1 //===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "GDBRemoteRegisterContext.h" 11 12 // C Includes 13 // C++ Includes 14 // Other libraries and framework includes 15 #include "lldb/Core/DataBufferHeap.h" 16 #include "lldb/Core/DataExtractor.h" 17 #include "lldb/Core/RegisterValue.h" 18 #include "lldb/Core/Scalar.h" 19 #include "lldb/Core/StreamString.h" 20 #include "lldb/Target/ExecutionContext.h" 21 #include "lldb/Utility/Utils.h" 22 // Project includes 23 #include "Utility/StringExtractorGDBRemote.h" 24 #include "ProcessGDBRemote.h" 25 #include "ProcessGDBRemoteLog.h" 26 #include "ThreadGDBRemote.h" 27 #include "Utility/ARM_GCC_Registers.h" 28 #include "Utility/ARM_DWARF_Registers.h" 29 30 using namespace lldb; 31 using namespace lldb_private; 32 33 //---------------------------------------------------------------------- 34 // GDBRemoteRegisterContext constructor 35 //---------------------------------------------------------------------- 36 GDBRemoteRegisterContext::GDBRemoteRegisterContext 37 ( 38 ThreadGDBRemote &thread, 39 uint32_t concrete_frame_idx, 40 GDBRemoteDynamicRegisterInfo ®_info, 41 bool read_all_at_once 42 ) : 43 RegisterContext (thread, concrete_frame_idx), 44 m_reg_info (reg_info), 45 m_reg_valid (), 46 m_reg_data (), 47 m_read_all_at_once (read_all_at_once) 48 { 49 // Resize our vector of bools to contain one bool for every register. 50 // We will use these boolean values to know when a register value 51 // is valid in m_reg_data. 52 m_reg_valid.resize (reg_info.GetNumRegisters()); 53 54 // Make a heap based buffer that is big enough to store all registers 55 DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0)); 56 m_reg_data.SetData (reg_data_sp); 57 58 } 59 60 //---------------------------------------------------------------------- 61 // Destructor 62 //---------------------------------------------------------------------- 63 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() 64 { 65 } 66 67 void 68 GDBRemoteRegisterContext::InvalidateAllRegisters () 69 { 70 SetAllRegisterValid (false); 71 } 72 73 void 74 GDBRemoteRegisterContext::SetAllRegisterValid (bool b) 75 { 76 std::vector<bool>::iterator pos, end = m_reg_valid.end(); 77 for (pos = m_reg_valid.begin(); pos != end; ++pos) 78 *pos = b; 79 } 80 81 size_t 82 GDBRemoteRegisterContext::GetRegisterCount () 83 { 84 return m_reg_info.GetNumRegisters (); 85 } 86 87 const RegisterInfo * 88 GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg) 89 { 90 return m_reg_info.GetRegisterInfoAtIndex (reg); 91 } 92 93 size_t 94 GDBRemoteRegisterContext::GetRegisterSetCount () 95 { 96 return m_reg_info.GetNumRegisterSets (); 97 } 98 99 100 101 const RegisterSet * 102 GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set) 103 { 104 return m_reg_info.GetRegisterSet (reg_set); 105 } 106 107 108 109 bool 110 GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value) 111 { 112 // Read the register 113 if (ReadRegisterBytes (reg_info, m_reg_data)) 114 { 115 const bool partial_data_ok = false; 116 Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok)); 117 return error.Success(); 118 } 119 return false; 120 } 121 122 bool 123 GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response) 124 { 125 const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg); 126 if (reg_info == NULL) 127 return false; 128 129 // Invalidate if needed 130 InvalidateIfNeeded(false); 131 132 const uint32_t reg_byte_size = reg_info->byte_size; 133 const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc'); 134 bool success = bytes_copied == reg_byte_size; 135 if (success) 136 { 137 SetRegisterIsValid(reg, true); 138 } 139 else if (bytes_copied > 0) 140 { 141 // Only set register is valid to false if we copied some bytes, else 142 // leave it as it was. 143 SetRegisterIsValid(reg, false); 144 } 145 return success; 146 } 147 148 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes(). 149 bool 150 GDBRemoteRegisterContext::GetPrimordialRegister(const lldb_private::RegisterInfo *reg_info, 151 GDBRemoteCommunicationClient &gdb_comm) 152 { 153 char packet[64]; 154 StringExtractorGDBRemote response; 155 int packet_len = 0; 156 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 157 if (gdb_comm.GetThreadSuffixSupported()) 158 packet_len = ::snprintf (packet, sizeof(packet), "p%x;thread:%4.4" PRIx64 ";", reg, m_thread.GetProtocolID()); 159 else 160 packet_len = ::snprintf (packet, sizeof(packet), "p%x", reg); 161 assert (packet_len < ((int)sizeof(packet) - 1)); 162 if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false)) 163 return PrivateSetRegisterValue (reg, response); 164 165 return false; 166 } 167 bool 168 GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data) 169 { 170 ExecutionContext exe_ctx (CalculateThread()); 171 172 Process *process = exe_ctx.GetProcessPtr(); 173 Thread *thread = exe_ctx.GetThreadPtr(); 174 if (process == NULL || thread == NULL) 175 return false; 176 177 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 178 179 InvalidateIfNeeded(false); 180 181 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 182 183 if (!GetRegisterIsValid(reg)) 184 { 185 Mutex::Locker locker; 186 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read register.")) 