Home | History | Annotate | Download | only in src
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_TYPES_H_
      6 #define V8_TYPES_H_
      7 
      8 #include "src/conversions.h"
      9 #include "src/factory.h"
     10 #include "src/handles.h"
     11 #include "src/ostreams.h"
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 // SUMMARY
     17 //
     18 // A simple type system for compiler-internal use. It is based entirely on
     19 // union types, and all subtyping hence amounts to set inclusion. Besides the
     20 // obvious primitive types and some predefined unions, the type language also
     21 // can express class types (a.k.a. specific maps) and singleton types (i.e.,
     22 // concrete constants).
     23 //
     24 // Types consist of two dimensions: semantic (value range) and representation.
     25 // Both are related through subtyping.
     26 //
     27 //
     28 // SEMANTIC DIMENSION
     29 //
     30 // The following equations and inequations hold for the semantic axis:
     31 //
     32 //   None <= T
     33 //   T <= Any
     34 //
     35 //   Number = Signed32 \/ Unsigned32 \/ Double
     36 //   Smi <= Signed32
     37 //   Name = String \/ Symbol
     38 //   UniqueName = InternalizedString \/ Symbol
     39 //   InternalizedString < String
     40 //
     41 //   Receiver = Object \/ Proxy
     42 //   Array < Object
     43 //   Function < Object
     44 //   RegExp < Object
     45 //   Undetectable < Object
     46 //   Detectable = Receiver \/ Number \/ Name - Undetectable
     47 //
     48 //   Class(map) < T   iff instance_type(map) < T
     49 //   Constant(x) < T  iff instance_type(map(x)) < T
     50 //   Array(T) < Array
     51 //   Function(R, S, T0, T1, ...) < Function
     52 //   Context(T) < Internal
     53 //
     54 // Both structural Array and Function types are invariant in all parameters;
     55 // relaxing this would make Union and Intersect operations more involved.
     56 // There is no subtyping relation between Array, Function, or Context types
     57 // and respective Constant types, since these types cannot be reconstructed
     58 // for arbitrary heap values.
     59 // Note also that Constant(x) < Class(map(x)) does _not_ hold, since x's map can
     60 // change! (Its instance type cannot, however.)
     61 // TODO(rossberg): the latter is not currently true for proxies, because of fix,
     62 // but will hold once we implement direct proxies.
     63 // However, we also define a 'temporal' variant of the subtyping relation that
     64 // considers the _current_ state only, i.e., Constant(x) <_now Class(map(x)).
     65 //
     66 //
     67 // REPRESENTATIONAL DIMENSION
     68 //
     69 // For the representation axis, the following holds:
     70 //
     71 //   None <= R
     72 //   R <= Any
     73 //
     74 //   UntaggedInt = UntaggedInt1 \/ UntaggedInt8 \/
     75 //                 UntaggedInt16 \/ UntaggedInt32
     76 //   UntaggedFloat = UntaggedFloat32 \/ UntaggedFloat64
     77 //   UntaggedNumber = UntaggedInt \/ UntaggedFloat
     78 //   Untagged = UntaggedNumber \/ UntaggedPtr
     79 //   Tagged = TaggedInt \/ TaggedPtr
     80 //
     81 // Subtyping relates the two dimensions, for example:
     82 //
     83 //   Number <= Tagged \/ UntaggedNumber
     84 //   Object <= TaggedPtr \/ UntaggedPtr
     85 //
     86 // That holds because the semantic type constructors defined by the API create
     87 // types that allow for all possible representations, and dually, the ones for
     88 // representation types initially include all semantic ranges. Representations
     89 // can then e.g. be narrowed for a given semantic type using intersection:
     90 //
     91 //   SignedSmall /\ TaggedInt       (a 'smi')
     92 //   Number /\ TaggedPtr            (a heap number)
     93 //
     94 //
     95 // RANGE TYPES
     96 //
     97 // A range type represents a continuous integer interval by its minimum and
     98 // maximum value.  Either value might be an infinity.
     99 //
    100 // Constant(v) is considered a subtype of Range(x..y) if v happens to be an
    101 // integer between x and y.
    102 //
    103 //
    104 // PREDICATES
    105 //
    106 // There are two main functions for testing types:
    107 //
    108 //   T1->Is(T2)     -- tests whether T1 is included in T2 (i.e., T1 <= T2)
    109 //   T1->Maybe(T2)  -- tests whether T1 and T2 overlap (i.e., T1 /\ T2 =/= 0)
    110 //
    111 // Typically, the former is to be used to select representations (e.g., via
    112 // T->Is(SignedSmall())), and the latter to check whether a specific case needs
    113 // handling (e.g., via T->Maybe(Number())).
    114 //
    115 // There is no functionality to discover whether a type is a leaf in the
    116 // lattice. That is intentional. It should always be possible to refine the
    117 // lattice (e.g., splitting up number types further) without invalidating any
    118 // existing assumptions or tests.
    119 // Consequently, do not normally use Equals for type tests, always use Is!
    120 //
    121 // The NowIs operator implements state-sensitive subtying, as described above.
    122 // Any compilation decision based on such temporary properties requires runtime
    123 // guarding!
    124 //
    125 //
    126 // PROPERTIES
    127 //
    128 // Various formal properties hold for constructors, operators, and predicates
    129 // over types. For example, constructors are injective and subtyping is a
    130 // complete partial order.
    131 //
    132 // See test/cctest/test-types.cc for a comprehensive executable specification,
    133 // especially with respect to the properties of the more exotic 'temporal'
    134 // constructors and predicates (those prefixed 'Now').
    135 //
    136 //
    137 // IMPLEMENTATION
    138 //
    139 // Internally, all 'primitive' types, and their unions, are represented as
    140 // bitsets. Bit 0 is reserved for tagging. Class is a heap pointer to the
    141 // respective map. Only structured types require allocation.
