1 //===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a hash set that can be used to remove duplication of nodes 11 // in a graph. This code was originally created by Chris Lattner for use with 12 // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_ADT_FOLDINGSET_H 17 #define LLVM_ADT_FOLDINGSET_H 18 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Support/Allocator.h" 22 #include "llvm/Support/DataTypes.h" 23 24 namespace llvm { 25 class APFloat; 26 class APInt; 27 28 /// This folding set used for two purposes: 29 /// 1. Given information about a node we want to create, look up the unique 30 /// instance of the node in the set. If the node already exists, return 31 /// it, otherwise return the bucket it should be inserted into. 32 /// 2. Given a node that has already been created, remove it from the set. 33 /// 34 /// This class is implemented as a single-link chained hash table, where the 35 /// "buckets" are actually the nodes themselves (the next pointer is in the 36 /// node). The last node points back to the bucket to simplify node removal. 37 /// 38 /// Any node that is to be included in the folding set must be a subclass of 39 /// FoldingSetNode. The node class must also define a Profile method used to 40 /// establish the unique bits of data for the node. The Profile method is 41 /// passed a FoldingSetNodeID object which is used to gather the bits. Just 42 /// call one of the Add* functions defined in the FoldingSetImpl::NodeID class. 43 /// NOTE: That the folding set does not own the nodes and it is the 44 /// responsibility of the user to dispose of the nodes. 45 /// 46 /// Eg. 47 /// class MyNode : public FoldingSetNode { 48 /// private: 49 /// std::string Name; 50 /// unsigned Value; 51 /// public: 52 /// MyNode(const char *N, unsigned V) : Name(N), Value(V) {} 53 /// ... 54 /// void Profile(FoldingSetNodeID &ID) const { 55 /// ID.AddString(Name); 56 /// ID.AddInteger(Value); 57 /// } 58 /// ... 59 /// }; 60 /// 61 /// To define the folding set itself use the FoldingSet template; 62 /// 63 /// Eg. 64 /// FoldingSet<MyNode> MyFoldingSet; 65 /// 66 /// Four public methods are available to manipulate the folding set; 67 /// 68 /// 1) If you have an existing node that you want add to the set but unsure 69 /// that the node might already exist then call; 70 /// 71 /// MyNode *M = MyFoldingSet.GetOrInsertNode(N); 72 /// 73 /// If The result is equal to the input then the node has been inserted. 74 /// Otherwise, the result is the node existing in the folding set, and the 75 /// input can be discarded (use the result instead.) 76 /// 77 /// 2) If you are ready to construct a node but want to check if it already 78 /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to 79 /// check; 80 /// 81 /// FoldingSetNodeID ID; 82 /// ID.AddString(Name); 83 /// ID.AddInteger(Value); 84 /// void *InsertPoint; 85 /// 86 /// MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint); 87 /// 88 /// If found then M with be non-NULL, else InsertPoint will point to where it 89 /// should be inserted using InsertNode. 90 /// 91 /// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new 92 /// node with FindNodeOrInsertPos; 93 /// 94 /// InsertNode(N, InsertPoint); 95 /// 96 /// 4) Finally, if you want to remove a node from the folding set call; 97 /// 98 /// bool WasRemoved = RemoveNode(N); 99 /// 100 /// The result indicates whether the node existed in the folding set. 101 102 class FoldingSetNodeID; 103 104 //===----------------------------------------------------------------------===// 105 /// FoldingSetImpl - Implements the folding set functionality. The main 106 /// structure is an array of buckets. Each bucket is indexed by the hash of 107 /// the nodes it contains. The bucket itself points to the nodes contained 108 /// in the bucket via a singly linked list. The last node in the list points 109 /// back to the bucket to facilitate node removal. 110 /// 111 class FoldingSetImpl { 112 protected: 113 /// Buckets - Array of bucket chains. 114 /// 115 void **Buckets; 116 117 /// NumBuckets - Length of the Buckets array. Always a power of 2. 118 /// 119 unsigned NumBuckets; 120 121 /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes 122 /// is greater than twice the number of buckets. 