1 /* 2 * Copyright 2004 The WebRTC Project Authors. All rights reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #if defined(WEBRTC_POSIX) 12 #include <sys/types.h> 13 #include <sys/socket.h> 14 #include <netinet/in.h> 15 #ifdef OPENBSD 16 #include <netinet/in_systm.h> 17 #endif 18 #ifndef __native_client__ 19 #include <netinet/ip.h> 20 #endif 21 #include <arpa/inet.h> 22 #include <netdb.h> 23 #include <unistd.h> 24 #endif 25 26 #include <stdio.h> 27 28 #include "webrtc/base/ipaddress.h" 29 #include "webrtc/base/byteorder.h" 30 #include "webrtc/base/nethelpers.h" 31 #include "webrtc/base/logging.h" 32 #include "webrtc/base/win32.h" 33 34 namespace rtc { 35 36 // Prefixes used for categorizing IPv6 addresses. 37 static const in6_addr kV4MappedPrefix = {{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 38 0xFF, 0xFF, 0}}}; 39 static const in6_addr k6To4Prefix = {{{0x20, 0x02, 0}}}; 40 static const in6_addr kTeredoPrefix = {{{0x20, 0x01, 0x00, 0x00}}}; 41 static const in6_addr kV4CompatibilityPrefix = {{{0}}}; 42 static const in6_addr k6BonePrefix = {{{0x3f, 0xfe, 0}}}; 43 44 bool IPAddress::strip_sensitive_ = false; 45 46 static bool IsPrivateV4(uint32 ip); 47 static in_addr ExtractMappedAddress(const in6_addr& addr); 48 49 uint32 IPAddress::v4AddressAsHostOrderInteger() const { 50 if (family_ == AF_INET) { 51 return NetworkToHost32(u_.ip4.s_addr); 52 } else { 53 return 0; 54 } 55 } 56 57 size_t IPAddress::Size() const { 58 switch (family_) { 59 case AF_INET: 60 return sizeof(in_addr); 61 case AF_INET6: 62 return sizeof(in6_addr); 63 } 64 return 0; 65 } 66 67 68 bool IPAddress::operator==(const IPAddress &other) const { 69 if (family_ != other.family_) { 70 return false; 71 } 72 if (family_ == AF_INET) { 73 return memcmp(&u_.ip4, &other.u_.ip4, sizeof(u_.ip4)) == 0; 74 } 75 if (family_ == AF_INET6) { 76 return memcmp(&u_.ip6, &other.u_.ip6, sizeof(u_.ip6)) == 0; 77 } 78 return family_ == AF_UNSPEC; 79 } 80 81 bool IPAddress::operator!=(const IPAddress &other) const { 82 return !((*this) == other); 83 } 84 85 bool IPAddress::operator >(const IPAddress &other) const { 86 return (*this) != other && !((*this) < other); 87 } 88 89 bool IPAddress::operator <(const IPAddress &other) const { 90 // IPv4 is 'less than' IPv6 91 if (family_ != other.family_) { 92 if (family_ == AF_UNSPEC) { 93 return true; 94 } 95 if (family_ == AF_INET && other.family_ == AF_INET6) { 96 return true; 97 } 98 return false; 99 } 100 // Comparing addresses of the same family. 101 switch (family_) { 102 case AF_INET: { 103 return NetworkToHost32(u_.ip4.s_addr) < 104 NetworkToHost32(other.u_.ip4.s_addr); 105 } 106 case AF_INET6: { 107 return memcmp(&u_.ip6.s6_addr, &other.u_.ip6.s6_addr, 16) < 0; 108 } 109 } 110 // Catches AF_UNSPEC and invalid addresses. 