1 // Copyright 2008 The RE2 Authors. All Rights Reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // A DFA (deterministic finite automaton)-based regular expression search. 6 // 7 // The DFA search has two main parts: the construction of the automaton, 8 // which is represented by a graph of State structures, and the execution 9 // of the automaton over a given input string. 10 // 11 // The basic idea is that the State graph is constructed so that the 12 // execution can simply start with a state s, and then for each byte c in 13 // the input string, execute "s = s->next[c]", checking at each point whether 14 // the current s represents a matching state. 15 // 16 // The simple explanation just given does convey the essence of this code, 17 // but it omits the details of how the State graph gets constructed as well 18 // as some performance-driven optimizations to the execution of the automaton. 19 // All these details are explained in the comments for the code following 20 // the definition of class DFA. 21 // 22 // See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent. 23 24 #include "re2/prog.h" 25 #include "re2/stringpiece.h" 26 #include "util/atomicops.h" 27 #include "util/flags.h" 28 #include "util/sparse_set.h" 29 30 #define NO_THREAD_SAFETY_ANALYSIS 31 32 DEFINE_bool(re2_dfa_bail_when_slow, true, 33 "Whether the RE2 DFA should bail out early " 34 "if the NFA would be faster (for testing)."); 35 36 namespace re2 { 37 38 #if !defined(__linux__) /* only Linux seems to have memrchr */ 39 static void* memrchr(const void* s, int c, size_t n) { 40 const unsigned char* p = (const unsigned char*)s; 41 for (p += n; n > 0; n--) 42 if (*--p == c) 43 return (void*)p; 44 45 return NULL; 46 } 47 #endif 48 49 // Changing this to true compiles in prints that trace execution of the DFA. 50 // Generates a lot of output -- only useful for debugging. 51 static const bool DebugDFA = false; 52 53 // A DFA implementation of a regular expression program. 54 // Since this is entirely a forward declaration mandated by C++, 55 // some of the comments here are better understood after reading 56 // the comments in the sections that follow the DFA definition. 57 class DFA { 58 public: 59 DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem); 60 ~DFA(); 61 bool ok() const { return !init_failed_; } 62 Prog::MatchKind kind() { return kind_; } 63 64 // Searches for the regular expression in text, which is considered 65 // as a subsection of context for the purposes of interpreting flags 66 // like ^ and $ and \A and \z. 67 // Returns whether a match was found. 68 // If a match is found, sets *ep to the end point of the best match in text. 69 // If "anchored", the match must begin at the start of text. 70 // If "want_earliest_match", the match that ends first is used, not 71 // necessarily the best one. 72 // If "run_forward" is true, the DFA runs from text.begin() to text.end(). 73 // If it is false, the DFA runs from text.end() to text.begin(), 74 // returning the leftmost end of the match instead of the rightmost one. 75 // If the DFA cannot complete the search (for example, if it is out of 76 // memory), it sets *failed and returns false. 77 bool Search(const StringPiece& text, const StringPiece& context, 78 bool anchored, bool want_earliest_match, bool run_forward, 79 bool* failed, const char** ep, vector<int>* matches); 80 81 // Builds out all states for the entire DFA. FOR TESTING ONLY 82 // Returns number of states. 83 int BuildAllStates(); 84 85 // Computes min and max for matching strings. Won't return strings 86 // bigger than maxlen. 87 bool PossibleMatchRange(string* min, string* max, int maxlen); 88 89 // These data structures are logically private, but C++ makes it too 90 // difficult to mark them as such. 91 class Workq; 92 class RWLocker; 93 class StateSaver; 94 95 // A single DFA state. The DFA is represented as a graph of these 96 // States, linked by the next_ pointers. If in state s and reading 97 // byte c, the next state should be s->next_[c]. 98 struct State { 99 inline bool IsMatch() const { return flag_ & kFlagMatch; } 100 void SaveMatch(vector<int>* v); 101 102 int* inst_; // Instruction pointers in the state. 103 int ninst_; // # of inst_ pointers. 104 uint flag_; // Empty string bitfield flags in effect on the way 105 // into this state, along with kFlagMatch if this 106 // is a matching state. 107 State** next_; // Outgoing arrows from State, 108 // one per input byte class 109 }; 110 111 enum { 112 kByteEndText = 256, // imaginary byte at end of text 113 114 kFlagEmptyMask = 0xFFF, // State.flag_: bits holding kEmptyXXX flags 115 kFlagMatch = 0x1000, // State.flag_: this is a matching state 116 kFlagLastWord = 0x2000, // State.flag_: last byte was a word char 117 kFlagNeedShift = 16, // needed kEmpty bits are or'ed in shifted left 118 }; 119 120 #ifndef STL_MSVC 121 // STL function structures for use with unordered_set. 122 struct StateEqual { 123 bool operator()(const State* a, const State* b) const { 124 if (a == b) 125 return true; 126 if (a == NULL || b == NULL) 127 return false; 128 if (a->ninst_ != b->ninst_) 129 return false; 130 if (a->flag_ != b->flag_) 131 return false; 132 for (int i = 0; i < a->ninst_; i++) 133 if (a->inst_[i] != b->inst_[i]) 134 return false; 135 return true; // they're equal 136 } 137 }; 138 #endif // STL_MSVC 139 struct StateHash { 140 size_t operator()(const State* a) const { 141 if (a == NULL) 142 return 0; 143 const char* s = reinterpret_cast<const char*>(a->inst_); 144 int len = a->ninst_ * sizeof a->inst_[0]; 145 if (sizeof(size_t) == sizeof(uint32)) 146 return Hash32StringWithSeed(s, len, a->flag_); 147 else 148 return Hash64StringWithSeed(s, len, a->flag_); 149 } 150 #ifdef STL_MSVC 151 // Less than operator. 152 bool operator()(const State* a, const State* b) const { 153 if (a == b) 154 return false; 155 if (a == NULL || b == NULL) 156 return a == NULL; 157 if (a->ninst_ != b->ninst_) 158 return a->ninst_ < b->ninst_; 159 if (a->flag_ != b->flag_) 160 return a->flag_ < b->flag_; 161 for (int i = 0; i < a->ninst_; ++i) 162 if (a->inst_[i] != b->inst_[i]) 163 return a->inst_[i] < b->inst_[i]; 164 return false; // they're equal 165 } 166 // The two public members are required by msvc. 4 and 8 are default values. 167 // Reference: http://msdn.microsoft.com/en-us/library/1s1byw77.aspx 168 static const size_t bucket_size = 4; 169 static const size_t min_buckets = 8; 170 #endif // STL_MSVC 171 }; 172 173 #ifdef STL_MSVC 174 typedef unordered_set<State*, StateHash> StateSet; 175 #else // !STL_MSVC 176 typedef unordered_set<State*, StateHash, StateEqual> StateSet; 177 #endif // STL_MSVC 178 179 180 private: 181 // Special "firstbyte" values for a state. (Values >= 0 denote actual bytes.) 182 enum { 183 kFbUnknown = -1, // No analysis has been performed. 184 kFbMany = -2, // Many bytes will lead out of this state. 185 kFbNone = -3, // No bytes lead out of this state. 186 }; 187 188 enum { 189 // Indices into start_ for unanchored searches. 190 // Add kStartAnchored for anchored searches. 191 kStartBeginText = 0, // text at beginning of context 192 kStartBeginLine = 2, // text at beginning of line 193 kStartAfterWordChar = 4, // text follows a word character 194 kStartAfterNonWordChar = 6, // text follows non-word character 195 kMaxStart = 8, 196 197 kStartAnchored = 1, 198 }; 199 200 // Resets the DFA State cache, flushing all saved State* information. 201 // Releases and reacquires cache_mutex_ via cache_lock, so any 202 // State* existing before the call are not valid after the call. 203 // Use a StateSaver to preserve important states across the call. 204 // cache_mutex_.r <= L < mutex_ 205 // After: cache_mutex_.w <= L < mutex_ 206 void ResetCache(RWLocker* cache_lock); 207 208 // Looks up and returns the State corresponding to a Workq. 209 // L >= mutex_ 210 State* WorkqToCachedState(Workq* q, uint flag); 211 212 // Looks up and returns a State matching the inst, ninst, and flag. 213 // L >= mutex_ 214 State* CachedState(int* inst, int ninst, uint flag); 215 216 // Clear the cache entirely. 217 // Must hold cache_mutex_.w or be in destructor. 218 void ClearCache(); 219 220 // Converts a State into a Workq: the opposite of WorkqToCachedState. 221 // L >= mutex_ 222 static void StateToWorkq(State* s, Workq* q); 223 224 // Runs a State on a given byte, returning the next state. 225 State* RunStateOnByteUnlocked(State*, int); // cache_mutex_.r <= L < mutex_ 226 State* RunStateOnByte(State*, int); // L >= mutex_ 227 228 // Runs a Workq on a given byte followed by a set of empty-string flags, 229 // producing a new Workq in nq. If a match instruction is encountered, 230 // sets *ismatch to true. 231 // L >= mutex_ 232 void RunWorkqOnByte(Workq* q, Workq* nq, 233 int c, uint flag, bool* ismatch, 234 Prog::MatchKind kind, 235 int new_byte_loop); 236 237 // Runs a Workq on a set of empty-string flags, producing a new Workq in nq. 238 // L >= mutex_ 239 void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint flag); 240 241 // Adds the instruction id to the Workq, following empty arrows 242 // according to flag. 243 // L >= mutex_ 244 void AddToQueue(Workq* q, int id, uint flag); 245 246 // For debugging, returns a text representation of State. 247 static string DumpState(State* state); 248 249 // For debugging, returns a text representation of a Workq. 