Home | History | Annotate | Download | only in ADT
      1 //===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a hash set that can be used to remove duplication of nodes
     11 // in a graph.  This code was originally created by Chris Lattner for use with
     12 // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_ADT_FOLDINGSET_H
     17 #define LLVM_ADT_FOLDINGSET_H
     18 
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/StringRef.h"
     21 #include "llvm/Support/Allocator.h"
     22 #include "llvm/Support/DataTypes.h"
     23 
     24 namespace llvm {
     25   class APFloat;
     26   class APInt;
     27 
     28 /// This folding set used for two purposes:
     29 ///   1. Given information about a node we want to create, look up the unique
     30 ///      instance of the node in the set.  If the node already exists, return
     31 ///      it, otherwise return the bucket it should be inserted into.
     32 ///   2. Given a node that has already been created, remove it from the set.
     33 ///
     34 /// This class is implemented as a single-link chained hash table, where the
     35 /// "buckets" are actually the nodes themselves (the next pointer is in the
     36 /// node).  The last node points back to the bucket to simplify node removal.
     37 ///
     38 /// Any node that is to be included in the folding set must be a subclass of
     39 /// FoldingSetNode.  The node class must also define a Profile method used to
     40 /// establish the unique bits of data for the node.  The Profile method is
     41 /// passed a FoldingSetNodeID object which is used to gather the bits.  Just
     42 /// call one of the Add* functions defined in the FoldingSetImpl::NodeID class.
     43 /// NOTE: That the folding set does not own the nodes and it is the
     44 /// responsibility of the user to dispose of the nodes.
     45 ///
     46 /// Eg.
     47 ///    class MyNode : public FoldingSetNode {
     48 ///    private:
     49 ///      std::string Name;
     50 ///      unsigned Value;
     51 ///    public:
     52 ///      MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
     53 ///       ...
     54 ///      void Profile(FoldingSetNodeID &ID) const {
     55 ///        ID.AddString(Name);
     56 ///        ID.AddInteger(Value);
     57 ///      }
     58 ///      ...
     59 ///    };
     60 ///
     61 /// To define the folding set itself use the FoldingSet template;
     62 ///
     63 /// Eg.
     64 ///    FoldingSet<MyNode> MyFoldingSet;
     65 ///
     66 /// Four public methods are available to manipulate the folding set;
     67 ///
     68 /// 1) If you have an existing node that you want add to the set but unsure
     69 /// that the node might already exist then call;
     70 ///
     71 ///    MyNode *M = MyFoldingSet.GetOrInsertNode(N);
     72 ///
     73 /// If The result is equal to the input then the node has been inserted.
     74 /// Otherwise, the result is the node existing in the folding set, and the
     75 /// input can be discarded (use the result instead.)
     76 ///
     77 /// 2) If you are ready to construct a node but want to check if it already
     78 /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
     79 /// check;
     80 ///
     81 ///   FoldingSetNodeID ID;
     82 ///   ID.AddString(Name);
     83 ///   ID.AddInteger(Value);
     84 ///   void *InsertPoint;
     85 ///
     86 ///    MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
     87 ///
     88 /// If found then M with be non-NULL, else InsertPoint will point to where it
     89 /// should be inserted using InsertNode.
     90 ///
     91 /// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
     92 /// node with FindNodeOrInsertPos;
     93 ///
     94 ///    InsertNode(N, InsertPoint);
     95 ///
     96 /// 4) Finally, if you want to remove a node from the folding set call;
     97 ///
     98 ///    bool WasRemoved = RemoveNode(N);
     99 ///
    100 /// The result indicates whether the node existed in the folding set.
    101 
    102 class FoldingSetNodeID;
    103 
    104 //===----------------------------------------------------------------------===//
    105 /// FoldingSetImpl - Implements the folding set functionality.  The main
    106 /// structure is an array of buckets.  Each bucket is indexed by the hash of
    107 /// the nodes it contains.  The bucket itself points to the nodes contained
    108 /// in the bucket via a singly linked list.  The last node in the list points
    109 /// back to the bucket to facilitate node removal.
    110 ///
    111 class FoldingSetImpl {
    112 protected:
    113   /// Buckets - Array of bucket chains.
    114   ///
    115   void **Buckets;
    116 
    117   /// NumBuckets - Length of the Buckets array.  Always a power of 2.