    142 // Note that the bitset representation is closed under both Union and Intersect.
    143 //
    144 // There are two type representations, using different allocation:
    145 //
    146 // - class Type (zone-allocated, for compiler and concurrent compilation)
    147 // - class HeapType (heap-allocated, for persistent types)
    148 //
    149 // Both provide the same API, and the Convert method can be used to interconvert
    150 // them. For zone types, no query method touches the heap, only constructors do.
    151 
    152 
    153 // -----------------------------------------------------------------------------
    154 // Values for bitset types
    155 
    156 #define MASK_BITSET_TYPE_LIST(V) \
    157   V(Representation, 0xff800000u) \
    158   V(Semantic,       0x007ffffeu)
    159 
    160 #define REPRESENTATION(k) ((k) & BitsetType::kRepresentation)
    161 #define SEMANTIC(k)       ((k) & BitsetType::kSemantic)
    162 
    163 #define REPRESENTATION_BITSET_TYPE_LIST(V) \
    164   V(None,             0)                   \
    165   V(UntaggedInt1,     1u << 23 | kSemantic) \
    166   V(UntaggedInt8,     1u << 24 | kSemantic) \
    167   V(UntaggedInt16,    1u << 25 | kSemantic) \
    168   V(UntaggedInt32,    1u << 26 | kSemantic) \
    169   V(UntaggedFloat32,  1u << 27 | kSemantic) \
    170   V(UntaggedFloat64,  1u << 28 | kSemantic) \
    171   V(UntaggedPtr,      1u << 29 | kSemantic) \
    172   V(TaggedInt,        1u << 30 | kSemantic) \
    173   V(TaggedPtr,        1u << 31 | kSemantic) \
    174   \
    175   V(UntaggedInt,      kUntaggedInt1 | kUntaggedInt8 |      \
    176                       kUntaggedInt16 | kUntaggedInt32)     \
    177   V(UntaggedFloat,    kUntaggedFloat32 | kUntaggedFloat64) \
    178   V(UntaggedNumber,   kUntaggedInt | kUntaggedFloat)       \
    179   V(Untagged,         kUntaggedNumber | kUntaggedPtr)      \
    180   V(Tagged,           kTaggedInt | kTaggedPtr)
    181 
    182 #define SEMANTIC_BITSET_TYPE_LIST(V) \
    183   V(Null,                1u << 1  | REPRESENTATION(kTaggedPtr)) \
    184   V(Undefined,           1u << 2  | REPRESENTATION(kTaggedPtr)) \
    185   V(Boolean,             1u << 3  | REPRESENTATION(kTaggedPtr)) \
    186   V(UnsignedSmall,       1u << 4  | REPRESENTATION(kTagged | kUntaggedNumber)) \
    187   V(OtherSignedSmall,    1u << 5  | REPRESENTATION(kTagged | kUntaggedNumber)) \
    188   V(OtherUnsigned31,     1u << 6  | REPRESENTATION(kTagged | kUntaggedNumber)) \
    189   V(OtherUnsigned32,     1u << 7  | REPRESENTATION(kTagged | kUntaggedNumber)) \
    190   V(OtherSigned32,       1u << 8  | REPRESENTATION(kTagged | kUntaggedNumber)) \
    191   V(MinusZero,           1u << 9  | REPRESENTATION(kTagged | kUntaggedNumber)) \
    192   V(NaN,                 1u << 10 | REPRESENTATION(kTagged | kUntaggedNumber)) \
    193   V(OtherNumber,         1u << 11 | REPRESENTATION(kTagged | kUntaggedNumber)) \
    194   V(Symbol,              1u << 12 | REPRESENTATION(kTaggedPtr)) \
    195   V(InternalizedString,  1u << 13 | REPRESENTATION(kTaggedPtr)) \
    196   V(OtherString,         1u << 14 | REPRESENTATION(kTaggedPtr)) \
    197   V(Undetectable,        1u << 15 | REPRESENTATION(kTaggedPtr)) \
    198   V(Array,               1u << 16 | REPRESENTATION(kTaggedPtr)) \
    199   V(Buffer,              1u << 17 | REPRESENTATION(kTaggedPtr)) \
    200   V(Function,            1u << 18 | REPRESENTATION(kTaggedPtr)) \
    201   V(RegExp,              1u << 19 | REPRESENTATION(kTaggedPtr)) \
    202   V(OtherObject,         1u << 20 | REPRESENTATION(kTaggedPtr)) \
    203   V(Proxy,               1u << 21 | REPRESENTATION(kTaggedPtr)) \
    204   V(Internal,            1u << 22 | REPRESENTATION(kTagged | kUntagged)) \
    205   \
    206   V(SignedSmall,         kUnsignedSmall | kOtherSignedSmall) \
    207   V(Signed32,            kSignedSmall | kOtherUnsigned31 | kOtherSigned32) \
    208   V(Unsigned32,          kUnsignedSmall | kOtherUnsigned31 | kOtherUnsigned32) \
    209   V(Integral32,          kSigned32 | kUnsigned32) \
    210   V(OrderedNumber,       kIntegral32 | kMinusZero | kOtherNumber) \
    211   V(Number,              kOrderedNumber | kNaN) \
    212   V(String,              kInternalizedString | kOtherString) \
    213   V(UniqueName,          kSymbol | kInternalizedString) \
    214   V(Name,                kSymbol | kString) \
    215   V(NumberOrString,      kNumber | kString) \
    216   V(Primitive,           kNumber | kName | kBoolean | kNull | kUndefined) \
    217   V(DetectableObject,    kArray | kFunction | kRegExp | kOtherObject) \
    218   V(DetectableReceiver,  kDetectableObject | kProxy) \
    219   V(Detectable,          kDetectableReceiver | kNumber | kName) \
    220   V(Object,              kDetectableObject | kUndetectable) \
    221   V(Receiver,            kObject | kProxy) \
    222   V(NonNumber,           kBoolean | kName | kNull | kReceiver | \
    223                          kUndefined | kInternal) \
    224   V(Any,                 0xfffffffeu)
    225 
    226 /*
    227  * The following diagrams show how integers (in the mathematical sense) are
    228  * divided among the different atomic numerical types.
