponentBitMask);
    328   }
    329 
    330   // Returns the maximum representable finite floating-point number.
    331   static RawType Max();
    332 
    333   // Non-static methods
    334 
    335   // Returns the bits that represents this number.
    336   const Bits &bits() const { return u_.bits_; }
    337 
    338   // Returns the exponent bits of this number.
    339   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
    340 
    341   // Returns the fraction bits of this number.
    342   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
    343 
    344   // Returns the sign bit of this number.
    345   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
    346 
    347   // Returns true iff this is NAN (not a number).
    348   bool is_nan() const {
    349     // It's a NAN if the exponent bits are all ones and the fraction
    350     // bits are not entirely zeros.
    351     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
    352   }
    353 
    354   // Returns true iff this number is at most kMaxUlps ULP's away from
    355   // rhs.  In particular, this function:
    356   //
    357   //   - returns false if either number is (or both are) NAN.
    358   //   - treats really large numbers as almost equal to infinity.
    359   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
    360   bool AlmostEquals(const FloatingPoint& rhs) const {
    361     // The IEEE standard says that any comparison operation involving
    362     // a NAN must return false.
    363     if (is_nan() || rhs.is_nan()) return false;
    364 
    365     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
    366         <= kMaxUlps;
    367   }
    368 
    369  private:
    370   // The data type used to store the actual floating-point number.
    371   union FloatingPointUnion {
    372     RawType value_;  // The raw floating-point number.
    373     Bits bits_;      // The bits that represent the number.
    374   };
    375 
    376   // Converts an integer from the sign-and-magnitude representation to
    377   // the biased representation.  More precisely, let N be 2 to the
    378   // power of (kBitCount - 1), an integer x is represented by the
    379   // unsigned number x + N.
    380   //
    381   // For instance,
    382   //
    383   //   -N + 1 (the most negative number representable using
    384   //          sign-and-magnitude) is represented by 1;
    385   //   0      is represented by N; and
    386   //   N - 1  (the biggest number representable using
    387   //          sign-and-magnitude) is represented by 2N - 1.
    388   //
    389   // Read http://en.wikipedia.org/wiki/Signed_number_representations
    390   // for more details on signed number representations.
    391   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
    392     if (kSignBitMask & sam) {
    393       // sam represents a negative number.
    394       return ~sam + 1;
    395     } else {
    396       // sam represents a positive number.
    397       return kSignBitMask | sam;
    398     }
    399   }
    400 
    401   // Given two numbers in the sign-and-magnitude representation,
    402   // returns the distance between them as an unsigned number.
    403   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
    404                                                      const Bits &sam2) {
    405     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
    406     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
    407     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
    408   }
    409 
    410   FloatingPointUnion u_;
    411 };
    412 
    413 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
    414 // macro defined by <windows.h>.
    415 template <>
    416 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
    417 template <>
    418 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
    419 
    420 // Typedefs the instances of the FloatingPoint template class that we
    421 // care to use.
    422 typedef FloatingPoint<float> Float;
    423 typedef FloatingPoint<double> Double;
    424 
    425 // In order to catch the mistake of putting tests that use different
    426 // test fixture classes in the same test case, we need to assign
    427 // unique IDs to fixture classes and compare them.  The TypeId type is
    428 // used to hold such IDs.  The user should treat TypeId as an opaque
    429 // type: the only operation allowed on TypeId values is to compare
    430 // them for equality using the == operator.
    431 typedef const void* TypeId;
    432 
    433 template <typename T>
    434 class TypeIdHelper {
    435  public:
    436   // dummy_ must not have a const type.  Otherwise an overly eager
    437   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
    438   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
    439   static bool dummy_;
    440 };
    441 
    442 template <typename T>
    443 bool TypeIdHelper<T>::dummy_ = false;
    444 
    445 // GetTypeId<T>() returns the ID of type T.  Different values will be
    446 // returned for different types.  Calling the function twice with the
    447 // same type argument is guaranteed to return the same ID.