187 { 188 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 189 ProcessSP process_sp (m_thread.GetProcess()); 190 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 191 { 192 char packet[64]; 193 StringExtractorGDBRemote response; 194 int packet_len = 0; 195 if (m_read_all_at_once) 196 { 197 // Get all registers in one packet 198 if (thread_suffix_supported) 199 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 200 else 201 packet_len = ::snprintf (packet, sizeof(packet), "g"); 202 assert (packet_len < ((int)sizeof(packet) - 1)); 203 if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false)) 204 { 205 if (response.IsNormalResponse()) 206 if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize()) 207 SetAllRegisterValid (true); 208 } 209 } 210 else if (reg_info->value_regs) 211 { 212 // Process this composite register request by delegating to the constituent 213 // primordial registers. 214 215 // Index of the primordial register. 216 bool success = true; 217 for (uint32_t idx = 0; success; ++idx) 218 { 219 const uint32_t prim_reg = reg_info->value_regs[idx]; 220 if (prim_reg == LLDB_INVALID_REGNUM) 221 break; 222 // We have a valid primordial regsiter as our constituent. 223 // Grab the corresponding register info. 224 const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg); 225 if (prim_reg_info == NULL) 226 success = false; 227 else 228 { 229 // Read the containing register if it hasn't already been read 230 if (!GetRegisterIsValid(prim_reg)) 231 success = GetPrimordialRegister(prim_reg_info, gdb_comm); 232 } 233 } 234 235 if (success) 236 { 237 // If we reach this point, all primordial register requests have succeeded. 238 // Validate this composite register. 239 SetRegisterIsValid (reg_info, true); 240 } 241 } 242 else 243 { 244 // Get each register individually 245 GetPrimordialRegister(reg_info, gdb_comm); 246 } 247 } 248 } 249 else 250 { 251 #if LLDB_CONFIGURATION_DEBUG 252 StreamString strm; 253 gdb_comm.DumpHistory(strm); 254 Host::SetCrashDescription (strm.GetData()); 255 assert (!"Didn't get sequence mutex for read register."); 256 #else 257 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 258 if (log) 259 { 260 if (log->GetVerbose()) 261 { 262 StreamString strm; 263 gdb_comm.DumpHistory(strm); 264 log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\":\n%s", reg_info->name, strm.GetData()); 265 } 266 else 267 { 268 log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\"", reg_info->name); 269 } 270 } 271 #endif 272 } 273 274 // Make sure we got a valid register value after reading it 275 if (!GetRegisterIsValid(reg)) 276 return false; 277 } 278 279 if (&data != &m_reg_data) 280 { 281 // If we aren't extracting into our own buffer (which 282 // only happens when this function is called from 283 // ReadRegisterValue(uint32_t, Scalar&)) then 284 // we transfer bytes from our buffer into the data 285 // buffer that was passed in 286 data.SetByteOrder (m_reg_data.GetByteOrder()); 287 data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size); 288 } 289 return true; 290 } 291 292 bool 293 GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info, 294 const RegisterValue &value) 295 { 296 DataExtractor data; 297 if (value.GetData (data)) 298 return WriteRegisterBytes (reg_info, data, 0); 299 return false; 300 } 301 302 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes(). 303 bool 304 GDBRemoteRegisterContext::SetPrimordialRegister(const lldb_private::RegisterInfo *reg_info, 305 GDBRemoteCommunicationClient &gdb_comm) 306 { 307 StreamString packet; 308 StringExtractorGDBRemote response; 309 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 310 packet.Printf ("P%x=", reg); 311 packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size), 312 reg_info->byte_size, 313 lldb::endian::InlHostByteOrder(), 314 lldb::endian::InlHostByteOrder()); 315 316 if (gdb_comm.GetThreadSuffixSupported()) 317 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 318 319 // Invalidate just this register 320 SetRegisterIsValid(reg, false); 321 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 322 packet.GetString().size(), 323 response, 324 false)) 325 { 326 if (response.IsOKResponse()) 327 return true; 328 } 329 return false; 330 } 331 332 void 333 GDBRemoteRegisterContext::SyncThreadState(Process *process) 334 { 335 // NB. We assume our caller has locked the sequence mutex. 336 337 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote()); 338 if (!gdb_comm.GetSyncThreadStateSupported()) 339 return; 340 341 StreamString packet; 342 StringExtractorGDBRemote response; 343 packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 344 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 345 packet.GetString().size(), 346 response, 347 false)) 348 { 349 if (response.IsOKResponse()) 350 InvalidateAllRegisters(); 351 } 352 } 353 354 bool 355 GDBRemoteRegisterContext::WriteRegisterBytes (const lldb_private::RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset) 356 { 357 ExecutionContext exe_ctx (CalculateThread()); 358 359 Process *process = exe_ctx.GetProcessPtr(); 360 Thread *thread = exe_ctx.GetThreadPtr(); 361 if (process == NULL || thread == NULL) 362 return false; 363 364 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 365 // FIXME: This check isn't right because IsRunning checks the Public state, but this 366 // is work you need to do - for instance in ShouldStop & friends - before the public 367 // state has been changed. 