    229  *
    230  * If SmiValuesAre31Bits():
    231  *
    232  *   ON    OS32     OSS     US     OU31    OU32     ON
    233  * ______[_______[_______[_______[_______[_______[_______
    234  *     -2^31   -2^30     0      2^30    2^31    2^32
    235  *
    236  * Otherwise:
    237  *
    238  *   ON         OSS             US         OU32     ON
    239  * ______[_______________[_______________[_______[_______
    240  *     -2^31             0              2^31    2^32
    241  *
    242  *
    243  * E.g., OtherUnsigned32 (OU32) covers all integers from 2^31 to 2^32-1.
    244  *
    245  */
    246 
    247 #define PROPER_BITSET_TYPE_LIST(V) \
    248   REPRESENTATION_BITSET_TYPE_LIST(V) \
    249   SEMANTIC_BITSET_TYPE_LIST(V)
    250 
    251 #define BITSET_TYPE_LIST(V) \
    252   MASK_BITSET_TYPE_LIST(V) \
    253   PROPER_BITSET_TYPE_LIST(V)
    254 
    255 
    256 // -----------------------------------------------------------------------------
    257 // The abstract Type class, parameterized over the low-level representation.
    258 
    259 // struct Config {
    260 //   typedef TypeImpl<Config> Type;
    261 //   typedef Base;
    262 //   typedef Struct;
    263 //   typedef Region;
    264 //   template<class> struct Handle { typedef type; }  // No template typedefs...
    265 //   template<class T> static Handle<T>::type handle(T* t);  // !is_bitset(t)
    266 //   template<class T> static Handle<T>::type cast(Handle<Type>::type);
    267 //   static bool is_bitset(Type*);
    268 //   static bool is_class(Type*);
    269 //   static bool is_struct(Type*, int tag);
    270 //   static bitset as_bitset(Type*);
    271 //   static i::Handle<i::Map> as_class(Type*);
    272 //   static Handle<Struct>::type as_struct(Type*);
    273 //   static Type* from_bitset(bitset);
    274 //   static Handle<Type>::type from_bitset(bitset, Region*);
    275 //   static Handle<Type>::type from_class(i::Handle<Map>, Region*);
    276 //   static Handle<Type>::type from_struct(Handle<Struct>::type, int tag);
    277 //   static Handle<Struct>::type struct_create(int tag, int length, Region*);
    278 //   static void struct_shrink(Handle<Struct>::type, int length);
    279 //   static int struct_tag(Handle<Struct>::type);
    280 //   static int struct_length(Handle<Struct>::type);
    281 //   static Handle<Type>::type struct_get(Handle<Struct>::type, int);
    282 //   static void struct_set(Handle<Struct>::type, int, Handle<Type>::type);
    283 //   template<class V>
    284 //   static i::Handle<V> struct_get_value(Handle<Struct>::type, int);
    285 //   template<class V>
    286 //   static void struct_set_value(Handle<Struct>::type, int, i::Handle<V>);
    287 // }
    288 template<class Config>
    289 class TypeImpl : public Config::Base {
    290  public:
    291   // Auxiliary types.
    292 
    293   typedef uint32_t bitset;  // Internal
    294   class BitsetType;         // Internal
    295   class StructuralType;     // Internal
    296   class UnionType;          // Internal
    297 
    298   class ClassType;
    299   class ConstantType;
    300   class RangeType;
    301   class ContextType;
    302   class ArrayType;
    303   class FunctionType;
    304 
    305   typedef typename Config::template Handle<TypeImpl>::type TypeHandle;
    306   typedef typename Config::template Handle<ClassType>::type ClassHandle;
    307   typedef typename Config::template Handle<ConstantType>::type ConstantHandle;
    308   typedef typename Config::template Handle<RangeType>::type RangeHandle;
    309   typedef typename Config::template Handle<ContextType>::type ContextHandle;
    310   typedef typename Config::template Handle<ArrayType>::type ArrayHandle;
    311   typedef typename Config::template Handle<FunctionType>::type FunctionHandle;
    312   typedef typename Config::template Handle<UnionType>::type UnionHandle;
    313   typedef typename Config::Region Region;
    314 
    315   // Constructors.