    448 template <typename T>
    449 TypeId GetTypeId() {
    450   // The compiler is required to allocate a different
    451   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
    452   // the template.  Therefore, the address of dummy_ is guaranteed to
    453   // be unique.
    454   return &(TypeIdHelper<T>::dummy_);
    455 }
    456 
    457 // Returns the type ID of ::testing::Test.  Always call this instead
    458 // of GetTypeId< ::testing::Test>() to get the type ID of
    459 // ::testing::Test, as the latter may give the wrong result due to a
    460 // suspected linker bug when compiling Google Test as a Mac OS X
    461 // framework.
    462 GTEST_API_ TypeId GetTestTypeId();
    463 
    464 // Defines the abstract factory interface that creates instances
    465 // of a Test object.
    466 class TestFactoryBase {
    467  public:
    468   virtual ~TestFactoryBase() {}
    469 
    470   // Creates a test instance to run. The instance is both created and destroyed
    471   // within TestInfoImpl::Run()
    472   virtual Test* CreateTest() = 0;
    473 
    474  protected:
    475   TestFactoryBase() {}
    476 
    477  private:
    478   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
    479 };
    480 
    481 // This class provides implementation of TeastFactoryBase interface.
    482 // It is used in TEST and TEST_F macros.
    483 template <class TestClass>
    484 class TestFactoryImpl : public TestFactoryBase {
    485  public:
    486   virtual Test* CreateTest() { return new TestClass; }
    487 };
    488 
    489 #if GTEST_OS_WINDOWS
    490 
    491 // Predicate-formatters for implementing the HRESULT checking macros
    492 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
    493 // We pass a long instead of HRESULT to avoid causing an
    494 // include dependency for the HRESULT type.
    495 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
    496                                             long hr);  // NOLINT
    497 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
    498                                             long hr);  // NOLINT
    499 
    500 #endif  // GTEST_OS_WINDOWS
    501 
    502 // Types of SetUpTestCase() and TearDownTestCase() functions.
    503 typedef void (*SetUpTestCaseFunc)();
    504 typedef void (*TearDownTestCaseFunc)();
    505 
    506 // Creates a new TestInfo object and registers it with Google Test;
    507 // returns the created object.
    508 //
    509 // Arguments:
    510 //
    511 //   test_case_name:   name of the test case
    512 //   name:             name of the test
    513 //   type_param        the name of the test's type parameter, or NULL if
    514 //                     this is not a typed or a type-parameterized test.
    515 //   value_param       text representation of the test's value parameter,
    516 //                     or NULL if this is not a type-parameterized test.
    517 //   fixture_class_id: ID of the test fixture class
    518 //   set_up_tc:        pointer to the function that sets up the test case
    519 //   tear_down_tc:     pointer to the function that tears down the test case
    520 //   factory:          pointer to the factory that creates a test object.
    521 //                     The newly created TestInfo instance will assume
    522 //                     ownership of the factory object.
    523 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
    524     const char* test_case_name,
    525     const char* name,
    526     const char* type_param,
    527     const char* value_param,
    528     TypeId fixture_class_id,
    529     SetUpTestCaseFunc set_up_tc,
    530     TearDownTestCaseFunc tear_down_tc,
    531     TestFactoryBase* factory);
    532 
    533 // If *pstr starts with the given prefix, modifies *pstr to be right
    534 // past the prefix and returns true; otherwise leaves *pstr unchanged
    535 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
    536 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
    537 
    538 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    539 
    540 // State of the definition of a type-parameterized test case.
    541 class GTEST_API_ TypedTestCasePState {
    542  public:
    543   TypedTestCasePState() : registered_(false) {}
    544 
    545   // Adds the given test name to defined_test_names_ and return true
    546   // if the test case hasn't been registered; otherwise aborts the
    547   // program.