111 return false; 112 } 113 114 std::ostream& operator<<(std::ostream& os, const IPAddress& ip) { 115 os << ip.ToString(); 116 return os; 117 } 118 119 in6_addr IPAddress::ipv6_address() const { 120 return u_.ip6; 121 } 122 123 in_addr IPAddress::ipv4_address() const { 124 return u_.ip4; 125 } 126 127 std::string IPAddress::ToString() const { 128 if (family_ != AF_INET && family_ != AF_INET6) { 129 return std::string(); 130 } 131 char buf[INET6_ADDRSTRLEN] = {0}; 132 const void* src = &u_.ip4; 133 if (family_ == AF_INET6) { 134 src = &u_.ip6; 135 } 136 if (!rtc::inet_ntop(family_, src, buf, sizeof(buf))) { 137 return std::string(); 138 } 139 return std::string(buf); 140 } 141 142 std::string IPAddress::ToSensitiveString() const { 143 if (!strip_sensitive_) 144 return ToString(); 145 146 switch (family_) { 147 case AF_INET: { 148 std::string address = ToString(); 149 size_t find_pos = address.rfind('.'); 150 if (find_pos == std::string::npos) 151 return std::string(); 152 address.resize(find_pos); 153 address += ".x"; 154 return address; 155 } 156 case AF_INET6: { 157 // TODO(grunell): Return a string of format 1:2:3:x:x:x:x:x or such 158 // instead of zeroing out. 159 return TruncateIP(*this, 128 - 80).ToString(); 160 } 161 } 162 return std::string(); 163 } 164 165 IPAddress IPAddress::Normalized() const { 166 if (family_ != AF_INET6) { 167 return *this; 168 } 169 if (!IPIsV4Mapped(*this)) { 170 return *this; 171 } 172 in_addr addr = ExtractMappedAddress(u_.ip6); 173 return IPAddress(addr); 174 } 175 176 IPAddress IPAddress::AsIPv6Address() const { 177 if (family_ != AF_INET) { 178 return *this; 179 } 180 in6_addr v6addr = kV4MappedPrefix; 181 ::memcpy(&v6addr.s6_addr[12], &u_.ip4.s_addr, sizeof(u_.ip4.s_addr)); 182 return IPAddress(v6addr); 183 } 184 185 void IPAddress::set_strip_sensitive(bool enable) { 186 strip_sensitive_ = enable; 187 } 188 189 bool InterfaceAddress::operator==(const InterfaceAddress &other) const { 190 return ipv6_flags_ == other.ipv6_flags() && 191 static_cast<const IPAddress&>(*this) == other; 192 } 193 194 bool InterfaceAddress::operator!=(const InterfaceAddress &other) const { 195 return !((*this) == other); 196 } 197 198 const InterfaceAddress& InterfaceAddress::operator=( 199 const InterfaceAddress& other) { 200 ipv6_flags_ = other.ipv6_flags_; 201 static_cast<IPAddress&>(*this) = other; 202 return *this; 203 } 204 205 std::ostream& operator<<(std::ostream& os, const InterfaceAddress& ip) { 206 os << static_cast<const IPAddress&>(ip); 207 208 if (ip.family() == AF_INET6) 209 os << "|flags:0x" << std::hex << ip.ipv6_flags(); 210 211 return os; 212 } 213 214 bool IsPrivateV4(uint32 ip_in_host_order) { 215 return ((ip_in_host_order >> 24) == 127) || 216 ((ip_in_host_order >> 24) == 10) || 217 ((ip_in_host_order >> 20) == ((172 << 4) | 1)) || 218 ((ip_in_host_order >> 16) == ((192 << 8) | 168)) || 219 ((ip_in_host_order >> 16) == ((169 << 8) | 254)); 220 } 221 222 in_addr ExtractMappedAddress(const in6_addr& in6) { 223 in_addr ipv4; 224 ::memcpy(&ipv4.s_addr, &in6.s6_addr[12], sizeof(ipv4.s_addr)); 225 return ipv4; 226 } 227 228 bool IPFromAddrInfo(struct addrinfo* info, IPAddress* out) { 229 if (!info || !info->ai_addr) { 230 return false; 231 } 232 if (info->ai_addr->sa_family == AF_INET) { 233 sockaddr_in* addr = reinterpret_cast<sockaddr_in*>(info->ai_addr); 234 *out = IPAddress(addr->sin_addr); 235 return true; 236 } else if (info->ai_addr->sa_family == AF_INET6) { 237 sockaddr_in6* addr = reinterpret_cast<sockaddr_in6*>(info->ai_addr); 238 *out = IPAddress(addr->sin6_addr); 239 return true; 240 } 241 return false; 242 } 243 244 