250 static string DumpWorkq(Workq* q); 251 252 // Search parameters 253 struct SearchParams { 254 SearchParams(const StringPiece& text, const StringPiece& context, 255 RWLocker* cache_lock) 256 : text(text), context(context), 257 anchored(false), 258 want_earliest_match(false), 259 run_forward(false), 260 start(NULL), 261 firstbyte(kFbUnknown), 262 cache_lock(cache_lock), 263 failed(false), 264 ep(NULL), 265 matches(NULL) { } 266 267 StringPiece text; 268 StringPiece context; 269 bool anchored; 270 bool want_earliest_match; 271 bool run_forward; 272 State* start; 273 int firstbyte; 274 RWLocker *cache_lock; 275 bool failed; // "out" parameter: whether search gave up 276 const char* ep; // "out" parameter: end pointer for match 277 vector<int>* matches; 278 279 private: 280 DISALLOW_EVIL_CONSTRUCTORS(SearchParams); 281 }; 282 283 // Before each search, the parameters to Search are analyzed by 284 // AnalyzeSearch to determine the state in which to start and the 285 // "firstbyte" for that state, if any. 286 struct StartInfo { 287 StartInfo() : start(NULL), firstbyte(kFbUnknown) { } 288 State* start; 289 volatile int firstbyte; 290 }; 291 292 // Fills in params->start and params->firstbyte using 293 // the other search parameters. Returns true on success, 294 // false on failure. 295 // cache_mutex_.r <= L < mutex_ 296 bool AnalyzeSearch(SearchParams* params); 297 bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info, uint flags); 298 299 // The generic search loop, inlined to create specialized versions. 300 // cache_mutex_.r <= L < mutex_ 301 // Might unlock and relock cache_mutex_ via params->cache_lock. 302 inline bool InlinedSearchLoop(SearchParams* params, 303 bool have_firstbyte, 304 bool want_earliest_match, 305 bool run_forward); 306 307 // The specialized versions of InlinedSearchLoop. The three letters 308 // at the ends of the name denote the true/false values used as the 309 // last three parameters of InlinedSearchLoop. 310 // cache_mutex_.r <= L < mutex_ 311 // Might unlock and relock cache_mutex_ via params->cache_lock. 312 bool SearchFFF(SearchParams* params); 313 bool SearchFFT(SearchParams* params); 314 bool SearchFTF(SearchParams* params); 315 bool SearchFTT(SearchParams* params); 316 bool SearchTFF(SearchParams* params); 317 bool SearchTFT(SearchParams* params); 318 bool SearchTTF(SearchParams* params); 319 bool SearchTTT(SearchParams* params); 320 321 // The main search loop: calls an appropriate specialized version of 322 // InlinedSearchLoop. 323 // cache_mutex_.r <= L < mutex_ 324 // Might unlock and relock cache_mutex_ via params->cache_lock. 325 bool FastSearchLoop(SearchParams* params); 326 327 // For debugging, a slow search loop that calls InlinedSearchLoop 328 // directly -- because the booleans passed are not constants, the 329 // loop is not specialized like the SearchFFF etc. versions, so it 330 // runs much more slowly. Useful only for debugging. 331 // cache_mutex_.r <= L < mutex_ 332 // Might unlock and relock cache_mutex_ via params->cache_lock. 333 bool SlowSearchLoop(SearchParams* params); 334 335 // Looks up bytes in bytemap_ but handles case c == kByteEndText too. 336 int ByteMap(int c) { 337 if (c == kByteEndText) 338 return prog_->bytemap_range(); 339 return prog_->bytemap()[c]; 340 } 341 342 // Constant after initialization. 343 Prog* prog_; // The regular expression program to run. 344 Prog::MatchKind kind_; // The kind of DFA. 345 int start_unanchored_; // start of unanchored program 346 bool init_failed_; // initialization failed (out of memory) 347 348 Mutex mutex_; // mutex_ >= cache_mutex_.r 349 350 // Scratch areas, protected by mutex_. 351 Workq* q0_; // Two pre-allocated work queues. 352 Workq* q1_; 353 int* astack_; // Pre-allocated stack for AddToQueue 354 int nastack_; 355 356 // State* cache. Many threads use and add to the cache simultaneously, 357 // holding cache_mutex_ for reading and mutex_ (above) when adding. 358 // If the cache fills and needs to be discarded, the discarding is done 359 // while holding cache_mutex_ for writing, to avoid interrupting other 360 // readers. Any State* pointers are only valid while cache_mutex_ 361 // is held. 362 Mutex cache_mutex_; 363 int64 mem_budget_; // Total memory budget for all States. 364 int64 state_budget_; // Amount of memory remaining for new States. 365 StateSet state_cache_; // All States computed so far. 366 StartInfo start_[kMaxStart]; 367 bool cache_warned_; // have printed to LOG(INFO) about the cache 368 }; 369 370 // Shorthand for casting to uint8*. 371 static inline const uint8* BytePtr(const void* v) { 372 return reinterpret_cast<const uint8*>(v); 373 } 374 375 // Work queues 376 377 // Marks separate thread groups of different priority 378 // in the work queue when in leftmost-longest matching mode. 379 #define Mark (-1) 380 381 // Internally, the DFA uses a sparse array of 382 // program instruction pointers as a work queue. 383 // In leftmost longest mode, marks separate sections 384 // of workq that started executing at different 385 // locations in the string (earlier locations first). 386 class DFA::Workq : public SparseSet { 387 public: 388 // Constructor: n is number of normal slots, maxmark number of mark slots. 389 Workq(int n, int maxmark) : 390 SparseSet(n+maxmark), 391 n_(n), 392 maxmark_(maxmark), 393 nextmark_(n), 394 last_was_mark_(true) { 395 } 396 397 bool is_mark(int i) { return i >= n_; } 398 399 int maxmark() { return maxmark_; } 400 401 void clear() { 402 SparseSet::clear(); 403 nextmark_ = n_; 404 } 405 406 void mark() { 407 if (last_was_mark_) 408 return; 409 last_was_mark_ = false; 410 SparseSet::insert_new(nextmark_++); 411 } 412 413 int size() { 414 return n_ + maxmark_; 415 } 416 417 void insert(int id) { 418 if (contains(id)) 419 return; 420 insert_new(id); 421 } 422 423 void insert_new(int id) { 424 last_was_mark_ = false; 425 SparseSet::insert_new(id); 426 } 427 428 private: 429 int n_; // size excluding marks 430 int maxmark_; // maximum number of marks 431 int nextmark_; // id of next mark 432 bool last_was_mark_; // last inserted was mark 433 DISALLOW_EVIL_CONSTRUCTORS(Workq); 434 }; 435 436 DFA::DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem) 437 : prog_(prog), 438 kind_(kind), 439 init_failed_(false), 440 q0_(NULL), 441 q1_(NULL), 442 astack_(NULL), 443 mem_budget_(max_mem), 444 cache_warned_(false) { 445 if (DebugDFA) 446 fprintf(stderr, "\nkind %d\n%s\n", (int)kind_, prog_->DumpUnanchored().c_str()); 447 int nmark = 0; 448 start_unanchored_ = 0; 449 if (kind_ == Prog::kLongestMatch) { 450 nmark = prog->size(); 451 start_unanchored_ = prog->start_unanchored(); 452 } 453 nastack_ = 2 * prog->size() + nmark; 454 455 // Account for space needed for DFA, q0, q1, astack. 456 mem_budget_ -= sizeof(DFA); 457 mem_budget_ -= (prog_->size() + nmark) * 458 (sizeof(int)+sizeof(int)) * 2; // q0, q1 459 mem_budget_ -= nastack_ * sizeof(int); // astack 460 if (mem_budget_ < 0) { 461 LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld", 462 prog_->size(), max_mem); 463 init_failed_ = true; 464 return; 465 } 466 467 state_budget_ = mem_budget_; 468 469 // Make sure there is a reasonable amount of working room left. 470 // At minimum, the search requires room for two states in order 471 // to limp along, restarting frequently. We'll get better performance 472 // if there is room for a larger number of states, say 20. 473 int64 one_state = sizeof(State) + (prog_->size()+nmark)*sizeof(int) + 474 (prog_->bytemap_range()+1)*sizeof(State*); 475 if (state_budget_ < 20*one_state) { 476 LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld", 477 prog_->size(), max_mem); 478 init_failed_ = true; 479 return; 480 } 481 482 q0_ = new Workq(prog->size(), nmark); 483 q1_ = new Workq(prog->size(), nmark); 484 astack_ = new int[nastack_]; 485 } 486 487 DFA::~DFA() { 488 delete q0_; 489 delete q1_; 490 delete[] astack_; 491 ClearCache(); 492 } 493 494 // In the DFA state graph, s->next[c] == NULL means that the 495 // state has not yet been computed and needs to be. We need 496 // a different special value to signal that s->next[c] is a 497 // state that can never lead to a match (and thus the search 498 // can be called off). Hence DeadState. 499 #define DeadState reinterpret_cast<State*>(1) 500 501 // Signals that the rest of the string matches no matter what it is. 502 #define FullMatchState reinterpret_cast<State*>(2) 503 504 #define SpecialStateMax FullMatchState 505 506 // Debugging printouts 507 508 // For debugging, returns a string representation of the work queue. 509 string DFA::DumpWorkq(Workq* q) { 510 string s; 511 const char* sep = ""; 512 for (DFA::Workq::iterator it = q->begin(); it != q->end(); ++it) { 513 if (q->is_mark(*it)) { 514 StringAppendF(&s, "|"); 515 sep = ""; 516 } else { 517 StringAppendF(&s, "%s%d", sep, *it); 518 sep = ","; 519 } 520 } 521 return s; 522 } 523 524 // For debugging, returns a string representation of the state. 525 string DFA::DumpState(State* state) { 526 if (state == NULL) 527 return "_"; 528 if (state == DeadState) 529 return "X"; 530 if (state == FullMatchState) 531 return "*"; 532 string s; 533 const char* sep = ""; 534 StringAppendF(&s, "(%p)", state); 535 for (int i = 0; i < state->ninst_; i++) { 536 if (state->inst_[i] == Mark) { 537 StringAppendF(&s, "|"); 538 sep = ""; 539 } else { 540 StringAppendF(&s, "%s%d", sep, state->inst_[i]); 541 sep = ","; 542 } 543 } 544 StringAppendF(&s, " flag=%#x", state->flag_); 545 return s; 546 } 547 548 ////////////////////////////////////////////////////////////////////// 549 // 550 // DFA state graph construction. 551 // 552 // The DFA state graph is a heavily-linked collection of State* structures. 