    548   bool AddTestName(const char* file, int line, const char* case_name,
    549                    const char* test_name) {
    550     if (registered_) {
    551       fprintf(stderr, "%s Test %s must be defined before "
    552               "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
    553               FormatFileLocation(file, line).c_str(), test_name, case_name);
    554       fflush(stderr);
    555       posix::Abort();
    556     }
    557     defined_test_names_.insert(test_name);
    558     return true;
    559   }
    560 
    561   // Verifies that registered_tests match the test names in
    562   // defined_test_names_; returns registered_tests if successful, or
    563   // aborts the program otherwise.
    564   const char* VerifyRegisteredTestNames(
    565       const char* file, int line, const char* registered_tests);
    566 
    567  private:
    568   bool registered_;
    569   ::std::set<const char*> defined_test_names_;
    570 };
    571 
    572 // Skips to the first non-space char after the first comma in 'str';
    573 // returns NULL if no comma is found in 'str'.
    574 inline const char* SkipComma(const char* str) {
    575   const char* comma = strchr(str, ',');
    576   if (comma == NULL) {
    577     return NULL;
    578   }
    579   while (IsSpace(*(++comma))) {}
    580   return comma;
    581 }
    582 
    583 // Returns the prefix of 'str' before the first comma in it; returns
    584 // the entire string if it contains no comma.
    585 inline std::string GetPrefixUntilComma(const char* str) {
    586   const char* comma = strchr(str, ',');
    587   return comma == NULL ? str : std::string(str, comma);
    588 }
    589 
    590 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
    591 // registers a list of type-parameterized tests with Google Test.  The
    592 // return value is insignificant - we just need to return something
    593 // such that we can call this function in a namespace scope.
    594 //
    595 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
    596 // template parameter.  It's defined in gtest-type-util.h.
    597 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
    598 class TypeParameterizedTest {
    599  public:
    600   // 'index' is the index of the test in the type list 'Types'
    601   // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
    602   // Types).  Valid values for 'index' are [0, N - 1] where N is the
    603   // length of Types.
    604   static bool Register(const char* prefix, const char* case_name,
    605                        const char* test_names, int index) {
    606     typedef typename Types::Head Type;
    607     typedef Fixture<Type> FixtureClass;
    608     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
    609 
    610     // First, registers the first type-parameterized test in the type
    611     // list.
    612     MakeAndRegisterTestInfo(
    613         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/"
    614          + StreamableToString(index)).c_str(),
    615         GetPrefixUntilComma(test_names).c_str(),
    616         GetTypeName<Type>().c_str(),
    617         NULL,  // No value parameter.
    618         GetTypeId<FixtureClass>(),
    619         TestClass::SetUpTestCase,
    620         TestClass::TearDownTestCase,
    621         new TestFactoryImpl<TestClass>);
    622 
    623     // Next, recurses (at compile time) with the tail of the type list.
    624     return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
    625         ::Register(prefix, case_name, test_names, index + 1);
    626   }
    627 };
    628 
    629 // The base case for the compile time recursion.
    630 template <GTEST_TEMPLATE_ Fixture, class TestSel>
    631 class TypeParameterizedTest<Fixture, TestSel, Types0> {
    632  public:
    633   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
    634                        const char* /*test_names*/, int /*index*/) {
    635     return true;
    636   }
    637 };
    638 
    639 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
    640 // registers *all combinations* of 'Tests' and 'Types' with Google
    641 // Test.  The return value is insignificant - we just need to return
    642 // something such that we can call this function in a namespace scope.
    643 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
    644 class TypeParameterizedTestCase {
    645  public:
    646   static bool Register(const char* prefix, const char* case_name,
    647                        const char* test_names) {
    648     typedef typename Tests::Head Head;
    649 
    650     // First, register the first test in 'Test' for each type in 'Types'.
    651     TypeParameterizedTest<Fixture, Head, Types>::Register(
    652         prefix, case_name, test_names, 0);
    653 
    654     // Next, recurses (at compile time) with the tail of the test list.