123 unsigned NumNodes; 124 125 public: 126 explicit FoldingSetImpl(unsigned Log2InitSize = 6); 127 virtual ~FoldingSetImpl(); 128 129 //===--------------------------------------------------------------------===// 130 /// Node - This class is used to maintain the singly linked bucket list in 131 /// a folding set. 132 /// 133 class Node { 134 private: 135 // NextInFoldingSetBucket - next link in the bucket list. 136 void *NextInFoldingSetBucket; 137 138 public: 139 140 Node() : NextInFoldingSetBucket(nullptr) {} 141 142 // Accessors 143 void *getNextInBucket() const { return NextInFoldingSetBucket; } 144 void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; } 145 }; 146 147 /// clear - Remove all nodes from the folding set. 148 void clear(); 149 150 /// RemoveNode - Remove a node from the folding set, returning true if one 151 /// was removed or false if the node was not in the folding set. 152 bool RemoveNode(Node *N); 153 154 /// GetOrInsertNode - If there is an existing simple Node exactly 155 /// equal to the specified node, return it. Otherwise, insert 'N' and return 156 /// it instead. 157 Node *GetOrInsertNode(Node *N); 158 159 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, 160 /// return it. If not, return the insertion token that will make insertion 161 /// faster. 162 Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos); 163 164 /// InsertNode - Insert the specified node into the folding set, knowing that 165 /// it is not already in the folding set. InsertPos must be obtained from 166 /// FindNodeOrInsertPos. 167 void InsertNode(Node *N, void *InsertPos); 168 169 /// InsertNode - Insert the specified node into the folding set, knowing that 170 /// it is not already in the folding set. 171 void InsertNode(Node *N) { 172 Node *Inserted = GetOrInsertNode(N); 173 (void)Inserted; 174 assert(Inserted == N && "Node already inserted!"); 175 } 176 177 /// size - Returns the number of nodes in the folding set. 178 unsigned size() const { return NumNodes; } 179 180 /// empty - Returns true if there are no nodes in the folding set. 181 bool empty() const { return NumNodes == 0; } 182 183 private: 184 185 /// GrowHashTable - Double the size of the hash table and rehash everything. 186 /// 187 void GrowHashTable(); 188 189 protected: 190 191 /// GetNodeProfile - Instantiations of the FoldingSet template implement 192 /// this function to gather data bits for the given node. 193 virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0; 194 /// NodeEquals - Instantiations of the FoldingSet template implement 195 /// this function to compare the given node with the given ID. 196 virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash, 197 FoldingSetNodeID &TempID) const=0; 198 /// ComputeNodeHash - Instantiations of the FoldingSet template implement 199 /// this function to compute a hash value for the given node. 200 virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0; 201 }; 202 203 //===----------------------------------------------------------------------===// 204 205 template<typename T> struct FoldingSetTrait; 206 207 /// DefaultFoldingSetTrait - This class provides default implementations 208 /// for FoldingSetTrait implementations. 209 /// 210 template<typename T> struct DefaultFoldingSetTrait { 211 static void Profile(const T &X, FoldingSetNodeID &ID) { 212 X.Profile(ID); 213 } 214 static void Profile(T &X, FoldingSetNodeID &ID) { 215 X.Profile(ID); 216 } 217 218 // Equals - Test if the profile for X would match ID, using TempID 219 // to compute a temporary ID if necessary. The default implementation 220 // just calls Profile and does a regular comparison. Implementations 221 // can override this to provide more efficient implementations. 222 static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash, 223 FoldingSetNodeID &TempID); 224 225 // ComputeHash - Compute a hash value for X, using TempID to 226 // compute a temporary ID if necessary. The default implementation 227 // just calls Profile and does a regular hash computation. 228 // Implementations can override this to provide more efficient 229 // implementations. 