368 // if (gdb_comm.IsRunning()) 369 // return false; 370 371 // Grab a pointer to where we are going to put this register 372 uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); 373 374 if (dst == NULL) 375 return false; 376 377 378 if (data.CopyByteOrderedData (data_offset, // src offset 379 reg_info->byte_size, // src length 380 dst, // dst 381 reg_info->byte_size, // dst length 382 m_reg_data.GetByteOrder())) // dst byte order 383 { 384 Mutex::Locker locker; 385 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register.")) 386 { 387 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 388 ProcessSP process_sp (m_thread.GetProcess()); 389 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 390 { 391 StreamString packet; 392 StringExtractorGDBRemote response; 393 394 if (m_read_all_at_once) 395 { 396 // Set all registers in one packet 397 packet.PutChar ('G'); 398 packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(), 399 m_reg_data.GetByteSize(), 400 lldb::endian::InlHostByteOrder(), 401 lldb::endian::InlHostByteOrder()); 402 403 if (thread_suffix_supported) 404 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 405 406 // Invalidate all register values 407 InvalidateIfNeeded (true); 408 409 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 410 packet.GetString().size(), 411 response, 412 false)) 413 { 414 SetAllRegisterValid (false); 415 if (response.IsOKResponse()) 416 { 417 return true; 418 } 419 } 420 } 421 else 422 { 423 bool success = true; 424 425 if (reg_info->value_regs) 426 { 427 // This register is part of another register. In this case we read the actual 428 // register data for any "value_regs", and once all that data is read, we will 429 // have enough data in our register context bytes for the value of this register 430 431 // Invalidate this composite register first. 432 433 for (uint32_t idx = 0; success; ++idx) 434 { 435 const uint32_t reg = reg_info->value_regs[idx]; 436 if (reg == LLDB_INVALID_REGNUM) 437 break; 438 // We have a valid primordial regsiter as our constituent. 439 // Grab the corresponding register info. 440 const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg); 441 if (value_reg_info == NULL) 442 success = false; 443 else 444 success = SetPrimordialRegister(value_reg_info, gdb_comm); 445 } 446 } 447 else 448 { 449 // This is an actual register, write it 450 success = SetPrimordialRegister(reg_info, gdb_comm); 451 } 452 453 // Check if writing this register will invalidate any other register values? 454 // If so, invalidate them 455 if (reg_info->invalidate_regs) 456 { 457 for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0]; 458 reg != LLDB_INVALID_REGNUM; 459 reg = reg_info->invalidate_regs[++idx]) 460 { 461 SetRegisterIsValid(reg, false); 462 } 463 } 464 465 return success; 466 } 467 } 468 } 469 else 470 { 471 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 472 if (log) 473 { 474 if (log->GetVerbose()) 475 { 476 StreamString strm; 477 gdb_comm.DumpHistory(strm); 478 log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData()); 479 } 480 else 481 log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name); 482 } 483 } 484 } 485 return false; 486 } 487 488 489 bool 490 GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp) 491 { 492 ExecutionContext exe_ctx (CalculateThread()); 493 494 Process *process = exe_ctx.GetProcessPtr(); 495 Thread *thread = exe_ctx.GetThreadPtr(); 496 if (process == NULL || thread == NULL) 497 return false; 498 499 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 500 501 StringExtractorGDBRemote response; 502 503 Mutex::Locker locker; 504 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers.")) 505 { 506 SyncThreadState(process); 507 508 char packet[32]; 509 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 510 ProcessSP process_sp (m_thread.GetProcess()); 511 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 512 { 513 int packet_len = 0; 514 if (thread_suffix_supported) 515 packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID()); 516 else 517 packet_len = ::snprintf (packet, sizeof(packet), "g"); 518 assert (packet_len < ((int)sizeof(packet) - 1)); 519 520 if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false)) 521 { 522 if (response.IsErrorResponse()) 523 return false; 524 525 std::string &response_str = response.GetStringRef(); 526 if (isxdigit(response_str[0])) 527 { 528 response_str.insert(0, 1, 'G'); 529 if (thread_suffix_supported) 530 { 531 char thread_id_cstr[64]; 532 ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 533 response_str.append (thread_id_cstr); 534 } 535 data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size())); 536 return true; 537 } 538 } 539 } 540 } 541 else 542 { 543 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 544 if (log) 545 { 546 if (log->GetVerbose()) 547 { 548 StreamString strm; 549 gdb_comm.DumpHistory(strm); 550 