    118   ///
    119   unsigned NumBuckets;
    120 
    121   /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
    122   /// is greater than twice the number of buckets.
    123   unsigned NumNodes;
    124 
    125 public:
    126   explicit FoldingSetImpl(unsigned Log2InitSize = 6);
    127   virtual ~FoldingSetImpl();
    128 
    129   //===--------------------------------------------------------------------===//
    130   /// Node - This class is used to maintain the singly linked bucket list in
    131   /// a folding set.
    132   ///
    133   class Node {
    134   private:
    135     // NextInFoldingSetBucket - next link in the bucket list.
    136     void *NextInFoldingSetBucket;
    137 
    138   public:
    139 
    140     Node() : NextInFoldingSetBucket(nullptr) {}
    141 
    142     // Accessors
    143     void *getNextInBucket() const { return NextInFoldingSetBucket; }
    144     void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
    145   };
    146 
    147   /// clear - Remove all nodes from the folding set.
    148   void clear();
    149 
    150   /// RemoveNode - Remove a node from the folding set, returning true if one
    151   /// was removed or false if the node was not in the folding set.
    152   bool RemoveNode(Node *N);
    153 
    154   /// GetOrInsertNode - If there is an existing simple Node exactly
    155   /// equal to the specified node, return it.  Otherwise, insert 'N' and return
    156   /// it instead.
    157   Node *GetOrInsertNode(Node *N);
    158 
    159   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
    160   /// return it.  If not, return the insertion token that will make insertion
    161   /// faster.
    162   Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
    163 
    164   /// InsertNode - Insert the specified node into the folding set, knowing that
    165   /// it is not already in the folding set.  InsertPos must be obtained from
    166   /// FindNodeOrInsertPos.
    167   void InsertNode(Node *N, void *InsertPos);
    168 
    169   /// InsertNode - Insert the specified node into the folding set, knowing that
    170   /// it is not already in the folding set.
    171   void InsertNode(Node *N) {
    172     Node *Inserted = GetOrInsertNode(N);
    173     (void)Inserted;
    174     assert(Inserted == N && "Node already inserted!");
    175   }
    176 
    177   /// size - Returns the number of nodes in the folding set.
    178   unsigned size() const { return NumNodes; }
    179 
    180   /// empty - Returns true if there are no nodes in the folding set.
    181   bool empty() const { return NumNodes == 0; }
    182 
    183 private:
    184 
    185   /// GrowHashTable - Double the size of the hash table and rehash everything.
    186   ///
    187   void GrowHashTable();
    188 
    189 protected:
    190 
    191   /// GetNodeProfile - Instantiations of the FoldingSet template implement
    192   /// this function to gather data bits for the given node.
    193   virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0;
    194   /// NodeEquals - Instantiations of the FoldingSet template implement
    195   /// this function to compare the given node with the given ID.
    196   virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
    197                           FoldingSetNodeID &TempID) const=0;
    198   /// ComputeNodeHash - Instantiations of the FoldingSet template implement
    199   /// this function to compute a hash value for the given node.
    200   virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0;
    201 };
    202 
    203 //===----------------------------------------------------------------------===//
    204 
    205 template<typename T> struct FoldingSetTrait;
    206 
    207 /// DefaultFoldingSetTrait - This class provides default implementations
    208 /// for FoldingSetTrait implementations.
    209 ///
    210 template<typename T> struct DefaultFoldingSetTrait {
    211   static void Profile(const T &X, FoldingSetNodeID &ID) {
    212     X.Profile(ID);
    213   }
    214   static void Profile(T &X, FoldingSetNodeID &ID) {
    215     X.Profile(ID);
    216   }
    217 
    218   // Equals - Test if the profile for X would match ID, using TempID
    219   // to compute a temporary ID if necessary. The default implementation
    220   // just calls Profile and does a regular comparison. Implementations
    221   // can override this to provide more efficient implementations.
    222   static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
    223                             FoldingSetNodeID &TempID);
    224 
    225   // ComputeHash - Compute a hash value for X, using TempID to
    226   // compute a temporary ID if necessary. The default implementation
    227   // just calls Profile and does a regular hash computation.
    228   // Implementations can override this to provide more efficient
    229   // implementations.
