1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "reference_processor.h" 18 19 #include "mirror/object-inl.h" 20 #include "mirror/reference.h" 21 #include "mirror/reference-inl.h" 22 #include "reference_processor-inl.h" 23 #include "reflection.h" 24 #include "ScopedLocalRef.h" 25 #include "scoped_thread_state_change.h" 26 #include "well_known_classes.h" 27 28 namespace art { 29 namespace gc { 30 31 ReferenceProcessor::ReferenceProcessor() 32 : process_references_args_(nullptr, nullptr, nullptr), 33 preserving_references_(false), 34 condition_("reference processor condition", *Locks::reference_processor_lock_) , 35 soft_reference_queue_(Locks::reference_queue_soft_references_lock_), 36 weak_reference_queue_(Locks::reference_queue_weak_references_lock_), 37 finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_), 38 phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_), 39 cleared_references_(Locks::reference_queue_cleared_references_lock_) { 40 } 41 42 void ReferenceProcessor::EnableSlowPath() { 43 mirror::Reference::GetJavaLangRefReference()->SetSlowPath(true); 44 } 45 46 void ReferenceProcessor::DisableSlowPath(Thread* self) { 47 mirror::Reference::GetJavaLangRefReference()->SetSlowPath(false); 48 condition_.Broadcast(self); 49 } 50 51 mirror::Object* ReferenceProcessor::GetReferent(Thread* self, mirror::Reference* reference) { 52 mirror::Object* const referent = reference->GetReferent(); 53 // If the referent is null then it is already cleared, we can just return null since there is no 54 // scenario where it becomes non-null during the reference processing phase. 55 if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) { 56 return referent; 57 } 58 MutexLock mu(self, *Locks::reference_processor_lock_); 59 while (SlowPathEnabled()) { 60 mirror::HeapReference<mirror::Object>* const referent_addr = 61 reference->GetReferentReferenceAddr(); 62 // If the referent became cleared, return it. Don't need barrier since thread roots can't get 63 // updated until after we leave the function due to holding the mutator lock. 64 if (referent_addr->AsMirrorPtr() == nullptr) { 65 return nullptr; 66 } 67 // Try to see if the referent is already marked by using the is_marked_callback. We can return 68 // it to the mutator as long as the GC is not preserving references. 69 IsHeapReferenceMarkedCallback* const is_marked_callback = 70 process_references_args_.is_marked_callback_; 71 if (LIKELY(is_marked_callback != nullptr)) { 72 // If it's null it means not marked, but it could become marked if the referent is reachable 73 // by finalizer referents. So we can not return in this case and must block. Otherwise, we 74 // can return it to the mutator as long as the GC is not preserving references, in which 75 // case only black nodes can be safely returned. If the GC is preserving references, the 76 // mutator could take a white field from a grey or white node and move it somewhere else 77 // in the heap causing corruption since this field would get swept. 78 if (is_marked_callback(referent_addr, process_references_args_.arg_)) { 79 if (!preserving_references_ || 80 (LIKELY(!reference->IsFinalizerReferenceInstance()) && !reference->IsEnqueued())) { 81 return referent_addr->AsMirrorPtr(); 82 } 83 } 84 } 85 condition_.WaitHoldingLocks(self); 86 } 87 return reference->GetReferent(); 88 } 89 90 bool ReferenceProcessor::PreserveSoftReferenceCallback(mirror::HeapReference<mirror::Object>* obj, 91 void* arg) { 92 auto* const args = reinterpret_cast<ProcessReferencesArgs*>(arg); 93 // TODO: Add smarter logic for preserving soft references. 94 mirror::Object* new_obj = args->mark_callback_(obj->AsMirrorPtr(), args->arg_); 95 DCHECK(new_obj != nullptr); 96 obj->Assign(new_obj); 97 return true; 98 } 99 100 void ReferenceProcessor::StartPreservingReferences(Thread* self) { 101 MutexLock mu(self, *Locks::reference_processor_lock_); 102 preserving_references_ = true; 103 } 104 105 void ReferenceProcessor::StopPreservingReferences(Thread* self) { 106 MutexLock mu(self, *Locks::reference_processor_lock_); 107 preserving_references_ = false; 108 // We are done preserving references, some people who are blocked may see a marked referent. 109 condition_.Broadcast(self); 110 } 111 112 // Process reference class instances and schedule finalizations. 113 void ReferenceProcessor::ProcessReferences(bool concurrent, TimingLogger* timings, 114 bool clear_soft_references, 115 IsHeapReferenceMarkedCallback* is_marked_callback, 116 MarkObjectCallback* mark_object_callback, 117 ProcessMarkStackCallback* process_mark_stack_callback, 118 void* arg) { 119 TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings); 120 Thread* self = Thread::Current(); 121 { 122 MutexLock mu(self, *Locks::reference_processor_lock_); 123 process_references_args_.is_marked_callback_ = is_marked_callback; 124 process_references_args_.mark_callback_ = mark_object_callback; 125 process_references_args_.arg_ = arg; 126 CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent"; 127 } 128 // Unless required to clear soft references with white references, preserve some white referents. 129 if (!clear_soft_references) { 130 TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" : 131 "(Paused)ForwardSoftReferences", timings); 132 if (concurrent) { 133 StartPreservingReferences(self); 134 } 135 soft_reference_queue_.ForwardSoftReferences(&PreserveSoftReferenceCallback, 136 &process_references_args_); 137 process_mark_stack_callback(arg); 138 if (concurrent) { 139 StopPreservingReferences(self); 140 } 141 } 142 // Clear all remaining soft and weak references with white referents. 