log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData()); 551 } 552 else 553 log->Printf("error: failed to get packet sequence mutex, not sending read all registers"); 554 } 555 } 556 557 data_sp.reset(); 558 return false; 559 } 560 561 bool 562 GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp) 563 { 564 if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0) 565 return false; 566 567 ExecutionContext exe_ctx (CalculateThread()); 568 569 Process *process = exe_ctx.GetProcessPtr(); 570 Thread *thread = exe_ctx.GetThreadPtr(); 571 if (process == NULL || thread == NULL) 572 return false; 573 574 GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); 575 576 StringExtractorGDBRemote response; 577 Mutex::Locker locker; 578 if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers.")) 579 { 580 const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); 581 ProcessSP process_sp (m_thread.GetProcess()); 582 if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) 583 { 584 // The data_sp contains the entire G response packet including the 585 // G, and if the thread suffix is supported, it has the thread suffix 586 // as well. 587 const char *G_packet = (const char *)data_sp->GetBytes(); 588 size_t G_packet_len = data_sp->GetByteSize(); 589 if (gdb_comm.SendPacketAndWaitForResponse (G_packet, 590 G_packet_len, 591 response, 592 false)) 593 { 594 if (response.IsOKResponse()) 595 return true; 596 else if (response.IsErrorResponse()) 597 { 598 uint32_t num_restored = 0; 599 // We need to manually go through all of the registers and 600 // restore them manually 601 602 response.GetStringRef().assign (G_packet, G_packet_len); 603 response.SetFilePos(1); // Skip the leading 'G' 604 DataBufferHeap buffer (m_reg_data.GetByteSize(), 0); 605 DataExtractor restore_data (buffer.GetBytes(), 606 buffer.GetByteSize(), 607 m_reg_data.GetByteOrder(), 608 m_reg_data.GetAddressByteSize()); 609 610 const uint32_t bytes_extracted = response.GetHexBytes ((void *)restore_data.GetDataStart(), 611 restore_data.GetByteSize(), 612 '\xcc'); 613 614 if (bytes_extracted < restore_data.GetByteSize()) 615 restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder()); 616 617 //ReadRegisterBytes (const RegisterInfo *reg_info, RegisterValue &value, DataExtractor &data) 618 const RegisterInfo *reg_info; 619 // We have to march the offset of each register along in the 620 // buffer to make sure we get the right offset. 621 uint32_t reg_byte_offset = 0; 622 for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, reg_byte_offset += reg_info->byte_size) 623 { 624 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; 625 626 // Skip composite registers. 627 if (reg_info->value_regs) 628 continue; 629 630 // Only write down the registers that need to be written 631 // if we are going to be doing registers individually. 632 bool write_reg = true; 633 const uint32_t reg_byte_size = reg_info->byte_size; 634 635 const char *restore_src = (const char *)restore_data.PeekData(reg_byte_offset, reg_byte_size); 636 if (restore_src) 637 { 638 if (GetRegisterIsValid(reg)) 639 { 640 const char *current_src = (const char *)m_reg_data.PeekData(reg_byte_offset, reg_byte_size); 641 if (current_src) 642 write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0; 643 } 644 645 if (write_reg) 646 { 647 StreamString packet; 648 packet.Printf ("P%x=", reg); 649 packet.PutBytesAsRawHex8 (restore_src, 650 reg_byte_size, 651 lldb::endian::InlHostByteOrder(), 652 lldb::endian::InlHostByteOrder()); 653 654 if (thread_suffix_supported) 655 packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); 656 657 SetRegisterIsValid(reg, false); 658 if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), 659 packet.GetString().size(), 660 response, 661 false)) 662 { 663 if (response.IsOKResponse()) 664 ++num_restored; 665 } 666 } 667 } 668 } 669 return num_restored > 0; 670 } 671 } 672 } 673 } 674 else 675 { 676 Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); 677 if (log) 678 { 679 if (log->GetVerbose()) 680 { 681 StreamString strm; 682 gdb_comm.DumpHistory(strm); 683 log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData()); 684 } 685 else 686 log->Printf("error: failed to get packet sequence mutex, not sending write all registers"); 687 } 688 } 689 return false; 690 } 691 692 693 uint32_t 694 GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (uint32_t kind, uint32_t num) 695 { 696 return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num); 697 } 698 699 void 700 GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) 701 { 702 // For Advanced SIMD and VFP register mapping. 