    230   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
    231 };
    232 
    233 /// FoldingSetTrait - This trait class is used to define behavior of how
    234 /// to "profile" (in the FoldingSet parlance) an object of a given type.
    235 /// The default behavior is to invoke a 'Profile' method on an object, but
    236 /// through template specialization the behavior can be tailored for specific
    237 /// types.  Combined with the FoldingSetNodeWrapper class, one can add objects
    238 /// to FoldingSets that were not originally designed to have that behavior.
    239 template<typename T> struct FoldingSetTrait
    240   : public DefaultFoldingSetTrait<T> {};
    241 
    242 template<typename T, typename Ctx> struct ContextualFoldingSetTrait;
    243 
    244 /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
    245 /// for ContextualFoldingSets.
    246 template<typename T, typename Ctx>
    247 struct DefaultContextualFoldingSetTrait {
    248   static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
    249     X.Profile(ID, Context);
    250   }
    251   static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
    252                             FoldingSetNodeID &TempID, Ctx Context);
    253   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
    254                                      Ctx Context);
    255 };
    256 
    257 /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
    258 /// ContextualFoldingSets.
    259 template<typename T, typename Ctx> struct ContextualFoldingSetTrait
    260   : public DefaultContextualFoldingSetTrait<T, Ctx> {};
    261 
    262 //===--------------------------------------------------------------------===//
    263 /// FoldingSetNodeIDRef - This class describes a reference to an interned
    264 /// FoldingSetNodeID, which can be a useful to store node id data rather
    265 /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
    266 /// is often much larger than necessary, and the possibility of heap
    267 /// allocation means it requires a non-trivial destructor call.
    268 class FoldingSetNodeIDRef {
    269   const unsigned *Data;
    270   size_t Size;
    271 public:
    272   FoldingSetNodeIDRef() : Data(nullptr), Size(0) {}
    273   FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}
    274 
    275   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
    276   /// used to lookup the node in the FoldingSetImpl.
    277   unsigned ComputeHash() const;
    278 
    279   bool operator==(FoldingSetNodeIDRef) const;
    280 
    281   bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); }
    282 
    283   /// Used to compare the "ordering" of two nodes as defined by the
    284   /// profiled bits and their ordering defined by memcmp().
    285   bool operator<(FoldingSetNodeIDRef) const;
    286 
    287   const unsigned *getData() const { return Data; }
    288   size_t getSize() const { return Size; }
    289 };
    290 
    291 //===--------------------------------------------------------------------===//
    292 /// FoldingSetNodeID - This class is used to gather all the unique data bits of
    293 /// a node.  When all the bits are gathered this class is used to produce a
    294 /// hash value for the node.
    295 ///
    296 class FoldingSetNodeID {
    297   /// Bits - Vector of all the data bits that make the node unique.
    298   /// Use a SmallVector to avoid a heap allocation in the common case.
    299   SmallVector<unsigned, 32> Bits;
    300 
    301 public:
    302   FoldingSetNodeID() {}
    303 
    304   FoldingSetNodeID(FoldingSetNodeIDRef Ref)
    305     : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}
    306 
    307   /// Add* - Add various data types to Bit data.
    308   ///
    309   void AddPointer(const void *Ptr);
    310   void AddInteger(signed I);
    311   void AddInteger(unsigned I);
    312   void AddInteger(long I);
    313   void AddInteger(unsigned long I);
    314   void AddInteger(long long I);
    315   void AddInteger(unsigned long long I);
    316   void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
    317   void AddString(StringRef String);
    318   void AddNodeID(const FoldingSetNodeID &ID);
    319 
    320   template <typename T>
    321   inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }
    322 
    323   /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
    324   /// object to be used to compute a new profile.
    325   inline void clear() { Bits.clear(); }
    326 
    327   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
    328   /// to lookup the node in the FoldingSetImpl.
    329   unsigned ComputeHash() const;
    330 
    331   /// operator== - Used to compare two nodes to each other.
    332   ///
    333   bool operator==(const FoldingSetNodeID &RHS) const;
    334   bool operator==(const FoldingSetNodeIDRef RHS) const;
    335 
    336   bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); }
    337   bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);}
    338 
    339   /// Used to compare the "ordering" of two nodes as defined by the
    340   /// profiled bits and their ordering defined by memcmp().
