Home | History | Annotate | Download | only in Core
      1 //===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include <assert.h>
     11 #include <stddef.h>
     12 
     13 #include <bitset>
     14 #include <limits>
     15 #include <sstream>
     16 #include <string>
     17 
     18 #include "clang/AST/ASTContext.h"
     19 
     20 #include "llvm/ADT/APFloat.h"
     21 #include "llvm/ADT/APInt.h"
     22 #include "llvm/ADT/ArrayRef.h"
     23 #include "llvm/ADT/SmallVector.h"
     24 #include "llvm/Support/MathExtras.h"
     25 
     26 
     27 #include "lldb/Core/DataBufferHeap.h"
     28 #include "lldb/Core/DataExtractor.h"
     29 #include "lldb/Core/DataBuffer.h"
     30 #include "lldb/Core/Disassembler.h"
     31 #include "lldb/Core/Log.h"
     32 #include "lldb/Core/Stream.h"
     33 #include "lldb/Core/StreamString.h"
     34 #include "lldb/Core/UUID.h"
     35 #include "lldb/Core/dwarf.h"
     36 #include "lldb/Host/Endian.h"
     37 #include "lldb/Symbol/ClangASTContext.h"
     38 #include "lldb/Target/ExecutionContext.h"
     39 #include "lldb/Target/ExecutionContextScope.h"
     40 #include "lldb/Target/Target.h"
     41 
     42 using namespace lldb;
     43 using namespace lldb_private;
     44 
     45 static inline uint16_t
     46 ReadInt16(const unsigned char* ptr, offset_t offset)
     47 {
     48     return *(uint16_t *)(ptr + offset);
     49 }
     50 static inline uint32_t
     51 ReadInt32 (const unsigned char* ptr, offset_t offset)
     52 {
     53     return *(uint32_t *)(ptr + offset);
     54 }
     55 
     56 static inline uint64_t
     57 ReadInt64(const unsigned char* ptr, offset_t offset)
     58 {
     59     return *(uint64_t *)(ptr + offset);
     60 }
     61 
     62 static inline uint16_t
     63 ReadInt16(const void* ptr)
     64 {
     65     return *(uint16_t *)(ptr);
     66 }
     67 static inline uint32_t
     68 ReadInt32 (const void* ptr)
     69 {
     70     return *(uint32_t *)(ptr);
     71 }
     72 
     73 static inline uint64_t
     74 ReadInt64(const void* ptr)
     75 {
     76     return *(uint64_t *)(ptr);
     77 }
     78 
     79 static inline uint16_t
     80 ReadSwapInt16(const unsigned char* ptr, offset_t offset)
     81 {
     82     return llvm::ByteSwap_16(*(uint16_t *)(ptr + offset));
     83 }
     84 
     85 static inline uint32_t
     86 ReadSwapInt32 (const unsigned char* ptr, offset_t offset)
     87 {
     88     return llvm::ByteSwap_32(*(uint32_t *)(ptr + offset));
     89 }
     90 static inline uint64_t
     91 ReadSwapInt64(const unsigned char* ptr, offset_t offset)
     92 {
     93   return llvm::ByteSwap_64(*(uint64_t *)(ptr + offset));
     94 }
     95 
     96 static inline uint16_t
     97 ReadSwapInt16(const void* ptr)
     98 {
     99     return llvm::ByteSwap_16(*(uint16_t *)(ptr));
    100 }
    101 
    102 static inline uint32_t
    103 ReadSwapInt32 (const void* ptr)
    104 {
    105     return llvm::ByteSwap_32(*(uint32_t *)(ptr));
    106 }
    107 static inline uint64_t
    108 ReadSwapInt64(const void* ptr)
    109 {
    110     return llvm::ByteSwap_64(*(uint64_t *)(ptr));
    111 }
    112 
    113 #define NON_PRINTABLE_CHAR '.'
    114 //----------------------------------------------------------------------
    115 // Default constructor.
    116 //----------------------------------------------------------------------
    117 DataExtractor::DataExtractor () :
    118     m_start     (NULL),
    119     m_end       (NULL),
    120     m_byte_order(lldb::endian::InlHostByteOrder()),
    121     m_addr_size (4),
    122     m_data_sp   ()
    123 {
    124 }
    125 
    126 //----------------------------------------------------------------------
    127 // This constructor allows us to use data that is owned by someone else.
    128 // The data must stay around as long as this object is valid.
    129 //----------------------------------------------------------------------
    130 DataExtractor::DataExtractor (const void* data, offset_t length, ByteOrder endian, uint32_t addr_size) :
    131     m_start     ((uint8_t*)data),
    132     m_end       ((uint8_t*)data + length),
    133     m_byte_order(endian),
    134     m_addr_size (addr_size),
    135     m_data_sp   ()
    136 {
    137 }
    138 
    139 //----------------------------------------------------------------------
    140 // Make a shared pointer reference to the shared data in "data_sp" and
    141 // set the endian swapping setting to "swap", and the address size to
    142 // "addr_size". The shared data reference will ensure the data lives
    143 // as long as any DataExtractor objects exist that have a reference to
    144 // this data.
    145 //----------------------------------------------------------------------
    146 DataExtractor::DataExtractor (const DataBufferSP& data_sp, ByteOrder endian, uint32_t addr_size) :
    147     m_start     (NULL),
    148     m_end       (NULL),
    149     m_byte_order(endian),
    150     m_addr_size (addr_size),
    151     m_data_sp   ()
    152 {
    153     SetData (data_sp);
    154 }
    155 
    156 //----------------------------------------------------------------------
    157 // Initialize this object with a subset of the data bytes in "data".
    158 // If "data" contains shared data, then a reference to this shared
    159 // data will added and the shared data will stay around as long
    160 // as any object contains a reference to that data. The endian
    161 // swap and address size settings are copied from "data".
    162 //----------------------------------------------------------------------
    163 DataExtractor::DataExtractor (const DataExtractor& data, offset_t offset, offset_t length) :
    164     m_start(NULL),
    165     m_end(NULL),
    166     m_byte_order(data.m_byte_order),
    167     m_addr_size(data.m_addr_size),
    168     m_data_sp()
    169 {
    170     if (data.ValidOffset(offset))
    171     {
    172         offset_t bytes_available = data.GetByteSize() - offset;
    173         if (length > bytes_available)
    174             length = bytes_available;
    175         SetData(data, offset, length);
    176     }
    177 }
    178 
    179 DataExtractor::DataExtractor (const DataExtractor& rhs) :
    180     m_start (rhs.m_start),
    181     m_end (rhs.m_end),
    182     m_byte_order (rhs.m_byte_order),
    183     m_addr_size (rhs.m_addr_size),
    184     m_data_sp (rhs.m_data_sp)
    185 {
    186 }
    187 
    188 //----------------------------------------------------------------------
    189 // Assignment operator
    190 //----------------------------------------------------------------------
    191 const DataExtractor&
    192 DataExtractor::operator= (const DataExtractor& rhs)
    193 {
    194     if (this != &rhs)
    195     {
    196         m_start = rhs.m_start;
    197         m_end = rhs.m_end;
    198         m_byte_order = rhs.m_byte_order;
    199         m_addr_size = rhs.m_addr_size;
    200         m_data_sp = rhs.m_data_sp;
    201     }
    202     return *this;
    203 }
    204 
    205 //----------------------------------------------------------------------
    206 // Destructor
    207 //----------------------------------------------------------------------
    208 DataExtractor::~DataExtractor ()
    209 {
    210 }
    211 
    212 //------------------------------------------------------------------
    213 // Clears the object contents back to a default invalid state, and
    214 // release any references to shared data that this object may
    215 // contain.
    216 //------------------------------------------------------------------
    217 void
    218 DataExtractor::Clear ()
    219 {
    220     m_start = NULL;
    221     m_end = NULL;
    222     m_byte_order = lldb::endian::InlHostByteOrder();
    223     m_addr_size = 4;
    224     m_data_sp.reset();
    225 }
    226 
    227 //------------------------------------------------------------------
    228 // If this object contains shared data, this function returns the
    229 // offset into that shared data. Else zero is returned.
    230 //------------------------------------------------------------------
    231 size_t
    232 DataExtractor::GetSharedDataOffset () const
    233 {
    234     if (m_start != NULL)
    235     {
    236         const DataBuffer * data = m_data_sp.get();
    237         if (data != NULL)
    238         {
    239             const uint8_t * data_bytes = data->GetBytes();
    240             if (data_bytes != NULL)
    241             {
    242                 assert(m_start >= data_bytes);
    243                 return m_start - data_bytes;
    244             }
    245         }
    246     }
    247     return 0;
    248 }
    249 
    250 //----------------------------------------------------------------------
    251 // Set the data with which this object will extract from to data
    252 // starting at BYTES and set the length of the data to LENGTH bytes
    253 // long. The data is externally owned must be around at least as
    254 // long as this object points to the data. No copy of the data is
    255 // made, this object just refers to this data and can extract from
    256 // it. If this object refers to any shared data upon entry, the
    257 // reference to that data will be released. Is SWAP is set to true,
    258 // any data extracted will be endian swapped.
    259 //----------------------------------------------------------------------
    260 lldb::offset_t
    261 DataExtractor::SetData (const void *bytes, offset_t length, ByteOrder endian)
    262 {
    263     m_byte_order = endian;
    264     m_data_sp.reset();
    265     if (bytes == NULL || length == 0)
    266     {
    267         m_start = NULL;
    268         m_end = NULL;
    269     }
    270     else
    271     {
    272         m_start = (uint8_t *)bytes;
    273         m_end = m_start + length;
    274     }
    275     return GetByteSize();
    276 }
    277 
    278 //----------------------------------------------------------------------
    279 // Assign the data for this object to be a subrange in "data"
    280 // starting "data_offset" bytes into "data" and ending "data_length"
    281 // bytes later. If "data_offset" is not a valid offset into "data",
    282 // then this object will contain no bytes. If "data_offset" is
    283 // within "data" yet "data_length" is too large, the length will be
    284 // capped at the number of bytes remaining in "data". If "data"
    285 // contains a shared pointer to other data, then a ref counted
    286 // pointer to that data will be made in this object. If "data"
    287 // doesn't contain a shared pointer to data, then the bytes referred
    288 // to in "data" will need to exist at least as long as this object
    289 // refers to those bytes. The address size and endian swap settings
    290 // are copied from the current values in "data".