    316 
    317   #define DEFINE_TYPE_CONSTRUCTOR(type, value)                                \
    318     static TypeImpl* type() {                                                 \
    319       return BitsetType::New(BitsetType::k##type);                            \
    320     }                                                                         \
    321     static TypeHandle type(Region* region) {                                  \
    322       return BitsetType::New(BitsetType::k##type, region);                    \
    323     }
    324   PROPER_BITSET_TYPE_LIST(DEFINE_TYPE_CONSTRUCTOR)
    325   #undef DEFINE_TYPE_CONSTRUCTOR
    326 
    327   static TypeHandle Class(i::Handle<i::Map> map, Region* region) {
    328     return ClassType::New(map, region);
    329   }
    330   static TypeHandle Constant(i::Handle<i::Object> value, Region* region) {
    331     return ConstantType::New(value, region);
    332   }
    333   static TypeHandle Range(
    334       i::Handle<i::Object> min, i::Handle<i::Object> max, Region* region) {
    335     return RangeType::New(min, max, region);
    336   }
    337   static TypeHandle Context(TypeHandle outer, Region* region) {
    338     return ContextType::New(outer, region);
    339   }
    340   static TypeHandle Array(TypeHandle element, Region* region) {
    341     return ArrayType::New(element, region);
    342   }
    343   static FunctionHandle Function(
    344       TypeHandle result, TypeHandle receiver, int arity, Region* region) {
    345     return FunctionType::New(result, receiver, arity, region);
    346   }
    347   static TypeHandle Function(TypeHandle result, Region* region) {
    348     return Function(result, Any(region), 0, region);
    349   }
    350   static TypeHandle Function(
    351       TypeHandle result, TypeHandle param0, Region* region) {
    352     FunctionHandle function = Function(result, Any(region), 1, region);
    353     function->InitParameter(0, param0);
    354     return function;
    355   }
    356   static TypeHandle Function(
    357       TypeHandle result, TypeHandle param0, TypeHandle param1, Region* region) {
    358     FunctionHandle function = Function(result, Any(region), 2, region);
    359     function->InitParameter(0, param0);
    360     function->InitParameter(1, param1);
    361     return function;
    362   }
    363   static TypeHandle Function(
    364       TypeHandle result, TypeHandle param0, TypeHandle param1,
    365       TypeHandle param2, Region* region) {
    366     FunctionHandle function = Function(result, Any(region), 3, region);
    367     function->InitParameter(0, param0);
    368     function->InitParameter(1, param1);
    369     function->InitParameter(2, param2);
    370     return function;
    371   }
    372 
    373   static TypeHandle Union(TypeHandle type1, TypeHandle type2, Region* reg);
    374   static TypeHandle Intersect(TypeHandle type1, TypeHandle type2, Region* reg);
    375 
    376   static TypeHandle Of(double value, Region* region) {
    377     return Config::from_bitset(BitsetType::Lub(value), region);
    378   }
    379   static TypeHandle Of(i::Object* value, Region* region) {
    380     return Config::from_bitset(BitsetType::Lub(value), region);
    381   }
    382   static TypeHandle Of(i::Handle<i::Object> value, Region* region) {
    383     return Of(*value, region);
    384   }
    385 
    386   // Predicates.
    387 
    388   bool IsInhabited() { return BitsetType::IsInhabited(this->BitsetLub()); }
    389 
    390   bool Is(TypeImpl* that) { return this == that || this->SlowIs(that); }
    391   template<class TypeHandle>
    392   bool Is(TypeHandle that) { return this->Is(*that); }
    393 
    394   bool Maybe(TypeImpl* that);
    395   template<class TypeHandle>
    396   bool Maybe(TypeHandle that) { return this->Maybe(*that); }
    397 
    398   bool Equals(TypeImpl* that) { return this->Is(that) && that->Is(this); }
    399   template<class TypeHandle>
    400   bool Equals(TypeHandle that) { return this->Equals(*that); }
    401 
    402   // Equivalent to Constant(val)->Is(this), but avoiding allocation.
    403   bool Contains(i::Object* val);
    404   bool Contains(i::Handle<i::Object> val) { return this->Contains(*val); }
    405 
    406   // State-dependent versions of the above that consider subtyping between
    407   // a constant and its map class.
    408   inline static TypeHandle NowOf(i::Object* value, Region* region);
    409   static TypeHandle NowOf(i::Handle<i::Object> value, Region* region) {
    410     return NowOf(*value, region);
    411   }
    412   bool NowIs(TypeImpl* that);
    413   template<class TypeHandle>
    414   bool NowIs(TypeHandle that)  { return this->NowIs(*that); }
    415   inline bool NowContains(i::Object* val);
    416   bool NowContains(i::Handle<i::Object> val) { return this->NowContains(*val); }
    417 
    418   bool NowStable();
    419 
    420   // Inspection.
    421 
    422   bool IsClass() {
    423     return Config::is_class(this)
    424         || Config::is_struct(this, StructuralType::kClassTag);
    425   }
    426   bool IsConstant() {
    427     return Config::is_struct(this, StructuralType::kConstantTag);
    428   }
    429   bool IsRange() {
    430     return Config::is_struct(this, StructuralType::kRangeTag);
    431   }
    432   bool IsContext() {
    433     return Config::is_struct(this, StructuralType::kContextTag);
    434   }
    435   bool IsArray() {
    436     return Config::is_struct(this, StructuralType::kArrayTag);
    437   }
    438   bool IsFunction() {
    439     return Config::is_struct(this, StructuralType::kFunctionTag);
    440   }
    441 
    442   ClassType* AsClass() { return ClassType::cast(this); }
    443   ConstantType* AsConstant() { return ConstantType::cast(this); }
    444   RangeType* AsRange() { return RangeType::cast(this); }
    445   ContextType* AsContext() { return ContextType::cast(this); }
    446   ArrayType* AsArray() { return ArrayType::cast(this); }
    447   FunctionType* AsFunction() { return FunctionType::cast(this); }
    448 
    449   // Minimum and maximum of a numeric type.
    450   // These functions do not distinguish between -0 and +0.  If the type equals
    451   // kNaN, they return NaN; otherwise kNaN is ignored.  Only call these
    452   // functions on subtypes of Number.
    453   double Min();
    454   double Max();
    455 
    456   int NumClasses();
    457   int NumConstants();
    458 
    459   template<class T> class Iterator;
    460   Iterator<i::Map> Classes() {
    461     if (this->IsBitset()) return Iterator<i::Map>();
    462     return Iterator<i::Map>(Config::handle(this));
    463   }
    464   Iterator<i::Object> Constants() {
    465     if (this->IsBitset()) return Iterator<i::Object>();
    466     return Iterator<i::Object>(Config::handle(this));
    467   }
    468 
    469   // Casting and conversion.
    470 
    471   static inline TypeImpl* cast(typename Config::Base* object);
    472 
    473   template<class OtherTypeImpl>
    474   static TypeHandle Convert(
    475       typename OtherTypeImpl::TypeHandle type, Region* region);
    476 
    477   // Printing.