bool IPFromString(const std::string& str, IPAddress* out) { 245 if (!out) { 246 return false; 247 } 248 in_addr addr; 249 if (rtc::inet_pton(AF_INET, str.c_str(), &addr) == 0) { 250 in6_addr addr6; 251 if (rtc::inet_pton(AF_INET6, str.c_str(), &addr6) == 0) { 252 *out = IPAddress(); 253 return false; 254 } 255 *out = IPAddress(addr6); 256 } else { 257 *out = IPAddress(addr); 258 } 259 return true; 260 } 261 262 bool IPFromString(const std::string& str, int flags, 263 InterfaceAddress* out) { 264 IPAddress ip; 265 if (!IPFromString(str, &ip)) { 266 return false; 267 } 268 269 *out = InterfaceAddress(ip, flags); 270 return true; 271 } 272 273 bool IPIsAny(const IPAddress& ip) { 274 switch (ip.family()) { 275 case AF_INET: 276 return ip == IPAddress(INADDR_ANY); 277 case AF_INET6: 278 return ip == IPAddress(in6addr_any); 279 case AF_UNSPEC: 280 return false; 281 } 282 return false; 283 } 284 285 bool IPIsLoopback(const IPAddress& ip) { 286 switch (ip.family()) { 287 case AF_INET: { 288 return ip == IPAddress(INADDR_LOOPBACK); 289 } 290 case AF_INET6: { 291 return ip == IPAddress(in6addr_loopback); 292 } 293 } 294 return false; 295 } 296 297 bool IPIsPrivate(const IPAddress& ip) { 298 switch (ip.family()) { 299 case AF_INET: { 300 return IsPrivateV4(ip.v4AddressAsHostOrderInteger()); 301 } 302 case AF_INET6: { 303 in6_addr v6 = ip.ipv6_address(); 304 return (v6.s6_addr[0] == 0xFE && v6.s6_addr[1] == 0x80) || 305 IPIsLoopback(ip); 306 } 307 } 308 return false; 309 } 310 311 bool IPIsUnspec(const IPAddress& ip) { 312 return ip.family() == AF_UNSPEC; 313 } 314 315 size_t HashIP(const IPAddress& ip) { 316 switch (ip.family()) { 317 case AF_INET: { 318 return ip.ipv4_address().s_addr; 319 } 320 case AF_INET6: { 321 in6_addr v6addr = ip.ipv6_address(); 322 const uint32* v6_as_ints = 323 reinterpret_cast<const uint32*>(&v6addr.s6_addr); 324 return v6_as_ints[0] ^ v6_as_ints[1] ^ v6_as_ints[2] ^ v6_as_ints[3]; 325 } 326 } 327 return 0; 328 } 329 330 IPAddress TruncateIP(const IPAddress& ip, int length) { 331 if (length < 0) { 332 return IPAddress(); 333 } 334 if (ip.family() == AF_INET) { 335 if (length > 31) { 336 return ip; 337 } 338 if (length == 0) { 339 return IPAddress(INADDR_ANY); 340 } 341 int mask = (0xFFFFFFFF << (32 - length)); 342 uint32 host_order_ip = NetworkToHost32(ip.ipv4_address().s_addr); 343 in_addr masked; 344 masked.s_addr = HostToNetwork32(host_order_ip & mask); 345 return IPAddress(masked); 346 } else if (ip.family() == AF_INET6) { 347 if (length > 127) { 348 return ip; 349 } 350 if (length == 0) { 351 return IPAddress(in6addr_any); 352 } 353 in6_addr v6addr = ip.ipv6_address(); 354 int position = length / 32; 355 int inner_length = 32 - (length - (position * 32)); 356 // Note: 64bit mask constant needed to allow possible 32-bit left shift. 