1 // Protocol Buffers - Google's data interchange format 2 // Copyright 2008 Google Inc. All rights reserved. 3 // http://code.google.com/p/protobuf/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are 7 // met: 8 // 9 // * Redistributions of source code must retain the above copyright 10 // notice, this list of conditions and the following disclaimer. 11 // * Redistributions in binary form must reproduce the above 12 // copyright notice, this list of conditions and the following disclaimer 13 // in the documentation and/or other materials provided with the 14 // distribution. 15 // * Neither the name of Google Inc. nor the names of its 16 // contributors may be used to endorse or promote products derived from 17 // this software without specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // Author: kenton (at) google.com (Kenton Varda) and others 32 // 33 // Contains basic types and utilities used by the rest of the library. 34 35 #ifndef GOOGLE_PROTOBUF_COMMON_H__ 36 #define GOOGLE_PROTOBUF_COMMON_H__ 37 38 #include <assert.h> 39 #include <stdlib.h> 40 #include <cstddef> 41 #include <string> 42 #include <string.h> 43 #if defined(__osf__) 44 // Tru64 lacks stdint.h, but has inttypes.h which defines a superset of 45 // what stdint.h would define. 46 #include <inttypes.h> 47 #elif !defined(_MSC_VER) 48 #include <stdint.h> 49 #endif 50 51 #ifndef PROTOBUF_USE_EXCEPTIONS 52 #if defined(_MSC_VER) && defined(_CPPUNWIND) 53 #define PROTOBUF_USE_EXCEPTIONS 1 54 #elif defined(__EXCEPTIONS) 55 #define PROTOBUF_USE_EXCEPTIONS 1 56 #else 57 #define PROTOBUF_USE_EXCEPTIONS 0 58 #endif 59 #endif 60 61 #if PROTOBUF_USE_EXCEPTIONS 62 #include <exception> 63 #endif 64 65 #if defined(_WIN32) && defined(GetMessage) 66 // Allow GetMessage to be used as a valid method name in protobuf classes. 67 // windows.h defines GetMessage() as a macro. Let's re-define it as an inline 68 // function. The inline function should be equivalent for C++ users. 69 inline BOOL GetMessage_Win32( 70 LPMSG lpMsg, HWND hWnd, 71 UINT wMsgFilterMin, UINT wMsgFilterMax) { 72 return GetMessage(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax); 73 } 74 #undef GetMessage 75 inline BOOL GetMessage( 76 LPMSG lpMsg, HWND hWnd, 77 UINT wMsgFilterMin, UINT wMsgFilterMax) { 78 return GetMessage_Win32(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax); 79 } 80 #endif 81 82 83 namespace std {} 84 85 namespace google { 86 namespace protobuf { 87 88 #undef GOOGLE_DISALLOW_EVIL_CONSTRUCTORS 89 #define GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(TypeName) \ 90 TypeName(const TypeName&); \ 91 void operator=(const TypeName&) 92 93 // The macros defined below are required in order to make protobuf_lite a 94 // component on all platforms. See http://crbug.com/172800. 95 #if defined(COMPONENT_BUILD) && defined(PROTOBUF_USE_DLLS) 96 #if defined(_MSC_VER) 97 #ifdef LIBPROTOBUF_EXPORTS 98 #define LIBPROTOBUF_EXPORT __declspec(dllexport) 99 #else 100 #define LIBPROTOBUF_EXPORT __declspec(dllimport) 101 #endif 102 #ifdef LIBPROTOC_EXPORTS 103 #define LIBPROTOC_EXPORT __declspec(dllexport) 104 #else 105 #define LIBPROTOC_EXPORT __declspec(dllimport) 106 #endif 107 #else // defined(_MSC_VER) 108 #ifdef LIBPROTOBUF_EXPORTS 109 #define LIBPROTOBUF_EXPORT __attribute__((visibility("default"))) 110 #else 111 #define LIBPROTOBUF_EXPORT 112 #endif 113 #ifdef LIBPROTOC_EXPORTS 114 #define LIBPROTOC_EXPORT __attribute__((visibility("default"))) 115 #else 116 #define LIBPROTOC_EXPORT 117 #endif 118 #endif 119 #else // defined(COMPONENT_BUILD) && defined(PROTOBUF_USE_DLLS) 120 #define LIBPROTOBUF_EXPORT 121 #define LIBPROTOC_EXPORT 122 #endif 123 124 namespace internal { 125 126 // Some of these constants are macros rather than const ints so that they can 127 // be used in #if directives. 128 129 // The current version, represented as a single integer to make comparison 130 // easier: major * 10^6 + minor * 10^3 + micro 131 #define GOOGLE_PROTOBUF_VERSION 2005000 132 133 // The minimum library version which works with the current version of the 134 // headers. 135 #define GOOGLE_PROTOBUF_MIN_LIBRARY_VERSION 2005000 136 137 // The minimum header version which works with the current version of 138 // the library. This constant should only be used by protoc's C++ code 139 // generator. 140 static const int kMinHeaderVersionForLibrary = 2005000; 141 142 // The minimum protoc version which works with the current version of the 143 // headers. 144 #define GOOGLE_PROTOBUF_MIN_PROTOC_VERSION 2005000 145 146 // The minimum header version which works with the current version of 147 // protoc. This constant should only be used in VerifyVersion(). 148 static const int kMinHeaderVersionForProtoc = 2005000; 149 150 // Verifies that the headers and libraries are compatible. Use the macro 151 // below to call this. 152 void LIBPROTOBUF_EXPORT VerifyVersion(int headerVersion, int minLibraryVersion, 153 const char* filename); 154 155 // Converts a numeric version number to a string. 156 std::string LIBPROTOBUF_EXPORT VersionString(int version); 157 158 } // namespace internal 159 160 // Place this macro in your main() function (or somewhere before you attempt 161 // to use the protobuf library) to verify that the version you link against 162 // matches the headers you compiled against. If a version mismatch is 163 // detected, the process will abort. 