    341   bool operator<(const FoldingSetNodeID &RHS) const;
    342   bool operator<(const FoldingSetNodeIDRef RHS) const;
    343 
    344   /// Intern - Copy this node's data to a memory region allocated from the
    345   /// given allocator and return a FoldingSetNodeIDRef describing the
    346   /// interned data.
    347   FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
    348 };
    349 
    350 // Convenience type to hide the implementation of the folding set.
    351 typedef FoldingSetImpl::Node FoldingSetNode;
    352 template<class T> class FoldingSetIterator;
    353 template<class T> class FoldingSetBucketIterator;
    354 
    355 // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
    356 // require the definition of FoldingSetNodeID.
    357 template<typename T>
    358 inline bool
    359 DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
    360                                   unsigned /*IDHash*/,
    361                                   FoldingSetNodeID &TempID) {
    362   FoldingSetTrait<T>::Profile(X, TempID);
    363   return TempID == ID;
    364 }
    365 template<typename T>
    366 inline unsigned
    367 DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
    368   FoldingSetTrait<T>::Profile(X, TempID);
    369   return TempID.ComputeHash();
    370 }
    371 template<typename T, typename Ctx>
    372 inline bool
    373 DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
    374                                                  const FoldingSetNodeID &ID,
    375                                                  unsigned /*IDHash*/,
    376                                                  FoldingSetNodeID &TempID,
    377                                                  Ctx Context) {
    378   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
    379   return TempID == ID;
    380 }
    381 template<typename T, typename Ctx>
    382 inline unsigned
    383 DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
    384                                                       FoldingSetNodeID &TempID,
    385                                                       Ctx Context) {
    386   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
    387   return TempID.ComputeHash();
    388 }
    389 
    390 //===----------------------------------------------------------------------===//
    391 /// FoldingSet - This template class is used to instantiate a specialized
    392 /// implementation of the folding set to the node class T.  T must be a
    393 /// subclass of FoldingSetNode and implement a Profile function.
    394 ///
    395 template<class T> class FoldingSet : public FoldingSetImpl {
    396 private:
    397   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
    398   /// way to convert nodes into a unique specifier.
    399   void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override {
    400     T *TN = static_cast<T *>(N);
    401     FoldingSetTrait<T>::Profile(*TN, ID);
    402   }
    403   /// NodeEquals - Instantiations may optionally provide a way to compare a
    404   /// node with a specified ID.
    405   bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
    406                   FoldingSetNodeID &TempID) const override {
    407     T *TN = static_cast<T *>(N);
    408     return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID);
    409   }
    410   /// ComputeNodeHash - Instantiations may optionally provide a way to compute a
    411   /// hash value directly from a node.
    412   unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override {
    413     T *TN = static_cast<T *>(N);
    414     return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
    415   }
    416 
    417 public:
    418   explicit FoldingSet(unsigned Log2InitSize = 6)
    419   : FoldingSetImpl(Log2InitSize)
    420   {}
    421 
    422   typedef FoldingSetIterator<T> iterator;
    423   iterator begin() { return iterator(Buckets); }
    424   iterator end() { return iterator(Buckets+NumBuckets); }
    425 
    426   typedef FoldingSetIterator<const T> const_iterator;
    427   const_iterator begin() const { return const_iterator(Buckets); }
    428   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
    429 
    430   typedef FoldingSetBucketIterator<T> bucket_iterator;
    431 
    432   bucket_iterator bucket_begin(unsigned hash) {
    433     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
    434   }
    435 
    436   bucket_iterator bucket_end(unsigned hash) {
    437     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
    438   }
    439 
    440   /// GetOrInsertNode - If there is an existing simple Node exactly
    441   /// equal to the specified node, return it.  Otherwise, insert 'N' and
    442   /// return it instead.
    443   T *GetOrInsertNode(Node *N) {
    444     return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
    445   }
    446 
    447   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
    448   /// return it.  If not, return the insertion token that will make insertion
    449   /// faster.
    450   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    451     return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
    452   }
    453 };
    454 
    455 //===----------------------------------------------------------------------===//
    456 /// ContextualFoldingSet - This template class is a further refinement
    457 /// of FoldingSet which provides a context argument when calling
    458 /// Profile on its nodes.  Currently, that argument is fixed at
    459 /// initialization time.