357 uint32 inner_mask = 0xFFFFFFFFLL << inner_length; 358 uint32* v6_as_ints = 359 reinterpret_cast<uint32*>(&v6addr.s6_addr); 360 for (int i = 0; i < 4; ++i) { 361 if (i == position) { 362 uint32 host_order_inner = NetworkToHost32(v6_as_ints[i]); 363 v6_as_ints[i] = HostToNetwork32(host_order_inner & inner_mask); 364 } else if (i > position) { 365 v6_as_ints[i] = 0; 366 } 367 } 368 return IPAddress(v6addr); 369 } 370 return IPAddress(); 371 } 372 373 int CountIPMaskBits(IPAddress mask) { 374 uint32 word_to_count = 0; 375 int bits = 0; 376 switch (mask.family()) { 377 case AF_INET: { 378 word_to_count = NetworkToHost32(mask.ipv4_address().s_addr); 379 break; 380 } 381 case AF_INET6: { 382 in6_addr v6addr = mask.ipv6_address(); 383 const uint32* v6_as_ints = 384 reinterpret_cast<const uint32*>(&v6addr.s6_addr); 385 int i = 0; 386 for (; i < 4; ++i) { 387 if (v6_as_ints[i] != 0xFFFFFFFF) { 388 break; 389 } 390 } 391 if (i < 4) { 392 word_to_count = NetworkToHost32(v6_as_ints[i]); 393 } 394 bits = (i * 32); 395 break; 396 } 397 default: { 398 return 0; 399 } 400 } 401 if (word_to_count == 0) { 402 return bits; 403 } 404 405 // Public domain bit-twiddling hack from: 406 // http://graphics.stanford.edu/~seander/bithacks.html 407 // Counts the trailing 0s in the word. 408 unsigned int zeroes = 32; 409 word_to_count &= -static_cast<int32>(word_to_count); 410 if (word_to_count) zeroes--; 411 if (word_to_count & 0x0000FFFF) zeroes -= 16; 412 if (word_to_count & 0x00FF00FF) zeroes -= 8; 413 if (word_to_count & 0x0F0F0F0F) zeroes -= 4; 414 if (word_to_count & 0x33333333) zeroes -= 2; 415 if (word_to_count & 0x55555555) zeroes -= 1; 416 417 return bits + (32 - zeroes); 418 } 419 420 bool IPIsHelper(const IPAddress& ip, const in6_addr& tomatch, int length) { 421 // Helper method for checking IP prefix matches (but only on whole byte 422 // lengths). Length is in bits. 423 in6_addr addr = ip.ipv6_address(); 424 return ::memcmp(&addr, &tomatch, (length >> 3)) == 0; 425 } 426 427 bool IPIs6Bone(const IPAddress& ip) { 428 return IPIsHelper(ip, k6BonePrefix, 16); 429 } 430 431 bool IPIs6To4(const IPAddress& ip) { 432 return IPIsHelper(ip, k6To4Prefix, 16); 433 } 434 435 bool IPIsSiteLocal(const IPAddress& ip) { 436 // Can't use the helper because the prefix is 10 bits. 437 in6_addr addr = ip.ipv6_address(); 438 return addr.s6_addr[0] == 0xFE && (addr.s6_addr[1] & 0xC0) == 0xC0; 439 } 440 441 bool IPIsULA(const IPAddress& ip) { 442 // Can't use the helper because the prefix is 7 bits. 443 in6_addr addr = ip.ipv6_address(); 444 return (addr.s6_addr[0] & 0xFE) == 0xFC; 445 } 446 447 bool IPIsTeredo(const IPAddress& ip) { 448 return IPIsHelper(ip, kTeredoPrefix, 32); 449 } 450 451 bool IPIsV4Compatibility(const IPAddress& ip) { 452 return IPIsHelper(ip, kV4CompatibilityPrefix, 96); 453 } 454 455 bool IPIsV4Mapped(const IPAddress& ip) { 456 return IPIsHelper(ip, kV4MappedPrefix, 96); 457 } 458 459 int IPAddressPrecedence(const IPAddress& ip) { 460 // Precedence values from RFC 3484-bis. Prefers native v4 over 6to4/Teredo. 461 if (ip.family() == AF_INET) { 462 return 30; 463 } else if (ip.family() == AF_INET6) { 464 if (IPIsLoopback(ip)) { 465 return 60; 466 } else if (IPIsULA(ip)) { 467 return 50; 468 } else if (IPIsV4Mapped(ip)) { 469 return 30; 470 } else if (IPIs6To4(ip)) { 471 return 20; 472 } else if (IPIsTeredo(ip)) { 473 return 10; 474 } else if (IPIsV4Compatibility(ip) || IPIsSiteLocal(ip) || IPIs6Bone(ip)) { 475 return 1; 476 } else { 477 // A 'normal' IPv6 address. 478 return 40; 479 } 480 } 481 return 0; 482 } 483 484 } // Namespace talk base 485