164 #define GOOGLE_PROTOBUF_VERIFY_VERSION \ 165 ::google::protobuf::internal::VerifyVersion( \ 166 GOOGLE_PROTOBUF_VERSION, GOOGLE_PROTOBUF_MIN_LIBRARY_VERSION, \ 167 __FILE__) 168 169 // =================================================================== 170 // from google3/base/port.h 171 172 typedef unsigned int uint; 173 174 #ifdef _MSC_VER 175 typedef __int8 int8; 176 typedef __int16 int16; 177 typedef __int32 int32; 178 typedef __int64 int64; 179 180 typedef unsigned __int8 uint8; 181 typedef unsigned __int16 uint16; 182 typedef unsigned __int32 uint32; 183 typedef unsigned __int64 uint64; 184 #else 185 typedef int8_t int8; 186 typedef int16_t int16; 187 typedef int32_t int32; 188 typedef int64_t int64; 189 190 typedef uint8_t uint8; 191 typedef uint16_t uint16; 192 typedef uint32_t uint32; 193 typedef uint64_t uint64; 194 #endif 195 196 // long long macros to be used because gcc and vc++ use different suffixes, 197 // and different size specifiers in format strings 198 #undef GOOGLE_LONGLONG 199 #undef GOOGLE_ULONGLONG 200 #undef GOOGLE_LL_FORMAT 201 202 #ifdef _MSC_VER 203 #define GOOGLE_LONGLONG(x) x##I64 204 #define GOOGLE_ULONGLONG(x) x##UI64 205 #define GOOGLE_LL_FORMAT "I64" // As in printf("%I64d", ...) 206 #else 207 #define GOOGLE_LONGLONG(x) x##LL 208 #define GOOGLE_ULONGLONG(x) x##ULL 209 #define GOOGLE_LL_FORMAT "ll" // As in "%lld". Note that "q" is poor form also. 210 #endif 211 212 static const int32 kint32max = 0x7FFFFFFF; 213 static const int32 kint32min = -kint32max - 1; 214 static const int64 kint64max = GOOGLE_LONGLONG(0x7FFFFFFFFFFFFFFF); 215 static const int64 kint64min = -kint64max - 1; 216 static const uint32 kuint32max = 0xFFFFFFFFu; 217 static const uint64 kuint64max = GOOGLE_ULONGLONG(0xFFFFFFFFFFFFFFFF); 218 219 // ------------------------------------------------------------------- 220 // Annotations: Some parts of the code have been annotated in ways that might 221 // be useful to some compilers or tools, but are not supported universally. 222 // You can #define these annotations yourself if the default implementation 223 // is not right for you. 224 225 #ifndef GOOGLE_ATTRIBUTE_ALWAYS_INLINE 226 #if defined(__GNUC__) && (__GNUC__ > 3 ||(__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) 227 // For functions we want to force inline. 228 // Introduced in gcc 3.1. 229 #define GOOGLE_ATTRIBUTE_ALWAYS_INLINE __attribute__ ((always_inline)) 230 #else 231 // Other compilers will have to figure it out for themselves. 232 #define GOOGLE_ATTRIBUTE_ALWAYS_INLINE 233 #endif 234 #endif 235 236 #ifndef GOOGLE_ATTRIBUTE_DEPRECATED 237 #ifdef __GNUC__ 238 // If the method/variable/type is used anywhere, produce a warning. 239 #define GOOGLE_ATTRIBUTE_DEPRECATED __attribute__((deprecated)) 240 #else 241 #define GOOGLE_ATTRIBUTE_DEPRECATED 242 #endif 243 #endif 244 245 #ifndef GOOGLE_PREDICT_TRUE 246 #ifdef __GNUC__ 247 // Provided at least since GCC 3.0. 248 #define GOOGLE_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1)) 249 #else 250 #define GOOGLE_PREDICT_TRUE 251 #endif 252 #endif 253 254 // Delimits a block of code which may write to memory which is simultaneously 255 // written by other threads, but which has been determined to be thread-safe 256 // (e.g. because it is an idempotent write). 257 #ifndef GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN 258 #define GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN() 259 #endif 260 #ifndef GOOGLE_SAFE_CONCURRENT_WRITES_END 261 #define GOOGLE_SAFE_CONCURRENT_WRITES_END() 262 #endif 263 264 // =================================================================== 265 // from google3/base/basictypes.h 266 267 // The GOOGLE_ARRAYSIZE(arr) macro returns the # of elements in an array arr. 268 // The expression is a compile-time constant, and therefore can be 269 // used in defining new arrays, for example. 270 // 271 // GOOGLE_ARRAYSIZE catches a few type errors. If you see a compiler error 272 // 273 // "warning: division by zero in ..." 274 // 275 // when using GOOGLE_ARRAYSIZE, you are (wrongfully) giving it a pointer. 276 // You should only use GOOGLE_ARRAYSIZE on statically allocated arrays. 277 // 278 // The following comments are on the implementation details, and can 279 // be ignored by the users. 280 // 281 // ARRAYSIZE(arr) works by inspecting sizeof(arr) (the # of bytes in 282 // the array) and sizeof(*(arr)) (the # of bytes in one array 283 // element). If the former is divisible by the latter, perhaps arr is 284 // indeed an array, in which case the division result is the # of 285 // elements in the array. Otherwise, arr cannot possibly be an array, 286 // and we generate a compiler error to prevent the code from 287 // compiling. 288 // 289 // Since the size of bool is implementation-defined, we need to cast 290 // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final 291 // result has type size_t. 292 // 293 // This macro is not perfect as it wrongfully accepts certain 294 // pointers, namely where the pointer size is divisible by the pointee 295 // size. Since all our code has to go through a 32-bit compiler, 296 // where a pointer is 4 bytes, this means all pointers to a type whose 297 // size is 3 or greater than 4 will be (righteously) rejected. 298 // 299 // Kudos to Jorg Brown for this simple and elegant implementation. 