553 // The state_cache_ is a set of all the State structures ever allocated, 554 // so that if the same state is reached by two different paths, 555 // the same State structure can be used. This reduces allocation 556 // requirements and also avoids duplication of effort across the two 557 // identical states. 558 // 559 // A State is defined by an ordered list of instruction ids and a flag word. 560 // 561 // The choice of an ordered list of instructions differs from a typical 562 // textbook DFA implementation, which would use an unordered set. 563 // Textbook descriptions, however, only care about whether 564 // the DFA matches, not where it matches in the text. To decide where the 565 // DFA matches, we need to mimic the behavior of the dominant backtracking 566 // implementations like PCRE, which try one possible regular expression 567 // execution, then another, then another, stopping when one of them succeeds. 568 // The DFA execution tries these many executions in parallel, representing 569 // each by an instruction id. These pointers are ordered in the State.inst_ 570 // list in the same order that the executions would happen in a backtracking 571 // search: if a match is found during execution of inst_[2], inst_[i] for i>=3 572 // can be discarded. 573 // 574 // Textbooks also typically do not consider context-aware empty string operators 575 // like ^ or $. These are handled by the flag word, which specifies the set 576 // of empty-string operators that should be matched when executing at the 577 // current text position. These flag bits are defined in prog.h. 578 // The flag word also contains two DFA-specific bits: kFlagMatch if the state 579 // is a matching state (one that reached a kInstMatch in the program) 580 // and kFlagLastWord if the last processed byte was a word character, for the 581 // implementation of \B and \b. 582 // 583 // The flag word also contains, shifted up 16 bits, the bits looked for by 584 // any kInstEmptyWidth instructions in the state. These provide a useful 585 // summary indicating when new flags might be useful. 586 // 587 // The permanent representation of a State's instruction ids is just an array, 588 // but while a state is being analyzed, these instruction ids are represented 589 // as a Workq, which is an array that allows iteration in insertion order. 590 591 // NOTE(rsc): The choice of State construction determines whether the DFA 592 // mimics backtracking implementations (so-called leftmost first matching) or 593 // traditional DFA implementations (so-called leftmost longest matching as 594 // prescribed by POSIX). This implementation chooses to mimic the 595 // backtracking implementations, because we want to replace PCRE. To get 596 // POSIX behavior, the states would need to be considered not as a simple 597 // ordered list of instruction ids, but as a list of unordered sets of instruction 598 // ids. A match by a state in one set would inhibit the running of sets 599 // farther down the list but not other instruction ids in the same set. Each 600 // set would correspond to matches beginning at a given point in the string. 601 // This is implemented by separating different sets with Mark pointers. 602 603 // Looks in the State cache for a State matching q, flag. 604 // If one is found, returns it. If one is not found, allocates one, 605 // inserts it in the cache, and returns it. 606 DFA::State* DFA::WorkqToCachedState(Workq* q, uint flag) { 607 if (DEBUG_MODE) 608 mutex_.AssertHeld(); 609 610 // Construct array of instruction ids for the new state. 611 // Only ByteRange, EmptyWidth, and Match instructions are useful to keep: 612 // those are the only operators with any effect in 613 // RunWorkqOnEmptyString or RunWorkqOnByte. 614 int* inst = new int[q->size()]; 615 int n = 0; 616 uint needflags = 0; // flags needed by kInstEmptyWidth instructions 617 bool sawmatch = false; // whether queue contains guaranteed kInstMatch 618 bool sawmark = false; // whether queue contains a Mark 619 if (DebugDFA) 620 fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag); 621 for (Workq::iterator it = q->begin(); it != q->end(); ++it) { 622 int id = *it; 623 if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id))) 624 break; 625 if (q->is_mark(id)) { 626 if (n > 0 && inst[n-1] != Mark) { 627 sawmark = true; 628 inst[n++] = Mark; 629 } 630 continue; 631 } 632 Prog::Inst* ip = prog_->inst(id); 633 switch (ip->opcode()) { 634 case kInstAltMatch: 635 // This state will continue to a match no matter what 636 // the rest of the input is. If it is the highest priority match 637 // being considered, return the special FullMatchState 638 // to indicate that it's all matches from here out. 639 if (kind_ != Prog::kManyMatch && 640 (kind_ != Prog::kFirstMatch || 641 (it == q->begin() && ip->greedy(prog_))) && 642 (kind_ != Prog::kLongestMatch || !sawmark) && 643 (flag & kFlagMatch)) { 644 delete[] inst; 645 if (DebugDFA) 646 fprintf(stderr, " -> FullMatchState\n"); 647 return FullMatchState; 648 } 649 // Fall through. 650 case kInstByteRange: // These are useful. 651 case kInstEmptyWidth: 652 case kInstMatch: 653 case kInstAlt: // Not useful, but necessary [*] 654 inst[n++] = *it; 655 if (ip->opcode() == kInstEmptyWidth) 656 needflags |= ip->empty(); 657 if (ip->opcode() == kInstMatch && !prog_->anchor_end()) 658 sawmatch = true; 659 break; 660 661 default: // The rest are not. 662 break; 663 } 664 665 // [*] kInstAlt would seem useless to record in a state, since 666 // we've already followed both its arrows and saved all the 667 // interesting states we can reach from there. The problem 668 // is that one of the empty-width instructions might lead 669 // back to the same kInstAlt (if an empty-width operator is starred), 670 // producing a different evaluation order depending on whether 671 // we keep the kInstAlt to begin with. Sigh. 672 // A specific case that this affects is /(^|a)+/ matching "a". 673 // If we don't save the kInstAlt, we will match the whole "a" (0,1) 674 // but in fact the correct leftmost-first match is the leading "" (0,0). 675 } 676 DCHECK_LE(n, q->size()); 677 if (n > 0 && inst[n-1] == Mark) 678 n--; 679 680 // If there are no empty-width instructions waiting to execute, 681 // then the extra flag bits will not be used, so there is no 682 // point in saving them. (Discarding them reduces the number 683 // of distinct states.) 684 if (needflags == 0) 685 flag &= kFlagMatch; 686 687 // NOTE(rsc): The code above cannot do flag &= needflags, 688 // because if the right flags were present to pass the current 689 // kInstEmptyWidth instructions, new kInstEmptyWidth instructions 690 // might be reached that in turn need different flags. 691 // The only sure thing is that if there are no kInstEmptyWidth 692 // instructions at all, no flags will be needed. 693 // We could do the extra work to figure out the full set of 694 // possibly needed flags by exploring past the kInstEmptyWidth 695 // instructions, but the check above -- are any flags needed 696 // at all? -- handles the most common case. More fine-grained 697 // analysis can only be justified by measurements showing that 698 // too many redundant states are being allocated. 699 700 // If there are no Insts in the list, it's a dead state, 701 // which is useful to signal with a special pointer so that 702 // the execution loop can stop early. This is only okay 703 // if the state is *not* a matching state. 704 if (n == 0 && flag == 0) { 705 delete[] inst; 706 if (DebugDFA) 707 fprintf(stderr, " -> DeadState\n"); 708 return DeadState; 709 } 710 711 // If we're in longest match mode, the state is a sequence of 712 // unordered state sets separated by Marks. Sort each set 713 // to canonicalize, to reduce the number of distinct sets stored. 714 if (kind_ == Prog::kLongestMatch) { 715 int* ip = inst; 716 int* ep = ip + n; 717 while (ip < ep) { 718 int* markp = ip; 719 while (markp < ep && *markp != Mark) 720 markp++; 721 sort(ip, markp); 722 if (markp < ep) 723 markp++; 724 ip = markp; 725 } 726 } 727 728 // Save the needed empty-width flags in the top bits for use later. 729 flag |= needflags << kFlagNeedShift; 730 731 State* state = CachedState(inst, n, flag); 732 delete[] inst; 733 return state; 734 } 735 736 // Looks in the State cache for a State matching inst, ninst, flag. 737 // If one is found, returns it. If one is not found, allocates one, 738 // inserts it in the cache, and returns it. 739 DFA::State* DFA::CachedState(int* inst, int ninst, uint flag) { 740 if (DEBUG_MODE) 741 mutex_.AssertHeld(); 742 743 // Look in the cache for a pre-existing state. 744 State state = { inst, ninst, flag, NULL }; 745 StateSet::iterator it = state_cache_.find(&state); 746 if (it != state_cache_.end()) { 747 if (DebugDFA) 748 fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str()); 749 return *it; 750 } 751 752 // Must have enough memory for new state. 753 // In addition to what we're going to allocate, 754 // the state cache hash table seems to incur about 32 bytes per 755 // State*, empirically. 756 const int kStateCacheOverhead = 32; 757 int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot 758 int mem = sizeof(State) + nnext*sizeof(State*) + ninst*sizeof(int); 759 if (mem_budget_ < mem + kStateCacheOverhead) { 760 mem_budget_ = -1; 761 return NULL; 762 } 763 mem_budget_ -= mem + kStateCacheOverhead; 764 765 // Allocate new state, along with room for next and inst. 766 char* space = new char[mem]; 767 State* s = reinterpret_cast<State*>(space); 768 s->next_ = reinterpret_cast<State**>(s + 1); 769 s->inst_ = reinterpret_cast<int*>(s->next_ + nnext); 770 memset(s->next_, 0, nnext*sizeof s->next_[0]); 771 memmove(s->inst_, inst, ninst*sizeof s->inst_[0]); 772 s->ninst_ = ninst; 773 s->flag_ = flag; 774 if (DebugDFA) 775 fprintf(stderr, " -> %s\n", DumpState(s).c_str()); 776 777 // Put state in cache and return it. 778 state_cache_.insert(s); 779 return s; 780 } 781 782 // Clear the cache. Must hold cache_mutex_.w or be in destructor. 