    460 ///
    461 /// T must be a subclass of FoldingSetNode and implement a Profile
    462 /// function with signature
    463 ///   void Profile(llvm::FoldingSetNodeID &, Ctx);
    464 template <class T, class Ctx>
    465 class ContextualFoldingSet : public FoldingSetImpl {
    466   // Unfortunately, this can't derive from FoldingSet<T> because the
    467   // construction vtable for FoldingSet<T> requires
    468   // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
    469   // requires a single-argument T::Profile().
    470 
    471 private:
    472   Ctx Context;
    473 
    474   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
    475   /// way to convert nodes into a unique specifier.
    476   void GetNodeProfile(FoldingSetImpl::Node *N,
    477                       FoldingSetNodeID &ID) const override {
    478     T *TN = static_cast<T *>(N);
    479     ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context);
    480   }
    481   bool NodeEquals(FoldingSetImpl::Node *N, const FoldingSetNodeID &ID,
    482                   unsigned IDHash, FoldingSetNodeID &TempID) const override {
    483     T *TN = static_cast<T *>(N);
    484     return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID,
    485                                                      Context);
    486   }
    487   unsigned ComputeNodeHash(FoldingSetImpl::Node *N,
    488                            FoldingSetNodeID &TempID) const override {
    489     T *TN = static_cast<T *>(N);
    490     return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context);
    491   }
    492 
    493 public:
    494   explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
    495   : FoldingSetImpl(Log2InitSize), Context(Context)
    496   {}
    497 
    498   Ctx getContext() const { return Context; }
    499 
    500 
    501   typedef FoldingSetIterator<T> iterator;
    502   iterator begin() { return iterator(Buckets); }
    503   iterator end() { return iterator(Buckets+NumBuckets); }
    504 
    505   typedef FoldingSetIterator<const T> const_iterator;
    506   const_iterator begin() const { return const_iterator(Buckets); }
    507   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
    508 
    509   typedef FoldingSetBucketIterator<T> bucket_iterator;
    510 
    511   bucket_iterator bucket_begin(unsigned hash) {
    512     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
    513   }
    514 
    515   bucket_iterator bucket_end(unsigned hash) {
    516     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
    517   }
    518 
    519   /// GetOrInsertNode - If there is an existing simple Node exactly
    520   /// equal to the specified node, return it.  Otherwise, insert 'N'
    521   /// and return it instead.
    522   T *GetOrInsertNode(Node *N) {
    523     return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
    524   }
    525 
    526   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it
    527   /// exists, return it.  If not, return the insertion token that will
    528   /// make insertion faster.
    529   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    530     return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
    531   }
    532 };
    533 
    534 //===----------------------------------------------------------------------===//
    535 /// FoldingSetVectorIterator - This implements an iterator for
    536 /// FoldingSetVector. It is only necessary because FoldingSetIterator provides
    537 /// a value_type of T, while the vector in FoldingSetVector exposes
    538 /// a value_type of T*. Fortunately, FoldingSetIterator doesn't expose very
    539 /// much besides operator* and operator->, so we just wrap the inner vector
    540 /// iterator and perform the extra dereference.
    541 template <class T, class VectorIteratorT>
    542 class FoldingSetVectorIterator {
    543   // Provide a typedef to workaround the lack of correct injected class name
    544   // support in older GCCs.
    545   typedef FoldingSetVectorIterator<T, VectorIteratorT> SelfT;
    546 
    547   VectorIteratorT Iterator;
    548 
    549 public:
    550   FoldingSetVectorIterator(VectorIteratorT I) : Iterator(I) {}
    551 
    552   bool operator==(const SelfT &RHS) const {
    553     return Iterator == RHS.Iterator;
    554   }
    555   bool operator!=(const SelfT &RHS) const {
    556     return Iterator != RHS.Iterator;
    557   }
    558 
    559   T &operator*() const { return **Iterator; }
    560 
    561   T *operator->() const { return *Iterator; }
    562 
    563   inline SelfT &operator++() {
    564     ++Iterator;
    565     return *this;
    566   }
    567   SelfT operator++(int) {
    568     SelfT tmp = *this;
    569     ++*this;
    570     return tmp;
    571   }
    572 };
    573 
    574 //===----------------------------------------------------------------------===//
    575 /// FoldingSetVector - This template class combines a FoldingSet and a vector
    576 /// to provide the interface of FoldingSet but with deterministic iteration
    577 /// order based on the insertion order. T must be a subclass of FoldingSetNode
    578 /// and implement a Profile function.