    291 //----------------------------------------------------------------------
    292 lldb::offset_t
    293 DataExtractor::SetData (const DataExtractor& data, offset_t data_offset, offset_t data_length)
    294 {
    295     m_addr_size = data.m_addr_size;
    296     // If "data" contains shared pointer to data, then we can use that
    297     if (data.m_data_sp.get())
    298     {
    299         m_byte_order = data.m_byte_order;
    300         return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset, data_length);
    301     }
    302 
    303     // We have a DataExtractor object that just has a pointer to bytes
    304     if (data.ValidOffset(data_offset))
    305     {
    306         if (data_length > data.GetByteSize() - data_offset)
    307             data_length = data.GetByteSize() - data_offset;
    308         return SetData (data.GetDataStart() + data_offset, data_length, data.GetByteOrder());
    309     }
    310     return 0;
    311 }
    312 
    313 //----------------------------------------------------------------------
    314 // Assign the data for this object to be a subrange of the shared
    315 // data in "data_sp" starting "data_offset" bytes into "data_sp"
    316 // and ending "data_length" bytes later. If "data_offset" is not
    317 // a valid offset into "data_sp", then this object will contain no
    318 // bytes. If "data_offset" is within "data_sp" yet "data_length" is
    319 // too large, the length will be capped at the number of bytes
    320 // remaining in "data_sp". A ref counted pointer to the data in
    321 // "data_sp" will be made in this object IF the number of bytes this
    322 // object refers to in greater than zero (if at least one byte was
    323 // available starting at "data_offset") to ensure the data stays
    324 // around as long as it is needed. The address size and endian swap
    325 // settings will remain unchanged from their current settings.
    326 //----------------------------------------------------------------------
    327 lldb::offset_t
    328 DataExtractor::SetData (const DataBufferSP& data_sp, offset_t data_offset, offset_t data_length)
    329 {
    330     m_start = m_end = NULL;
    331 
    332     if (data_length > 0)
    333     {
    334         m_data_sp = data_sp;
    335         if (data_sp.get())
    336         {
    337             const size_t data_size = data_sp->GetByteSize();
    338             if (data_offset < data_size)
    339             {
    340                 m_start = data_sp->GetBytes() + data_offset;
    341                 const size_t bytes_left = data_size - data_offset;
    342                 // Cap the length of we asked for too many
    343                 if (data_length <= bytes_left)
    344                     m_end = m_start + data_length;  // We got all the bytes we wanted
    345                 else
    346                     m_end = m_start + bytes_left;   // Not all the bytes requested were available in the shared data
    347             }
    348         }
    349     }
    350 
    351     size_t new_size = GetByteSize();
    352 
    353     // Don't hold a shared pointer to the data buffer if we don't share
    354     // any valid bytes in the shared buffer.
    355     if (new_size == 0)
    356         m_data_sp.reset();
    357 
    358     return new_size;
    359 }
    360 
    361 //----------------------------------------------------------------------
    362 // Extract a single unsigned char from the binary data and update
    363 // the offset pointed to by "offset_ptr".
    364 //
    365 // RETURNS the byte that was extracted, or zero on failure.
    366 //----------------------------------------------------------------------
    367 uint8_t
    368 DataExtractor::GetU8 (offset_t *offset_ptr) const
    369 {
    370     const uint8_t *data = (const uint8_t *)GetData (offset_ptr, 1);
    371     if (data)
    372         return *data;
    373     return 0;
    374 }
    375 
    376 //----------------------------------------------------------------------
    377 // Extract "count" unsigned chars from the binary data and update the
    378 // offset pointed to by "offset_ptr". The extracted data is copied into
    379 // "dst".
    380 //
    381 // RETURNS the non-NULL buffer pointer upon successful extraction of
    382 // all the requested bytes, or NULL when the data is not available in
    383 // the buffer due to being out of bounds, or unsufficient data.
    384 //----------------------------------------------------------------------
    385 void *
    386 DataExtractor::GetU8 (offset_t *offset_ptr, void *dst, uint32_t count) const
    387 {
    388     const uint8_t *data = (const uint8_t *)GetData (offset_ptr, count);
    389     if (data)
    390     {
    391         // Copy the data into the buffer
    392         memcpy (dst, data, count);
    393         // Return a non-NULL pointer to the converted data as an indicator of success
    394         return dst;
    395     }
    396     return NULL;
    397 }
    398 
    399 //----------------------------------------------------------------------
    400 // Extract a single uint16_t from the data and update the offset
    401 // pointed to by "offset_ptr".
    402 //
    403 // RETURNS the uint16_t that was extracted, or zero on failure.
    404 //----------------------------------------------------------------------
    405 uint16_t
    406 DataExtractor::GetU16 (offset_t *offset_ptr) const
    407 {
    408     uint16_t val = 0;
    409     const uint8_t *data = (const uint8_t *)GetData (offset_ptr, sizeof(val));
    410     if (data)
    411     {
    412         if (m_byte_order != lldb::endian::InlHostByteOrder())
    413             val = ReadSwapInt16(data);
    414         else
    415             val = ReadInt16 (data);
    416     }
    417     return val;
    418 }
    419 
    420 uint16_t
    421 DataExtractor::GetU16_unchecked (offset_t *offset_ptr) const
    422 {
    423     uint16_t val;
    424     if (m_byte_order == lldb::endian::InlHostByteOrder())
    425         val = ReadInt16 (m_start, *offset_ptr);
    426     else
    427         val = ReadSwapInt16(m_start, *offset_ptr);
    428     *offset_ptr += sizeof(val);
    429     return val;
    430 }
    431 
    432 uint32_t
    433 DataExtractor::GetU32_unchecked (offset_t *offset_ptr) const
    434 {
    435     uint32_t val;
    436     if (m_byte_order == lldb::endian::InlHostByteOrder())
    437         val = ReadInt32 (m_start, *offset_ptr);
    438     else
    439         val =  ReadSwapInt32 (m_start, *offset_ptr);
    440     *offset_ptr += sizeof(val);
    441     return val;
    442 }
    443 
    444 uint64_t
    445 DataExtractor::GetU64_unchecked (offset_t *offset_ptr) const
    446 {
    447     uint64_t val;
    448     if (m_byte_order == lldb::endian::InlHostByteOrder())
    449         val = ReadInt64 (m_start, *offset_ptr);
    450     else
    451         val = ReadSwapInt64 (m_start, *offset_ptr);
    452     *offset_ptr += sizeof(val);
    453     return val;
    454 }
    455 
    456 
    457 //----------------------------------------------------------------------
    458 // Extract "count" uint16_t values from the binary data and update
    459 // the offset pointed to by "offset_ptr". The extracted data is
    460 // copied into "dst".
    461 //
    462 // RETURNS the non-NULL buffer pointer upon successful extraction of
    463 // all the requested bytes, or NULL when the data is not available
    464 // in the buffer due to being out of bounds, or unsufficient data.
    465 //----------------------------------------------------------------------
    466 void *
    467 DataExtractor::GetU16 (offset_t *offset_ptr, void *void_dst, uint32_t count) const
    468 {
    469     const size_t src_size = sizeof(uint16_t) * count;
    470     const uint16_t *src = (const uint16_t *)GetData (offset_ptr, src_size);
    471     if (src)
    472     {
    473         if (m_byte_order != lldb::endian::InlHostByteOrder())
    474         {
    475             uint16_t *dst_pos = (uint16_t *)void_dst;
    476             uint16_t *dst_end = dst_pos + count;
    477             const uint16_t *src_pos = src;
    478             while (dst_pos < dst_end)
    479             {
    480                 *dst_pos = ReadSwapInt16 (src_pos);
    481                 ++dst_pos;
    482                 ++src_pos;
    483             }
    484         }
    485         else
    486         {
    487             memcpy (void_dst, src, src_size);
    488         }
    489         // Return a non-NULL pointer to the converted data as an indicator of success
    490         return void_dst;
    491     }
    492     return NULL;
    493 }
    494 
    495 //----------------------------------------------------------------------
    496 // Extract a single uint32_t from the data and update the offset
    497 // pointed to by "offset_ptr".
    498 //
    499 // RETURNS the uint32_t that was extracted, or zero on failure.
    500 //----------------------------------------------------------------------
    501 uint32_t
    502 DataExtractor::GetU32 (offset_t *offset_ptr) const
    503 {
    504     uint32_t val = 0;
    505     const uint32_t *data = (const uint32_t *)GetData (offset_ptr, sizeof(val));
    506     if (data)
    507     {
    508         if (m_byte_order != lldb::endian::InlHostByteOrder())
    509             val = ReadSwapInt32 (data);
    510         else
    511             val = *data;
    512     }
    513     return val;
    514 }
    515 
    516 //----------------------------------------------------------------------
    517 // Extract "count" uint32_t values from the binary data and update
    518 // the offset pointed to by "offset_ptr". The extracted data is
    519 // copied into "dst".
    520 //
    521 // RETURNS the non-NULL buffer pointer upon successful extraction of
    522 // all the requested bytes, or NULL when the data is not available
    523 // in the buffer due to being out of bounds, or unsufficient data.
    524 //----------------------------------------------------------------------
    525 void *
    526 DataExtractor::GetU32 (offset_t *offset_ptr, void *void_dst, uint32_t count) const
    527 {
    528     const size_t src_size = sizeof(uint32_t) * count;
    529     const uint32_t *src = (const uint32_t *)GetData (offset_ptr, src_size);
    530     if (src)
    531     {
    532         if (m_byte_order != lldb::endian::InlHostByteOrder())
    533         {
    534             uint32_t *dst_pos = (uint32_t *)void_dst;
    535             uint32_t *dst_end = dst_pos + count;
    536             const uint32_t *src_pos = src;
    537             while (dst_pos < dst_end)
    538             {
    539                 *dst_pos = ReadSwapInt32 (src_pos);
    540                 ++dst_pos;
    541                 ++src_pos;
    542             }
    543         }
    544         else
    545         {
    546             memcpy (void_dst, src, src_size);
    547         }
    548         // Return a non-NULL pointer to the converted data as an indicator of success
    549         return void_dst;
    550     }
    551     return NULL;
    552 }
    553 
    554 //----------------------------------------------------------------------
    555 // Extract a single uint64_t from the data and update the offset
    556 // pointed to by "offset_ptr".
    557 //
    558 // RETURNS the uint64_t that was extracted, or zero on failure.