783 void DFA::ClearCache() { 784 // In case state_cache_ doesn't support deleting entries 785 // during iteration, copy into a vector and then delete. 786 vector<State*> v; 787 v.reserve(state_cache_.size()); 788 for (StateSet::iterator it = state_cache_.begin(); 789 it != state_cache_.end(); ++it) 790 v.push_back(*it); 791 state_cache_.clear(); 792 for (int i = 0; i < v.size(); i++) 793 delete[] reinterpret_cast<const char*>(v[i]); 794 } 795 796 // Copies insts in state s to the work queue q. 797 void DFA::StateToWorkq(State* s, Workq* q) { 798 q->clear(); 799 for (int i = 0; i < s->ninst_; i++) { 800 if (s->inst_[i] == Mark) 801 q->mark(); 802 else 803 q->insert_new(s->inst_[i]); 804 } 805 } 806 807 // Adds ip to the work queue, following empty arrows according to flag 808 // and expanding kInstAlt instructions (two-target gotos). 809 void DFA::AddToQueue(Workq* q, int id, uint flag) { 810 811 // Use astack_ to hold our stack of states yet to process. 812 // It is sized to have room for nastack_ == 2*prog->size() + nmark 813 // instructions, which is enough: each instruction can be 814 // processed by the switch below only once, and the processing 815 // pushes at most two instructions plus maybe a mark. 816 // (If we're using marks, nmark == prog->size(); otherwise nmark == 0.) 817 int* stk = astack_; 818 int nstk = 0; 819 820 stk[nstk++] = id; 821 while (nstk > 0) { 822 DCHECK_LE(nstk, nastack_); 823 id = stk[--nstk]; 824 825 if (id == Mark) { 826 q->mark(); 827 continue; 828 } 829 830 if (id == 0) 831 continue; 832 833 // If ip is already on the queue, nothing to do. 834 // Otherwise add it. We don't actually keep all the ones 835 // that get added -- for example, kInstAlt is ignored 836 // when on a work queue -- but adding all ip's here 837 // increases the likelihood of q->contains(id), 838 // reducing the amount of duplicated work. 839 if (q->contains(id)) 840 continue; 841 q->insert_new(id); 842 843 // Process instruction. 844 Prog::Inst* ip = prog_->inst(id); 845 switch (ip->opcode()) { 846 case kInstFail: // can't happen: discarded above 847 break; 848 849 case kInstByteRange: // just save these on the queue 850 case kInstMatch: 851 break; 852 853 case kInstCapture: // DFA treats captures as no-ops. 854 case kInstNop: 855 stk[nstk++] = ip->out(); 856 break; 857 858 case kInstAlt: // two choices: expand both, in order 859 case kInstAltMatch: 860 // Want to visit out then out1, so push on stack in reverse order. 861 // This instruction is the [00-FF]* loop at the beginning of 862 // a leftmost-longest unanchored search, separate out from out1 863 // with a Mark, so that out1's threads (which will start farther 864 // to the right in the string being searched) are lower priority 865 // than the current ones. 866 stk[nstk++] = ip->out1(); 867 if (q->maxmark() > 0 && 868 id == prog_->start_unanchored() && id != prog_->start()) 869 stk[nstk++] = Mark; 870 stk[nstk++] = ip->out(); 871 break; 872 873 case kInstEmptyWidth: 874 if ((ip->empty() & flag) == ip->empty()) 875 stk[nstk++] = ip->out(); 876 break; 877 } 878 } 879 } 880 881 // Running of work queues. In the work queue, order matters: 882 // the queue is sorted in priority order. If instruction i comes before j, 883 // then the instructions that i produces during the run must come before 884 // the ones that j produces. In order to keep this invariant, all the 885 // work queue runners have to take an old queue to process and then 886 // also a new queue to fill in. It's not acceptable to add to the end of 887 // an existing queue, because new instructions will not end up in the 888 // correct position. 889 890 // Runs the work queue, processing the empty strings indicated by flag. 891 // For example, flag == kEmptyBeginLine|kEmptyEndLine means to match 892 // both ^ and $. It is important that callers pass all flags at once: 893 // processing both ^ and $ is not the same as first processing only ^ 894 // and then processing only $. Doing the two-step sequence won't match 895 // ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior 896 // exhibited by existing implementations). 897 void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint flag) { 898 newq->clear(); 899 for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) { 900 if (oldq->is_mark(*i)) 901 AddToQueue(newq, Mark, flag); 902 else 903 AddToQueue(newq, *i, flag); 904 } 905 } 906 907 // Runs the work queue, processing the single byte c followed by any empty 908 // strings indicated by flag. For example, c == 'a' and flag == kEmptyEndLine, 909 // means to match c$. Sets the bool *ismatch to true if the end of the 910 // regular expression program has been reached (the regexp has matched). 911 void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq, 912 int c, uint flag, bool* ismatch, 913 Prog::MatchKind kind, 914 int new_byte_loop) { 915 if (DEBUG_MODE) 916 mutex_.AssertHeld(); 917 918 newq->clear(); 919 for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) { 920 if (oldq->is_mark(*i)) { 921 if (*ismatch) 922 return; 923 newq->mark(); 924 continue; 925 } 926 int id = *i; 927 Prog::Inst* ip = prog_->inst(id); 928 switch (ip->opcode()) { 929 case kInstFail: // never succeeds 930 case kInstCapture: // already followed 931 case kInstNop: // already followed 932 case kInstAlt: // already followed 933 case kInstAltMatch: // already followed 934 case kInstEmptyWidth: // already followed 935 break; 936 937 case kInstByteRange: // can follow if c is in range 938 if (ip->Matches(c)) 939 AddToQueue(newq, ip->out(), flag); 940 break; 941 942 case kInstMatch: 943 if (prog_->anchor_end() && c != kByteEndText) 944 break; 945 *ismatch = true; 946 if (kind == Prog::kFirstMatch) { 947 // Can stop processing work queue since we found a match. 948 return; 949 } 950 break; 951 } 952 } 953 954 if (DebugDFA) 955 fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n", DumpWorkq(oldq).c_str(), 956 c, flag, DumpWorkq(newq).c_str(), *ismatch); 957 } 958 959 // Processes input byte c in state, returning new state. 960 // Caller does not hold mutex. 961 DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) { 962 // Keep only one RunStateOnByte going 963 // even if the DFA is being run by multiple threads. 964 MutexLock l(&mutex_); 965 return RunStateOnByte(state, c); 966 } 967 968 // Processes input byte c in state, returning new state. 969 DFA::State* DFA::RunStateOnByte(State* state, int c) { 970 if (DEBUG_MODE) 971 mutex_.AssertHeld(); 972 if (state <= SpecialStateMax) { 973 if (state == FullMatchState) { 974 // It is convenient for routines like PossibleMatchRange 975 // if we implement RunStateOnByte for FullMatchState: 976 // once you get into this state you never get out, 977 // so it's pretty easy. 978 return FullMatchState; 979 } 980 if (state == DeadState) { 981 LOG(DFATAL) << "DeadState in RunStateOnByte"; 982 return NULL; 983 } 984 if (state == NULL) { 985 LOG(DFATAL) << "NULL state in RunStateOnByte"; 986 return NULL; 987 } 988 LOG(DFATAL) << "Unexpected special state in RunStateOnByte"; 989 return NULL; 990 } 991 992 // If someone else already computed this, return it. 993 MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering 994 State* ns = state->next_[ByteMap(c)]; 995 ANNOTATE_HAPPENS_AFTER(ns); 996 if (ns != NULL) 997 return ns; 998 999 // Convert state into Workq. 1000 StateToWorkq(state, q0_); 1001 1002 // Flags marking the kinds of empty-width things (^ $ etc) 1003 // around this byte. Before the byte we have the flags recorded 1004 // in the State structure itself. After the byte we have 1005 // nothing yet (but that will change: read on). 1006 uint needflag = state->flag_ >> kFlagNeedShift; 1007 uint beforeflag = state->flag_ & kFlagEmptyMask; 1008 uint oldbeforeflag = beforeflag; 1009 uint afterflag = 0; 1010 1011 if (c == '\n') { 1012 // Insert implicit $ and ^ around \n 1013 beforeflag |= kEmptyEndLine; 1014 afterflag |= kEmptyBeginLine; 1015 } 1016 1017 if (c == kByteEndText) { 1018 // Insert implicit $ and \z before the fake "end text" byte. 1019 beforeflag |= kEmptyEndLine | kEmptyEndText; 1020 } 1021 1022 // The state flag kFlagLastWord says whether the last 1023 // byte processed was a word character. Use that info to 1024 // insert empty-width (non-)word boundaries. 1025 bool islastword = state->flag_ & kFlagLastWord; 1026 bool isword = (c != kByteEndText && Prog::IsWordChar(c)); 1027 if (isword == islastword) 1028 beforeflag |= kEmptyNonWordBoundary; 1029 else 1030 beforeflag |= kEmptyWordBoundary; 1031 1032 // Okay, finally ready to run. 1033 // Only useful to rerun on empty string if there are new, useful flags. 1034 if (beforeflag & ~oldbeforeflag & needflag) { 1035 RunWorkqOnEmptyString(q0_, q1_, beforeflag); 1036 swap(q0_, q1_); 1037 } 1038 bool ismatch = false; 1039 RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch, kind_, start_unanchored_); 1040 1041 // Most of the time, we build the state from the output of 1042 // RunWorkqOnByte, so swap q0_ and q1_ here. However, so that 1043 // RE2::Set can tell exactly which match instructions 1044 // contributed to the match, don't swap if c is kByteEndText. 