300 301 #undef GOOGLE_ARRAYSIZE 302 #define GOOGLE_ARRAYSIZE(a) \ 303 ((sizeof(a) / sizeof(*(a))) / \ 304 static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) 305 306 namespace internal { 307 308 // Use implicit_cast as a safe version of static_cast or const_cast 309 // for upcasting in the type hierarchy (i.e. casting a pointer to Foo 310 // to a pointer to SuperclassOfFoo or casting a pointer to Foo to 311 // a const pointer to Foo). 312 // When you use implicit_cast, the compiler checks that the cast is safe. 313 // Such explicit implicit_casts are necessary in surprisingly many 314 // situations where C++ demands an exact type match instead of an 315 // argument type convertable to a target type. 316 // 317 // The From type can be inferred, so the preferred syntax for using 318 // implicit_cast is the same as for static_cast etc.: 319 // 320 // implicit_cast<ToType>(expr) 321 // 322 // implicit_cast would have been part of the C++ standard library, 323 // but the proposal was submitted too late. It will probably make 324 // its way into the language in the future. 325 template<typename To, typename From> 326 inline To implicit_cast(From const &f) { 327 return f; 328 } 329 330 // When you upcast (that is, cast a pointer from type Foo to type 331 // SuperclassOfFoo), it's fine to use implicit_cast<>, since upcasts 332 // always succeed. When you downcast (that is, cast a pointer from 333 // type Foo to type SubclassOfFoo), static_cast<> isn't safe, because 334 // how do you know the pointer is really of type SubclassOfFoo? It 335 // could be a bare Foo, or of type DifferentSubclassOfFoo. Thus, 336 // when you downcast, you should use this macro. In debug mode, we 337 // use dynamic_cast<> to double-check the downcast is legal (we die 338 // if it's not). In normal mode, we do the efficient static_cast<> 339 // instead. Thus, it's important to test in debug mode to make sure 340 // the cast is legal! 341 // This is the only place in the code we should use dynamic_cast<>. 342 // In particular, you SHOULDN'T be using dynamic_cast<> in order to 343 // do RTTI (eg code like this: 344 // if (dynamic_cast<Subclass1>(foo)) HandleASubclass1Object(foo); 345 // if (dynamic_cast<Subclass2>(foo)) HandleASubclass2Object(foo); 346 // You should design the code some other way not to need this. 347 348 template<typename To, typename From> // use like this: down_cast<T*>(foo); 349 inline To down_cast(From* f) { // so we only accept pointers 350 // Ensures that To is a sub-type of From *. This test is here only 351 // for compile-time type checking, and has no overhead in an 352 // optimized build at run-time, as it will be optimized away 353 // completely. 354 if (false) { 355 implicit_cast<From*, To>(0); 356 } 357 358 #if !defined(NDEBUG) && !defined(GOOGLE_PROTOBUF_NO_RTTI) 359 assert(f == NULL || dynamic_cast<To>(f) != NULL); // RTTI: debug mode only! 360 #endif 361 return static_cast<To>(f); 362 } 363 364 } // namespace internal 365 366 // We made these internal so that they would show up as such in the docs, 367 // but we don't want to stick "internal::" in front of them everywhere. 368 using internal::implicit_cast; 369 using internal::down_cast; 370 371 // The COMPILE_ASSERT macro can be used to verify that a compile time 372 // expression is true. For example, you could use it to verify the 373 // size of a static array: 374 // 375 // COMPILE_ASSERT(ARRAYSIZE(content_type_names) == CONTENT_NUM_TYPES, 376 // content_type_names_incorrect_size); 377 // 378 // or to make sure a struct is smaller than a certain size: 379 // 380 // COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large); 381 // 382 // The second argument to the macro is the name of the variable. If 383 // the expression is false, most compilers will issue a warning/error 384 // containing the name of the variable. 385 386 namespace internal { 387 388 template <bool> 389 struct CompileAssert { 390 }; 391 392 } // namespace internal 393 394 #undef GOOGLE_COMPILE_ASSERT 395 #define GOOGLE_COMPILE_ASSERT(expr, msg) \ 396 typedef ::google::protobuf::internal::CompileAssert<(bool(expr))> \ 397 msg[bool(expr) ? 1 : -1] 398 399 400 // Implementation details of COMPILE_ASSERT: 401 // 402 // - COMPILE_ASSERT works by defining an array type that has -1 403 // elements (and thus is invalid) when the expression is false. 404 // 405 // - The simpler definition 406 // 407 // #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1] 408 // 409 // does not work, as gcc supports variable-length arrays whose sizes 410 // are determined at run-time (this is gcc's extension and not part 411 // of the C++ standard). As a result, gcc fails to reject the 412 // following code with the simple definition: 413 // 414 // int foo; 415 // COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is 416 // // not a compile-time constant. 417 // 418 // - By using the type CompileAssert<(bool(expr))>, we ensures that 419 // expr is a compile-time constant. (Template arguments must be 420 // determined at compile-time.) 421 // 422 // - The outter parentheses in CompileAssert<(bool(expr))> are necessary 423 // to work around a bug in gcc 3.4.4 and 4.0.1. If we had written 424 // 425 // CompileAssert<bool(expr)> 426 // 427 // instead, these compilers will refuse to compile 428 // 429 // COMPILE_ASSERT(5 > 0, some_message); 430 // 431 // (They seem to think the ">" in "5 > 0" marks the end of the 432 // template argument list.) 433 // 434 // - The array size is (bool(expr) ? 1 : -1), instead of simply 435 // 436 // ((expr) ? 1 : -1). 