    478 
    479   enum PrintDimension { BOTH_DIMS, SEMANTIC_DIM, REPRESENTATION_DIM };
    480 
    481   void PrintTo(OStream& os, PrintDimension dim = BOTH_DIMS);  // NOLINT
    482 
    483 #ifdef DEBUG
    484   void Print();
    485 #endif
    486 
    487  protected:
    488   // Friends.
    489 
    490   template<class> friend class Iterator;
    491   template<class> friend class TypeImpl;
    492 
    493   // Handle conversion.
    494 
    495   template<class T>
    496   static typename Config::template Handle<T>::type handle(T* type) {
    497     return Config::handle(type);
    498   }
    499   TypeImpl* unhandle() { return this; }
    500 
    501   // Internal inspection.
    502 
    503   bool IsNone() { return this == None(); }
    504   bool IsAny() { return this == Any(); }
    505   bool IsBitset() { return Config::is_bitset(this); }
    506   bool IsUnion() { return Config::is_struct(this, StructuralType::kUnionTag); }
    507 
    508   bitset AsBitset() {
    509     DCHECK(this->IsBitset());
    510     return static_cast<BitsetType*>(this)->Bitset();
    511   }
    512   UnionType* AsUnion() { return UnionType::cast(this); }
    513 
    514   // Auxiliary functions.
    515 
    516   bitset BitsetGlb() { return BitsetType::Glb(this); }
    517   bitset BitsetLub() { return BitsetType::Lub(this); }
    518 
    519   bool SlowIs(TypeImpl* that);
    520 
    521   static bool IsInteger(double x) {
    522     return nearbyint(x) == x && !i::IsMinusZero(x);  // Allows for infinities.
    523   }
    524   static bool IsInteger(i::Object* x) {
    525     return x->IsNumber() && IsInteger(x->Number());
    526   }
    527 
    528   struct Limits {
    529     i::Handle<i::Object> min;
    530     i::Handle<i::Object> max;
    531     Limits(i::Handle<i::Object> min, i::Handle<i::Object> max) :
    532       min(min), max(max) {}
    533     explicit Limits(RangeType* range) :
    534       min(range->Min()), max(range->Max()) {}
    535   };
    536 
    537   static Limits Intersect(Limits lhs, Limits rhs);
    538   static Limits Union(Limits lhs, Limits rhs);
    539   static bool Overlap(RangeType* lhs, RangeType* rhs);
    540   static bool Contains(RangeType* lhs, RangeType* rhs);
    541   static bool Contains(RangeType* range, i::Object* val);
    542 
    543   RangeType* GetRange();
    544   static int UpdateRange(
    545       RangeHandle type, UnionHandle result, int size, Region* region);
    546 
    547   bool SimplyEquals(TypeImpl* that);
    548   template<class TypeHandle>
    549   bool SimplyEquals(TypeHandle that) { return this->SimplyEquals(*that); }
    550 
    551   static int AddToUnion(
    552       TypeHandle type, UnionHandle result, int size, Region* region);
    553   static int IntersectAux(
    554       TypeHandle type, TypeHandle other,
    555       UnionHandle result, int size, Region* region);
    556   static TypeHandle NormalizeUnion(UnionHandle unioned, int size);
    557 };
    558 
    559 
    560 // -----------------------------------------------------------------------------
    561 // Bitset types (internal).
    562 
    563 template<class Config>
    564 class TypeImpl<Config>::BitsetType : public TypeImpl<Config> {
    565  protected:
    566   friend class TypeImpl<Config>;
    567 
    568   enum {
    569     #define DECLARE_TYPE(type, value) k##type = (value),
    570     BITSET_TYPE_LIST(DECLARE_TYPE)
    571     #undef DECLARE_TYPE
    572     kUnusedEOL = 0
    573   };
    574 
    575   bitset Bitset() { return Config::as_bitset(this); }
    576 
    577   static TypeImpl* New(bitset bits) {
    578     DCHECK(bits == kNone || IsInhabited(bits));
    579     return Config::from_bitset(bits);
    580   }
    581   static TypeHandle New(bitset bits, Region* region) {
    582     DCHECK(bits == kNone || IsInhabited(bits));
    583     return Config::from_bitset(bits, region);
    584   }
    585   // TODO(neis): Eventually allow again for types with empty semantics
    586   // part and modify intersection and possibly subtyping accordingly.
    587 
    588   static bool IsInhabited(bitset bits) {
    589     return bits & kSemantic;
    590   }
    591 
    592   static bool Is(bitset bits1, bitset bits2) {
    593     return (bits1 | bits2) == bits2;
    594   }
    595 
    596   static double Min(bitset);
    597   static double Max(bitset);
    598 
    599   static bitset Glb(TypeImpl* type);  // greatest lower bound that's a bitset
    600   static bitset Lub(TypeImpl* type);  // least upper bound that's a bitset
    601   static bitset Lub(i::Object* value);
    602   static bitset Lub(double value);
    603   static bitset Lub(int32_t value);
    604   static bitset Lub(uint32_t value);
    605   static bitset Lub(i::Map* map);
    606   static bitset Lub(Limits lim);
    607 
    608   static const char* Name(bitset);
    609   static void Print(OStream& os, bitset);  // NOLINT
    610 #ifdef DEBUG
    611   static void Print(bitset);
    612 #endif
    613 
    614  private:
    615   struct BitsetMin{
    616     bitset bits;
    617     double min;
    618   };
    619   static const BitsetMin BitsetMins31[];
    620   static const BitsetMin BitsetMins32[];
    621   static const BitsetMin* BitsetMins() {
    622     return i::SmiValuesAre31Bits() ? BitsetMins31 : BitsetMins32;
    623   }
    624   static size_t BitsetMinsSize() {
    625     return i::SmiValuesAre31Bits() ? 7 : 5;
    626     /* arraysize(BitsetMins31) : arraysize(BitsetMins32); */
    627     // Using arraysize here doesn't compile on Windows.