703 static uint32_t g_d0_regs[] = { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1) 704 static uint32_t g_d1_regs[] = { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3) 705 static uint32_t g_d2_regs[] = { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5) 706 static uint32_t g_d3_regs[] = { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7) 707 static uint32_t g_d4_regs[] = { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9) 708 static uint32_t g_d5_regs[] = { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11) 709 static uint32_t g_d6_regs[] = { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13) 710 static uint32_t g_d7_regs[] = { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15) 711 static uint32_t g_d8_regs[] = { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17) 712 static uint32_t g_d9_regs[] = { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19) 713 static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21) 714 static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23) 715 static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25) 716 static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27) 717 static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29) 718 static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31) 719 static uint32_t g_q0_regs[] = { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3) 720 static uint32_t g_q1_regs[] = { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7) 721 static uint32_t g_q2_regs[] = { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11) 722 static uint32_t g_q3_regs[] = { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15) 723 static uint32_t g_q4_regs[] = { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19) 724 static uint32_t g_q5_regs[] = { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23) 725 static uint32_t g_q6_regs[] = { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27) 726 static uint32_t g_q7_regs[] = { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31) 727 static uint32_t g_q8_regs[] = { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17) 728 static uint32_t g_q9_regs[] = { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19) 729 static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21) 730 static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23) 731 static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25) 732 static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27) 733 static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29) 734 static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31) 735 736 // This is our array of composite registers, with each element coming from the above register mappings. 737 static uint32_t *g_composites[] = { 738 g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs, g_d6_regs, g_d7_regs, 739 g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, 740 g_q0_regs, g_q1_regs, g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs, 741 g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs 742 }; 743 744 static RegisterInfo g_register_infos[] = { 745 // NAME ALT SZ OFF ENCODING FORMAT COMPILER DWARF GENERIC GDB LLDB VALUE REGS INVALIDATE REGS 746 // ====== ====== === === ============= ============ =================== =================== ====================== === ==== ========== =============== 747 { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { gcc_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, NULL, NULL}, 748 { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { gcc_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, NULL, NULL}, 749 { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { gcc_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, NULL, NULL}, 750 { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { gcc_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, NULL, NULL}, 751 { "r4", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, NULL, NULL}, 752 { "r5", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, NULL, NULL}, 753 { "r6", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, NULL, NULL}, 754 { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { gcc_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, NULL, NULL}, 755 { "r8", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, NULL, NULL}, 756 { "r9", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, NULL, NULL}, 757 { "r10", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, NULL, NULL}, 758 { "r11", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, NULL, NULL}, 759 { "r12", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, NULL, NULL}, 760 { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { gcc_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, NULL, NULL}, 761 { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { gcc_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, NULL, NULL}, 762 { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { gcc_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, NULL, NULL}, 763 { "f0", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, NULL, NULL}, 764 { "f1", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, NULL, NULL}, 765 { "f2", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, NULL, NULL}, 766 { "f3", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, NULL, NULL}, 767 { "f4", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, NULL, NULL}, 768 { "f5", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, NULL, NULL}, 769 { "f6", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, NULL, NULL}, 770 { "f7", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, NULL, NULL}, 771 { "fps", NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, NULL, NULL}, 