230 static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID); 231 }; 232 233 /// FoldingSetTrait - This trait class is used to define behavior of how 234 /// to "profile" (in the FoldingSet parlance) an object of a given type. 235 /// The default behavior is to invoke a 'Profile' method on an object, but 236 /// through template specialization the behavior can be tailored for specific 237 /// types. Combined with the FoldingSetNodeWrapper class, one can add objects 238 /// to FoldingSets that were not originally designed to have that behavior. 239 template<typename T> struct FoldingSetTrait 240 : public DefaultFoldingSetTrait<T> {}; 241 242 template<typename T, typename Ctx> struct ContextualFoldingSetTrait; 243 244 /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but 245 /// for ContextualFoldingSets. 246 template<typename T, typename Ctx> 247 struct DefaultContextualFoldingSetTrait { 248 static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) { 249 X.Profile(ID, Context); 250 } 251 static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash, 252 FoldingSetNodeID &TempID, Ctx Context); 253 static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID, 254 Ctx Context); 255 }; 256 257 /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for 258 /// ContextualFoldingSets. 259 template<typename T, typename Ctx> struct ContextualFoldingSetTrait 260 : public DefaultContextualFoldingSetTrait<T, Ctx> {}; 261 262 //===--------------------------------------------------------------------===// 263 /// FoldingSetNodeIDRef - This class describes a reference to an interned 264 /// FoldingSetNodeID, which can be a useful to store node id data rather 265 /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector 266 /// is often much larger than necessary, and the possibility of heap 267 /// allocation means it requires a non-trivial destructor call. 268 class FoldingSetNodeIDRef { 269 const unsigned *Data; 270 size_t Size; 271 public: 272 FoldingSetNodeIDRef() : Data(nullptr), Size(0) {} 273 FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {} 274 275 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef, 276 /// used to lookup the node in the FoldingSetImpl. 277 unsigned ComputeHash() const; 278 279 bool operator==(FoldingSetNodeIDRef) const; 280 281 bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); } 282 283 /// Used to compare the "ordering" of two nodes as defined by the 284 /// profiled bits and their ordering defined by memcmp(). 285 bool operator<(FoldingSetNodeIDRef) const; 286 287 const unsigned *getData() const { return Data; } 288 size_t getSize() const { return Size; } 289 }; 290 291 //===--------------------------------------------------------------------===// 292 /// FoldingSetNodeID - This class is used to gather all the unique data bits of 293 /// a node. When all the bits are gathered this class is used to produce a 294 /// hash value for the node. 295 /// 296 class FoldingSetNodeID { 297 /// Bits - Vector of all the data bits that make the node unique. 298 /// Use a SmallVector to avoid a heap allocation in the common case. 299 SmallVector<unsigned, 32> Bits; 300 301 public: 302 FoldingSetNodeID() {} 303 304 FoldingSetNodeID(FoldingSetNodeIDRef Ref) 305 : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {} 306 307 /// Add* - Add various data types to Bit data. 308 /// 309 void AddPointer(const void *Ptr); 310 void AddInteger(signed I); 311 void AddInteger(unsigned I); 312 void AddInteger(long I); 313 void AddInteger(unsigned long I); 314 void AddInteger(long long I); 315 void AddInteger(unsigned long long I); 316 void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); } 317 void AddString(StringRef String); 318 void AddNodeID(const FoldingSetNodeID &ID); 319 320 template <typename T> 321 inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); } 322 323 /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID 324 /// object to be used to compute a new profile. 325 inline void clear() { Bits.clear(); } 326 327 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used 328 /// to lookup the node in the FoldingSetImpl. 329 unsigned ComputeHash() const; 330 331 /// operator== - Used to compare two nodes to each other. 