1045 // The resulting state wouldn't be correct for further processing 1046 // of the string, but we're at the end of the text so that's okay. 1047 // Leaving q0_ alone preseves the match instructions that led to 1048 // the current setting of ismatch. 1049 if (c != kByteEndText || kind_ != Prog::kManyMatch) 1050 swap(q0_, q1_); 1051 1052 // Save afterflag along with ismatch and isword in new state. 1053 uint flag = afterflag; 1054 if (ismatch) 1055 flag |= kFlagMatch; 1056 if (isword) 1057 flag |= kFlagLastWord; 1058 1059 ns = WorkqToCachedState(q0_, flag); 1060 1061 // Write barrier before updating state->next_ so that the 1062 // main search loop can proceed without any locking, for speed. 1063 // (Otherwise it would need one mutex operation per input byte.) 1064 // The annotations below tell race detectors that: 1065 // a) the access to next_ should be ignored, 1066 // b) 'ns' is properly published. 1067 WriteMemoryBarrier(); // Flush ns before linking to it. 1068 1069 ANNOTATE_IGNORE_WRITES_BEGIN(); 1070 ANNOTATE_HAPPENS_BEFORE(ns); 1071 state->next_[ByteMap(c)] = ns; 1072 ANNOTATE_IGNORE_WRITES_END(); 1073 return ns; 1074 } 1075 1076 1077 ////////////////////////////////////////////////////////////////////// 1078 // DFA cache reset. 1079 1080 // Reader-writer lock helper. 1081 // 1082 // The DFA uses a reader-writer mutex to protect the state graph itself. 1083 // Traversing the state graph requires holding the mutex for reading, 1084 // and discarding the state graph and starting over requires holding the 1085 // lock for writing. If a search needs to expand the graph but is out 1086 // of memory, it will need to drop its read lock and then acquire the 1087 // write lock. Since it cannot then atomically downgrade from write lock 1088 // to read lock, it runs the rest of the search holding the write lock. 1089 // (This probably helps avoid repeated contention, but really the decision 1090 // is forced by the Mutex interface.) It's a bit complicated to keep 1091 // track of whether the lock is held for reading or writing and thread 1092 // that through the search, so instead we encapsulate it in the RWLocker 1093 // and pass that around. 1094 1095 class DFA::RWLocker { 1096 public: 1097 explicit RWLocker(Mutex* mu); 1098 ~RWLocker(); 1099 1100 // If the lock is only held for reading right now, 1101 // drop the read lock and re-acquire for writing. 1102 // Subsequent calls to LockForWriting are no-ops. 1103 // Notice that the lock is *released* temporarily. 1104 void LockForWriting(); 1105 1106 // Returns whether the lock is already held for writing. 1107 bool IsLockedForWriting() { 1108 return writing_; 1109 } 1110 1111 private: 1112 Mutex* mu_; 1113 bool writing_; 1114 1115 DISALLOW_EVIL_CONSTRUCTORS(RWLocker); 1116 }; 1117 1118 DFA::RWLocker::RWLocker(Mutex* mu) 1119 : mu_(mu), writing_(false) { 1120 1121 mu_->ReaderLock(); 1122 } 1123 1124 // This function is marked as NO_THREAD_SAFETY_ANALYSIS because the annotations 1125 // does not support lock upgrade. 1126 void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS { 1127 if (!writing_) { 1128 mu_->ReaderUnlock(); 1129 mu_->Lock(); 1130 writing_ = true; 1131 } 1132 } 1133 1134 DFA::RWLocker::~RWLocker() { 1135 if (writing_) 1136 mu_->WriterUnlock(); 1137 else 1138 mu_->ReaderUnlock(); 1139 } 1140 1141 1142 // When the DFA's State cache fills, we discard all the states in the 1143 // cache and start over. Many threads can be using and adding to the 1144 // cache at the same time, so we synchronize using the cache_mutex_ 1145 // to keep from stepping on other threads. Specifically, all the 1146 // threads using the current cache hold cache_mutex_ for reading. 1147 // When a thread decides to flush the cache, it drops cache_mutex_ 1148 // and then re-acquires it for writing. That ensures there are no 1149 // other threads accessing the cache anymore. The rest of the search 1150 // runs holding cache_mutex_ for writing, avoiding any contention 1151 // with or cache pollution caused by other threads. 1152 1153 void DFA::ResetCache(RWLocker* cache_lock) { 1154 // Re-acquire the cache_mutex_ for writing (exclusive use). 1155 bool was_writing = cache_lock->IsLockedForWriting(); 1156 cache_lock->LockForWriting(); 1157 1158 // If we already held cache_mutex_ for writing, it means 1159 // this invocation of Search() has already reset the 1160 // cache once already. That's a pretty clear indication 1161 // that the cache is too small. Warn about that, once. 1162 // TODO(rsc): Only warn if state_cache_.size() < some threshold. 1163 if (was_writing && !cache_warned_) { 1164 LOG(INFO) << "DFA memory cache could be too small: " 1165 << "only room for " << state_cache_.size() << " states."; 1166 cache_warned_ = true; 1167 } 1168 1169 // Clear the cache, reset the memory budget. 1170 for (int i = 0; i < kMaxStart; i++) { 1171 start_[i].start = NULL; 1172 start_[i].firstbyte = kFbUnknown; 1173 } 1174 ClearCache(); 1175 mem_budget_ = state_budget_; 1176 } 1177 1178 // Typically, a couple States do need to be preserved across a cache 1179 // reset, like the State at the current point in the search. 1180 // The StateSaver class helps keep States across cache resets. 1181 // It makes a copy of the state's guts outside the cache (before the reset) 1182 // and then can be asked, after the reset, to recreate the State 1183 // in the new cache. For example, in a DFA method ("this" is a DFA): 1184 // 1185 // StateSaver saver(this, s); 1186 // ResetCache(cache_lock); 1187 // s = saver.Restore(); 1188 // 1189 // The saver should always have room in the cache to re-create the state, 1190 // because resetting the cache locks out all other threads, and the cache 1191 // is known to have room for at least a couple states (otherwise the DFA 1192 // constructor fails). 1193 1194 class DFA::StateSaver { 1195 public: 1196 explicit StateSaver(DFA* dfa, State* state); 1197 ~StateSaver(); 1198 1199 // Recreates and returns a state equivalent to the 1200 // original state passed to the constructor. 1201 // Returns NULL if the cache has filled, but 1202 // since the DFA guarantees to have room in the cache 1203 // for a couple states, should never return NULL 1204 // if used right after ResetCache. 1205 State* Restore(); 1206 1207 private: 1208 DFA* dfa_; // the DFA to use 1209 int* inst_; // saved info from State 1210 int ninst_; 1211 uint flag_; 1212 bool is_special_; // whether original state was special 1213 State* special_; // if is_special_, the original state 1214 1215 DISALLOW_EVIL_CONSTRUCTORS(StateSaver); 1216 }; 1217 1218 DFA::StateSaver::StateSaver(DFA* dfa, State* state) { 1219 dfa_ = dfa; 1220 if (state <= SpecialStateMax) { 1221 inst_ = NULL; 1222 ninst_ = 0; 1223 flag_ = 0; 1224 is_special_ = true; 1225 special_ = state; 1226 return; 1227 } 1228 is_special_ = false; 1229 special_ = NULL; 1230 flag_ = state->flag_; 1231 ninst_ = state->ninst_; 1232 inst_ = new int[ninst_]; 1233 memmove(inst_, state->inst_, ninst_*sizeof inst_[0]); 1234 } 1235 1236 DFA::StateSaver::~StateSaver() { 1237 if (!is_special_) 1238 delete[] inst_; 1239 } 1240 1241 DFA::State* DFA::StateSaver::Restore() { 1242 if (is_special_) 1243 return special_; 1244 MutexLock l(&dfa_->mutex_); 1245 State* s = dfa_->CachedState(inst_, ninst_, flag_); 1246 if (s == NULL) 1247 LOG(DFATAL) << "StateSaver failed to restore state."; 1248 return s; 1249 } 1250 1251 1252 ////////////////////////////////////////////////////////////////////// 1253 // 1254 // DFA execution. 1255 // 1256 // The basic search loop is easy: start in a state s and then for each 1257 // byte c in the input, s = s->next[c]. 1258 // 1259 // This simple description omits a few efficiency-driven complications. 1260 // 1261 // First, the State graph is constructed incrementally: it is possible 1262 // that s->next[c] is null, indicating that that state has not been 1263 // fully explored. In this case, RunStateOnByte must be invoked to 1264 // determine the next state, which is cached in s->next[c] to save 1265 // future effort. An alternative reason for s->next[c] to be null is 1266 // that the DFA has reached a so-called "dead state", in which any match 1267 // is no longer possible. In this case RunStateOnByte will return NULL 1268 // and the processing of the string can stop early. 1269 // 1270 // Second, a 256-element pointer array for s->next_ makes each State 1271 // quite large (2kB on 64-bit machines). Instead, dfa->bytemap_[] 1272 // maps from bytes to "byte classes" and then next_ only needs to have 1273 // as many pointers as there are byte classes. A byte class is simply a 1274 // range of bytes that the regexp never distinguishes between. 1275 // A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1, 1276 // 'a', 'b' to 'c', and 'c' to 0xFF. The bytemap slows us a little bit 1277 // but in exchange we typically cut the size of a State (and thus our 1278 // memory footprint) by about 5-10x. The comments still refer to 1279 // s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]]. 1280 // 1281 // Third, it is common for a DFA for an unanchored match to begin in a 1282 // state in which only one particular byte value can take the DFA to a 1283 // different state. That is, s->next[c] != s for only one c. In this 1284 // situation, the DFA can do better than executing the simple loop. 1285 // Instead, it can call memchr to search very quickly for the byte c. 1286 // Whether the start state has this property is determined during a 1287 // pre-compilation pass, and if so, the byte b is passed to the search 1288 // loop as the "firstbyte" argument, along with a boolean "have_firstbyte". 