    559 //----------------------------------------------------------------------
    560 uint64_t
    561 DataExtractor::GetU64 (offset_t *offset_ptr) const
    562 {
    563     uint64_t val = 0;
    564     const uint64_t *data = (const uint64_t *)GetData (offset_ptr, sizeof(val));
    565     if (data)
    566     {
    567         if (m_byte_order != lldb::endian::InlHostByteOrder())
    568             val = ReadSwapInt64 (data);
    569         else
    570             val = *data;
    571     }
    572     return val;
    573 }
    574 
    575 //----------------------------------------------------------------------
    576 // GetU64
    577 //
    578 // Get multiple consecutive 64 bit values. Return true if the entire
    579 // read succeeds and increment the offset pointed to by offset_ptr, else
    580 // return false and leave the offset pointed to by offset_ptr unchanged.
    581 //----------------------------------------------------------------------
    582 void *
    583 DataExtractor::GetU64 (offset_t *offset_ptr, void *void_dst, uint32_t count) const
    584 {
    585     const size_t src_size = sizeof(uint64_t) * count;
    586     const uint64_t *src = (const uint64_t *)GetData (offset_ptr, src_size);
    587     if (src)
    588     {
    589         if (m_byte_order != lldb::endian::InlHostByteOrder())
    590         {
    591             uint64_t *dst_pos = (uint64_t *)void_dst;
    592             uint64_t *dst_end = dst_pos + count;
    593             const uint64_t *src_pos = src;
    594             while (dst_pos < dst_end)
    595             {
    596                 *dst_pos = ReadSwapInt64 (src_pos);
    597                 ++dst_pos;
    598                 ++src_pos;
    599             }
    600         }
    601         else
    602         {
    603             memcpy (void_dst, src, src_size);
    604         }
    605         // Return a non-NULL pointer to the converted data as an indicator of success
    606         return void_dst;
    607     }
    608     return NULL;
    609 }
    610 
    611 //----------------------------------------------------------------------
    612 // Extract a single integer value from the data and update the offset
    613 // pointed to by "offset_ptr". The size of the extracted integer
    614 // is specified by the "byte_size" argument. "byte_size" should have
    615 // a value between 1 and 4 since the return value is only 32 bits
    616 // wide. Any "byte_size" values less than 1 or greater than 4 will
    617 // result in nothing being extracted, and zero being returned.
    618 //
    619 // RETURNS the integer value that was extracted, or zero on failure.
    620 //----------------------------------------------------------------------
    621 uint32_t
    622 DataExtractor::GetMaxU32 (offset_t *offset_ptr, size_t byte_size) const
    623 {
    624     switch (byte_size)
    625     {
    626     case 1: return GetU8 (offset_ptr); break;
    627     case 2: return GetU16(offset_ptr); break;
    628     case 4: return GetU32(offset_ptr); break;
    629     default:
    630         assert("GetMaxU32 unhandled case!" == NULL);
    631         break;
    632     }
    633     return 0;
    634 }
    635 
    636 //----------------------------------------------------------------------
    637 // Extract a single integer value from the data and update the offset
    638 // pointed to by "offset_ptr". The size of the extracted integer
    639 // is specified by the "byte_size" argument. "byte_size" should have
    640 // a value >= 1 and <= 8 since the return value is only 64 bits
    641 // wide. Any "byte_size" values less than 1 or greater than 8 will
    642 // result in nothing being extracted, and zero being returned.
    643 //
    644 // RETURNS the integer value that was extracted, or zero on failure.
    645 //----------------------------------------------------------------------
    646 uint64_t
    647 DataExtractor::GetMaxU64 (offset_t *offset_ptr, size_t size) const
    648 {
    649     switch (size)
    650     {
    651     case 1: return GetU8 (offset_ptr); break;
    652     case 2: return GetU16(offset_ptr); break;
    653     case 4: return GetU32(offset_ptr); break;
    654     case 8: return GetU64(offset_ptr); break;
    655     default:
    656         assert("GetMax64 unhandled case!" == NULL);
    657         break;
    658     }
    659     return 0;
    660 }
    661 
    662 uint64_t
    663 DataExtractor::GetMaxU64_unchecked (offset_t *offset_ptr, size_t size) const
    664 {
    665     switch (size)
    666     {
    667         case 1: return GetU8_unchecked  (offset_ptr); break;
    668         case 2: return GetU16_unchecked (offset_ptr); break;
    669         case 4: return GetU32_unchecked (offset_ptr); break;
    670         case 8: return GetU64_unchecked (offset_ptr); break;
    671         default:
    672             assert("GetMax64 unhandled case!" == NULL);
    673             break;
    674     }
    675     return 0;
    676 }
    677 
    678 int64_t
    679 DataExtractor::GetMaxS64 (offset_t *offset_ptr, size_t size) const
    680 {
    681     switch (size)
    682     {
    683     case 1: return (int8_t)GetU8 (offset_ptr); break;
    684     case 2: return (int16_t)GetU16(offset_ptr); break;
    685     case 4: return (int32_t)GetU32(offset_ptr); break;
    686     case 8: return (int64_t)GetU64(offset_ptr); break;
    687     default:
    688         assert("GetMax64 unhandled case!" == NULL);
    689         break;
    690     }
    691     return 0;
    692 }
    693 
    694 uint64_t
    695 DataExtractor::GetMaxU64Bitfield (offset_t *offset_ptr, size_t size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset) const
    696 {
    697     uint64_t uval64 = GetMaxU64 (offset_ptr, size);
    698     if (bitfield_bit_size > 0)
    699     {
    700         if (bitfield_bit_offset > 0)
    701             uval64 >>= bitfield_bit_offset;
    702         uint64_t bitfield_mask = ((1ul << bitfield_bit_size) - 1);
    703         if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
    704             return uval64;
    705         uval64 &= bitfield_mask;
    706     }
    707     return uval64;
    708 }
    709 
    710 int64_t
    711 DataExtractor::GetMaxS64Bitfield (offset_t *offset_ptr, size_t size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset) const
    712 {
    713     int64_t sval64 = GetMaxS64 (offset_ptr, size);
    714     if (bitfield_bit_size > 0)
    715     {
    716         if (bitfield_bit_offset > 0)
    717             sval64 >>= bitfield_bit_offset;
    718         uint64_t bitfield_mask = (((uint64_t)1) << bitfield_bit_size) - 1;
    719         sval64 &= bitfield_mask;
    720         // sign extend if needed
    721         if (sval64 & (((uint64_t)1) << (bitfield_bit_size - 1)))
    722             sval64 |= ~bitfield_mask;
    723     }
    724     return sval64;
    725 }
    726 
    727 
    728 float
    729 DataExtractor::GetFloat (offset_t *offset_ptr) const
    730 {
    731     typedef float float_type;
    732     float_type val = 0.0;
    733     const size_t src_size = sizeof(float_type);
    734     const float_type *src = (const float_type *)GetData (offset_ptr, src_size);
    735     if (src)
    736     {
    737         if (m_byte_order != lldb::endian::InlHostByteOrder())
    738         {
    739             const uint8_t *src_data = (const uint8_t *)src;
    740             uint8_t *dst_data = (uint8_t *)&val;
    741             for (size_t i=0; i<sizeof(float_type); ++i)
    742                 dst_data[sizeof(float_type) - 1 - i] = src_data[i];
    743         }
    744         else
    745         {
    746             val = *src;
    747         }
    748     }
    749     return val;
    750 }
    751 
    752 double
    753 DataExtractor::GetDouble (offset_t *offset_ptr) const
    754 {
    755     typedef double float_type;
    756     float_type val = 0.0;
    757     const size_t src_size = sizeof(float_type);
    758     const float_type *src = (const float_type *)GetData (offset_ptr, src_size);
    759     if (src)
    760     {
    761         if (m_byte_order != lldb::endian::InlHostByteOrder())
    762         {
    763             const uint8_t *src_data = (const uint8_t *)src;
    764             uint8_t *dst_data = (uint8_t *)&val;
    765             for (size_t i=0; i<sizeof(float_type); ++i)
    766                 dst_data[sizeof(float_type) - 1 - i] = src_data[i];
    767         }
    768         else
    769         {
    770             val = *src;
    771         }
    772     }
    773     return val;
    774 }
    775 
    776 
    777 long double
    778 DataExtractor::GetLongDouble (offset_t *offset_ptr) const
    779 {
    780     typedef long double float_type;
    781     float_type val = 0.0;
    782     const size_t src_size = sizeof(float_type);
    783     const float_type *src = (const float_type *)GetData (offset_ptr, src_size);
    784     if (src)
    785     {
    786         if (m_byte_order != lldb::endian::InlHostByteOrder())
    787         {
    788             const uint8_t *src_data = (const uint8_t *)src;
    789             uint8_t *dst_data = (uint8_t *)&val;
    790             for (size_t i=0; i<sizeof(float_type); ++i)
    791                 dst_data[sizeof(float_type) - 1 - i] = src_data[i];
    792         }
    793         else
    794         {
    795             val = *src;
    796         }
    797     }
    798     return val;
    799 }
    800 
    801 
    802 //------------------------------------------------------------------
    803 // Extract a single address from the data and update the offset
    804 // pointed to by "offset_ptr". The size of the extracted address
    805 // comes from the "this->m_addr_size" member variable and should be
    806 // set correctly prior to extracting any address values.
    807 //
    808 // RETURNS the address that was extracted, or zero on failure.
    809 //------------------------------------------------------------------
    810 uint64_t
    811 DataExtractor::GetAddress (offset_t *offset_ptr) const
    812 {
    813     return GetMaxU64 (offset_ptr, m_addr_size);
    814 }
    815 
    816 uint64_t
    817 DataExtractor::GetAddress_unchecked (offset_t *offset_ptr) const
    818 {
    819     return GetMaxU64_unchecked (offset_ptr, m_addr_size);
    820 }
    821 
    822 //------------------------------------------------------------------
    823 // Extract a single pointer from the data and update the offset
    824 // pointed to by "offset_ptr". The size of the extracted pointer
    825 // comes from the "this->m_addr_size" member variable and should be
    826 // set correctly prior to extracting any pointer values.
    827 //
    828 // RETURNS the pointer that was extracted, or zero on failure.
    829 //------------------------------------------------------------------
    830 uint64_t
    831 DataExtractor::GetPointer (offset_t *offset_ptr) const
    832 {
    833     return GetMaxU64 (offset_ptr, m_addr_size);
    834 }
    835 
    836 //----------------------------------------------------------------------
    837 // GetDwarfEHPtr
    838 //
    839 // Used for calls when the value type is specified by a DWARF EH Frame
    840 // pointer encoding.