143 soft_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg); 144 weak_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg); 145 { 146 TimingLogger::ScopedTiming t(concurrent ? "EnqueueFinalizerReferences" : 147 "(Paused)EnqueueFinalizerReferences", timings); 148 if (concurrent) { 149 StartPreservingReferences(self); 150 } 151 // Preserve all white objects with finalize methods and schedule them for finalization. 152 finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, is_marked_callback, 153 mark_object_callback, arg); 154 process_mark_stack_callback(arg); 155 if (concurrent) { 156 StopPreservingReferences(self); 157 } 158 } 159 // Clear all finalizer referent reachable soft and weak references with white referents. 160 soft_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg); 161 weak_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg); 162 // Clear all phantom references with white referents. 163 phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg); 164 // At this point all reference queues other than the cleared references should be empty. 165 DCHECK(soft_reference_queue_.IsEmpty()); 166 DCHECK(weak_reference_queue_.IsEmpty()); 167 DCHECK(finalizer_reference_queue_.IsEmpty()); 168 DCHECK(phantom_reference_queue_.IsEmpty()); 169 { 170 MutexLock mu(self, *Locks::reference_processor_lock_); 171 // Need to always do this since the next GC may be concurrent. Doing this for only concurrent 172 // could result in a stale is_marked_callback_ being called before the reference processing 173 // starts since there is a small window of time where slow_path_enabled_ is enabled but the 174 // callback isn't yet set. 175 process_references_args_.is_marked_callback_ = nullptr; 176 if (concurrent) { 177 // Done processing, disable the slow path and broadcast to the waiters. 178 DisableSlowPath(self); 179 } 180 } 181 } 182 183 // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been 184 // marked, put it on the appropriate list in the heap for later processing. 185 void ReferenceProcessor::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref, 186 IsHeapReferenceMarkedCallback* is_marked_callback, 187 void* arg) { 188 // klass can be the class of the old object if the visitor already updated the class of ref. 189 DCHECK(klass != nullptr); 190 DCHECK(klass->IsTypeOfReferenceClass()); 191 mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr(); 192 if (referent->AsMirrorPtr() != nullptr && !is_marked_callback(referent, arg)) { 193 Thread* self = Thread::Current(); 194 // TODO: Remove these locks, and use atomic stacks for storing references? 195 // We need to check that the references haven't already been enqueued since we can end up 196 // scanning the same reference multiple times due to dirty cards. 197 if (klass->IsSoftReferenceClass()) { 198 soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 199 } else if (klass->IsWeakReferenceClass()) { 200 weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 201 } else if (klass->IsFinalizerReferenceClass()) { 202 finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 203 } else if (klass->IsPhantomReferenceClass()) { 204 phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 205 } else { 206 LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex 207 << klass->GetAccessFlags(); 208 } 209 } 210 } 211 212 void ReferenceProcessor::UpdateRoots(IsMarkedCallback* callback, void* arg) { 213 cleared_references_.UpdateRoots(callback, arg); 214 } 215 216 void ReferenceProcessor::EnqueueClearedReferences(Thread* self) { 217 Locks::mutator_lock_->AssertNotHeld(self); 218 if (!cleared_references_.IsEmpty()) { 219 // When a runtime isn't started there are no reference queues to care about so ignore. 220 if (LIKELY(Runtime::Current()->IsStarted())) { 221 ScopedObjectAccess soa(self); 222 ScopedLocalRef<jobject> arg(self->GetJniEnv(), 223 soa.AddLocalReference<jobject>(cleared_references_.GetList())); 224 jvalue args[1]; 225 args[0].l = arg.get(); 226 InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args); 227 } 228 cleared_references_.Clear(); 229 } 230 } 231 232 bool ReferenceProcessor::MakeCircularListIfUnenqueued(mirror::FinalizerReference* reference) { 233 Thread* self = Thread::Current(); 234 MutexLock mu(self, *Locks::reference_processor_lock_); 235 // Wait untul we are done processing reference. 236 while (SlowPathEnabled()) { 237 condition_.Wait(self); 238 } 239 // At this point, since the sentinel of the reference is live, it is guaranteed to not be 240 // enqueued if we just finished processing references. Otherwise, we may be doing the main GC 241 // phase. Since we are holding the reference processor lock, it guarantees that reference 242 // processing can't begin. The GC could have just enqueued the reference one one of the internal 243 // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this 244 // race. 245 MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_); 246 if (!reference->IsEnqueued()) { 247 CHECK(reference->IsFinalizerReferenceInstance()); 248 if (Runtime::Current()->IsActiveTransaction()) { 249 reference->SetPendingNext<true>(reference); 250 } else { 251 reference->SetPendingNext<false>(reference); 252 } 253 return true; 254 } 255 return false; 256 } 257 258 } // namespace gc 259 } // namespace art 260