437 // 438 // This is to avoid running into a bug in MS VC 7.1, which 439 // causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1. 440 441 // =================================================================== 442 // from google3/base/memory/scoped_ptr.h 443 444 namespace internal { 445 446 // This is an implementation designed to match the anticipated future TR2 447 // implementation of the scoped_ptr class, and its closely-related brethren, 448 // scoped_array, scoped_ptr_malloc, and make_scoped_ptr. 449 450 template <class C> class scoped_ptr; 451 template <class C> class scoped_array; 452 453 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> 454 // automatically deletes the pointer it holds (if any). 455 // That is, scoped_ptr<T> owns the T object that it points to. 456 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. 457 // 458 // The size of a scoped_ptr is small: 459 // sizeof(scoped_ptr<C>) == sizeof(C*) 460 template <class C> 461 class scoped_ptr { 462 public: 463 464 // The element type 465 typedef C element_type; 466 467 // Constructor. Defaults to intializing with NULL. 468 // There is no way to create an uninitialized scoped_ptr. 469 // The input parameter must be allocated with new. 470 explicit scoped_ptr(C* p = NULL) : ptr_(p) { } 471 472 // Destructor. If there is a C object, delete it. 473 // We don't need to test ptr_ == NULL because C++ does that for us. 474 ~scoped_ptr() { 475 enum { type_must_be_complete = sizeof(C) }; 476 delete ptr_; 477 } 478 479 // Reset. Deletes the current owned object, if any. 480 // Then takes ownership of a new object, if given. 481 // this->reset(this->get()) works. 482 void reset(C* p = NULL) { 483 if (p != ptr_) { 484 enum { type_must_be_complete = sizeof(C) }; 485 delete ptr_; 486 ptr_ = p; 487 } 488 } 489 490 // Accessors to get the owned object. 491 // operator* and operator-> will assert() if there is no current object. 492 C& operator*() const { 493 assert(ptr_ != NULL); 494 return *ptr_; 495 } 496 C* operator->() const { 497 assert(ptr_ != NULL); 498 return ptr_; 499 } 500 C* get() const { return ptr_; } 501 502 // Comparison operators. 503 // These return whether two scoped_ptr refer to the same object, not just to 504 // two different but equal objects. 505 bool operator==(C* p) const { return ptr_ == p; } 506 bool operator!=(C* p) const { return ptr_ != p; } 507 508 // Swap two scoped pointers. 509 void swap(scoped_ptr& p2) { 510 C* tmp = ptr_; 511 ptr_ = p2.ptr_; 512 p2.ptr_ = tmp; 513 } 514 515 // Release a pointer. 516 // The return value is the current pointer held by this object. 517 // If this object holds a NULL pointer, the return value is NULL. 518 // After this operation, this object will hold a NULL pointer, 519 // and will not own the object any more. 520 C* release() { 521 C* retVal = ptr_; 522 ptr_ = NULL; 523 return retVal; 524 } 525 526 private: 527 C* ptr_; 528 529 // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't 530 // make sense, and if C2 == C, it still doesn't make sense because you should 531 // never have the same object owned by two different scoped_ptrs. 532 template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; 533 template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; 534 535 // Disallow evil constructors 536 scoped_ptr(const scoped_ptr&); 537 void operator=(const scoped_ptr&); 538 }; 539 540 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate 541 // with new [] and the destructor deletes objects with delete []. 542 // 543 // As with scoped_ptr<C>, a scoped_array<C> either points to an object 544 // or is NULL. A scoped_array<C> owns the object that it points to. 545 // 546 // Size: sizeof(scoped_array<C>) == sizeof(C*) 547 template <class C> 548 class scoped_array { 549 public: 550 551 // The element type 552 typedef C element_type; 553 554 // Constructor. Defaults to intializing with NULL. 555 // There is no way to create an uninitialized scoped_array. 556 // The input parameter must be allocated with new []. 557 explicit scoped_array(C* p = NULL) : array_(p) { } 558 559 // Destructor. If there is a C object, delete it. 560 // We don't need to test ptr_ == NULL because C++ does that for us. 561 ~scoped_array() { 562 enum { type_must_be_complete = sizeof(C) }; 563 delete[] array_; 564 } 565 566 // Reset. Deletes the current owned object, if any. 567 // Then takes ownership of a new object, if given. 568 // this->reset(this->get()) works. 569 void reset(C* p = NULL) { 570 if (p != array_) { 571 enum { type_must_be_complete = sizeof(C) }; 572 delete[] array_; 573 array_ = p; 574 } 575 } 576 577 // Get one element of the current object. 578 // Will assert() if there is no current object, or index i is negative. 579 C& operator[](std::ptrdiff_t i) const { 580 assert(i >= 0); 581 assert(array_ != NULL); 582 return array_[i]; 583 } 584 585 // Get a pointer to the zeroth element of the current object. 586 // If there is no current object, return NULL. 587 C* get() const { 588 return array_; 589 } 590 591 // Comparison operators. 592 // These return whether two scoped_array refer to the same object, not just to 593 // two different but equal objects. 594 bool operator==(C* p) const { return array_ == p; } 595 bool operator!=(C* p) const { return array_ != p; } 596 597 // Swap two scoped arrays. 598 void swap(scoped_array& p2) { 599 C* tmp = array_; 600 array_ = p2.array_; 601 p2.array_ = tmp; 602 } 603 604 // Release an array. 