1289 // 1290 // Fourth, the desired behavior is to search for the leftmost-best match 1291 // (approximately, the same one that Perl would find), which is not 1292 // necessarily the match ending earliest in the string. Each time a 1293 // match is found, it must be noted, but the DFA must continue on in 1294 // hope of finding a higher-priority match. In some cases, the caller only 1295 // cares whether there is any match at all, not which one is found. 1296 // The "want_earliest_match" flag causes the search to stop at the first 1297 // match found. 1298 // 1299 // Fifth, one algorithm that uses the DFA needs it to run over the 1300 // input string backward, beginning at the end and ending at the beginning. 1301 // Passing false for the "run_forward" flag causes the DFA to run backward. 1302 // 1303 // The checks for these last three cases, which in a naive implementation 1304 // would be performed once per input byte, slow the general loop enough 1305 // to merit specialized versions of the search loop for each of the 1306 // eight possible settings of the three booleans. Rather than write 1307 // eight different functions, we write one general implementation and then 1308 // inline it to create the specialized ones. 1309 // 1310 // Note that matches are delayed by one byte, to make it easier to 1311 // accomodate match conditions depending on the next input byte (like $ and \b). 1312 // When s->next[c]->IsMatch(), it means that there is a match ending just 1313 // *before* byte c. 1314 1315 // The generic search loop. Searches text for a match, returning 1316 // the pointer to the end of the chosen match, or NULL if no match. 1317 // The bools are equal to the same-named variables in params, but 1318 // making them function arguments lets the inliner specialize 1319 // this function to each combination (see two paragraphs above). 1320 inline bool DFA::InlinedSearchLoop(SearchParams* params, 1321 bool have_firstbyte, 1322 bool want_earliest_match, 1323 bool run_forward) { 1324 State* start = params->start; 1325 const uint8* bp = BytePtr(params->text.begin()); // start of text 1326 const uint8* p = bp; // text scanning point 1327 const uint8* ep = BytePtr(params->text.end()); // end of text 1328 const uint8* resetp = NULL; // p at last cache reset 1329 if (!run_forward) 1330 swap(p, ep); 1331 1332 const uint8* bytemap = prog_->bytemap(); 1333 const uint8* lastmatch = NULL; // most recent matching position in text 1334 bool matched = false; 1335 State* s = start; 1336 1337 if (s->IsMatch()) { 1338 matched = true; 1339 lastmatch = p; 1340 if (want_earliest_match) { 1341 params->ep = reinterpret_cast<const char*>(lastmatch); 1342 return true; 1343 } 1344 } 1345 1346 while (p != ep) { 1347 if (DebugDFA) 1348 fprintf(stderr, "@%d: %s\n", static_cast<int>(p - bp), 1349 DumpState(s).c_str()); 1350 if (have_firstbyte && s == start) { 1351 // In start state, only way out is to find firstbyte, 1352 // so use optimized assembly in memchr to skip ahead. 1353 // If firstbyte isn't found, we can skip to the end 1354 // of the string. 1355 if (run_forward) { 1356 if ((p = BytePtr(memchr(p, params->firstbyte, ep - p))) == NULL) { 1357 p = ep; 1358 break; 1359 } 1360 } else { 1361 if ((p = BytePtr(memrchr(ep, params->firstbyte, p - ep))) == NULL) { 1362 p = ep; 1363 break; 1364 } 1365 p++; 1366 } 1367 } 1368 1369 int c; 1370 if (run_forward) 1371 c = *p++; 1372 else 1373 c = *--p; 1374 1375 // Note that multiple threads might be consulting 1376 // s->next_[bytemap[c]] simultaneously. 1377 // RunStateOnByte takes care of the appropriate locking, 1378 // including a memory barrier so that the unlocked access 1379 // (sometimes known as "double-checked locking") is safe. 1380 // The alternative would be either one DFA per thread 1381 // or one mutex operation per input byte. 1382 // 1383 // ns == DeadState means the state is known to be dead 1384 // (no more matches are possible). 1385 // ns == NULL means the state has not yet been computed 1386 // (need to call RunStateOnByteUnlocked). 1387 // RunStateOnByte returns ns == NULL if it is out of memory. 1388 // ns == FullMatchState means the rest of the string matches. 1389 // 1390 // Okay to use bytemap[] not ByteMap() here, because 1391 // c is known to be an actual byte and not kByteEndText. 1392 1393 MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering 1394 State* ns = s->next_[bytemap[c]]; 1395 ANNOTATE_HAPPENS_AFTER(ns); 1396 if (ns == NULL) { 1397 ns = RunStateOnByteUnlocked(s, c); 1398 if (ns == NULL) { 1399 // After we reset the cache, we hold cache_mutex exclusively, 1400 // so if resetp != NULL, it means we filled the DFA state 1401 // cache with this search alone (without any other threads). 1402 // Benchmarks show that doing a state computation on every 1403 // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the 1404 // same at about 2 MB/s. Unless we're processing an average 1405 // of 10 bytes per state computation, fail so that RE2 can 1406 // fall back to the NFA. 1407 if (FLAGS_re2_dfa_bail_when_slow && resetp != NULL && 1408 (p - resetp) < 10*state_cache_.size()) { 1409 params->failed = true; 1410 return false; 1411 } 1412 resetp = p; 1413 1414 // Prepare to save start and s across the reset. 1415 StateSaver save_start(this, start); 1416 StateSaver save_s(this, s); 1417 1418 // Discard all the States in the cache. 1419 ResetCache(params->cache_lock); 1420 1421 // Restore start and s so we can continue. 1422 if ((start = save_start.Restore()) == NULL || 1423 (s = save_s.Restore()) == NULL) { 1424 // Restore already did LOG(DFATAL). 1425 params->failed = true; 1426 return false; 1427 } 1428 ns = RunStateOnByteUnlocked(s, c); 1429 if (ns == NULL) { 1430 LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache"; 1431 params->failed = true; 1432 return false; 1433 } 1434 } 1435 } 1436 if (ns <= SpecialStateMax) { 1437 if (ns == DeadState) { 1438 params->ep = reinterpret_cast<const char*>(lastmatch); 1439 return matched; 1440 } 1441 // FullMatchState 1442 params->ep = reinterpret_cast<const char*>(ep); 1443 return true; 1444 } 1445 s = ns; 1446 1447 if (s->IsMatch()) { 1448 matched = true; 1449 // The DFA notices the match one byte late, 1450 // so adjust p before using it in the match. 1451 if (run_forward) 1452 lastmatch = p - 1; 1453 else 1454 lastmatch = p + 1; 1455 if (DebugDFA) 1456 fprintf(stderr, "match @%d! [%s]\n", 1457 static_cast<int>(lastmatch - bp), 1458 DumpState(s).c_str()); 1459 1460 if (want_earliest_match) { 1461 params->ep = reinterpret_cast<const char*>(lastmatch); 1462 return true; 1463 } 1464 } 1465 } 1466 1467 // Process one more byte to see if it triggers a match. 1468 // (Remember, matches are delayed one byte.) 1469 int lastbyte; 1470 if (run_forward) { 1471 if (params->text.end() == params->context.end()) 1472 lastbyte = kByteEndText; 1473 else 1474 lastbyte = params->text.end()[0] & 0xFF; 1475 } else { 1476 if (params->text.begin() == params->context.begin()) 1477 lastbyte = kByteEndText; 1478 else 1479 lastbyte = params->text.begin()[-1] & 0xFF; 1480 } 1481 1482 MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering 1483 State* ns = s->next_[ByteMap(lastbyte)]; 1484 ANNOTATE_HAPPENS_AFTER(ns); 1485 if (ns == NULL) { 1486 ns = RunStateOnByteUnlocked(s, lastbyte); 1487 if (ns == NULL) { 1488 StateSaver save_s(this, s); 1489 ResetCache(params->cache_lock); 1490 if ((s = save_s.Restore()) == NULL) { 1491 params->failed = true; 1492 return false; 1493 } 1494 ns = RunStateOnByteUnlocked(s, lastbyte); 1495 if (ns == NULL) { 1496 LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset"; 1497 params->failed = true; 1498 return false; 1499 } 1500 } 1501 } 1502 s = ns; 1503 if (DebugDFA) 1504 fprintf(stderr, "@_: %s\n", DumpState(s).c_str()); 1505 if (s == FullMatchState) { 1506 params->ep = reinterpret_cast<const char*>(ep); 1507 return true; 1508 } 1509 if (s > SpecialStateMax && s->IsMatch()) { 1510 matched = true; 1511 lastmatch = p; 1512 if (params->matches && kind_ == Prog::kManyMatch) { 1513 vector<int>* v = params->matches; 1514 v->clear(); 1515 for (int i = 0; i < s->ninst_; i++) { 1516 Prog::Inst* ip = prog_->inst(s->inst_[i]); 1517 if (ip->opcode() == kInstMatch) 1518 v->push_back(ip->match_id()); 1519 } 1520 } 1521 if (DebugDFA) 1522 fprintf(stderr, "match @%d! [%s]\n", static_cast<int>(lastmatch - bp), 1523 DumpState(s).c_str()); 1524 } 1525 params->ep = reinterpret_cast<const char*>(lastmatch); 1526 return matched; 1527 } 1528 1529 // Inline specializations of the general loop. 1530 bool DFA::SearchFFF(SearchParams* params) { 1531 return InlinedSearchLoop(params, 0, 0, 0); 1532 } 1533 bool DFA::SearchFFT(SearchParams* params) { 1534 return InlinedSearchLoop(params, 0, 0, 1); 1535 } 1536 bool DFA::SearchFTF(SearchParams* params) { 1537 return InlinedSearchLoop(params, 0, 1, 0); 1538 } 1539 bool DFA::SearchFTT(SearchParams* params) { 1540 return InlinedSearchLoop(params, 0, 1, 1); 1541 } 1542 bool DFA::SearchTFF(SearchParams* params) { 1543 return InlinedSearchLoop(params, 1, 0, 0); 1544 } 1545 bool DFA::SearchTFT(SearchParams* params) { 1546 return InlinedSearchLoop(params, 1, 0, 1); 1547 } 1548 bool DFA::SearchTTF(SearchParams* params) { 1549 return InlinedSearchLoop(params, 1, 1, 0); 1550 } 1551 bool DFA::SearchTTT(SearchParams* params) { 1552 return InlinedSearchLoop(params, 1, 1, 1); 1553 } 1554 1555 // For debugging, calls the general code directly. 