332 /// 333 bool operator==(const FoldingSetNodeID &RHS) const; 334 bool operator==(const FoldingSetNodeIDRef RHS) const; 335 336 bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); } 337 bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);} 338 339 /// Used to compare the "ordering" of two nodes as defined by the 340 /// profiled bits and their ordering defined by memcmp(). 341 bool operator<(const FoldingSetNodeID &RHS) const; 342 bool operator<(const FoldingSetNodeIDRef RHS) const; 343 344 /// Intern - Copy this node's data to a memory region allocated from the 345 /// given allocator and return a FoldingSetNodeIDRef describing the 346 /// interned data. 347 FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const; 348 }; 349 350 // Convenience type to hide the implementation of the folding set. 351 typedef FoldingSetImpl::Node FoldingSetNode; 352 template<class T> class FoldingSetIterator; 353 template<class T> class FoldingSetBucketIterator; 354 355 // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which 356 // require the definition of FoldingSetNodeID. 357 template<typename T> 358 inline bool 359 DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID, 360 unsigned /*IDHash*/, 361 FoldingSetNodeID &TempID) { 362 FoldingSetTrait<T>::Profile(X, TempID); 363 return TempID == ID; 364 } 365 template<typename T> 366 inline unsigned 367 DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) { 368 FoldingSetTrait<T>::Profile(X, TempID); 369 return TempID.ComputeHash(); 370 } 371 template<typename T, typename Ctx> 372 inline bool 373 DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X, 374 const FoldingSetNodeID &ID, 375 unsigned /*IDHash*/, 376 FoldingSetNodeID &TempID, 377 Ctx Context) { 378 ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context); 379 return TempID == ID; 380 } 381 template<typename T, typename Ctx> 382 inline unsigned 383 DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X, 384 FoldingSetNodeID &TempID, 385 Ctx Context) { 386 ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context); 387 return TempID.ComputeHash(); 388 } 389 390 //===----------------------------------------------------------------------===// 391 /// FoldingSet - This template class is used to instantiate a specialized 392 /// implementation of the folding set to the node class T. T must be a 393 /// subclass of FoldingSetNode and implement a Profile function. 394 /// 395 template<class T> class FoldingSet : public FoldingSetImpl { 396 private: 397 /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a 398 /// way to convert nodes into a unique specifier. 399 void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override { 400 T *TN = static_cast<T *>(N); 401 FoldingSetTrait<T>::Profile(*TN, ID); 402 } 403 /// NodeEquals - Instantiations may optionally provide a way to compare a 404 /// node with a specified ID. 405 bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash, 406 FoldingSetNodeID &TempID) const override { 407 T *TN = static_cast<T *>(N); 408 return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID); 409 } 410 /// ComputeNodeHash - Instantiations may optionally provide a way to compute a 411 /// hash value directly from a node. 412 unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override { 413 T *TN = static_cast<T *>(N); 414 return FoldingSetTrait<T>::ComputeHash(*TN, TempID); 415 } 416 417 public: 418 explicit FoldingSet(unsigned Log2InitSize = 6) 419 : FoldingSetImpl(Log2InitSize) 420 {} 421 422 typedef FoldingSetIterator<T> iterator; 423 iterator begin() { return iterator(Buckets); } 424 iterator end() { return iterator(Buckets+NumBuckets); } 425 426 typedef FoldingSetIterator<const T> const_iterator; 427 const_iterator begin() const { return const_iterator(Buckets); } 428 const_iterator end() const { return const_iterator(Buckets+NumBuckets); } 429 430 typedef FoldingSetBucketIterator<T> bucket_iterator; 431 432 bucket_iterator bucket_begin(unsigned hash) { 433 return bucket_iterator(Buckets + (hash & (NumBuckets-1))); 434 } 435 436 bucket_iterator bucket_end(unsigned hash) { 437 return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true); 438 } 439 440 /// GetOrInsertNode - If there is an existing simple Node exactly 441 /// equal to the specified node, return it. Otherwise, insert 'N' and 442 /// return it instead. 