772 { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { gcc_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, NULL, NULL}, 773 { "s0", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, NULL, NULL}, 774 { "s1", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, NULL, NULL}, 775 { "s2", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, NULL, NULL}, 776 { "s3", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, NULL, NULL}, 777 { "s4", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, NULL, NULL}, 778 { "s5", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, NULL, NULL}, 779 { "s6", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, NULL, NULL}, 780 { "s7", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, NULL, NULL}, 781 { "s8", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, NULL, NULL}, 782 { "s9", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, NULL, NULL}, 783 { "s10", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, NULL, NULL}, 784 { "s11", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, NULL, NULL}, 785 { "s12", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, NULL, NULL}, 786 { "s13", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, NULL, NULL}, 787 { "s14", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, NULL, NULL}, 788 { "s15", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, NULL, NULL}, 789 { "s16", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, NULL, NULL}, 790 { "s17", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, NULL, NULL}, 791 { "s18", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, NULL, NULL}, 792 { "s19", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, NULL, NULL}, 793 { "s20", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, NULL, NULL}, 794 { "s21", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, NULL, NULL}, 795 { "s22", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, NULL, NULL}, 796 { "s23", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, NULL, NULL}, 797 { "s24", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, NULL, NULL}, 798 { "s25", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, NULL, NULL}, 799 { "s26", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, NULL, NULL}, 800 { "s27", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, NULL, NULL}, 801 { "s28", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, NULL, NULL}, 802 { "s29", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, NULL, NULL}, 803 { "s30", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, NULL, NULL}, 804 { "s31", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, NULL, NULL}, 805 { "fpscr",NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, NULL, NULL}, 806 { "d16", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, NULL, NULL}, 807 { "d17", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, NULL, NULL}, 808 { "d18", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, NULL, NULL}, 809 { "d19", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, NULL, NULL}, 810 { "d20", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, NULL, NULL}, 811 { "d21", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, NULL, NULL}, 812 { "d22", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, NULL, NULL}, 813 { "d23", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, NULL, NULL}, 814 { "d24", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, NULL, NULL}, 815 { "d25", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, NULL, NULL}, 816 { "d26", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, NULL, NULL}, 817 { "d27", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, NULL, NULL}, 818 { "d28", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, NULL, NULL}, 819 { "d29", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, NULL, NULL}, 820 { "d30", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, NULL, NULL}, 821 { "d31", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, NULL, NULL}, 822 { "d0", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, NULL}, 823 { "d1", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, NULL}, 824 { "d2", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, NULL}, 825 { "d3", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, NULL}, 826 { "d4", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, NULL}, 827 { "d5", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, NULL}, 828 { "d6", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, NULL}, 829 { "d7", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, NULL}, 830 { "d8", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, NULL}, 831 { "d9", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, NULL}, 832 { "d10", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, NULL}, 833 { "d11", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, NULL}, 834 { "d12", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, NULL}, 835 { "d13", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, NULL}, 836 { "d14", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, NULL}, 837 { "d15", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, NULL}, 