    655     return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
    656         ::Register(prefix, case_name, SkipComma(test_names));
    657   }
    658 };
    659 
    660 // The base case for the compile time recursion.
    661 template <GTEST_TEMPLATE_ Fixture, typename Types>
    662 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
    663  public:
    664   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
    665                        const char* /*test_names*/) {
    666     return true;
    667   }
    668 };
    669 
    670 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    671 
    672 // Returns the current OS stack trace as an std::string.
    673 //
    674 // The maximum number of stack frames to be included is specified by
    675 // the gtest_stack_trace_depth flag.  The skip_count parameter
    676 // specifies the number of top frames to be skipped, which doesn't
    677 // count against the number of frames to be included.
    678 //
    679 // For example, if Foo() calls Bar(), which in turn calls
    680 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
    681 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
    682 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
    683     UnitTest* unit_test, int skip_count);
    684 
    685 // Helpers for suppressing warnings on unreachable code or constant
    686 // condition.
    687 
    688 // Always returns true.
    689 GTEST_API_ bool AlwaysTrue();
    690 
    691 // Always returns false.
    692 inline bool AlwaysFalse() { return !AlwaysTrue(); }
    693 
    694 // Helper for suppressing false warning from Clang on a const char*
    695 // variable declared in a conditional expression always being NULL in
    696 // the else branch.
    697 struct GTEST_API_ ConstCharPtr {
    698   ConstCharPtr(const char* str) : value(str) {}
    699   operator bool() const { return true; }
    700   const char* value;
    701 };
    702 
    703 // A simple Linear Congruential Generator for generating random
    704 // numbers with a uniform distribution.  Unlike rand() and srand(), it
    705 // doesn't use global state (and therefore can't interfere with user
    706 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
    707 // but it's good enough for our purposes.
    708 class GTEST_API_ Random {
    709  public:
    710   static const UInt32 kMaxRange = 1u << 31;
    711 
    712   explicit Random(UInt32 seed) : state_(seed) {}
    713 
    714   void Reseed(UInt32 seed) { state_ = seed; }
    715 
    716   // Generates a random number from [0, range).  Crashes if 'range' is
    717   // 0 or greater than kMaxRange.
    718   UInt32 Generate(UInt32 range);
    719 
    720  private:
    721   UInt32 state_;
    722   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
    723 };
    724 
    725 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
    726 // compiler error iff T1 and T2 are different types.
    727 template <typename T1, typename T2>
    728 struct CompileAssertTypesEqual;
    729 
    730 template <typename T>
    731 struct CompileAssertTypesEqual<T, T> {
    732 };
    733 
    734 // Removes the reference from a type if it is a reference type,
    735 // otherwise leaves it unchanged.  This is the same as
    736 // tr1::remove_reference, which is not widely available yet.
    737 template <typename T>
    738 struct RemoveReference { typedef T type; };  // NOLINT
    739 template <typename T>
    740 struct RemoveReference<T&> { typedef T type; };  // NOLINT
    741 
    742 // A handy wrapper around RemoveReference that works when the argument
    743 // T depends on template parameters.
    744 #define GTEST_REMOVE_REFERENCE_(T) \
    745     typename ::testing::internal::RemoveReference<T>::type
    746 
    747 // Removes const from a type if it is a const type, otherwise leaves
    748 // it unchanged.  This is the same as tr1::remove_const, which is not
    749 // widely available yet.
    750 template <typename T>
    751 struct RemoveConst { typedef T type; };  // NOLINT
    752 template <typename T>
    753 struct RemoveConst<const T> { typedef T type; };  // NOLINT
    754 
    755 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
    756 // definition to fail to remove the const in 'const int[3]' and 'const
    757 // char[3][4]'.  The following specialization works around the bug.
    758 template <typename T, size_t N>
    759 struct RemoveConst<const T[N]> {
    760   typedef typename RemoveConst<T>::type type[N];
    761 };
    762 
    763 #if defined(_MSC_VER) && _MSC_VER < 1400
    764 // This is the only specialization that allows VC++ 7.1 to remove const in
    765 // 'const int[3] and 'const int[3][4]'.  However, it causes trouble with GCC
    766 // and thus needs to be conditionally compiled.