    579 template <class T, class VectorT = SmallVector<T*, 8> >
    580 class FoldingSetVector {
    581   FoldingSet<T> Set;
    582   VectorT Vector;
    583 
    584 public:
    585   explicit FoldingSetVector(unsigned Log2InitSize = 6)
    586       : Set(Log2InitSize) {
    587   }
    588 
    589   typedef FoldingSetVectorIterator<T, typename VectorT::iterator> iterator;
    590   iterator begin() { return Vector.begin(); }
    591   iterator end()   { return Vector.end(); }
    592 
    593   typedef FoldingSetVectorIterator<const T, typename VectorT::const_iterator>
    594     const_iterator;
    595   const_iterator begin() const { return Vector.begin(); }
    596   const_iterator end()   const { return Vector.end(); }
    597 
    598   /// clear - Remove all nodes from the folding set.
    599   void clear() { Set.clear(); Vector.clear(); }
    600 
    601   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
    602   /// return it.  If not, return the insertion token that will make insertion
    603   /// faster.
    604   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
    605     return Set.FindNodeOrInsertPos(ID, InsertPos);
    606   }
    607 
    608   /// GetOrInsertNode - If there is an existing simple Node exactly
    609   /// equal to the specified node, return it.  Otherwise, insert 'N' and
    610   /// return it instead.
    611   T *GetOrInsertNode(T *N) {
    612     T *Result = Set.GetOrInsertNode(N);
    613     if (Result == N) Vector.push_back(N);
    614     return Result;
    615   }
    616 
    617   /// InsertNode - Insert the specified node into the folding set, knowing that
    618   /// it is not already in the folding set.  InsertPos must be obtained from
    619   /// FindNodeOrInsertPos.
    620   void InsertNode(T *N, void *InsertPos) {
    621     Set.InsertNode(N, InsertPos);
    622     Vector.push_back(N);
    623   }
    624 
    625   /// InsertNode - Insert the specified node into the folding set, knowing that
    626   /// it is not already in the folding set.
    627   void InsertNode(T *N) {
    628     Set.InsertNode(N);
    629     Vector.push_back(N);
    630   }
    631 
    632   /// size - Returns the number of nodes in the folding set.
    633   unsigned size() const { return Set.size(); }
    634 
    635   /// empty - Returns true if there are no nodes in the folding set.
    636   bool empty() const { return Set.empty(); }
    637 };
    638 
    639 //===----------------------------------------------------------------------===//
    640 /// FoldingSetIteratorImpl - This is the common iterator support shared by all
    641 /// folding sets, which knows how to walk the folding set hash table.
    642 class FoldingSetIteratorImpl {
    643 protected:
    644   FoldingSetNode *NodePtr;
    645   FoldingSetIteratorImpl(void **Bucket);
    646   void advance();
    647 
    648 public:
    649   bool operator==(const FoldingSetIteratorImpl &RHS) const {
    650     return NodePtr == RHS.NodePtr;
    651   }
    652   bool operator!=(const FoldingSetIteratorImpl &RHS) const {
    653     return NodePtr != RHS.NodePtr;
    654   }
    655 };
    656 
    657 
    658 template<class T>
    659 class FoldingSetIterator : public FoldingSetIteratorImpl {
    660 public:
    661   explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
    662 
    663   T &operator*() const {
    664     return *static_cast<T*>(NodePtr);
    665   }
    666 
    667   T *operator->() const {
    668     return static_cast<T*>(NodePtr);
    669   }
    670 
    671   inline FoldingSetIterator &operator++() {          // Preincrement
    672     advance();
    673     return *this;
    674   }
    675   FoldingSetIterator operator++(int) {        // Postincrement
    676     FoldingSetIterator tmp = *this; ++*this; return tmp;
    677   }
    678 };
    679 
    680 //===----------------------------------------------------------------------===//
    681 /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
    682 /// shared by all folding sets, which knows how to walk a particular bucket
    683 /// of a folding set hash table.