1556 bool DFA::SlowSearchLoop(SearchParams* params) { 1557 return InlinedSearchLoop(params, 1558 params->firstbyte >= 0, 1559 params->want_earliest_match, 1560 params->run_forward); 1561 } 1562 1563 // For performance, calls the appropriate specialized version 1564 // of InlinedSearchLoop. 1565 bool DFA::FastSearchLoop(SearchParams* params) { 1566 // Because the methods are private, the Searches array 1567 // cannot be declared at top level. 1568 static bool (DFA::*Searches[])(SearchParams*) = { 1569 &DFA::SearchFFF, 1570 &DFA::SearchFFT, 1571 &DFA::SearchFTF, 1572 &DFA::SearchFTT, 1573 &DFA::SearchTFF, 1574 &DFA::SearchTFT, 1575 &DFA::SearchTTF, 1576 &DFA::SearchTTT, 1577 }; 1578 1579 bool have_firstbyte = (params->firstbyte >= 0); 1580 int index = 4 * have_firstbyte + 1581 2 * params->want_earliest_match + 1582 1 * params->run_forward; 1583 return (this->*Searches[index])(params); 1584 } 1585 1586 1587 // The discussion of DFA execution above ignored the question of how 1588 // to determine the initial state for the search loop. There are two 1589 // factors that influence the choice of start state. 1590 // 1591 // The first factor is whether the search is anchored or not. 1592 // The regexp program (Prog*) itself has 1593 // two different entry points: one for anchored searches and one for 1594 // unanchored searches. (The unanchored version starts with a leading ".*?" 1595 // and then jumps to the anchored one.) 1596 // 1597 // The second factor is where text appears in the larger context, which 1598 // determines which empty-string operators can be matched at the beginning 1599 // of execution. If text is at the very beginning of context, \A and ^ match. 1600 // Otherwise if text is at the beginning of a line, then ^ matches. 1601 // Otherwise it matters whether the character before text is a word character 1602 // or a non-word character. 1603 // 1604 // The two cases (unanchored vs not) and four cases (empty-string flags) 1605 // combine to make the eight cases recorded in the DFA's begin_text_[2], 1606 // begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached 1607 // StartInfos. The start state for each is filled in the first time it 1608 // is used for an actual search. 1609 1610 // Examines text, context, and anchored to determine the right start 1611 // state for the DFA search loop. Fills in params and returns true on success. 1612 // Returns false on failure. 1613 bool DFA::AnalyzeSearch(SearchParams* params) { 1614 const StringPiece& text = params->text; 1615 const StringPiece& context = params->context; 1616 1617 // Sanity check: make sure that text lies within context. 1618 if (text.begin() < context.begin() || text.end() > context.end()) { 1619 LOG(DFATAL) << "Text is not inside context."; 1620 params->start = DeadState; 1621 return true; 1622 } 1623 1624 // Determine correct search type. 1625 int start; 1626 uint flags; 1627 if (params->run_forward) { 1628 if (text.begin() == context.begin()) { 1629 start = kStartBeginText; 1630 flags = kEmptyBeginText|kEmptyBeginLine; 1631 } else if (text.begin()[-1] == '\n') { 1632 start = kStartBeginLine; 1633 flags = kEmptyBeginLine; 1634 } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) { 1635 start = kStartAfterWordChar; 1636 flags = kFlagLastWord; 1637 } else { 1638 start = kStartAfterNonWordChar; 1639 flags = 0; 1640 } 1641 } else { 1642 if (text.end() == context.end()) { 1643 start = kStartBeginText; 1644 flags = kEmptyBeginText|kEmptyBeginLine; 1645 } else if (text.end()[0] == '\n') { 1646 start = kStartBeginLine; 1647 flags = kEmptyBeginLine; 1648 } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) { 1649 start = kStartAfterWordChar; 1650 flags = kFlagLastWord; 1651 } else { 1652 start = kStartAfterNonWordChar; 1653 flags = 0; 1654 } 1655 } 1656 if (params->anchored || prog_->anchor_start()) 1657 start |= kStartAnchored; 1658 StartInfo* info = &start_[start]; 1659 1660 // Try once without cache_lock for writing. 1661 // Try again after resetting the cache 1662 // (ResetCache will relock cache_lock for writing). 1663 if (!AnalyzeSearchHelper(params, info, flags)) { 1664 ResetCache(params->cache_lock); 1665 if (!AnalyzeSearchHelper(params, info, flags)) { 1666 LOG(DFATAL) << "Failed to analyze start state."; 1667 params->failed = true; 1668 return false; 1669 } 1670 } 1671 1672 if (DebugDFA) 1673 fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s firstbyte=%d\n", 1674 params->anchored, params->run_forward, flags, 1675 DumpState(info->start).c_str(), info->firstbyte); 1676 1677 params->start = info->start; 1678 params->firstbyte = ANNOTATE_UNPROTECTED_READ(info->firstbyte); 1679 1680 return true; 1681 } 1682 1683 // Fills in info if needed. Returns true on success, false on failure. 1684 bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info, 1685 uint flags) { 1686 // Quick check; okay because of memory barriers below. 1687 if (ANNOTATE_UNPROTECTED_READ(info->firstbyte) != kFbUnknown) { 1688 ANNOTATE_HAPPENS_AFTER(&info->firstbyte); 1689 return true; 1690 } 1691 1692 MutexLock l(&mutex_); 1693 if (info->firstbyte != kFbUnknown) { 1694 ANNOTATE_HAPPENS_AFTER(&info->firstbyte); 1695 return true; 1696 } 1697 1698 q0_->clear(); 1699 AddToQueue(q0_, 1700 params->anchored ? prog_->start() : prog_->start_unanchored(), 1701 flags); 1702 info->start = WorkqToCachedState(q0_, flags); 1703 if (info->start == NULL) 1704 return false; 1705 1706 if (info->start == DeadState) { 1707 ANNOTATE_HAPPENS_BEFORE(&info->firstbyte); 1708 WriteMemoryBarrier(); // Synchronize with "quick check" above. 1709 info->firstbyte = kFbNone; 1710 return true; 1711 } 1712 1713 if (info->start == FullMatchState) { 1714 ANNOTATE_HAPPENS_BEFORE(&info->firstbyte); 1715 WriteMemoryBarrier(); // Synchronize with "quick check" above. 1716 info->firstbyte = kFbNone; // will be ignored 1717 return true; 1718 } 1719 1720 // Compute info->firstbyte by running state on all 1721 // possible byte values, looking for a single one that 1722 // leads to a different state. 1723 int firstbyte = kFbNone; 1724 for (int i = 0; i < 256; i++) { 1725 State* s = RunStateOnByte(info->start, i); 1726 if (s == NULL) { 1727 ANNOTATE_HAPPENS_BEFORE(&info->firstbyte); 1728 WriteMemoryBarrier(); // Synchronize with "quick check" above. 1729 info->firstbyte = firstbyte; 1730 return false; 1731 } 1732 if (s == info->start) 1733 continue; 1734 // Goes to new state... 1735 if (firstbyte == kFbNone) { 1736 firstbyte = i; // ... first one 1737 } else { 1738 firstbyte = kFbMany; // ... too many 1739 break; 1740 } 1741 } 1742 ANNOTATE_HAPPENS_BEFORE(&info->firstbyte); 1743 WriteMemoryBarrier(); // Synchronize with "quick check" above. 1744 info->firstbyte = firstbyte; 1745 return true; 1746 } 1747 1748 // The actual DFA search: calls AnalyzeSearch and then FastSearchLoop. 1749 bool DFA::Search(const StringPiece& text, 1750 const StringPiece& context, 1751 bool anchored, 1752 bool want_earliest_match, 1753 bool run_forward, 1754 bool* failed, 1755 const char** epp, 1756 vector<int>* matches) { 1757 *epp = NULL; 1758 if (!ok()) { 1759 *failed = true; 1760 return false; 1761 } 1762 *failed = false; 1763 1764 if (DebugDFA) { 1765 fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str()); 1766 fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n", 1767 text.as_string().c_str(), anchored, want_earliest_match, 1768 run_forward, kind_); 1769 } 1770 1771 RWLocker l(&cache_mutex_); 1772 SearchParams params(text, context, &l); 1773 params.anchored = anchored; 1774 params.want_earliest_match = want_earliest_match; 1775 params.run_forward = run_forward; 1776 params.matches = matches; 1777 1778 if (!AnalyzeSearch(¶ms)) { 1779 *failed = true; 1780 return false; 1781 } 1782 if (params.start == DeadState) 1783 return false; 1784 if (params.start == FullMatchState) { 1785 if (run_forward == want_earliest_match) 1786 *epp = text.begin(); 1787 else 1788 *epp = text.end(); 1789 return true; 1790 } 1791 if (DebugDFA) 1792 fprintf(stderr, "start %s\n", DumpState(params.start).c_str()); 1793 bool ret = FastSearchLoop(¶ms); 1794 if (params.failed) { 1795 *failed = true; 1796 return false; 1797 } 1798 *epp = params.ep; 1799 return ret; 1800 } 1801 1802 // Deletes dfa. 1803 // 1804 // This is a separate function so that 1805 // prog.h can be used without moving the definition of 1806 // class DFA out of this file. If you set 1807 // prog->dfa_ = dfa; 1808 // then you also have to set 1809 // prog->delete_dfa_ = DeleteDFA; 1810 // so that ~Prog can delete the dfa. 1811 static void DeleteDFA(DFA* dfa) { 1812 delete dfa; 1813 } 1814 1815 DFA* Prog::GetDFA(MatchKind kind) { 1816 DFA*volatile* pdfa; 1817 if (kind == kFirstMatch || kind == kManyMatch) { 1818 pdfa = &dfa_first_; 1819 } else { 1820 kind = kLongestMatch; 1821 pdfa = &dfa_longest_; 1822 } 1823 1824 // Quick check; okay because of memory barrier below. 1825 DFA *dfa = ANNOTATE_UNPROTECTED_READ(*pdfa); 1826 if (dfa != NULL) { 1827 ANNOTATE_HAPPENS_AFTER(dfa); 1828 return dfa; 1829 } 1830 1831 MutexLock l(&dfa_mutex_); 1832 dfa = *pdfa; 1833 if (dfa != NULL) { 1834 ANNOTATE_HAPPENS_AFTER(dfa); 1835 return dfa; 1836 } 1837 1838 // For a forward DFA, half the memory goes to each DFA. 1839 // For a reverse DFA, all the memory goes to the 1840 // "longest match" DFA, because RE2 never does reverse 1841 // "first match" searches. 1842 int64 m = dfa_mem_/2; 1843 if (reversed_) { 1844 if (kind == kLongestMatch || kind == kManyMatch) 1845 m = dfa_mem_; 1846 else 1847 m = 0; 1848 } 1849 dfa = new DFA(this, kind, m); 1850 delete_dfa_ = DeleteDFA; 1851 1852 // Synchronize with "quick check" above. 