    841 //----------------------------------------------------------------------
    842 
    843 uint64_t
    844 DataExtractor::GetGNUEHPointer (offset_t *offset_ptr, uint32_t eh_ptr_enc, lldb::addr_t pc_rel_addr, lldb::addr_t text_addr, lldb::addr_t data_addr)//, BSDRelocs *data_relocs) const
    845 {
    846     if (eh_ptr_enc == DW_EH_PE_omit)
    847         return ULLONG_MAX;  // Value isn't in the buffer...
    848 
    849     uint64_t baseAddress = 0;
    850     uint64_t addressValue = 0;
    851     const uint32_t addr_size = GetAddressByteSize();
    852 
    853     bool signExtendValue = false;
    854     // Decode the base part or adjust our offset
    855     switch (eh_ptr_enc & 0x70)
    856     {
    857     case DW_EH_PE_pcrel:
    858         signExtendValue = true;
    859         baseAddress = *offset_ptr;
    860         if (pc_rel_addr != LLDB_INVALID_ADDRESS)
    861             baseAddress += pc_rel_addr;
    862 //      else
    863 //          Log::GlobalWarning ("PC relative pointer encoding found with invalid pc relative address.");
    864         break;
    865 
    866     case DW_EH_PE_textrel:
    867         signExtendValue = true;
    868         if (text_addr != LLDB_INVALID_ADDRESS)
    869             baseAddress = text_addr;
    870 //      else
    871 //          Log::GlobalWarning ("text relative pointer encoding being decoded with invalid text section address, setting base address to zero.");
    872         break;
    873 
    874     case DW_EH_PE_datarel:
    875         signExtendValue = true;
    876         if (data_addr != LLDB_INVALID_ADDRESS)
    877             baseAddress = data_addr;
    878 //      else
    879 //          Log::GlobalWarning ("data relative pointer encoding being decoded with invalid data section address, setting base address to zero.");
    880         break;
    881 
    882     case DW_EH_PE_funcrel:
    883         signExtendValue = true;
    884         break;
    885 
    886     case DW_EH_PE_aligned:
    887         {
    888             // SetPointerSize should be called prior to extracting these so the
    889             // pointer size is cached
    890             assert(addr_size != 0);
    891             if (addr_size)
    892             {
    893                 // Align to a address size boundary first
    894                 uint32_t alignOffset = *offset_ptr % addr_size;
    895                 if (alignOffset)
    896                     offset_ptr += addr_size - alignOffset;
    897             }
    898         }
    899         break;
    900 
    901     default:
    902     break;
    903     }
    904 
    905     // Decode the value part
    906     switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING)
    907     {
    908     case DW_EH_PE_absptr    :
    909         {
    910             addressValue = GetAddress (offset_ptr);
    911 //          if (data_relocs)
    912 //              addressValue = data_relocs->Relocate(*offset_ptr - addr_size, *this, addressValue);
    913         }
    914         break;
    915     case DW_EH_PE_uleb128   : addressValue = GetULEB128(offset_ptr);        break;
    916     case DW_EH_PE_udata2    : addressValue = GetU16(offset_ptr);            break;
    917     case DW_EH_PE_udata4    : addressValue = GetU32(offset_ptr);            break;
    918     case DW_EH_PE_udata8    : addressValue = GetU64(offset_ptr);            break;
    919     case DW_EH_PE_sleb128   : addressValue = GetSLEB128(offset_ptr);        break;
    920     case DW_EH_PE_sdata2    : addressValue = (int16_t)GetU16(offset_ptr);   break;
    921     case DW_EH_PE_sdata4    : addressValue = (int32_t)GetU32(offset_ptr);   break;
    922     case DW_EH_PE_sdata8    : addressValue = (int64_t)GetU64(offset_ptr);   break;
    923     default:
    924     // Unhandled encoding type
    925     assert(eh_ptr_enc);
    926     break;
    927     }
    928 
    929     // Since we promote everything to 64 bit, we may need to sign extend
    930     if (signExtendValue && addr_size < sizeof(baseAddress))
    931     {
    932         uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
    933         if (sign_bit & addressValue)
    934         {
    935             uint64_t mask = ~sign_bit + 1;
    936             addressValue |= mask;
    937         }
    938     }
    939     return baseAddress + addressValue;
    940 }
    941 
    942 size_t
    943 DataExtractor::ExtractBytes (offset_t offset, offset_t length, ByteOrder dst_byte_order, void *dst) const
    944 {
    945     const uint8_t *src = PeekData (offset, length);
    946     if (src)
    947     {
    948         if (dst_byte_order != GetByteOrder())
    949         {
    950             for (uint32_t i=0; i<length; ++i)
    951                 ((uint8_t*)dst)[i] = src[length - i - 1];
    952         }
    953         else
    954             ::memcpy (dst, src, length);
    955         return length;
    956     }
    957     return 0;
    958 }
    959 
    960 // Extract data and swap if needed when doing the copy
    961 lldb::offset_t
    962 DataExtractor::CopyByteOrderedData (offset_t src_offset,
    963                                     offset_t src_len,
    964                                     void *dst_void_ptr,
    965                                     offset_t dst_len,
    966                                     ByteOrder dst_byte_order) const
    967 {
    968     // Validate the source info
    969     if (!ValidOffsetForDataOfSize(src_offset, src_len))
    970         assert (ValidOffsetForDataOfSize(src_offset, src_len));
    971     assert (src_len > 0);
    972     assert (m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
    973 
    974     // Validate the destination info
    975     assert (dst_void_ptr != NULL);
    976     assert (dst_len > 0);
    977     assert (dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
    978 
    979     // Must have valid byte orders set in this object and for destination
    980     if (!(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle) ||
    981         !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
    982         return 0;
    983 
    984     uint32_t i;
    985     uint8_t* dst = (uint8_t*)dst_void_ptr;
    986     const uint8_t* src = (const uint8_t *)PeekData (src_offset, src_len);
    987     if (src)
    988     {
    989         if (dst_len >= src_len)
    990         {
    991             // We are copying the entire value from src into dst.
    992             // Calculate how many, if any, zeroes we need for the most
    993             // significant bytes if "dst_len" is greater than "src_len"...
    994             const size_t num_zeroes = dst_len - src_len;
    995             if (dst_byte_order == eByteOrderBig)
    996             {
    997                 // Big endian, so we lead with zeroes...
    998                 if (num_zeroes > 0)
    999                     ::memset (dst, 0, num_zeroes);
   1000                 // Then either copy or swap the rest
   1001                 if (m_byte_order == eByteOrderBig)
   1002                 {
   1003                     ::memcpy (dst + num_zeroes, src, src_len);
   1004                 }
   1005                 else
   1006                 {
   1007                     for (i=0; i<src_len; ++i)
   1008                         dst[i+num_zeroes] = src[src_len - 1 - i];
   1009                 }
   1010             }
   1011             else
   1012             {
   1013                 // Little endian destination, so we lead the value bytes
   1014                 if (m_byte_order == eByteOrderBig)
   1015                 {
   1016                     for (i=0; i<src_len; ++i)
   1017                         dst[i] = src[src_len - 1 - i];
   1018                 }
   1019                 else
   1020                 {
   1021                     ::memcpy (dst, src, src_len);
   1022                 }
   1023                 // And zero the rest...
   1024                 if (num_zeroes > 0)
   1025                     ::memset (dst + src_len, 0, num_zeroes);
   1026             }
   1027             return src_len;
   1028         }
   1029         else
   1030         {
   1031             // We are only copying some of the value from src into dst..
   1032 
   1033             if (dst_byte_order == eByteOrderBig)
   1034             {
   1035                 // Big endian dst
   1036                 if (m_byte_order == eByteOrderBig)
   1037                 {
   1038                     // Big endian dst, with big endian src
   1039                     ::memcpy (dst, src + (src_len - dst_len), dst_len);
   1040                 }
   1041                 else
   1042                 {
   1043                     // Big endian dst, with little endian src
   1044                     for (i=0; i<dst_len; ++i)
   1045                         dst[i] = src[dst_len - 1 - i];
   1046                 }
   1047             }
   1048             else
   1049             {
   1050                 // Little endian dst
   1051                 if (m_byte_order == eByteOrderBig)
   1052                 {
   1053                     // Little endian dst, with big endian src
   1054                     for (i=0; i<dst_len; ++i)
   1055                         dst[i] = src[src_len - 1 - i];
   1056                 }
   1057                 else
   1058                 {
   1059                     // Little endian dst, with big endian src
   1060                     ::memcpy (dst, src, dst_len);
   1061                 }
   1062             }
   1063             return dst_len;
   1064         }
   1065 
   1066     }
   1067     return 0;
   1068 }
   1069 
   1070 
   1071 //----------------------------------------------------------------------
   1072 // Extracts a variable length NULL terminated C string from
   1073 // the data at the offset pointed to by "offset_ptr".  The
   1074 // "offset_ptr" will be updated with the offset of the byte that
   1075 // follows the NULL terminator byte.
   1076 //
   1077 // If the offset pointed to by "offset_ptr" is out of bounds, or if
   1078 // "length" is non-zero and there aren't enough avaialable
   1079 // bytes, NULL will be returned and "offset_ptr" will not be
   1080 // updated.
   1081 //----------------------------------------------------------------------
   1082 const char*
   1083 DataExtractor::GetCStr (offset_t *offset_ptr) const
   1084 {
   1085     const char *cstr = (const char *)PeekData (*offset_ptr, 1);
   1086     if (cstr)
   1087     {
   1088         const char *cstr_end = cstr;
   1089         const char *end = (const char *)m_end;
   1090         while (cstr_end < end && *cstr_end)
   1091             ++cstr_end;
   1092 
   1093         // Now we are either at the end of the data or we point to the
   1094         // NULL C string terminator with cstr_end...
   1095         if (*cstr_end == '\0')
   1096         {
   1097             // Advance the offset with one extra byte for the NULL terminator
   1098             *offset_ptr += (cstr_end - cstr + 1);
   1099             return cstr;
   1100         }
   1101 
   1102         // We reached the end of the data without finding a NULL C string
   1103         // terminator. Fall through and return NULL otherwise anyone that
   1104         // would have used the result as a C string can wonder into
   1105         // unknown memory...
   1106     }
   1107     return NULL;
   1108 }
   1109 
   1110 //----------------------------------------------------------------------
   1111 // Extracts a NULL terminated C string from the fixed length field of
   1112 // length "len" at the offset pointed to by "offset_ptr".
   1113 // The "offset_ptr" will be updated with the offset of the byte that
   1114 // follows the fixed length field.