    628   }
    629 };
    630 
    631 
    632 // -----------------------------------------------------------------------------
    633 // Superclass for non-bitset types (internal).
    634 // Contains a tag and a variable number of type or value fields.
    635 
    636 template<class Config>
    637 class TypeImpl<Config>::StructuralType : public TypeImpl<Config> {
    638  protected:
    639   template<class> friend class TypeImpl;
    640   friend struct ZoneTypeConfig;  // For tags.
    641   friend struct HeapTypeConfig;
    642 
    643   enum Tag {
    644     kClassTag,
    645     kConstantTag,
    646     kRangeTag,
    647     kContextTag,
    648     kArrayTag,
    649     kFunctionTag,
    650     kUnionTag
    651   };
    652 
    653   int Length() {
    654     return Config::struct_length(Config::as_struct(this));
    655   }
    656   TypeHandle Get(int i) {
    657     DCHECK(0 <= i && i < this->Length());
    658     return Config::struct_get(Config::as_struct(this), i);
    659   }
    660   void Set(int i, TypeHandle type) {
    661     DCHECK(0 <= i && i < this->Length());
    662     Config::struct_set(Config::as_struct(this), i, type);
    663   }
    664   void Shrink(int length) {
    665     DCHECK(2 <= length && length <= this->Length());
    666     Config::struct_shrink(Config::as_struct(this), length);
    667   }
    668   template<class V> i::Handle<V> GetValue(int i) {
    669     DCHECK(0 <= i && i < this->Length());
    670     return Config::template struct_get_value<V>(Config::as_struct(this), i);
    671   }
    672   template<class V> void SetValue(int i, i::Handle<V> x) {
    673     DCHECK(0 <= i && i < this->Length());
    674     Config::struct_set_value(Config::as_struct(this), i, x);
    675   }
    676 
    677   static TypeHandle New(Tag tag, int length, Region* region) {
    678     DCHECK(1 <= length);
    679     return Config::from_struct(Config::struct_create(tag, length, region));
    680   }
    681 };
    682 
    683 
    684 // -----------------------------------------------------------------------------
    685 // Union types (internal).
    686 // A union is a structured type with the following invariants:
    687 // - its length is at least 2
    688 // - at most one field is a bitset, and it must go into index 0
    689 // - no field is a union
    690 // - no field is a subtype of any other field
    691 template<class Config>
    692 class TypeImpl<Config>::UnionType : public StructuralType {
    693  public:
    694   static UnionHandle New(int length, Region* region) {
    695     return Config::template cast<UnionType>(
    696         StructuralType::New(StructuralType::kUnionTag, length, region));
    697   }
    698 
    699   static UnionType* cast(TypeImpl* type) {
    700     DCHECK(type->IsUnion());
    701     return static_cast<UnionType*>(type);
    702   }
    703 
    704   bool Wellformed();
    705 };
    706 
    707 
    708 // -----------------------------------------------------------------------------
    709 // Class types.
    710 
    711 template<class Config>
    712 class TypeImpl<Config>::ClassType : public StructuralType {
    713  public:
    714   TypeHandle Bound(Region* region) {
    715     return Config::is_class(this) ?
    716         BitsetType::New(BitsetType::Lub(*Config::as_class(this)), region) :
    717         this->Get(0);
    718   }
    719   i::Handle<i::Map> Map() {
    720     return Config::is_class(this) ? Config::as_class(this) :
    721         this->template GetValue<i::Map>(1);
    722   }
    723 
    724   static ClassHandle New(i::Handle<i::Map> map, Region* region) {
    725     ClassHandle type =
    726         Config::template cast<ClassType>(Config::from_class(map, region));
    727     if (!type->IsClass()) {
    728       type = Config::template cast<ClassType>(
    729           StructuralType::New(StructuralType::kClassTag, 2, region));
    730       type->Set(0, BitsetType::New(BitsetType::Lub(*map), region));
    731       type->SetValue(1, map);
    732     }
    733     return type;
    734   }
    735 
    736   static ClassType* cast(TypeImpl* type) {
    737     DCHECK(type->IsClass());
    738     return static_cast<ClassType*>(type);
    739   }
    740 };
    741 
    742 
    743 // -----------------------------------------------------------------------------
    744 // Constant types.
    745 
    746 template<class Config>
    747 class TypeImpl<Config>::ConstantType : public StructuralType {
    748  public:
    749   TypeHandle Bound() { return this->Get(0); }
    750   i::Handle<i::Object> Value() { return this->template GetValue<i::Object>(1); }
    751 
    752   static ConstantHandle New(i::Handle<i::Object> value, Region* region) {
    753     ConstantHandle type = Config::template cast<ConstantType>(
    754         StructuralType::New(StructuralType::kConstantTag, 2, region));
    755     type->Set(0, BitsetType::New(BitsetType::Lub(*value), region));
    756     type->SetValue(1, value);
    757     return type;
    758   }
    759 
    760   static ConstantType* cast(TypeImpl* type) {
    761     DCHECK(type->IsConstant());
    762     return static_cast<ConstantType*>(type);
    763   }
    764 };
    765 // TODO(neis): Also cache value if numerical.
    766 // TODO(neis): Allow restricting the representation.
    767 
    768 
    769 // -----------------------------------------------------------------------------
    770 // Range types.