    684 
    685 class FoldingSetBucketIteratorImpl {
    686 protected:
    687   void *Ptr;
    688 
    689   explicit FoldingSetBucketIteratorImpl(void **Bucket);
    690 
    691   FoldingSetBucketIteratorImpl(void **Bucket, bool)
    692     : Ptr(Bucket) {}
    693 
    694   void advance() {
    695     void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
    696     uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
    697     Ptr = reinterpret_cast<void*>(x);
    698   }
    699 
    700 public:
    701   bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
    702     return Ptr == RHS.Ptr;
    703   }
    704   bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
    705     return Ptr != RHS.Ptr;
    706   }
    707 };
    708 
    709 
    710 template<class T>
    711 class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
    712 public:
    713   explicit FoldingSetBucketIterator(void **Bucket) :
    714     FoldingSetBucketIteratorImpl(Bucket) {}
    715 
    716   FoldingSetBucketIterator(void **Bucket, bool) :
    717     FoldingSetBucketIteratorImpl(Bucket, true) {}
    718 
    719   T &operator*() const { return *static_cast<T*>(Ptr); }
    720   T *operator->() const { return static_cast<T*>(Ptr); }
    721 
    722   inline FoldingSetBucketIterator &operator++() { // Preincrement
    723     advance();
    724     return *this;
    725   }
    726   FoldingSetBucketIterator operator++(int) {      // Postincrement
    727     FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
    728   }
    729 };
    730 
    731 //===----------------------------------------------------------------------===//
    732 /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
    733 /// types in an enclosing object so that they can be inserted into FoldingSets.
    734 template <typename T>
    735 class FoldingSetNodeWrapper : public FoldingSetNode {
    736   T data;
    737 public:
    738   explicit FoldingSetNodeWrapper(const T &x) : data(x) {}
    739   virtual ~FoldingSetNodeWrapper() {}
    740 
    741   template<typename A1>
    742   explicit FoldingSetNodeWrapper(const A1 &a1)
    743     : data(a1) {}
    744 
    745   template <typename A1, typename A2>
    746   explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2)
    747     : data(a1,a2) {}
    748 
    749   template <typename A1, typename A2, typename A3>
    750   explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3)
    751     : data(a1,a2,a3) {}
    752 
    753   template <typename A1, typename A2, typename A3, typename A4>
    754   explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3,
    755                                  const A4 &a4)
    756     : data(a1,a2,a3,a4) {}
    757 
    758   template <typename A1, typename A2, typename A3, typename A4, typename A5>
    759   explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3,
    760                                  const A4 &a4, const A5 &a5)
    761   : data(a1,a2,a3,a4,a5) {}
    762 
    763 
    764   void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }
    765 
    766   T &getValue() { return data; }
    767   const T &getValue() const { return data; }
    768 
    769   operator T&() { return data; }
    770   operator const T&() const { return data; }
    771 };
    772 
    773 //===----------------------------------------------------------------------===//
    774 /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
    775 /// a FoldingSetNodeID value rather than requiring the node to recompute it
    776 /// each time it is needed. This trades space for speed (which can be
    777 /// significant if the ID is long), and it also permits nodes to drop
    778 /// information that would otherwise only be required for recomputing an ID.
    779 class FastFoldingSetNode : public FoldingSetNode {
    780   FoldingSetNodeID FastID;
    781 protected:
    782   explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
    783 public:
    784   void Profile(FoldingSetNodeID &ID) const {
    785     ID.AddNodeID(FastID);
    786   }
    787 };
    788 
    789 //===----------------------------------------------------------------------===//
    790 // Partial specializations of FoldingSetTrait.
    791 
    792 template<typename T> struct FoldingSetTrait<T*> {
    793   static inline void Profile(T *X, FoldingSetNodeID &ID) {
    794     ID.AddPointer(X);
    795   }
    796 };
    797 template <typename T1, typename T2>
    798 struct FoldingSetTrait<std::pair<T1, T2>> {
    799   static inline void Profile(const std::pair<T1, T2> &P,
    800                              llvm::FoldingSetNodeID &ID) {
    801     ID.Add(P.first);
    802     ID.Add(P.second);
    803   }
    804 };
    805 } // End of namespace llvm.
    806 
    807 #endif
    808