605 // The return value is the current pointer held by this object. 606 // If this object holds a NULL pointer, the return value is NULL. 607 // After this operation, this object will hold a NULL pointer, 608 // and will not own the object any more. 609 C* release() { 610 C* retVal = array_; 611 array_ = NULL; 612 return retVal; 613 } 614 615 private: 616 C* array_; 617 618 // Forbid comparison of different scoped_array types. 619 template <class C2> bool operator==(scoped_array<C2> const& p2) const; 620 template <class C2> bool operator!=(scoped_array<C2> const& p2) const; 621 622 // Disallow evil constructors 623 scoped_array(const scoped_array&); 624 void operator=(const scoped_array&); 625 }; 626 627 } // namespace internal 628 629 // We made these internal so that they would show up as such in the docs, 630 // but we don't want to stick "internal::" in front of them everywhere. 631 using internal::scoped_ptr; 632 using internal::scoped_array; 633 634 // =================================================================== 635 // emulates google3/base/logging.h 636 637 enum LogLevel { 638 LOGLEVEL_INFO, // Informational. This is never actually used by 639 // libprotobuf. 640 LOGLEVEL_WARNING, // Warns about issues that, although not technically a 641 // problem now, could cause problems in the future. For 642 // example, a // warning will be printed when parsing a 643 // message that is near the message size limit. 644 LOGLEVEL_ERROR, // An error occurred which should never happen during 645 // normal use. 646 LOGLEVEL_FATAL, // An error occurred from which the library cannot 647 // recover. This usually indicates a programming error 648 // in the code which calls the library, especially when 649 // compiled in debug mode. 650 651 #ifdef NDEBUG 652 LOGLEVEL_DFATAL = LOGLEVEL_ERROR 653 #else 654 LOGLEVEL_DFATAL = LOGLEVEL_FATAL 655 #endif 656 }; 657 658 namespace internal { 659 660 class LogFinisher; 661 662 class LIBPROTOBUF_EXPORT LogMessage { 663 public: 664 LogMessage(LogLevel level, const char* filename, int line); 665 ~LogMessage(); 666 667 LogMessage& operator<<(const std::string& value); 668 LogMessage& operator<<(const char* value); 669 LogMessage& operator<<(char value); 670 LogMessage& operator<<(int value); 671 LogMessage& operator<<(uint value); 672 LogMessage& operator<<(long value); 673 LogMessage& operator<<(unsigned long value); 674 LogMessage& operator<<(double value); 675 676 private: 677 friend class LogFinisher; 678 void Finish(); 679 680 LogLevel level_; 681 const char* filename_; 682 int line_; 683 std::string message_; 684 }; 685 686 // Used to make the entire "LOG(BLAH) << etc." expression have a void return 687 // type and print a newline after each message. 688 class LIBPROTOBUF_EXPORT LogFinisher { 689 public: 690 void operator=(LogMessage& other); 691 }; 692 693 } // namespace internal 694 695 // Undef everything in case we're being mixed with some other Google library 696 // which already defined them itself. Presumably all Google libraries will 697 // support the same syntax for these so it should not be a big deal if they 698 // end up using our definitions instead. 699 #undef GOOGLE_LOG 700 #undef GOOGLE_LOG_IF 701 702 #undef GOOGLE_CHECK 703 #undef GOOGLE_CHECK_EQ 704 #undef GOOGLE_CHECK_NE 705 #undef GOOGLE_CHECK_LT 706 #undef GOOGLE_CHECK_LE 707 #undef GOOGLE_CHECK_GT 708 #undef GOOGLE_CHECK_GE 709 #undef GOOGLE_CHECK_NOTNULL 710 711 #undef GOOGLE_DLOG 712 #undef GOOGLE_DCHECK 713 #undef GOOGLE_DCHECK_EQ 714 #undef GOOGLE_DCHECK_NE 715 #undef GOOGLE_DCHECK_LT 716 #undef GOOGLE_DCHECK_LE 717 #undef GOOGLE_DCHECK_GT 718 #undef GOOGLE_DCHECK_GE 719 720 #define GOOGLE_LOG(LEVEL) \ 721 ::google::protobuf::internal::LogFinisher() = \ 722 ::google::protobuf::internal::LogMessage( \ 723 ::google::protobuf::LOGLEVEL_##LEVEL, __FILE__, __LINE__) 724 #define GOOGLE_LOG_IF(LEVEL, CONDITION) \ 725 !(CONDITION) ? (void)0 : GOOGLE_LOG(LEVEL) 726 727 #define GOOGLE_CHECK(EXPRESSION) \ 728 GOOGLE_LOG_IF(FATAL, !(EXPRESSION)) << "CHECK failed: " #EXPRESSION ": " 729 #define GOOGLE_CHECK_EQ(A, B) GOOGLE_CHECK((A) == (B)) 730 #define GOOGLE_CHECK_NE(A, B) GOOGLE_CHECK((A) != (B)) 731 #define GOOGLE_CHECK_LT(A, B) GOOGLE_CHECK((A) < (B)) 732 #define GOOGLE_CHECK_LE(A, B) GOOGLE_CHECK((A) <= (B)) 733 #define GOOGLE_CHECK_GT(A, B) GOOGLE_CHECK((A) > (B)) 734 #define GOOGLE_CHECK_GE(A, B) GOOGLE_CHECK((A) >= (B)) 735 736 namespace internal { 737 template<typename T> 738 T* CheckNotNull(const char *file, int line, const char *name, T* val) { 739 if (val == NULL) { 740 GOOGLE_LOG(FATAL) << name; 741 } 742 return val; 743 } 744 } // namespace internal 745 #define GOOGLE_CHECK_NOTNULL(A) \ 746 internal::CheckNotNull(__FILE__, __LINE__, "'" #A "' must not be NULL", (A)) 747 748 #ifdef NDEBUG 749 750 #define GOOGLE_DLOG GOOGLE_LOG_IF(INFO, false) 751 752 #define GOOGLE_DCHECK(EXPRESSION) while(false) GOOGLE_CHECK(EXPRESSION) 753 #define GOOGLE_DCHECK_EQ(A, B) GOOGLE_DCHECK((A) == (B)) 754 #define GOOGLE_DCHECK_NE(A, B) GOOGLE_DCHECK((A) != (B)) 755 #define GOOGLE_DCHECK_LT(A, B) GOOGLE_DCHECK((A) < (B)) 756 #define GOOGLE_DCHECK_LE(A, B) GOOGLE_DCHECK((A) <= (B)) 757 #define GOOGLE_DCHECK_GT(A, B) GOOGLE_DCHECK((A) > (B)) 758 #define GOOGLE_DCHECK_GE(A, B) GOOGLE_DCHECK((A) >= (B)) 759 760 #else // NDEBUG 761 762 #define GOOGLE_DLOG GOOGLE_LOG 763 764 #define GOOGLE_DCHECK GOOGLE_CHECK 765 #define GOOGLE_DCHECK_EQ GOOGLE_CHECK_EQ 766 #define GOOGLE_DCHECK_NE GOOGLE_CHECK_NE 767 #define GOOGLE_DCHECK_LT GOOGLE_CHECK_LT 768 #define GOOGLE_DCHECK_LE GOOGLE_CHECK_LE 769 #define GOOGLE_DCHECK_GT GOOGLE_CHECK_GT 770 #define GOOGLE_DCHECK_GE GOOGLE_CHECK_GE 771 772 #endif // !NDEBUG 773 774 typedef void LogHandler(LogLevel level, const char* filename, int line, 775 const std::string& message); 776 777 // The protobuf library sometimes writes warning and error messages to 778 // stderr. These messages are primarily useful for developers, but may 779 // also help end users figure out a problem. If you would prefer that 780 // these messages be sent somewhere other than stderr, call SetLogHandler() 781 // to set your own handler. This returns the old handler. Set the handler 782 // to NULL to ignore log messages (but see also LogSilencer, below). 783 // 784 // Obviously, SetLogHandler is not thread-safe. You should only call it 785 // at initialization time, and probably not from library code. If you 786 // simply want to suppress log messages temporarily (e.g. because you 787 // have some code that tends to trigger them frequently and you know 788 // the warnings are not important to you), use the LogSilencer class 789 // below. 790 LIBPROTOBUF_EXPORT LogHandler* SetLogHandler(LogHandler* new_func); 791 792 // Create a LogSilencer if you want to temporarily suppress all log 793 // messages. As long as any LogSilencer objects exist, non-fatal 794 // log messages will be discarded (the current LogHandler will *not* 795 // be called). Constructing a LogSilencer is thread-safe. You may 796 // accidentally suppress log messages occurring in another thread, but 797 // since messages are generally for debugging purposes only, this isn't 798 // a big deal. If you want to intercept log messages, use SetLogHandler(). 799 class LIBPROTOBUF_EXPORT LogSilencer { 800 public: 801 LogSilencer(); 802 ~LogSilencer(); 803 }; 804 805 // =================================================================== 806 // emulates google3/base/callback.h 807 808 // Abstract interface for a callback. When calling an RPC, you must provide 809 // a Closure to call when the procedure completes. See the Service interface 810 // in service.h. 811 // 812 // To automatically construct a Closure which calls a particular function or 813 // method with a particular set of parameters, use the NewCallback() function. 814 // Example: 815 // void FooDone(const FooResponse* response) { 816 // ... 817 // } 818 // 819 // void CallFoo() { 820 // ... 821 // // When done, call FooDone() and pass it a pointer to the response. 822 // Closure* callback = NewCallback(&FooDone, response); 823 // // Make the call. 824 // service->Foo(controller, request, response, callback); 825 // } 826 // 827 // Example that calls a method: 828 // class Handler { 829 // public: 830 // ... 831 // 832 // void FooDone(const FooResponse* response) { 833 // ... 834 // } 835 // 836 // void CallFoo() { 837 // ... 838 // // When done, call FooDone() and pass it a pointer to the response. 839 // Closure* callback = NewCallback(this, &Handler::FooDone, response); 840 // // Make the call. 841 // service->Foo(controller, request, response, callback); 842 // } 843 // }; 844 // 845 // Currently NewCallback() supports binding zero, one, or two arguments. 846 // 847 // Callbacks created with NewCallback() automatically delete themselves when 848 // executed. They should be used when a callback is to be called exactly 849 // once (usually the case with RPC callbacks). If a callback may be called 850 // a different number of times (including zero), create it with 851 // NewPermanentCallback() instead. You are then responsible for deleting the 852 // callback (using the "delete" keyword as normal). 853 // 854 // Note that NewCallback() is a bit touchy regarding argument types. Generally, 855 // the values you provide for the parameter bindings must exactly match the 856 // types accepted by the callback function. For example: 857 // void Foo(string s); 858 // NewCallback(&Foo, "foo"); // WON'T WORK: const char* != string 859 // NewCallback(&Foo, string("foo")); // WORKS 860 // Also note that the arguments cannot be references: 861 // void Foo(const string& s); 862 // string my_str; 863 // NewCallback(&Foo, my_str); // WON'T WORK: Can't use referecnes. 864 // However, correctly-typed pointers will work just fine. 865 class LIBPROTOBUF_EXPORT Closure { 866 public: 867 Closure() {} 868 virtual ~Closure(); 869 870 virtual void Run() = 0; 871 872 private: 873 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Closure); 874 }; 875 876 namespace internal { 877 878 class LIBPROTOBUF_EXPORT FunctionClosure0 : public Closure { 879 public: 880 typedef void (*FunctionType)(); 881 882 FunctionClosure0(FunctionType function, bool self_deleting) 883 : function_(function), self_deleting_(self_deleting) {} 884 ~FunctionClosure0(); 885 886 void Run() { 887 bool needs_delete = self_deleting_; // read in case callback deletes 888 function_(); 889 if (needs_delete) delete this; 890 } 891 892 private: 893 FunctionType function_; 894 bool self_deleting_; 895 }; 896 897 template <typename Class> 898 class MethodClosure0 : public Closure { 899 public: 900 typedef void (Class::*MethodType)(); 901 902 MethodClosure0(Class* object, MethodType method, bool self_deleting) 903 : object_(object), method_(method), self_deleting_(self_deleting) {} 904 ~MethodClosure0() {} 