   1115 //
   1116 // If the offset pointed to by "offset_ptr" is out of bounds, or if
   1117 // the offset plus the length of the field is out of bounds, or if the
   1118 // field does not contain a NULL terminator byte, NULL will be returned
   1119 // and "offset_ptr" will not be updated.
   1120 //----------------------------------------------------------------------
   1121 const char*
   1122 DataExtractor::GetCStr (offset_t *offset_ptr, offset_t len) const
   1123 {
   1124     const char *cstr = (const char *)PeekData (*offset_ptr, len);
   1125     if (cstr)
   1126     {
   1127         if (memchr (cstr, '\0', len) == NULL)
   1128         {
   1129             return NULL;
   1130         }
   1131         *offset_ptr += len;
   1132         return cstr;
   1133     }
   1134     return NULL;
   1135 }
   1136 
   1137 //------------------------------------------------------------------
   1138 // Peeks at a string in the contained data. No verification is done
   1139 // to make sure the entire string lies within the bounds of this
   1140 // object's data, only "offset" is verified to be a valid offset.
   1141 //
   1142 // Returns a valid C string pointer if "offset" is a valid offset in
   1143 // this object's data, else NULL is returned.
   1144 //------------------------------------------------------------------
   1145 const char *
   1146 DataExtractor::PeekCStr (offset_t offset) const
   1147 {
   1148     return (const char *)PeekData (offset, 1);
   1149 }
   1150 
   1151 //----------------------------------------------------------------------
   1152 // Extracts an unsigned LEB128 number from this object's data
   1153 // starting at the offset pointed to by "offset_ptr". The offset
   1154 // pointed to by "offset_ptr" will be updated with the offset of the
   1155 // byte following the last extracted byte.
   1156 //
   1157 // Returned the extracted integer value.
   1158 //----------------------------------------------------------------------
   1159 uint64_t
   1160 DataExtractor::GetULEB128 (offset_t *offset_ptr) const
   1161 {
   1162     const uint8_t *src = (const uint8_t *)PeekData (*offset_ptr, 1);
   1163     if (src == NULL)
   1164         return 0;
   1165 
   1166     const uint8_t *end = m_end;
   1167 
   1168     if (src < end)
   1169     {
   1170         uint64_t result = *src++;
   1171         if (result >= 0x80)
   1172         {
   1173             result &= 0x7f;
   1174             int shift = 7;
   1175             while (src < end)
   1176             {
   1177                 uint8_t byte = *src++;
   1178                 result |= (byte & 0x7f) << shift;
   1179                 if ((byte & 0x80) == 0)
   1180                     break;
   1181                 shift += 7;
   1182             }
   1183         }
   1184         *offset_ptr = src - m_start;
   1185         return result;
   1186     }
   1187 
   1188     return 0;
   1189 }
   1190 
   1191 //----------------------------------------------------------------------
   1192 // Extracts an signed LEB128 number from this object's data
   1193 // starting at the offset pointed to by "offset_ptr". The offset
   1194 // pointed to by "offset_ptr" will be updated with the offset of the
   1195 // byte following the last extracted byte.
   1196 //
   1197 // Returned the extracted integer value.
   1198 //----------------------------------------------------------------------
   1199 int64_t
   1200 DataExtractor::GetSLEB128 (offset_t *offset_ptr) const
   1201 {
   1202     const uint8_t *src = (const uint8_t *)PeekData (*offset_ptr, 1);
   1203     if (src == NULL)
   1204         return 0;
   1205 
   1206     const uint8_t *end = m_end;
   1207 
   1208     if (src < end)
   1209     {
   1210         int64_t result = 0;
   1211         int shift = 0;
   1212         int size = sizeof (int64_t) * 8;
   1213 
   1214         uint8_t byte = 0;
   1215         int bytecount = 0;
   1216 
   1217         while (src < end)
   1218         {
   1219             bytecount++;
   1220             byte = *src++;
   1221             result |= (byte & 0x7f) << shift;
   1222             shift += 7;
   1223             if ((byte & 0x80) == 0)
   1224                 break;
   1225         }
   1226 
   1227         // Sign bit of byte is 2nd high order bit (0x40)
   1228         if (shift < size && (byte & 0x40))
   1229             result |= - (1 << shift);
   1230 
   1231         *offset_ptr += bytecount;
   1232         return result;
   1233     }
   1234     return 0;
   1235 }
   1236 
   1237 //----------------------------------------------------------------------
   1238 // Skips a ULEB128 number (signed or unsigned) from this object's
   1239 // data starting at the offset pointed to by "offset_ptr". The
   1240 // offset pointed to by "offset_ptr" will be updated with the offset
   1241 // of the byte following the last extracted byte.
   1242 //
   1243 // Returns the number of bytes consumed during the extraction.
   1244 //----------------------------------------------------------------------
   1245 uint32_t
   1246 DataExtractor::Skip_LEB128 (offset_t *offset_ptr) const
   1247 {
   1248     uint32_t bytes_consumed = 0;
   1249     const uint8_t *src = (const uint8_t *)PeekData (*offset_ptr, 1);
   1250     if (src == NULL)
   1251         return 0;
   1252 
   1253     const uint8_t *end = m_end;
   1254 
   1255     if (src < end)
   1256     {
   1257         const uint8_t *src_pos = src;
   1258         while ((src_pos < end) && (*src_pos++ & 0x80))
   1259             ++bytes_consumed;
   1260         *offset_ptr += src_pos - src;
   1261     }
   1262     return bytes_consumed;
   1263 }
   1264 
   1265 static bool
   1266 GetAPInt (const DataExtractor &data, lldb::offset_t *offset_ptr, lldb::offset_t byte_size, llvm::APInt &result)
   1267 {
   1268     llvm::SmallVector<uint64_t, 2> uint64_array;
   1269     lldb::offset_t bytes_left = byte_size;
   1270     uint64_t u64;
   1271     const lldb::ByteOrder byte_order = data.GetByteOrder();
   1272     if (byte_order == lldb::eByteOrderLittle)
   1273     {
   1274         while (bytes_left > 0)
   1275         {
   1276             if (bytes_left >= 8)
   1277             {
   1278                 u64 = data.GetU64(offset_ptr);
   1279                 bytes_left -= 8;
   1280             }
   1281             else
   1282             {
   1283                 u64 = data.GetMaxU64(offset_ptr, (uint32_t)bytes_left);
   1284                 bytes_left = 0;
   1285             }
   1286             uint64_array.push_back(u64);
   1287         }
   1288         result = llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array));
   1289         return true;
   1290     }
   1291     else if (byte_order == lldb::eByteOrderBig)
   1292     {
   1293         lldb::offset_t be_offset = *offset_ptr + byte_size;
   1294         lldb::offset_t temp_offset;
   1295         while (bytes_left > 0)
   1296         {
   1297             if (bytes_left >= 8)
   1298             {
   1299                 be_offset -= 8;
   1300                 temp_offset = be_offset;
   1301                 u64 = data.GetU64(&temp_offset);
   1302                 bytes_left -= 8;
   1303             }
   1304             else
   1305             {
   1306                 be_offset -= bytes_left;
   1307                 temp_offset = be_offset;
   1308                 u64 = data.GetMaxU64(&temp_offset, (uint32_t)bytes_left);
   1309                 bytes_left = 0;
   1310             }
   1311             uint64_array.push_back(u64);
   1312         }
   1313         *offset_ptr += byte_size;
   1314         result = llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array));
   1315         return true;
   1316     }
   1317     return false;
   1318 }
   1319 
   1320 static lldb::offset_t
   1321 DumpAPInt (Stream *s, const DataExtractor &data, lldb::offset_t offset, lldb::offset_t byte_size, bool is_signed, unsigned radix)
   1322 {
   1323     llvm::APInt apint;
   1324     if (GetAPInt (data, &offset, byte_size, apint))
   1325     {
   1326         std::string apint_str(apint.toString(radix, is_signed));
   1327         switch (radix)
   1328         {
   1329             case 2:
   1330                 s->Write ("0b", 2);
   1331                 break;
   1332             case 8:
   1333                 s->Write ("0", 1);
   1334                 break;
   1335             case 10:
   1336                 break;
   1337         }
   1338         s->Write(apint_str.c_str(), apint_str.size());
   1339     }
   1340     return offset;
   1341 }
   1342 
   1343 static float half2float (uint16_t half)
   1344 {
   1345     union{ float       f; uint32_t    u;}u;
   1346     int32_t v = (int16_t) half;
   1347 
   1348     if( 0 == (v & 0x7c00))
   1349     {
   1350         u.u = v & 0x80007FFFU;
   1351         return u.f * 0x1.0p125f;
   1352     }
   1353 
   1354     v <<= 13;
   1355     u.u = v | 0x70000000U;
   1356     return u.f * 0x1.0p-112f;
   1357 }
   1358 
   1359 lldb::offset_t
   1360 DataExtractor::Dump (Stream *s,
   1361                      offset_t start_offset,
   1362                      lldb::Format item_format,
   1363                      size_t item_byte_size,
   1364                      size_t item_count,
   1365                      size_t num_per_line,
   1366                      uint64_t base_addr,
   1367                      uint32_t item_bit_size,     // If zero, this is not a bitfield value, if non-zero, the value is a bitfield
   1368                      uint32_t item_bit_offset,    // If "item_bit_size" is non-zero, this is the shift amount to apply to a bitfield
   1369                      ExecutionContextScope *exe_scope) const
   1370 {
   1371     if (s == NULL)
   1372         return start_offset;
   1373 
   1374     if (item_format == eFormatPointer)
   1375     {
   1376         if (item_byte_size != 4 && item_byte_size != 8)
   1377             item_byte_size = s->GetAddressByteSize();
   1378     }
   1379 
   1380     offset_t offset = start_offset;
   1381 
   1382     if (item_format == eFormatInstruction)
   1383     {
   1384         TargetSP target_sp;
   1385         if (exe_scope)
   1386             target_sp = exe_scope->CalculateTarget();
   1387         if (target_sp)
   1388         {
   1389             DisassemblerSP disassembler_sp (Disassembler::FindPlugin(target_sp->GetArchitecture(), NULL,  NULL));
   1390             if (disassembler_sp)
   1391             {
   1392                 lldb::addr_t addr = base_addr + start_offset;
   1393                 lldb_private::Address so_addr;
   1394 				bool data_from_file = true;
   1395                 if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr))
   1396                 {
   1397                     data_from_file = false;
   1398                 }
   1399                 else
   1400                 {
   1401                     if (target_sp->GetSectionLoadList().IsEmpty() || !target_sp->GetImages().ResolveFileAddress(addr, so_addr))
   1402                         so_addr.SetRawAddress(addr);
   1403                 }
   1404 
   1405                 size_t bytes_consumed = disassembler_sp->DecodeInstructions (so_addr, *this, start_offset, item_count, false, data_from_file);
   1406 
   1407                 if (bytes_consumed)
   1408                 {
   1409                     offset += bytes_consumed;
   1410                     const bool show_address = base_addr != LLDB_INVALID_ADDRESS;
   1411                     const bool show_bytes = true;
   1412                     ExecutionContext exe_ctx;
   1413                     exe_scope->CalculateExecutionContext(exe_ctx);
   1414                     disassembler_sp->GetInstructionList().Dump (s,  show_address, show_bytes, &exe_ctx);
   1415 
   1416                     // FIXME: The DisassemblerLLVMC has a reference cycle and won't go away if it has any active instructions.
   1417                     // I'll fix that but for now, just clear the list and it will go away nicely.
   1418                     disassembler_sp->GetInstructionList().Clear();
   1419                 }
   1420             }
   1421         }
   1422         else
   1423             s->Printf ("invalid target");
   1424 
   1425         return offset;
   1426     }
   1427 
   1428     if ((item_format == eFormatOSType || item_format == eFormatAddressInfo) && item_byte_size > 8)
   1429         item_format = eFormatHex;
   1430 
   1431     lldb::offset_t line_start_offset = start_offset;
   1432     for (uint32_t count = 0; ValidOffset(offset) && count < item_count; ++count)
   1433     {
   1434         if ((count % num_per_line) == 0)
   1435         {
   1436             if (count > 0)
   1437             {
   1438                 if (item_format == eFormatBytesWithASCII && offset > line_start_offset)
   1439                 {
   1440                     s->Printf("%*s", static_cast<int>((num_per_line - (offset - line_start_offset)) * 3 + 2), "");
   1441                     Dump(s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, LLDB_INVALID_OFFSET, LLDB_INVALID_ADDRESS, 0, 0);
   1442                 }
   1443                 s->EOL();
   1444             }
   1445             if (base_addr != LLDB_INVALID_ADDRESS)
   1446                 s->Printf ("0x%8.8" PRIx64 ": ", (uint64_t)(base_addr + (offset - start_offset)));
   1447             line_start_offset = offset;
   1448         }
   1449         else
   1450         if (item_format != eFormatChar &&
   1451             item_format != eFormatCharPrintable &&
   1452             item_format != eFormatCharArray &&
   1453             count > 0)
   1454         {
   1455             s->PutChar(' ');
   1456         }
   1457 
   1458         uint32_t i;
   1459         switch (item_format)
   1460         {
   1461         case eFormatBoolean:
   1462             if (item_byte_size <= 8)
   1463                 s->Printf ("%s", GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset) ? "true" : "false");
   1464             else
   1465             {
   1466                 s->Printf("error: unsupported byte size (%zu) for boolean format", item_byte_size);
   1467                 return offset;
   1468             }
   1469             break;
   1470 
   1471         case eFormatBinary:
   1472             if (item_byte_size <= 8)
   1473             {
   1474                 uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset);
   1475                 // Avoid std::bitset<64>::to_string() since it is missing in
   1476                 // earlier C++ libraries
   1477                 std::string binary_value(64, '0');
   1478                 std::bitset<64> bits(uval64);
   1479                 for (i = 0; i < 64; ++i)
   1480                     if (bits[i])
   1481                         binary_value[64 - 1 - i] = '1';
   1482                 if (item_bit_size > 0)
   1483                     s->Printf("0b%s", binary_value.c_str() + 64 - item_bit_size);
   1484                 else if (item_byte_size > 0 && item_byte_size <= 8)
   1485                     s->Printf("0b%s", binary_value.c_str() + 64 - item_byte_size * 8);
   1486             }
   1487             else
   1488             {
   1489                 const bool is_signed = false;
   1490                 const unsigned radix = 2;
   1491                 offset = DumpAPInt (s, *this, offset, item_byte_size, is_signed, radix);
   1492             }
   1493             break;
   1494 
   1495         case eFormatBytes:
   1496         case eFormatBytesWithASCII:
   1497             for (i=0; i<item_byte_size; ++i)
   1498             {
   1499                 s->Printf ("%2.2x", GetU8(&offset));
   1500             }
   1501             // Put an extra space between the groups of bytes if more than one
   1502             // is being dumped in a group (item_byte_size is more than 1).
   1503             if (item_byte_size > 1)
   1504                 s->PutChar(' ');
   1505             break;
   1506 
   1507         case eFormatChar:
   1508         case eFormatCharPrintable:
   1509         case eFormatCharArray:
   1510             {
   1511                 // If we are only printing one character surround it with single
   1512                 // quotes
   1513                 if (item_count == 1 && item_format == eFormatChar)
   1514                     s->PutChar('\'');
   1515 
   1516                 const uint64_t ch = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset);
   1517                 if (isprint(ch))
   1518                     s->Printf ("%c", (char)ch);
   1519                 else if (item_format != eFormatCharPrintable)
   1520                 {
   1521                     switch (ch)
   1522                     {
   1523                     case '\033': s->Printf ("\\e"); break;
   1524                     case '\a': s->Printf ("\\a"); break;
   1525                     case '\b': s->Printf ("\\b"); break;
   1526                     case '\f': s->Printf ("\\f"); break;
   1527                     case '\n': s->Printf ("\\n"); break;
   1528                     case '\r': s->Printf ("\\r"); break;
   1529                     case '\t': s->Printf ("\\t"); break;
   1530                     case '\v': s->Printf ("\\v"); break;
   1531                     case '\0': s->Printf ("\\0"); break;
   1532                     default:
   1533                         if (item_byte_size == 1)
   1534                             s->Printf ("\\x%2.2x", (uint8_t)ch);
   1535                         else
   1536                             s->Printf ("%" PRIu64, ch);
   1537                         break;
   1538                     }
   1539                 }
   1540                 else
   1541                 {
   1542                     s->PutChar(NON_PRINTABLE_CHAR);
   1543                 }
   1544 
   1545                 // If we are only printing one character surround it with single quotes
   1546                 if (item_count == 1 && item_format == eFormatChar)
   1547                     s->PutChar('\'');
   1548             }
   1549             break;
   1550 
   1551         case eFormatEnum:       // Print enum value as a signed integer when we don't get the enum type
   1552         case eFormatDecimal:
   1553             if (item_byte_size <= 8)
   1554                 s->Printf ("%" PRId64, GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
   1555             else
   1556             {
   1557                 const bool is_signed = true;
   1558                 const unsigned radix = 10;
   1559                 offset = DumpAPInt (s, *this, offset, item_byte_size, is_signed, radix);
   1560             }
   1561             break;
   1562 
   1563         case eFormatUnsigned:
   1564             if (item_byte_size <= 8)
   1565                 s->Printf ("%" PRIu64, GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
   1566             else
   1567             {
   1568                 const bool is_signed = false;
   1569                 const unsigned radix = 10;
   1570                 offset = DumpAPInt (s, *this, offset, item_byte_size, is_signed, radix);
   1571             }
   1572             break;
   1573 
   1574         case eFormatOctal:
   1575             if (item_byte_size <= 8)
   1576                 s->Printf ("0%" PRIo64, GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
   1577             else
   1578             {
   1579                 const bool is_signed = false;
   1580                 const unsigned radix = 8;
   1581                 offset = DumpAPInt (s, *this, offset, item_byte_size, is_signed, radix);
   1582             }
   1583             break;
   1584 
   1585         case eFormatOSType:
   1586             {
   1587                 uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset);
   1588                 s->PutChar('\'');
   1589                 for (i=0; i<item_byte_size; ++i)
   1590                 {
   1591                     uint8_t ch = (uint8_t)(uval64 >> ((item_byte_size - i - 1) * 8));
   1592                     if (isprint(ch))
   1593                         s->Printf ("%c", ch);
   1594                     else
   1595                     {
   1596                         switch (ch)
   1597                         {
   1598                         case '\033': s->Printf ("\\e"); break;
   1599                         case '\a': s->Printf ("\\a"); break;
   1600                         case '\b': s->Printf ("\\b"); break;
   1601                         case '\f': s->Printf ("\\f"); break;
   1602                         case '\n': s->Printf ("\\n"); break;
   1603                         case '\r': s->Printf ("\\r"); break;
   1604                         case '\t': s->Printf ("\\t"); break;
   1605                         case '\v': s->Printf ("\\v"); break;
   1606                         case '\0': s->Printf ("\\0"); break;
   1607                         default:   s->Printf ("\\x%2.2x", ch); break;
   1608                         }
   1609                     }
   1610                 }
   1611                 s->PutChar('\'');
   1612             }
   1613             break;
   1614 
   1615         case eFormatCString:
   1616             {
   1617                 const char *cstr = GetCStr(&offset);
   1618 
   1619                 if (!cstr)
   1620                 {
   1621                     s->Printf("NULL");
   1622                     offset = LLDB_INVALID_OFFSET;
   1623                 }
   1624                 else
   1625                 {
   1626                     s->PutChar('\"');
   1627 
   1628                     while (const char c = *cstr)
   1629                     {
   1630                         if (isprint(c))
   1631                         {
   1632                             s->PutChar(c);
   1633                         }
   1634                         else
   1635                         {
   1636                             switch (c)
   1637                             {
   1638                             case '\033': s->Printf ("\\e"); break;
   1639                             case '\a': s->Printf ("\\a"); break;
   1640                             case '\b': s->Printf ("\\b"); break;
   1641                             case '\f': s->Printf ("\\f"); break;
   1642                             case '\n': s->Printf ("\\n"); break;
   1643                             case '\r': s->Printf ("\\r"); break;
   1644                             case '\t': s->Printf ("\\t"); break;
   1645                             case '\v': s->Printf ("\\v"); break;
   1646                             default:   s->Printf ("\\x%2.2x", c); break;
   1647                             }
   1648                         }
   1649 
   1650                         ++cstr;
   1651                     }
   1652 
   1653                     s->PutChar('\"');
   1654                 }
   1655             }
   1656             break;
   1657 
   1658 
   1659         case eFormatPointer:
   1660             s->Address(GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset), sizeof (addr_t));
   1661             break;
   1662 
   1663 
   1664         case eFormatComplexInteger:
   1665             {
   1666                 size_t complex_int_byte_size = item_byte_size / 2;
   1667 
   1668                 if (complex_int_byte_size <= 8)
   1669                 {
   1670                     s->Printf("%" PRIu64, GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
   1671                     s->Printf(" + %" PRIu64 "i", GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
   1672                 }
   1673                 else
   1674                 {
   1675                     s->Printf("error: unsupported byte size (%zu) for complex integer format", item_byte_size);
   1676                     return offset;
   1677                 }
   1678             }
   1679             break;