443 T *GetOrInsertNode(Node *N) { 444 return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N)); 445 } 446 447 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, 448 /// return it. If not, return the insertion token that will make insertion 449 /// faster. 450 T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { 451 return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos)); 452 } 453 }; 454 455 //===----------------------------------------------------------------------===// 456 /// ContextualFoldingSet - This template class is a further refinement 457 /// of FoldingSet which provides a context argument when calling 458 /// Profile on its nodes. Currently, that argument is fixed at 459 /// initialization time. 460 /// 461 /// T must be a subclass of FoldingSetNode and implement a Profile 462 /// function with signature 463 /// void Profile(llvm::FoldingSetNodeID &, Ctx); 464 template <class T, class Ctx> 465 class ContextualFoldingSet : public FoldingSetImpl { 466 // Unfortunately, this can't derive from FoldingSet<T> because the 467 // construction vtable for FoldingSet<T> requires 468 // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn 469 // requires a single-argument T::Profile(). 470 471 private: 472 Ctx Context; 473 474 /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a 475 /// way to convert nodes into a unique specifier. 476 void GetNodeProfile(FoldingSetImpl::Node *N, 477 FoldingSetNodeID &ID) const override { 478 T *TN = static_cast<T *>(N); 479 ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context); 480 } 481 bool NodeEquals(FoldingSetImpl::Node *N, const FoldingSetNodeID &ID, 482 unsigned IDHash, FoldingSetNodeID &TempID) const override { 483 T *TN = static_cast<T *>(N); 484 return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID, 485 Context); 486 } 487 unsigned ComputeNodeHash(FoldingSetImpl::Node *N, 488 FoldingSetNodeID &TempID) const override { 489 T *TN = static_cast<T *>(N); 490 return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context); 491 } 492 493 public: 494 explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6) 495 : FoldingSetImpl(Log2InitSize), Context(Context) 496 {} 497 498 Ctx getContext() const { return Context; } 499 500 501 typedef FoldingSetIterator<T> iterator; 502 iterator begin() { return iterator(Buckets); } 503 iterator end() { return iterator(Buckets+NumBuckets); } 504 505 typedef FoldingSetIterator<const T> const_iterator; 506 const_iterator begin() const { return const_iterator(Buckets); } 507 const_iterator end() const { return const_iterator(Buckets+NumBuckets); } 508 509 typedef FoldingSetBucketIterator<T> bucket_iterator; 510 511 bucket_iterator bucket_begin(unsigned hash) { 512 return bucket_iterator(Buckets + (hash & (NumBuckets-1))); 513 } 514 515 bucket_iterator bucket_end(unsigned hash) { 516 return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true); 517 } 518 519 /// GetOrInsertNode - If there is an existing simple Node exactly 520 /// equal to the specified node, return it. Otherwise, insert 'N' 521 /// and return it instead. 522 T *GetOrInsertNode(Node *N) { 523 return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N)); 524 } 525 526 /// FindNodeOrInsertPos - Look up the node specified by ID. If it 527 /// exists, return it. If not, return the insertion token that will 528 /// make insertion faster. 529 T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { 530 return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos)); 531 } 532 }; 533 534 //===----------------------------------------------------------------------===// 535 /// FoldingSetVectorIterator - This implements an iterator for 536 /// FoldingSetVector. It is only necessary because FoldingSetIterator provides 537 /// a value_type of T, while the vector in FoldingSetVector exposes 538 /// a value_type of T*. Fortunately, FoldingSetIterator doesn't expose very 539 /// much besides operator* and operator->, so we just wrap the inner vector 540 /// iterator and perform the extra dereference. 541 template <class T, class VectorIteratorT> 542 class FoldingSetVectorIterator { 543 // Provide a typedef to workaround the lack of correct injected class name 544 // support in older GCCs. 545 typedef FoldingSetVectorIterator<T, VectorIteratorT> SelfT; 546 547 VectorIteratorT Iterator; 548 549 public: 550 FoldingSetVectorIterator(VectorIteratorT I) : Iterator(I) {} 551 552 bool operator==(const SelfT &RHS) const { 553 return Iterator == RHS.Iterator; 554 } 555 bool operator!