905 906 void Run() { 907 bool needs_delete = self_deleting_; // read in case callback deletes 908 (object_->*method_)(); 909 if (needs_delete) delete this; 910 } 911 912 private: 913 Class* object_; 914 MethodType method_; 915 bool self_deleting_; 916 }; 917 918 template <typename Arg1> 919 class FunctionClosure1 : public Closure { 920 public: 921 typedef void (*FunctionType)(Arg1 arg1); 922 923 FunctionClosure1(FunctionType function, bool self_deleting, 924 Arg1 arg1) 925 : function_(function), self_deleting_(self_deleting), 926 arg1_(arg1) {} 927 ~FunctionClosure1() {} 928 929 void Run() { 930 bool needs_delete = self_deleting_; // read in case callback deletes 931 function_(arg1_); 932 if (needs_delete) delete this; 933 } 934 935 private: 936 FunctionType function_; 937 bool self_deleting_; 938 Arg1 arg1_; 939 }; 940 941 template <typename Class, typename Arg1> 942 class MethodClosure1 : public Closure { 943 public: 944 typedef void (Class::*MethodType)(Arg1 arg1); 945 946 MethodClosure1(Class* object, MethodType method, bool self_deleting, 947 Arg1 arg1) 948 : object_(object), method_(method), self_deleting_(self_deleting), 949 arg1_(arg1) {} 950 ~MethodClosure1() {} 951 952 void Run() { 953 bool needs_delete = self_deleting_; // read in case callback deletes 954 (object_->*method_)(arg1_); 955 if (needs_delete) delete this; 956 } 957 958 private: 959 Class* object_; 960 MethodType method_; 961 bool self_deleting_; 962 Arg1 arg1_; 963 }; 964 965 template <typename Arg1, typename Arg2> 966 class FunctionClosure2 : public Closure { 967 public: 968 typedef void (*FunctionType)(Arg1 arg1, Arg2 arg2); 969 970 FunctionClosure2(FunctionType function, bool self_deleting, 971 Arg1 arg1, Arg2 arg2) 972 : function_(function), self_deleting_(self_deleting), 973 arg1_(arg1), arg2_(arg2) {} 974 ~FunctionClosure2() {} 975 976 void Run() { 977 bool needs_delete = self_deleting_; // read in case callback deletes 978 function_(arg1_, arg2_); 979 if (needs_delete) delete this; 980 } 981 982 private: 983 FunctionType function_; 984 bool self_deleting_; 985 Arg1 arg1_; 986 Arg2 arg2_; 987 }; 988 989 template <typename Class, typename Arg1, typename Arg2> 990 class MethodClosure2 : public Closure { 991 public: 992 typedef void (Class::*MethodType)(Arg1 arg1, Arg2 arg2); 993 994 MethodClosure2(Class* object, MethodType method, bool self_deleting, 995 Arg1 arg1, Arg2 arg2) 996 : object_(object), method_(method), self_deleting_(self_deleting), 997 arg1_(arg1), arg2_(arg2) {} 998 ~MethodClosure2() {} 999 1000 void Run() { 1001 bool needs_delete = self_deleting_; // read in case callback deletes 1002 (object_->*method_)(arg1_, arg2_); 1003 if (needs_delete) delete this; 1004 } 1005 1006 private: 1007 Class* object_; 1008 MethodType method_; 1009 bool self_deleting_; 1010 Arg1 arg1_; 1011 Arg2 arg2_; 1012 }; 1013 1014 } // namespace internal 1015 1016 // See Closure. 1017 inline Closure* NewCallback(void (*function)()) { 1018 return new internal::FunctionClosure0(function, true); 1019 } 1020 1021 // See Closure. 1022 inline Closure* NewPermanentCallback(void (*function)()) { 1023 return new internal::FunctionClosure0(function, false); 1024 } 1025 1026 // See Closure. 1027 template <typename Class> 1028 inline Closure* NewCallback(Class* object, void (Class::*method)()) { 1029 return new internal::MethodClosure0<Class>(object, method, true); 1030 } 1031 1032 // See Closure. 1033 template <typename Class> 1034 inline Closure* NewPermanentCallback(Class* object, void (Class::*method)()) { 1035 return new internal::MethodClosure0<Class>(object, method, false); 1036 } 1037 1038 // See Closure. 1039 template <typename Arg1> 1040 inline Closure* NewCallback(void (*function)(Arg1), 1041 Arg1 arg1) { 1042 return new internal::FunctionClosure1<Arg1>(function, true, arg1); 1043 } 1044 1045 // See Closure. 1046 template <typename Arg1> 1047 inline Closure* NewPermanentCallback(void (*function)(Arg1), 1048 Arg1 arg1) { 1049 return new internal::FunctionClosure1<Arg1>(function, false, arg1); 1050 } 1051 1052 // See Closure. 1053 template <typename Class, typename Arg1> 1054 inline Closure* NewCallback(Class* object, void (Class::*method)(Arg1), 1055 Arg1 arg1) { 1056 return new internal::MethodClosure1<Class, Arg1>(object, method, true, arg1); 1057 } 1058 1059 // See Closure. 1060 template <typename Class, typename Arg1> 1061 inline Closure* NewPermanentCallback(Class* object, void (Class::*method)(Arg1), 1062 Arg1 arg1) { 1063 return new internal::MethodClosure1<Class, Arg1>(object, method, false, arg1); 1064 } 1065 1066 // See Closure. 1067 template <typename Arg1, typename Arg2> 1068 inline Closure* NewCallback(void (*function)(Arg1, Arg2), 1069 Arg1 arg1, Arg2 arg2) { 1070 return new internal::FunctionClosure2<Arg1, Arg2>( 1071 function, true, arg1, arg2); 1072 } 1073 1074 // See Closure. 1075 template <typename Arg1, typename Arg2> 1076 inline Closure* NewPermanentCallback(void (*function)(Arg1, Arg2), 1077 Arg1 arg1, Arg2 arg2) { 1078 return new internal::FunctionClosure2<Arg1, Arg2>( 1079 function, false, arg1, arg2); 1080 } 1081 1082 // See Closure. 1083 template <typename Class, typename Arg1, typename Arg2> 1084 inline Closure* NewCallback(Class* object, void (Class::*method)(Arg1, Arg2), 1085 Arg1 arg1, Arg2 arg2) { 1086 return new internal::MethodClosure2<Class, Arg1, Arg2>( 1087 object, method, true, arg1, arg2); 1088 } 1089 1090 // See Closure. 