    767 template <typename T, size_t N>
    768 struct RemoveConst<T[N]> {
    769   typedef typename RemoveConst<T>::type type[N];
    770 };
    771 #endif
    772 
    773 // A handy wrapper around RemoveConst that works when the argument
    774 // T depends on template parameters.
    775 #define GTEST_REMOVE_CONST_(T) \
    776     typename ::testing::internal::RemoveConst<T>::type
    777 
    778 // Turns const U&, U&, const U, and U all into U.
    779 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
    780     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
    781 
    782 // Adds reference to a type if it is not a reference type,
    783 // otherwise leaves it unchanged.  This is the same as
    784 // tr1::add_reference, which is not widely available yet.
    785 template <typename T>
    786 struct AddReference { typedef T& type; };  // NOLINT
    787 template <typename T>
    788 struct AddReference<T&> { typedef T& type; };  // NOLINT
    789 
    790 // A handy wrapper around AddReference that works when the argument T
    791 // depends on template parameters.
    792 #define GTEST_ADD_REFERENCE_(T) \
    793     typename ::testing::internal::AddReference<T>::type
    794 
    795 // Adds a reference to const on top of T as necessary.  For example,
    796 // it transforms
    797 //
    798 //   char         ==> const char&
    799 //   const char   ==> const char&
    800 //   char&        ==> const char&
    801 //   const char&  ==> const char&
    802 //
    803 // The argument T must depend on some template parameters.
    804 #define GTEST_REFERENCE_TO_CONST_(T) \
    805     GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
    806 
    807 // ImplicitlyConvertible<From, To>::value is a compile-time bool
    808 // constant that's true iff type From can be implicitly converted to
    809 // type To.
    810 template <typename From, typename To>
    811 class ImplicitlyConvertible {
    812  private:
    813   // We need the following helper functions only for their types.
    814   // They have no implementations.
    815 
    816   // MakeFrom() is an expression whose type is From.  We cannot simply
    817   // use From(), as the type From may not have a public default
    818   // constructor.
    819   static typename AddReference<From>::type MakeFrom();
    820 
    821   // These two functions are overloaded.  Given an expression
    822   // Helper(x), the compiler will pick the first version if x can be
    823   // implicitly converted to type To; otherwise it will pick the
    824   // second version.
    825   //
    826   // The first version returns a value of size 1, and the second
    827   // version returns a value of size 2.  Therefore, by checking the
    828   // size of Helper(x), which can be done at compile time, we can tell
    829   // which version of Helper() is used, and hence whether x can be
    830   // implicitly converted to type To.
    831   static char Helper(To);
    832   static char (&Helper(...))[2];  // NOLINT
    833 
    834   // We have to put the 'public' section after the 'private' section,
    835   // or MSVC refuses to compile the code.
    836  public:
    837 #if defined(__BORLANDC__)
    838   // C++Builder cannot use member overload resolution during template
    839   // instantiation.  The simplest workaround is to use its C++0x type traits
    840   // functions (C++Builder 2009 and above only).
    841   static const bool value = __is_convertible(From, To);
    842 #else
    843   // MSVC warns about implicitly converting from double to int for
    844   // possible loss of data, so we need to temporarily disable the
    845   // warning.
    846   GTEST_DISABLE_MSC_WARNINGS_PUSH_(4244)
    847   static const bool value =
    848       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
    849   GTEST_DISABLE_MSC_WARNINGS_POP_()
    850 #endif  // __BORLANDC__
    851 };
    852 template <typename From, typename To>
    853 const bool ImplicitlyConvertible<From, To>::value;
    854 
    855 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
    856 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
    857 // of those.