   1680 
   1681         case eFormatComplex:
   1682             if (sizeof(float) * 2 == item_byte_size)
   1683             {
   1684                 float f32_1 = GetFloat (&offset);
   1685                 float f32_2 = GetFloat (&offset);
   1686 
   1687                 s->Printf ("%g + %gi", f32_1, f32_2);
   1688                 break;
   1689             }
   1690             else if (sizeof(double) * 2 == item_byte_size)
   1691             {
   1692                 double d64_1 = GetDouble (&offset);
   1693                 double d64_2 = GetDouble (&offset);
   1694 
   1695                 s->Printf ("%lg + %lgi", d64_1, d64_2);
   1696                 break;
   1697             }
   1698             else if (sizeof(long double) * 2 == item_byte_size)
   1699             {
   1700                 long double ld64_1 = GetLongDouble (&offset);
   1701                 long double ld64_2 = GetLongDouble (&offset);
   1702                 s->Printf ("%Lg + %Lgi", ld64_1, ld64_2);
   1703                 break;
   1704             }
   1705             else
   1706             {
   1707                 s->Printf("error: unsupported byte size (%zu) for complex float format", item_byte_size);
   1708                 return offset;
   1709             }
   1710             break;
   1711 
   1712         default:
   1713         case eFormatDefault:
   1714         case eFormatHex:
   1715         case eFormatHexUppercase:
   1716             {
   1717                 bool wantsuppercase  = (item_format == eFormatHexUppercase);
   1718                 if (item_byte_size <= 8)
   1719                 {
   1720                     s->Printf(wantsuppercase ? "0x%*.*" PRIX64 : "0x%*.*" PRIx64, (int)(2 * item_byte_size), (int)(2 * item_byte_size), GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
   1721                 }
   1722                 else
   1723                 {
   1724                     assert (item_bit_size == 0 && item_bit_offset == 0);
   1725                     s->PutCString("0x");
   1726                     const uint8_t *bytes = (const uint8_t* )GetData(&offset, item_byte_size);
   1727                     if (bytes)
   1728                     {
   1729                         uint32_t idx;
   1730                         if (m_byte_order == eByteOrderBig)
   1731                         {
   1732                             for (idx = 0; idx < item_byte_size; ++idx)
   1733                                 s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[idx]);
   1734                         }
   1735                         else
   1736                         {
   1737                             for (idx = 0; idx < item_byte_size; ++idx)
   1738                                 s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[item_byte_size - 1 - idx]);
   1739                         }
   1740                     }
   1741                 }
   1742             }
   1743             break;
   1744 
   1745         case eFormatFloat:
   1746             {
   1747                 TargetSP target_sp;
   1748                 bool used_apfloat = false;
   1749                 if (exe_scope)
   1750                     target_sp = exe_scope->CalculateTarget();
   1751                 if (target_sp)
   1752                 {
   1753                     ClangASTContext *clang_ast = target_sp->GetScratchClangASTContext();
   1754                     if (clang_ast)
   1755                     {
   1756                         clang::ASTContext *ast = clang_ast->getASTContext();
   1757                         if (ast)
   1758                         {
   1759                             llvm::SmallVector<char, 256> sv;
   1760                             // Show full precision when printing float values
   1761                             const unsigned format_precision = 0;
   1762                             const unsigned format_max_padding = 100;
   1763                             size_t item_bit_size = item_byte_size * 8;
   1764 
   1765                             if (item_bit_size == ast->getTypeSize(ast->FloatTy))
   1766                             {
   1767                                 llvm::APInt apint(item_bit_size, this->GetMaxU64(&offset, item_byte_size));
   1768                                 llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->FloatTy), apint);
   1769                                 apfloat.toString(sv, format_precision, format_max_padding);
   1770                             }
   1771                             else if (item_bit_size == ast->getTypeSize(ast->DoubleTy))
   1772                             {
   1773                                 llvm::APInt apint;
   1774                                 if (GetAPInt (*this, &offset, item_byte_size, apint))
   1775                                 {
   1776                                     llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->DoubleTy), apint);
   1777                                     apfloat.toString(sv, format_precision, format_max_padding);
   1778                                 }
   1779                             }
   1780                             else if (item_bit_size == ast->getTypeSize(ast->LongDoubleTy))
   1781                             {
   1782                                 llvm::APInt apint;
   1783                                 switch (target_sp->GetArchitecture().GetCore())
   1784                                 {
   1785                                     case ArchSpec::eCore_x86_32_i386:
   1786                                     case ArchSpec::eCore_x86_32_i486:
   1787                                     case ArchSpec::eCore_x86_32_i486sx:
   1788                                     case ArchSpec::eCore_x86_64_x86_64:
   1789                                         // clang will assert when contructing the apfloat if we use a 16 byte integer value
   1790                                         if (GetAPInt (*this, &offset, 10, apint))
   1791                                         {
   1792                                             llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->LongDoubleTy), apint);
   1793                                             apfloat.toString(sv, format_precision, format_max_padding);
   1794                                         }
   1795                                         break;
   1796 
   1797                                     default:
   1798                                         if (GetAPInt (*this, &offset, item_byte_size, apint))
   1799                                         {
   1800                                             llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->LongDoubleTy), apint);
   1801                                             apfloat.toString(sv, format_precision, format_max_padding);
   1802                                         }
   1803                                         break;
   1804                                 }
   1805                             }
   1806                             else if (item_bit_size == ast->getTypeSize(ast->HalfTy))
   1807                             {
   1808                                 llvm::APInt apint(item_bit_size, this->GetU16(&offset));
   1809                                 llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->HalfTy), apint);
   1810                                 apfloat.toString(sv, format_precision, format_max_padding);
   1811                             }
   1812 
   1813                             if (!sv.empty())
   1814                             {
   1815                                 s->Printf("%*.*s", (int)sv.size(), (int)sv.size(), sv.data());
   1816                                 used_apfloat = true;
   1817                             }
   1818                         }
   1819                     }
   1820                 }
   1821 
   1822                 if (!used_apfloat)
   1823                 {
   1824                     std::ostringstream ss;
   1825                     if (item_byte_size == sizeof(float) || item_byte_size == 2)
   1826                     {
   1827                         float f;
   1828                         if (item_byte_size == 2)
   1829                         {
   1830                             uint16_t half = this->GetU16(&offset);
   1831                             f = half2float(half);
   1832                         }
   1833                         else
   1834                         {
   1835                             f = GetFloat (&offset);
   1836                         }
   1837                         ss.precision(std::numeric_limits<float>::digits10);
   1838                         ss << f;
   1839                     }
   1840                     else if (item_byte_size == sizeof(double))
   1841                     {
   1842                         ss.precision(std::numeric_limits<double>::digits10);
   1843                         ss << GetDouble(&offset);
   1844                     }
   1845                     else if (item_byte_size == sizeof(long double))
   1846                     {
   1847                         ss.precision(std::numeric_limits<long double>::digits10);
   1848                         ss << GetLongDouble(&offset);
   1849                     }
   1850                     else
   1851                     {
   1852                         s->Printf("error: unsupported byte size (%zu) for float format", item_byte_size);
   1853                         return offset;
   1854                     }
   1855                     ss.flush();
   1856                     s->Printf("%s", ss.str().c_str());
   1857                 }
   1858             }
   1859             break;
   1860 
   1861         case eFormatUnicode16:
   1862             s->Printf("U+%4.4x", GetU16 (&offset));
   1863             break;
   1864 
   1865         case eFormatUnicode32:
   1866             s->Printf("U+0x%8.8x", GetU32 (&offset));
   1867             break;
   1868 
   1869         case eFormatAddressInfo:
   1870             {
   1871                 addr_t addr = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset);
   1872                 s->Printf("0x%*.*" PRIx64, (int)(2 * item_byte_size), (int)(2 * item_byte_size), addr);
   1873                 if (exe_scope)
   1874                 {
   1875                     TargetSP target_sp (exe_scope->CalculateTarget());
   1876                     lldb_private::Address so_addr;
   1877                     if (target_sp)
   1878                     {
   1879                         if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr))
   1880                         {
   1881                             s->PutChar(' ');
   1882                             so_addr.Dump (s,
   1883                                           exe_scope,
   1884                                           Address::DumpStyleResolvedDescription,
   1885                                           Address::DumpStyleModuleWithFileAddress);
   1886                         }
   1887                         else
   1888                         {
   1889                             so_addr.SetOffset(addr);
   1890                             so_addr.Dump (s, exe_scope, Address::DumpStyleResolvedPointerDescription);
   1891                         }
   1892                     }
   1893                 }
   1894             }
   1895             break;
   1896 
   1897         case eFormatHexFloat:
   1898             if (sizeof(float) == item_byte_size)
   1899             {
   1900                 char float_cstr[256];
   1901                 llvm::APFloat ap_float (GetFloat (&offset));
   1902                 ap_float.convertToHexString (float_cstr, 0, false, llvm::APFloat::rmNearestTiesToEven);
   1903                 s->Printf ("%s", float_cstr);
   1904                 break;
   1905             }
   1906             else if (sizeof(double) == item_byte_size)
   1907             {