1091 template <typename Class, typename Arg1, typename Arg2> 1092 inline Closure* NewPermanentCallback( 1093 Class* object, void (Class::*method)(Arg1, Arg2), 1094 Arg1 arg1, Arg2 arg2) { 1095 return new internal::MethodClosure2<Class, Arg1, Arg2>( 1096 object, method, false, arg1, arg2); 1097 } 1098 1099 // A function which does nothing. Useful for creating no-op callbacks, e.g.: 1100 // Closure* nothing = NewCallback(&DoNothing); 1101 void LIBPROTOBUF_EXPORT DoNothing(); 1102 1103 // =================================================================== 1104 // emulates google3/base/mutex.h 1105 1106 namespace internal { 1107 1108 // A Mutex is a non-reentrant (aka non-recursive) mutex. At most one thread T 1109 // may hold a mutex at a given time. If T attempts to Lock() the same Mutex 1110 // while holding it, T will deadlock. 1111 class LIBPROTOBUF_EXPORT Mutex { 1112 public: 1113 // Create a Mutex that is not held by anybody. 1114 Mutex(); 1115 1116 // Destructor 1117 ~Mutex(); 1118 1119 // Block if necessary until this Mutex is free, then acquire it exclusively. 1120 void Lock(); 1121 1122 // Release this Mutex. Caller must hold it exclusively. 1123 void Unlock(); 1124 1125 // Crash if this Mutex is not held exclusively by this thread. 1126 // May fail to crash when it should; will never crash when it should not. 1127 void AssertHeld(); 1128 1129 private: 1130 struct Internal; 1131 Internal* mInternal; 1132 1133 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Mutex); 1134 }; 1135 1136 // MutexLock(mu) acquires mu when constructed and releases it when destroyed. 1137 class LIBPROTOBUF_EXPORT MutexLock { 1138 public: 1139 explicit MutexLock(Mutex *mu) : mu_(mu) { this->mu_->Lock(); } 1140 ~MutexLock() { this->mu_->Unlock(); } 1141 private: 1142 Mutex *const mu_; 1143 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MutexLock); 1144 }; 1145 1146 // TODO(kenton): Implement these? Hard to implement portably. 1147 typedef MutexLock ReaderMutexLock; 1148 typedef MutexLock WriterMutexLock; 1149 1150 // MutexLockMaybe is like MutexLock, but is a no-op when mu is NULL. 1151 class LIBPROTOBUF_EXPORT MutexLockMaybe { 1152 public: 1153 explicit MutexLockMaybe(Mutex *mu) : 1154 mu_(mu) { if (this->mu_ != NULL) { this->mu_->Lock(); } } 1155 ~MutexLockMaybe() { if (this->mu_ != NULL) { this->mu_->Unlock(); } } 1156 private: 1157 Mutex *const mu_; 1158 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MutexLockMaybe); 1159 }; 1160 1161 } // namespace internal 1162 1163 // We made these internal so that they would show up as such in the docs, 1164 // but we don't want to stick "internal::" in front of them everywhere. 1165 using internal::Mutex; 1166 using internal::MutexLock; 1167 using internal::ReaderMutexLock; 1168 using internal::WriterMutexLock; 1169 using internal::MutexLockMaybe; 1170 1171 // =================================================================== 1172 // from google3/util/utf8/public/unilib.h 1173 1174 namespace internal { 1175 1176 // Checks if the buffer contains structurally-valid UTF-8. Implemented in 1177 // structurally_valid.cc. 1178 LIBPROTOBUF_EXPORT bool IsStructurallyValidUTF8(const char* buf, int len); 1179 1180 } // namespace internal 1181 1182 // =================================================================== 1183 // from google3/util/endian/endian.h 1184 LIBPROTOBUF_EXPORT uint32 ghtonl(uint32 x); 1185 1186 // =================================================================== 1187 // Shutdown support. 1188 1189 // Shut down the entire protocol buffers library, deleting all static-duration 1190 // objects allocated by the library or by generated .pb.cc files. 1191 // 1192 // There are two reasons you might want to call this: 1193 // * You use a draconian definition of "memory leak" in which you expect 1194 // every single malloc() to have a corresponding free(), even for objects 1195 // which live until program exit. 1196 // * You are writing a dynamically-loaded library which needs to clean up 1197 // after itself when the library is unloaded. 1198 // 1199 // It is safe to call this multiple times. However, it is not safe to use 1200 // any other part of the protocol buffers library after 1201 // ShutdownProtobufLibrary() has been called. 1202 LIBPROTOBUF_EXPORT void ShutdownProtobufLibrary(); 1203 1204 namespace internal { 1205 1206 // Register a function to be called when ShutdownProtocolBuffers() is called. 1207 LIBPROTOBUF_EXPORT void OnShutdown(void (*func)()); 1208 1209 } // namespace internal 1210 1211 #if PROTOBUF_USE_EXCEPTIONS 1212 class FatalException : public std::exception { 1213 public: 1214 FatalException(const char* filename, int line, const std::string& message) 1215 : filename_(filename), line_(line), message_(message) {} 1216 virtual ~FatalException() throw(); 1217 1218 virtual const char* what() const throw(); 1219 1220 const char* filename() const { return filename_; } 1221 int line() const { return line_; } 1222 const std::string& message() const { return message_; } 1223 1224 private: 1225 const char* filename_; 1226 const int line_; 1227 const std::string message_; 1228 }; 1229 #endif 1230 1231 // This is at the end of the file instead of the beginning to work around a bug 1232 // in some versions of MSVC. 1233 using namespace std; // Don't do this at home, kids. 1234 1235 } // namespace protobuf 1236 } // namespace google 1237 1238 #endif // GOOGLE_PROTOBUF_COMMON_H__ 1239