    858 template <typename T>
    859 struct IsAProtocolMessage
    860     : public bool_constant<
    861   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
    862   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
    863 };
    864 
    865 // When the compiler sees expression IsContainerTest<C>(0), if C is an
    866 // STL-style container class, the first overload of IsContainerTest
    867 // will be viable (since both C::iterator* and C::const_iterator* are
    868 // valid types and NULL can be implicitly converted to them).  It will
    869 // be picked over the second overload as 'int' is a perfect match for
    870 // the type of argument 0.  If C::iterator or C::const_iterator is not
    871 // a valid type, the first overload is not viable, and the second
    872 // overload will be picked.  Therefore, we can determine whether C is
    873 // a container class by checking the type of IsContainerTest<C>(0).
    874 // The value of the expression is insignificant.
    875 //
    876 // Note that we look for both C::iterator and C::const_iterator.  The
    877 // reason is that C++ injects the name of a class as a member of the
    878 // class itself (e.g. you can refer to class iterator as either
    879 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
    880 // only, for example, we would mistakenly think that a class named
    881 // iterator is an STL container.
    882 //
    883 // Also note that the simpler approach of overloading
    884 // IsContainerTest(typename C::const_iterator*) and
    885 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
    886 typedef int IsContainer;
    887 template <class C>
    888 IsContainer IsContainerTest(int /* dummy */,
    889                             typename C::iterator* /* it */ = NULL,
    890                             typename C::const_iterator* /* const_it */ = NULL) {
    891   return 0;
    892 }
    893 
    894 typedef char IsNotContainer;
    895 template <class C>
    896 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
    897 
    898 // EnableIf<condition>::type is void when 'Cond' is true, and
    899 // undefined when 'Cond' is false.  To use SFINAE to make a function
    900 // overload only apply when a particular expression is true, add
    901 // "typename EnableIf<expression>::type* = 0" as the last parameter.
    902 template<bool> struct EnableIf;
    903 template<> struct EnableIf<true> { typedef void type; };  // NOLINT
    904 
    905 // Utilities for native arrays.
    906 
    907 // ArrayEq() compares two k-dimensional native arrays using the
    908 // elements' operator==, where k can be any integer >= 0.  When k is
    909 // 0, ArrayEq() degenerates into comparing a single pair of values.
    910 
    911 template <typename T, typename U>
    912 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
    913 
    914 // This generic version is used when k is 0.
    915 template <typename T, typename U>
    916 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
    917 
    918 // This overload is used when k >= 1.
    919 template <typename T, typename U, size_t N>
    920 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
    921   return internal::ArrayEq(lhs, N, rhs);
    922 }
    923 
    924 // This helper reduces code bloat.  If we instead put its logic inside
    925 // the previous ArrayEq() function, arrays with different sizes would
    926 // lead to different copies of the template code.
    927 template <typename T, typename U>
    928 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
    929   for (size_t i = 0; i != size; i++) {
    930     if (!internal::ArrayEq(lhs[i], rhs[i]))
    931       return false;
    932   }
    933   return true;
    934 }
    935 
    936 // Finds the first element in the iterator range [begin, end) that
    937 // equals elem.  Element may be a native array type itself.
    938 template <typename Iter, typename Element>
    939 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
    940   for (Iter it = begin; it != end; ++it) {
    941     if (internal::ArrayEq(*it, elem))
    942       return it;
    943   }
    944   return end;
    945 }
    946 
    947 // CopyArray() copies a k-dimensional native array using the elements'
    948 // operator=, where k can be any integer >= 0.  When k is 0,
    949 // CopyArray() degenerates into copying a single value.
    950 
    951 template <typename T, typename U>
    952 void CopyArray(const T* from, size_t size, U* to);
    953 
    954 // This generic version is used when k is 0.
    955 template <typename T, typename U>
    956 inline void CopyArray(const T& from, U* to) { *to = from; }
    957 
    958 // This overload is used when k >= 1.