    771 
    772 template<class Config>
    773 class TypeImpl<Config>::RangeType : public StructuralType {
    774  public:
    775   int BitsetLub() { return this->Get(0)->AsBitset(); }
    776   i::Handle<i::Object> Min() { return this->template GetValue<i::Object>(1); }
    777   i::Handle<i::Object> Max() { return this->template GetValue<i::Object>(2); }
    778 
    779   static RangeHandle New(
    780       i::Handle<i::Object> min, i::Handle<i::Object> max, Region* region) {
    781     DCHECK(min->Number() <= max->Number());
    782     RangeHandle type = Config::template cast<RangeType>(
    783         StructuralType::New(StructuralType::kRangeTag, 3, region));
    784     type->Set(0, BitsetType::New(BitsetType::Lub(Limits(min, max)), region));
    785     type->SetValue(1, min);
    786     type->SetValue(2, max);
    787     return type;
    788   }
    789 
    790   static RangeHandle New(Limits lim, Region* region) {
    791     return New(lim.min, lim.max, region);
    792   }
    793 
    794   static RangeType* cast(TypeImpl* type) {
    795     DCHECK(type->IsRange());
    796     return static_cast<RangeType*>(type);
    797   }
    798 };
    799 // TODO(neis): Also cache min and max values.
    800 // TODO(neis): Allow restricting the representation.
    801 
    802 
    803 // -----------------------------------------------------------------------------
    804 // Context types.
    805 
    806 template<class Config>
    807 class TypeImpl<Config>::ContextType : public StructuralType {
    808  public:
    809   TypeHandle Outer() { return this->Get(0); }
    810 
    811   static ContextHandle New(TypeHandle outer, Region* region) {
    812     ContextHandle type = Config::template cast<ContextType>(
    813         StructuralType::New(StructuralType::kContextTag, 1, region));
    814     type->Set(0, outer);
    815     return type;
    816   }
    817 
    818   static ContextType* cast(TypeImpl* type) {
    819     DCHECK(type->IsContext());
    820     return static_cast<ContextType*>(type);
    821   }
    822 };
    823 
    824 
    825 // -----------------------------------------------------------------------------
    826 // Array types.
    827 
    828 template<class Config>
    829 class TypeImpl<Config>::ArrayType : public StructuralType {
    830  public:
    831   TypeHandle Element() { return this->Get(0); }
    832 
    833   static ArrayHandle New(TypeHandle element, Region* region) {
    834     ArrayHandle type = Config::template cast<ArrayType>(
    835         StructuralType::New(StructuralType::kArrayTag, 1, region));
    836     type->Set(0, element);
    837     return type;
    838   }
    839 
    840   static ArrayType* cast(TypeImpl* type) {
    841     DCHECK(type->IsArray());
    842     return static_cast<ArrayType*>(type);
    843   }
    844 };
    845 
    846 
    847 // -----------------------------------------------------------------------------
    848 // Function types.
    849 
    850 template<class Config>
    851 class TypeImpl<Config>::FunctionType : public StructuralType {
    852  public:
    853   int Arity() { return this->Length() - 2; }
    854   TypeHandle Result() { return this->Get(0); }
    855   TypeHandle Receiver() { return this->Get(1); }
    856   TypeHandle Parameter(int i) { return this->Get(2 + i); }
    857 
    858   void InitParameter(int i, TypeHandle type) { this->Set(2 + i, type); }
    859 
    860   static FunctionHandle New(
    861       TypeHandle result, TypeHandle receiver, int arity, Region* region) {
    862     FunctionHandle type = Config::template cast<FunctionType>(
    863         StructuralType::New(StructuralType::kFunctionTag, 2 + arity, region));
    864     type->Set(0, result);
    865     type->Set(1, receiver);
    866     return type;
    867   }
    868 
    869   static FunctionType* cast(TypeImpl* type) {
    870     DCHECK(type->IsFunction());
    871     return static_cast<FunctionType*>(type);
    872   }
    873 };
    874 
    875 
    876 // -----------------------------------------------------------------------------
    877 // Type iterators.
    878 
    879 template<class Config> template<class T>
    880 class TypeImpl<Config>::Iterator {
    881  public:
    882   bool Done() const { return index_ < 0; }
    883   i::Handle<T> Current();
    884   void Advance();
    885 
    886  private:
    887   template<class> friend class TypeImpl;
    888 
    889   Iterator() : index_(-1) {}
    890   explicit Iterator(TypeHandle type) : type_(type), index_(-1) {
    891     Advance();
    892   }
    893 
    894   inline bool matches(TypeHandle type);
    895   inline TypeHandle get_type();
    896 
    897   TypeHandle type_;
    898   int index_;
    899 };
    900 
    901 
    902 // -----------------------------------------------------------------------------
    903 // Zone-allocated types; they are either (odd) integers to represent bitsets, or
    904 // (even) pointers to structures for everything else.
    905 
    906 struct ZoneTypeConfig {
    907   typedef TypeImpl<ZoneTypeConfig> Type;
    908   class Base {};
    909   typedef void* Struct;
    910   typedef i::Zone Region;
    911   template<class T> struct Handle { typedef T* type; };
    912 
    913   template<class T> static inline T* handle(T* type);
    914   template<class T> static inline T* cast(Type* type);
    915 
    916   static inline bool is_bitset(Type* type);
    917   static inline bool is_class(Type* type);
    918   static inline bool is_struct(Type* type, int tag);
    919 
    920   static inline Type::bitset as_bitset(Type* type);
    921   static inline i::Handle<i::Map> as_class(Type* type);
    922   static inline Struct* as_struct(Type* type);
    923 
    924   static inline Type* from_bitset(Type::bitset);
    925   static inline Type* from_bitset(Type::bitset, Zone* zone);
    926   static inline Type* from_class(i::Handle<i::Map> map, Zone* zone);
    927   static inline Type* from_struct(Struct* structured);
    928 
    929   static inline Struct* struct_create(int tag, int length, Zone* zone);
    930   static inline void struct_shrink(Struct* structure, int length);
    931   static inline int struct_tag(Struct* structure);
    932   static inline int struct_length(Struct* structure);
    933   static inline Type* struct_get(Struct* structure, int i);
    934   static inline void struct_set(Struct* structure, int i, Type* type);
    935   template<class V>
    936   static inline i::Handle<V> struct_get_value(Struct* structure, int i);
    937   template<class V> static inline void struct_set_value(
    938       Struct* structure, int i, i::Handle<V> x);
    939 };
    940 
    941 typedef TypeImpl<ZoneTypeConfig> Type;
    942 
    943 
    944 // -----------------------------------------------------------------------------
    945 // Heap-allocated types; either smis for bitsets, maps for classes, boxes for
    946 // constants, or fixed arrays for unions.