=(const SelfT &RHS) const { 556 return Iterator != RHS.Iterator; 557 } 558 559 T &operator*() const { return **Iterator; } 560 561 T *operator->() const { return *Iterator; } 562 563 inline SelfT &operator++() { 564 ++Iterator; 565 return *this; 566 } 567 SelfT operator++(int) { 568 SelfT tmp = *this; 569 ++*this; 570 return tmp; 571 } 572 }; 573 574 //===----------------------------------------------------------------------===// 575 /// FoldingSetVector - This template class combines a FoldingSet and a vector 576 /// to provide the interface of FoldingSet but with deterministic iteration 577 /// order based on the insertion order. T must be a subclass of FoldingSetNode 578 /// and implement a Profile function. 579 template <class T, class VectorT = SmallVector<T*, 8> > 580 class FoldingSetVector { 581 FoldingSet<T> Set; 582 VectorT Vector; 583 584 public: 585 explicit FoldingSetVector(unsigned Log2InitSize = 6) 586 : Set(Log2InitSize) { 587 } 588 589 typedef FoldingSetVectorIterator<T, typename VectorT::iterator> iterator; 590 iterator begin() { return Vector.begin(); } 591 iterator end() { return Vector.end(); } 592 593 typedef FoldingSetVectorIterator<const T, typename VectorT::const_iterator> 594 const_iterator; 595 const_iterator begin() const { return Vector.begin(); } 596 const_iterator end() const { return Vector.end(); } 597 598 /// clear - Remove all nodes from the folding set. 599 void clear() { Set.clear(); Vector.clear(); } 600 601 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, 602 /// return it. If not, return the insertion token that will make insertion 603 /// faster. 604 T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { 605 return Set.FindNodeOrInsertPos(ID, InsertPos); 606 } 607 608 /// GetOrInsertNode - If there is an existing simple Node exactly 609 /// equal to the specified node, return it. Otherwise, insert 'N' and 610 /// return it instead. 611 T *GetOrInsertNode(T *N) { 612 T *Result = Set.GetOrInsertNode(N); 613 if (Result == N) Vector.push_back(N); 614 return Result; 615 } 616 617 /// InsertNode - Insert the specified node into the folding set, knowing that 618 /// it is not already in the folding set. InsertPos must be obtained from 619 /// FindNodeOrInsertPos. 620 void InsertNode(T *N, void *InsertPos) { 621 Set.InsertNode(N, InsertPos); 622 Vector.push_back(N); 623 } 624 625 /// InsertNode - Insert the specified node into the folding set, knowing that 626 /// it is not already in the folding set. 627 void InsertNode(T *N) { 628 Set.InsertNode(N); 629 Vector.push_back(N); 630 } 631 632 /// size - Returns the number of nodes in the folding set. 633 unsigned size() const { return Set.size(); } 634 635 /// empty - Returns true if there are no nodes in the folding set. 636 bool empty() const { return Set.empty(); } 637 }; 638 639 //===----------------------------------------------------------------------===// 640 /// FoldingSetIteratorImpl - This is the common iterator support shared by all 641 /// folding sets, which knows how to walk the folding set hash table. 642 class FoldingSetIteratorImpl { 643 protected: 644 FoldingSetNode *NodePtr; 645 FoldingSetIteratorImpl(void **Bucket); 646 void advance(); 647 648 public: 649 bool operator==(const FoldingSetIteratorImpl &RHS) const { 650 return NodePtr == RHS.NodePtr; 651 } 652 bool operator!=(const FoldingSetIteratorImpl &RHS) const { 653 return NodePtr != RHS.NodePtr; 654 } 655 }; 656 657 658 template<class T> 659 class FoldingSetIterator : public FoldingSetIteratorImpl { 660 public: 661 explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {} 662 663 T &operator*() const { 664 return *static_cast<T*>(NodePtr); 665 } 666 667 T *operator->() const { 668 return static_cast<T*>(NodePtr); 669 } 670 671 inline FoldingSetIterator &operator++() { // Preincrement 672 advance(); 673 return *this; 674 } 675 FoldingSetIterator operator++(int) { // Postincrement 676 FoldingSetIterator tmp = *this; ++*this; return tmp; 677 } 678 }; 679 680 //===----------------------------------------------------------------------===// 681 /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support 682 /// shared by all folding sets, which knows how to walk a particular bucket 683 /// of a folding set hash table. 