    959 template <typename T, typename U, size_t N>
    960 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
    961   internal::CopyArray(from, N, *to);
    962 }
    963 
    964 // This helper reduces code bloat.  If we instead put its logic inside
    965 // the previous CopyArray() function, arrays with different sizes
    966 // would lead to different copies of the template code.
    967 template <typename T, typename U>
    968 void CopyArray(const T* from, size_t size, U* to) {
    969   for (size_t i = 0; i != size; i++) {
    970     internal::CopyArray(from[i], to + i);
    971   }
    972 }
    973 
    974 // The relation between an NativeArray object (see below) and the
    975 // native array it represents.
    976 // We use 2 different structs to allow non-copyable types to be used, as long
    977 // as RelationToSourceReference() is passed.
    978 struct RelationToSourceReference {};
    979 struct RelationToSourceCopy {};
    980 
    981 // Adapts a native array to a read-only STL-style container.  Instead
    982 // of the complete STL container concept, this adaptor only implements
    983 // members useful for Google Mock's container matchers.  New members
    984 // should be added as needed.  To simplify the implementation, we only
    985 // support Element being a raw type (i.e. having no top-level const or
    986 // reference modifier).  It's the client's responsibility to satisfy
    987 // this requirement.  Element can be an array type itself (hence
    988 // multi-dimensional arrays are supported).
    989 template <typename Element>
    990 class NativeArray {
    991  public:
    992   // STL-style container typedefs.
    993   typedef Element value_type;
    994   typedef Element* iterator;
    995   typedef const Element* const_iterator;
    996 
    997   // Constructs from a native array. References the source.
    998   NativeArray(const Element* array, size_t count, RelationToSourceReference) {
    999     InitRef(array, count);
   1000   }
   1001 
   1002   // Constructs from a native array. Copies the source.
   1003   NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
   1004     InitCopy(array, count);
   1005   }
   1006 
   1007   // Copy constructor.
   1008   NativeArray(const NativeArray& rhs) {
   1009     (this->*rhs.clone_)(rhs.array_, rhs.size_);
   1010   }
   1011 
   1012   ~NativeArray() {
   1013     if (clone_ != &NativeArray::InitRef)
   1014       delete[] array_;
   1015   }
   1016 
   1017   // STL-style container methods.
   1018   size_t size() const { return size_; }
   1019   const_iterator begin() const { return array_; }
   1020   const_iterator end() const { return array_ + size_; }
   1021   bool operator==(const NativeArray& rhs) const {
   1022     return size() == rhs.size() &&
   1023         ArrayEq(begin(), size(), rhs.begin());
   1024   }
   1025 
   1026  private:
   1027   enum {
   1028     kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper<
   1029         Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value,
   1030   };
   1031 
   1032   // Initializes this object with a copy of the input.
   1033   void InitCopy(const Element* array, size_t a_size) {
   1034     Element* const copy = new Element[a_size];
   1035     CopyArray(array, a_size, copy);
   1036     array_ = copy;
   1037     size_ = a_size;
   1038     clone_ = &NativeArray::InitCopy;
   1039   }
   1040 
   1041   // Initializes this object with a reference of the input.
   1042   void InitRef(const Element* array, size_t a_size) {
   1043     array_ = array;
   1044     size_ = a_size;
   1045     clone_ = &NativeArray::InitRef;
   1046   }
   1047 
   1048   const Element* array_;
   1049   size_t size_;
   1050   void (NativeArray::*clone_)(const Element*, size_t);
   1051 
   1052   GTEST_DISALLOW_ASSIGN_(NativeArray);
   1053 };
   1054 
   1055 }  // namespace internal
   1056 }  // namespace testing
   1057 
   1058 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
   1059   ::testing::internal::AssertHelper(result_type, file, line, message) \
   1060     = ::testing::Message()
   1061 
   1062 #define GTEST_MESSAGE_(message, result_type) \
   1063   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
   1064 
   1065 #define GTEST_FATAL_FAILURE_(message) \
   1066   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
   1067 
   1068 #define GTEST_NONFATAL_FAILURE_(message) \
   1069   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
   1070 
   1071 #define GTEST_SUCCESS_(message) \
   1072   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
   1073 
   1074 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
   1075 // statement if it returns or throws (or doesn't return or throw in some
   1076 // situations).