    947 
    948 struct HeapTypeConfig {
    949   typedef TypeImpl<HeapTypeConfig> Type;
    950   typedef i::Object Base;
    951   typedef i::FixedArray Struct;
    952   typedef i::Isolate Region;
    953   template<class T> struct Handle { typedef i::Handle<T> type; };
    954 
    955   template<class T> static inline i::Handle<T> handle(T* type);
    956   template<class T> static inline i::Handle<T> cast(i::Handle<Type> type);
    957 
    958   static inline bool is_bitset(Type* type);
    959   static inline bool is_class(Type* type);
    960   static inline bool is_struct(Type* type, int tag);
    961 
    962   static inline Type::bitset as_bitset(Type* type);
    963   static inline i::Handle<i::Map> as_class(Type* type);
    964   static inline i::Handle<Struct> as_struct(Type* type);
    965 
    966   static inline Type* from_bitset(Type::bitset);
    967   static inline i::Handle<Type> from_bitset(Type::bitset, Isolate* isolate);
    968   static inline i::Handle<Type> from_class(
    969       i::Handle<i::Map> map, Isolate* isolate);
    970   static inline i::Handle<Type> from_struct(i::Handle<Struct> structure);
    971 
    972   static inline i::Handle<Struct> struct_create(
    973       int tag, int length, Isolate* isolate);
    974   static inline void struct_shrink(i::Handle<Struct> structure, int length);
    975   static inline int struct_tag(i::Handle<Struct> structure);
    976   static inline int struct_length(i::Handle<Struct> structure);
    977   static inline i::Handle<Type> struct_get(i::Handle<Struct> structure, int i);
    978   static inline void struct_set(
    979       i::Handle<Struct> structure, int i, i::Handle<Type> type);
    980   template<class V>
    981   static inline i::Handle<V> struct_get_value(
    982       i::Handle<Struct> structure, int i);
    983   template<class V>
    984   static inline void struct_set_value(
    985       i::Handle<Struct> structure, int i, i::Handle<V> x);
    986 };
    987 
    988 typedef TypeImpl<HeapTypeConfig> HeapType;
    989 
    990 
    991 // -----------------------------------------------------------------------------
    992 // Type bounds. A simple struct to represent a pair of lower/upper types.
    993 
    994 template<class Config>
    995 struct BoundsImpl {
    996   typedef TypeImpl<Config> Type;
    997   typedef typename Type::TypeHandle TypeHandle;
    998   typedef typename Type::Region Region;
    999 
   1000   TypeHandle lower;
   1001   TypeHandle upper;
   1002 
   1003   BoundsImpl() {}
   1004   explicit BoundsImpl(TypeHandle t) : lower(t), upper(t) {}
   1005   BoundsImpl(TypeHandle l, TypeHandle u) : lower(l), upper(u) {
   1006     DCHECK(lower->Is(upper));
   1007   }
   1008 
   1009   // Unrestricted bounds.
   1010   static BoundsImpl Unbounded(Region* region) {
   1011     return BoundsImpl(Type::None(region), Type::Any(region));
   1012   }
   1013 
   1014   // Meet: both b1 and b2 are known to hold.
   1015   static BoundsImpl Both(BoundsImpl b1, BoundsImpl b2, Region* region) {
   1016     TypeHandle lower = Type::Union(b1.lower, b2.lower, region);
   1017     TypeHandle upper = Type::Intersect(b1.upper, b2.upper, region);
   1018     // Lower bounds are considered approximate, correct as necessary.
   1019     lower = Type::Intersect(lower, upper, region);
   1020     return BoundsImpl(lower, upper);
   1021   }
   1022 
   1023   // Join: either b1 or b2 is known to hold.
   1024   static BoundsImpl Either(BoundsImpl b1, BoundsImpl b2, Region* region) {
   1025     TypeHandle lower = Type::Intersect(b1.lower, b2.lower, region);
   1026     TypeHandle upper = Type::Union(b1.upper, b2.upper, region);
   1027     return BoundsImpl(lower, upper);
   1028   }
   1029 
   1030   static BoundsImpl NarrowLower(BoundsImpl b, TypeHandle t, Region* region) {
   1031     // Lower bounds are considered approximate, correct as necessary.
   1032     t = Type::Intersect(t, b.upper, region);
   1033     TypeHandle lower = Type::Union(b.lower, t, region);
   1034     return BoundsImpl(lower, b.upper);
   1035   }
   1036   static BoundsImpl NarrowUpper(BoundsImpl b, TypeHandle t, Region* region) {
   1037     TypeHandle lower = Type::Intersect(b.lower, t, region);
   1038     TypeHandle upper = Type::Intersect(b.upper, t, region);
   1039     return BoundsImpl(lower, upper);
   1040   }
   1041 
   1042   bool Narrows(BoundsImpl that) {
   1043     return that.lower->Is(this->lower) && this->upper->Is(that.upper);
   1044   }
   1045 };
   1046 
   1047 typedef BoundsImpl<ZoneTypeConfig> Bounds;
   1048 
   1049 } }  // namespace v8::internal
   1050 
   1051 #endif  // V8_TYPES_H_
   1052