1853 ANNOTATE_HAPPENS_BEFORE(dfa); 1854 WriteMemoryBarrier(); 1855 *pdfa = dfa; 1856 1857 return dfa; 1858 } 1859 1860 1861 // Executes the regexp program to search in text, 1862 // which itself is inside the larger context. (As a convenience, 1863 // passing a NULL context is equivalent to passing text.) 1864 // Returns true if a match is found, false if not. 1865 // If a match is found, fills in match0->end() to point at the end of the match 1866 // and sets match0->begin() to text.begin(), since the DFA can't track 1867 // where the match actually began. 1868 // 1869 // This is the only external interface (class DFA only exists in this file). 1870 // 1871 bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context, 1872 Anchor anchor, MatchKind kind, 1873 StringPiece* match0, bool* failed, vector<int>* matches) { 1874 *failed = false; 1875 1876 StringPiece context = const_context; 1877 if (context.begin() == NULL) 1878 context = text; 1879 bool carat = anchor_start(); 1880 bool dollar = anchor_end(); 1881 if (reversed_) { 1882 bool t = carat; 1883 carat = dollar; 1884 dollar = t; 1885 } 1886 if (carat && context.begin() != text.begin()) 1887 return false; 1888 if (dollar && context.end() != text.end()) 1889 return false; 1890 1891 // Handle full match by running an anchored longest match 1892 // and then checking if it covers all of text. 1893 bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch; 1894 bool endmatch = false; 1895 if (kind == kManyMatch) { 1896 endmatch = true; 1897 } else if (kind == kFullMatch || anchor_end()) { 1898 endmatch = true; 1899 kind = kLongestMatch; 1900 } 1901 1902 // If the caller doesn't care where the match is (just whether one exists), 1903 // then we can stop at the very first match we find, the so-called 1904 // "shortest match". 1905 bool want_shortest_match = false; 1906 if (match0 == NULL && !endmatch) { 1907 want_shortest_match = true; 1908 kind = kLongestMatch; 1909 } 1910 1911 DFA* dfa = GetDFA(kind); 1912 const char* ep; 1913 bool matched = dfa->Search(text, context, anchored, 1914 want_shortest_match, !reversed_, 1915 failed, &ep, matches); 1916 if (*failed) 1917 return false; 1918 if (!matched) 1919 return false; 1920 if (endmatch && ep != (reversed_ ? text.begin() : text.end())) 1921 return false; 1922 1923 // If caller cares, record the boundary of the match. 1924 // We only know where it ends, so use the boundary of text 1925 // as the beginning. 1926 if (match0) { 1927 if (reversed_) 1928 *match0 = StringPiece(ep, text.end() - ep); 1929 else 1930 *match0 = StringPiece(text.begin(), ep - text.begin()); 1931 } 1932 return true; 1933 } 1934 1935 // Build out all states in DFA. Returns number of states. 1936 int DFA::BuildAllStates() { 1937 if (!ok()) 1938 return 0; 1939 1940 // Pick out start state for unanchored search 1941 // at beginning of text. 1942 RWLocker l(&cache_mutex_); 1943 SearchParams params(NULL, NULL, &l); 1944 params.anchored = false; 1945 if (!AnalyzeSearch(¶ms) || params.start <= SpecialStateMax) 1946 return 0; 1947 1948 // Add start state to work queue. 1949 StateSet queued; 1950 vector<State*> q; 1951 queued.insert(params.start); 1952 q.push_back(params.start); 1953 1954 // Flood to expand every state. 1955 for (int i = 0; i < q.size(); i++) { 1956 State* s = q[i]; 1957 for (int c = 0; c < 257; c++) { 1958 State* ns = RunStateOnByteUnlocked(s, c); 1959 if (ns > SpecialStateMax && queued.find(ns) == queued.end()) { 1960 queued.insert(ns); 1961 q.push_back(ns); 1962 } 1963 } 1964 } 1965 1966 return q.size(); 1967 } 1968 1969 // Build out all states in DFA for kind. Returns number of states. 1970 int Prog::BuildEntireDFA(MatchKind kind) { 1971 //LOG(ERROR) << "BuildEntireDFA is only for testing."; 1972 return GetDFA(kind)->BuildAllStates(); 1973 } 1974 1975 // Computes min and max for matching string. 1976 // Won't return strings bigger than maxlen. 1977 bool DFA::PossibleMatchRange(string* min, string* max, int maxlen) { 1978 if (!ok()) 1979 return false; 1980 1981 // NOTE: if future users of PossibleMatchRange want more precision when 1982 // presented with infinitely repeated elements, consider making this a 1983 // parameter to PossibleMatchRange. 1984 static int kMaxEltRepetitions = 0; 1985 1986 // Keep track of the number of times we've visited states previously. We only 1987 // revisit a given state if it's part of a repeated group, so if the value 1988 // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set 1989 // |*max| to |PrefixSuccessor(*max)|. 1990 // 1991 // Also note that previously_visited_states[UnseenStatePtr] will, in the STL 1992 // tradition, implicitly insert a '0' value at first use. We take advantage 1993 // of that property below. 1994 map<State*, int> previously_visited_states; 1995 1996 // Pick out start state for anchored search at beginning of text. 1997 RWLocker l(&cache_mutex_); 1998 SearchParams params(NULL, NULL, &l); 1999 params.anchored = true; 2000 if (!AnalyzeSearch(¶ms)) 2001 return false; 2002 if (params.start == DeadState) { // No matching strings 2003 *min = ""; 2004 *max = ""; 2005 return true; 2006 } 2007 if (params.start == FullMatchState) // Every string matches: no max 2008 return false; 2009 2010 // The DFA is essentially a big graph rooted at params.start, 2011 // and paths in the graph correspond to accepted strings. 2012 // Each node in the graph has potentially 256+1 arrows 2013 // coming out, one for each byte plus the magic end of 2014 // text character kByteEndText. 2015 2016 // To find the smallest possible prefix of an accepted 2017 // string, we just walk the graph preferring to follow 2018 // arrows with the lowest bytes possible. To find the 2019 // largest possible prefix, we follow the largest bytes 2020 // possible. 2021 2022 // The test for whether there is an arrow from s on byte j is 2023 // ns = RunStateOnByteUnlocked(s, j); 2024 // if (ns == NULL) 2025 // return false; 2026 // if (ns != DeadState && ns->ninst > 0) 2027 // The RunStateOnByteUnlocked call asks the DFA to build out the graph. 2028 // It returns NULL only if the DFA has run out of memory, 2029 // in which case we can't be sure of anything. 2030 // The second check sees whether there was graph built 2031 // and whether it is interesting graph. Nodes might have 2032 // ns->ninst == 0 if they exist only to represent the fact 2033 // that a match was found on the previous byte. 2034 2035 // Build minimum prefix. 2036 State* s = params.start; 2037 min->clear(); 2038 for (int i = 0; i < maxlen; i++) { 2039 if (previously_visited_states[s] > kMaxEltRepetitions) { 2040 VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions 2041 << " for state s=" << s << " and min=" << CEscape(*min); 2042 break; 2043 } 2044 previously_visited_states[s]++; 2045 2046 // Stop if min is a match. 2047 State* ns = RunStateOnByteUnlocked(s, kByteEndText); 2048 if (ns == NULL) // DFA out of memory 2049 return false; 2050 if (ns != DeadState && (ns == FullMatchState || ns->IsMatch())) 2051 break; 2052 2053 // Try to extend the string with low bytes. 2054 bool extended = false; 2055 for (int j = 0; j < 256; j++) { 2056 ns = RunStateOnByteUnlocked(s, j); 2057 if (ns == NULL) // DFA out of memory 2058 return false; 2059 if (ns == FullMatchState || 2060 (ns > SpecialStateMax && ns->ninst_ > 0)) { 2061 extended = true; 2062 min->append(1, j); 2063 s = ns; 2064 break; 2065 } 2066 } 2067 if (!extended) 2068 break; 2069 } 2070 2071 // Build maximum prefix. 2072 previously_visited_states.clear(); 2073 s = params.start; 2074 max->clear(); 2075 for (int i = 0; i < maxlen; i++) { 2076 if (previously_visited_states[s] > kMaxEltRepetitions) { 2077 VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions 2078 << " for state s=" << s << " and max=" << CEscape(*max); 2079 break; 2080 } 2081 previously_visited_states[s] += 1; 2082 2083 // Try to extend the string with high bytes. 2084 bool extended = false; 2085 for (int j = 255; j >= 0; j--) { 2086 State* ns = RunStateOnByteUnlocked(s, j); 2087 if (ns == NULL) 2088 return false; 2089 if (ns == FullMatchState || 2090 (ns > SpecialStateMax && ns->ninst_ > 0)) { 2091 extended = true; 2092 max->append(1, j); 2093 s = ns; 2094 break; 2095 } 2096 } 2097 if (!extended) { 2098 // Done, no need for PrefixSuccessor. 2099 return true; 2100 } 2101 } 2102 2103 // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b 2104 *max = PrefixSuccessor(*max); 2105 2106 // If there are no bytes left, we have no way to say "there is no maximum 2107 // string". We could make the interface more complicated and be able to 2108 // return "there is no maximum but here is a minimum", but that seems like 2109 // overkill -- the most common no-max case is all possible strings, so not 2110 // telling the caller that the empty string is the minimum match isn't a 2111 // great loss. 2112 if (max->empty()) 2113 return false; 2114 2115 return true; 2116 } 2117 2118 // PossibleMatchRange for a Prog. 2119 bool Prog::PossibleMatchRange(string* min, string* max, int maxlen) { 2120 DFA* dfa = NULL; 2121 { 2122 MutexLock l(&dfa_mutex_); 2123 // Have to use dfa_longest_ to get all strings for full matches. 2124 // For example, (a|aa) never matches aa in first-match mode. 2125 if (dfa_longest_ == NULL) { 2126 dfa_longest_ = new DFA(this, Prog::kLongestMatch, dfa_mem_/2); 2127 delete_dfa_ = DeleteDFA; 2128 } 2129 dfa = dfa_longest_; 2130 } 2131 return dfa->PossibleMatchRange(min, max, maxlen); 2132 } 2133 2134 } // namespace re2 2135