684 685 class FoldingSetBucketIteratorImpl { 686 protected: 687 void *Ptr; 688 689 explicit FoldingSetBucketIteratorImpl(void **Bucket); 690 691 FoldingSetBucketIteratorImpl(void **Bucket, bool) 692 : Ptr(Bucket) {} 693 694 void advance() { 695 void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket(); 696 uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1; 697 Ptr = reinterpret_cast<void*>(x); 698 } 699 700 public: 701 bool operator==(const FoldingSetBucketIteratorImpl &RHS) const { 702 return Ptr == RHS.Ptr; 703 } 704 bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const { 705 return Ptr != RHS.Ptr; 706 } 707 }; 708 709 710 template<class T> 711 class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl { 712 public: 713 explicit FoldingSetBucketIterator(void **Bucket) : 714 FoldingSetBucketIteratorImpl(Bucket) {} 715 716 FoldingSetBucketIterator(void **Bucket, bool) : 717 FoldingSetBucketIteratorImpl(Bucket, true) {} 718 719 T &operator*() const { return *static_cast<T*>(Ptr); } 720 T *operator->() const { return static_cast<T*>(Ptr); } 721 722 inline FoldingSetBucketIterator &operator++() { // Preincrement 723 advance(); 724 return *this; 725 } 726 FoldingSetBucketIterator operator++(int) { // Postincrement 727 FoldingSetBucketIterator tmp = *this; ++*this; return tmp; 728 } 729 }; 730 731 //===----------------------------------------------------------------------===// 732 /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary 733 /// types in an enclosing object so that they can be inserted into FoldingSets. 734 template <typename T> 735 class FoldingSetNodeWrapper : public FoldingSetNode { 736 T data; 737 public: 738 explicit FoldingSetNodeWrapper(const T &x) : data(x) {} 739 virtual ~FoldingSetNodeWrapper() {} 740 741 template<typename A1> 742 explicit FoldingSetNodeWrapper(const A1 &a1) 743 : data(a1) {} 744 745 template <typename A1, typename A2> 746 explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2) 747 : data(a1,a2) {} 748 749 template <typename A1, typename A2, typename A3> 750 explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3) 751 : data(a1,a2,a3) {} 752 753 template <typename A1, typename A2, typename A3, typename A4> 754 explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3, 755 const A4 &a4) 756 : data(a1,a2,a3,a4) {} 757 758 template <typename A1, typename A2, typename A3, typename A4, typename A5> 759 explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3, 760 const A4 &a4, const A5 &a5) 761 : data(a1,a2,a3,a4,a5) {} 762 763 764 void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); } 765 766 T &getValue() { return data; } 767 const T &getValue() const { return data; } 768 769 operator T&() { return data; } 770 operator const T&() const { return data; } 771 }; 772 773 //===----------------------------------------------------------------------===// 774 /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores 775 /// a FoldingSetNodeID value rather than requiring the node to recompute it 776 /// each time it is needed. This trades space for speed (which can be 777 /// significant if the ID is long), and it also permits nodes to drop 778 /// information that would otherwise only be required for recomputing an ID. 779 class FastFoldingSetNode : public FoldingSetNode { 780 FoldingSetNodeID FastID; 781 protected: 782 explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {} 783 public: 784 void Profile(FoldingSetNodeID &ID) const { 785 ID.AddNodeID(FastID); 786 } 787 }; 788 789 //===----------------------------------------------------------------------===// 790 // Partial specializations of FoldingSetTrait. 791 792 template<typename T> struct FoldingSetTrait<T*> { 793 static inline void Profile(T *X, FoldingSetNodeID &ID) { 794 ID.AddPointer(X); 795 } 796 }; 797 template <typename T1, typename T2> 798 struct FoldingSetTrait<std::pair<T1, T2>> { 799 static inline void Profile(const std::pair<T1, T2> &P, 800 llvm::FoldingSetNodeID &ID) { 801 ID.Add(P.first); 802 ID.Add(P.second); 803 } 804 }; 805 } // End of namespace llvm. 806 807 #endif 808