838 { "q0", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, NULL}, 839 { "q1", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, NULL}, 840 { "q2", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, NULL}, 841 { "q3", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, NULL}, 842 { "q4", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, NULL}, 843 { "q5", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, NULL}, 844 { "q6", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, NULL}, 845 { "q7", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, NULL}, 846 { "q8", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, NULL}, 847 { "q9", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, NULL}, 848 { "q10", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, NULL}, 849 { "q11", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, NULL}, 850 { "q12", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, NULL}, 851 { "q13", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, NULL}, 852 { "q14", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, NULL}, 853 { "q15", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, NULL} 854 }; 855 856 static const uint32_t num_registers = llvm::array_lengthof(g_register_infos); 857 static ConstString gpr_reg_set ("General Purpose Registers"); 858 static ConstString sfp_reg_set ("Software Floating Point Registers"); 859 static ConstString vfp_reg_set ("Floating Point Registers"); 860 size_t i; 861 if (from_scratch) 862 { 863 // Calculate the offsets of the registers 864 // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the 865 // "primordial" registers is important. This enables us to calculate the offset of the composite 866 // register by using the offset of its first primordial register. For example, to calculate the 867 // offset of q0, use s0's offset. 868 if (g_register_infos[2].byte_offset == 0) 869 { 870 uint32_t byte_offset = 0; 871 for (i=0; i<num_registers; ++i) 872 { 873 // For primordial registers, increment the byte_offset by the byte_size to arrive at the 874 // byte_offset for the next register. Otherwise, we have a composite register whose 875 // offset can be calculated by consulting the offset of its first primordial register. 876 if (!g_register_infos[i].value_regs) 877 { 878 g_register_infos[i].byte_offset = byte_offset; 879 byte_offset += g_register_infos[i].byte_size; 880 } 881 else 882 { 883 const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0]; 884 g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset; 885 } 886 } 887 } 888 for (i=0; i<num_registers; ++i) 889 { 890 ConstString name; 891 ConstString alt_name; 892 if (g_register_infos[i].name && g_register_infos[i].name[0]) 893 name.SetCString(g_register_infos[i].name); 894 if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0]) 895 alt_name.SetCString(g_register_infos[i].alt_name); 896 897 if (i <= 15 || i == 25) 898 AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set); 899 else if (i <= 24) 900 AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set); 901 else 902 AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set); 903 } 904 } 905 else 906 { 907 // Add composite registers to our primordial registers, then. 908 const size_t num_composites = llvm::array_lengthof(g_composites); 909 const size_t num_dynamic_regs = GetNumRegisters(); 910 const size_t num_common_regs = num_registers - num_composites; 911 RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs; 912 913 // First we need to validate that all registers that we already have match the non composite regs. 914 // If so, then we can add the registers, else we need to bail 915 bool match = true; 916 if (num_dynamic_regs == num_common_regs) 917 { 918 for (i=0; match && i<num_dynamic_regs; ++i) 919 { 920 // Make sure all register names match 921 if (m_regs[i].name && g_register_infos[i].name) 922 { 923 if (strcmp(m_regs[i].name, g_register_infos[i].name)) 924 { 925 match = false; 926 break; 927 } 928 } 929 930 // Make sure all register byte sizes match 931 if (m_regs[i].byte_size != g_register_infos[i].byte_size) 932 { 933 match = false; 934 break; 935 } 936 } 937 } 938 else 939 { 940 // Wrong number of registers. 941 match = false; 942 } 943 // If "match" is true, then we can add extra registers. 944 if (match) 945 { 946 for (i=0; i<num_composites; ++i) 947 { 948 ConstString name; 949 ConstString alt_name; 950 const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0]; 951 const char *reg_name = g_register_infos[first_primordial_reg].name; 952 if (reg_name && reg_name[0]) 953 { 954 for (uint32_t j = 0; j < num_dynamic_regs; ++j) 955 { 956 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j); 957 // Find a matching primordial register info entry. 958 if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0) 959 { 960 // The name matches the existing primordial entry. 961 // Find and assign the offset, and then add this composite register entry. 962 g_comp_register_infos[i].byte_offset = reg_info->byte_offset; 963 name.SetCString(g_comp_register_infos[i].name); 964 AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set); 965 } 966 } 967 } 968 } 969 } 970 } 971 } 972