   1908                 char float_cstr[256];
   1909                 llvm::APFloat ap_float (GetDouble (&offset));
   1910                 ap_float.convertToHexString (float_cstr, 0, false, llvm::APFloat::rmNearestTiesToEven);
   1911                 s->Printf ("%s", float_cstr);
   1912                 break;
   1913             }
   1914             else
   1915             {
   1916                 s->Printf("error: unsupported byte size (%zu) for hex float format", item_byte_size);
   1917                 return offset;
   1918             }
   1919             break;
   1920 
   1921 // please keep the single-item formats below in sync with FormatManager::GetSingleItemFormat
   1922 // if you fail to do so, users will start getting different outputs depending on internal
   1923 // implementation details they should not care about ||
   1924         case eFormatVectorOfChar:               //   ||
   1925             s->PutChar('{');                    //   \/
   1926             offset = Dump (s, offset, eFormatCharArray, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
   1927             s->PutChar('}');
   1928             break;
   1929 
   1930         case eFormatVectorOfSInt8:
   1931             s->PutChar('{');
   1932             offset = Dump (s, offset, eFormatDecimal, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
   1933             s->PutChar('}');
   1934             break;
   1935 
   1936         case eFormatVectorOfUInt8:
   1937             s->PutChar('{');
   1938             offset = Dump (s, offset, eFormatHex, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
   1939             s->PutChar('}');
   1940             break;
   1941 
   1942         case eFormatVectorOfSInt16:
   1943             s->PutChar('{');
   1944             offset = Dump (s, offset, eFormatDecimal, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0);
   1945             s->PutChar('}');
   1946             break;
   1947 
   1948         case eFormatVectorOfUInt16:
   1949             s->PutChar('{');
   1950             offset = Dump (s, offset, eFormatHex,     sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0);
   1951             s->PutChar('}');
   1952             break;
   1953 
   1954         case eFormatVectorOfSInt32:
   1955             s->PutChar('{');
   1956             offset = Dump (s, offset, eFormatDecimal, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0);
   1957             s->PutChar('}');
   1958             break;
   1959 
   1960         case eFormatVectorOfUInt32:
   1961             s->PutChar('{');
   1962             offset = Dump (s, offset, eFormatHex,     sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0);
   1963             s->PutChar('}');
   1964             break;
   1965 
   1966         case eFormatVectorOfSInt64:
   1967             s->PutChar('{');
   1968             offset = Dump (s, offset, eFormatDecimal, sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0);
   1969             s->PutChar('}');
   1970             break;
   1971 
   1972         case eFormatVectorOfUInt64:
   1973             s->PutChar('{');
   1974             offset = Dump (s, offset, eFormatHex,     sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0);
   1975             s->PutChar('}');
   1976             break;
   1977 
   1978         case eFormatVectorOfFloat32:
   1979             s->PutChar('{');
   1980             offset = Dump (s, offset, eFormatFloat,       4, item_byte_size / 4, item_byte_size / 4, LLDB_INVALID_ADDRESS, 0, 0);
   1981             s->PutChar('}');
   1982             break;
   1983 
   1984         case eFormatVectorOfFloat64:
   1985             s->PutChar('{');
   1986             offset = Dump (s, offset, eFormatFloat,       8, item_byte_size / 8, item_byte_size / 8, LLDB_INVALID_ADDRESS, 0, 0);
   1987             s->PutChar('}');
   1988             break;
   1989 
   1990         case eFormatVectorOfUInt128:
   1991             s->PutChar('{');
   1992             offset = Dump (s, offset, eFormatHex, 16, item_byte_size / 16, item_byte_size / 16, LLDB_INVALID_ADDRESS, 0, 0);
   1993             s->PutChar('}');
   1994             break;
   1995         }
   1996     }
   1997 
   1998     if (item_format == eFormatBytesWithASCII && offset > line_start_offset)
   1999     {
   2000         s->Printf("%*s", static_cast<int>((num_per_line - (offset - line_start_offset)) * 3 + 2), "");
   2001         Dump(s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, LLDB_INVALID_OFFSET, LLDB_INVALID_ADDRESS, 0, 0);
   2002     }
   2003     return offset;  // Return the offset at which we ended up
   2004 }
   2005 
   2006 //----------------------------------------------------------------------
   2007 // Dumps bytes from this object's data to the stream "s" starting
   2008 // "start_offset" bytes into this data, and ending with the byte
   2009 // before "end_offset". "base_addr" will be added to the offset
   2010 // into the dumped data when showing the offset into the data in the
   2011 // output information. "num_per_line" objects of type "type" will
   2012 // be dumped with the option to override the format for each object
   2013 // with "type_format". "type_format" is a printf style formatting
   2014 // string. If "type_format" is NULL, then an appropriate format
   2015 // string will be used for the supplied "type". If the stream "s"
   2016 // is NULL, then the output will be send to Log().
   2017 //----------------------------------------------------------------------
   2018 lldb::offset_t
   2019 DataExtractor::PutToLog
   2020 (
   2021     Log *log,
   2022     offset_t start_offset,
   2023     offset_t length,
   2024     uint64_t base_addr,
   2025     uint32_t num_per_line,
   2026     DataExtractor::Type type,
   2027     const char *format
   2028 ) const
   2029 {
   2030     if (log == NULL)
   2031         return start_offset;
   2032 
   2033     offset_t offset;
   2034     offset_t end_offset;
   2035     uint32_t count;
   2036     StreamString sstr;
   2037     for (offset = start_offset, end_offset = offset + length, count = 0; ValidOffset(offset) && offset < end_offset; ++count)
   2038     {
   2039         if ((count % num_per_line) == 0)
   2040         {
   2041             // Print out any previous string
   2042             if (sstr.GetSize() > 0)
   2043             {
   2044                 log->Printf("%s", sstr.GetData());
   2045                 sstr.Clear();
   2046             }
   2047             // Reset string offset and fill the current line string with address:
   2048             if (base_addr != LLDB_INVALID_ADDRESS)
   2049                 sstr.Printf("0x%8.8" PRIx64 ":", (uint64_t)(base_addr + (offset - start_offset)));
   2050         }
   2051 
   2052         switch (type)
   2053         {
   2054             case TypeUInt8:   sstr.Printf (format ? format : " %2.2x", GetU8(&offset)); break;
   2055             case TypeChar:
   2056                 {
   2057                     char ch = GetU8(&offset);
   2058                     sstr.Printf (format ? format : " %c",    isprint(ch) ? ch : ' ');
   2059                 }
   2060                 break;
   2061             case TypeUInt16:  sstr.Printf (format ? format : " %4.4x",       GetU16(&offset)); break;
   2062             case TypeUInt32:  sstr.Printf (format ? format : " %8.8x",       GetU32(&offset)); break;
   2063             case TypeUInt64:  sstr.Printf (format ? format : " %16.16" PRIx64,   GetU64(&offset)); break;
   2064             case TypePointer: sstr.Printf (format ? format : " 0x%" PRIx64,      GetAddress(&offset)); break;
   2065             case TypeULEB128: sstr.Printf (format ? format : " 0x%" PRIx64,      GetULEB128(&offset)); break;
   2066             case TypeSLEB128: sstr.Printf (format ? format : " %" PRId64,        GetSLEB128(&offset)); break;
   2067         }
   2068     }
   2069 
   2070     if (sstr.GetSize() > 0)
   2071         log->Printf("%s", sstr.GetData());
   2072 
   2073     return offset;  // Return the offset at which we ended up
   2074 }
   2075 
   2076 //----------------------------------------------------------------------
   2077 // DumpUUID
   2078 //
   2079 // Dump out a UUID starting at 'offset' bytes into the buffer
   2080 //----------------------------------------------------------------------
   2081 void
   2082 DataExtractor::DumpUUID (Stream *s, offset_t offset) const
   2083 {
   2084     if (s)
   2085     {
   2086         const uint8_t *uuid_data = PeekData(offset, 16);
   2087         if ( uuid_data )
   2088         {
   2089             lldb_private::UUID uuid(uuid_data, 16);
   2090             uuid.Dump(s);
   2091         }
   2092         else
   2093         {
   2094             s->Printf("<not enough data for UUID at offset 0x%8.8" PRIx64 ">", offset);
   2095         }
   2096     }
   2097 }
   2098 
   2099 void
   2100 DataExtractor::DumpHexBytes (Stream *s,
   2101                              const void *src,
   2102                              size_t src_len,
   2103                              uint32_t bytes_per_line,
   2104                              addr_t base_addr)
   2105 {
   2106     DataExtractor data (src, src_len, eByteOrderLittle, 4);
   2107     data.Dump (s,
   2108                0,               // Offset into "src"
   2109                eFormatBytes,    // Dump as hex bytes
   2110                1,               // Size of each item is 1 for single bytes
   2111                src_len,         // Number of bytes
   2112                bytes_per_line,  // Num bytes per line
   2113                base_addr,       // Base address
   2114                0, 0);           // Bitfield info
   2115 }
   2116 
   2117 size_t
   2118 DataExtractor::Copy (DataExtractor &dest_data) const
   2119 {
   2120     if (m_data_sp.get())
   2121     {
   2122         // we can pass along the SP to the data
   2123         dest_data.SetData(m_data_sp);
   2124     }
   2125     else
   2126     {
   2127         const uint8_t *base_ptr = m_start;
   2128         size_t data_size = GetByteSize();
   2129         dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
   2130     }
   2131     return GetByteSize();
   2132 }
   2133 
   2134 bool
   2135 DataExtractor::Append(DataExtractor& rhs)
   2136 {
   2137     if (rhs.GetByteOrder() != GetByteOrder())
   2138         return false;
   2139 
   2140     if (rhs.GetByteSize() == 0)
   2141         return true;
   2142 
   2143     if (GetByteSize() == 0)
   2144         return (rhs.Copy(*this) > 0);
   2145 
   2146     size_t bytes = GetByteSize() + rhs.GetByteSize();
   2147 
   2148     DataBufferHeap *buffer_heap_ptr = NULL;
   2149     DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
   2150 
   2151     if (buffer_sp.get() == NULL || buffer_heap_ptr == NULL)
   2152         return false;
   2153 
   2154     uint8_t* bytes_ptr = buffer_heap_ptr->GetBytes();
   2155 
   2156     memcpy(bytes_ptr, GetDataStart(), GetByteSize());
   2157     memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
   2158 
   2159     SetData(buffer_sp);
   2160 
   2161     return true;
   2162 }
   2163 
   2164 bool
   2165 DataExtractor::Append(void* buf, offset_t length)
   2166 {
   2167     if (buf == NULL)
   2168         return false;
   2169 
   2170     if (length == 0)
   2171         return true;
   2172 
   2173     size_t bytes = GetByteSize() + length;
   2174 
   2175     DataBufferHeap *buffer_heap_ptr = NULL;
   2176     DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
   2177 
   2178     if (buffer_sp.get() == NULL || buffer_heap_ptr == NULL)
   2179         return false;
   2180 
   2181     uint8_t* bytes_ptr = buffer_heap_ptr->GetBytes();
   2182 
   2183     if (GetByteSize() > 0)
   2184         memcpy(bytes_ptr, GetDataStart(), GetByteSize());
   2185 
   2186     memcpy(bytes_ptr + GetByteSize(), buf, length);
   2187 
   2188     SetData(buffer_sp);
   2189 
   2190     return true;
   2191 }
   2192