   1077 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
   1078   if (::testing::internal::AlwaysTrue()) { statement; }
   1079 
   1080 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
   1081   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1082   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
   1083     bool gtest_caught_expected = false; \
   1084     try { \
   1085       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1086     } \
   1087     catch (expected_exception const&) { \
   1088       gtest_caught_expected = true; \
   1089     } \
   1090     catch (...) { \
   1091       gtest_msg.value = \
   1092           "Expected: " #statement " throws an exception of type " \
   1093           #expected_exception ".\n  Actual: it throws a different type."; \
   1094       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1095     } \
   1096     if (!gtest_caught_expected) { \
   1097       gtest_msg.value = \
   1098           "Expected: " #statement " throws an exception of type " \
   1099           #expected_exception ".\n  Actual: it throws nothing."; \
   1100       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1101     } \
   1102   } else \
   1103     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
   1104       fail(gtest_msg.value)
   1105 
   1106 #define GTEST_TEST_NO_THROW_(statement, fail) \
   1107   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1108   if (::testing::internal::AlwaysTrue()) { \
   1109     try { \
   1110       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1111     } \
   1112     catch (...) { \
   1113       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
   1114     } \
   1115   } else \
   1116     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
   1117       fail("Expected: " #statement " doesn't throw an exception.\n" \
   1118            "  Actual: it throws.")
   1119 
   1120 #define GTEST_TEST_ANY_THROW_(statement, fail) \
   1121   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1122   if (::testing::internal::AlwaysTrue()) { \
   1123     bool gtest_caught_any = false; \
   1124     try { \
   1125       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1126     } \
   1127     catch (...) { \
   1128       gtest_caught_any = true; \
   1129     } \
   1130     if (!gtest_caught_any) { \
   1131       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
   1132     } \
   1133   } else \
   1134     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
   1135       fail("Expected: " #statement " throws an exception.\n" \
   1136            "  Actual: it doesn't.")
   1137 
   1138 
   1139 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
   1140 // either a boolean expression or an AssertionResult. text is a textual
   1141 // represenation of expression as it was passed into the EXPECT_TRUE.
   1142 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
   1143   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1144   if (const ::testing::AssertionResult gtest_ar_ = \
   1145       ::testing::AssertionResult(expression)) \
   1146     ; \
   1147   else \
   1148     fail(::testing::internal::GetBoolAssertionFailureMessage(\
   1149         gtest_ar_, text, #actual, #expected).c_str())
   1150 
   1151 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
   1152   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1153   if (::testing::internal::AlwaysTrue()) { \
   1154     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
   1155     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1156     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
   1157       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
   1158     } \
   1159   } else \
   1160     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
   1161       fail("Expected: " #statement " doesn't generate new fatal " \
   1162            "failures in the current thread.\n" \
   1163            "  Actual: it does.")
   1164 
   1165 // Expands to the name of the class that implements the given test.
   1166 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
   1167   test_case_name##_##test_name##_Test
   1168 
   1169 // Helper macro for defining tests.
   1170 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
   1171 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
   1172  public:\
   1173   GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
   1174  private:\
   1175   virtual void TestBody();\
   1176   static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
   1177   GTEST_DISALLOW_COPY_AND_ASSIGN_(\
   1178       GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
   1179 };\
   1180 \
   1181 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
   1182   ::test_info_ =\
   1183     ::testing::internal::MakeAndRegisterTestInfo(\
   1184         #test_case_name, #test_name, NULL, NULL, \
   1185         (parent_id), \
   1186         parent_class::SetUpTestCase, \
   1187         parent_class::TearDownTestCase, \
   1188         new ::testing::internal::TestFactoryImpl<\
   1189             GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
   1190 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
   1191 
   1192 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
   1193 
   1194