Home | History | Annotate | Download | only in Sema
      1 //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements name lookup for C, C++, Objective-C, and
     11 //  Objective-C++.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 #include "clang/Sema/Lookup.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/CXXInheritance.h"
     17 #include "clang/AST/Decl.h"
     18 #include "clang/AST/DeclCXX.h"
     19 #include "clang/AST/DeclLookups.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/DeclTemplate.h"
     22 #include "clang/AST/Expr.h"
     23 #include "clang/AST/ExprCXX.h"
     24 #include "clang/Basic/Builtins.h"
     25 #include "clang/Basic/LangOptions.h"
     26 #include "clang/Lex/ModuleLoader.h"
     27 #include "clang/Sema/DeclSpec.h"
     28 #include "clang/Sema/ExternalSemaSource.h"
     29 #include "clang/Sema/Overload.h"
     30 #include "clang/Sema/Scope.h"
     31 #include "clang/Sema/ScopeInfo.h"
     32 #include "clang/Sema/Sema.h"
     33 #include "clang/Sema/SemaInternal.h"
     34 #include "clang/Sema/TemplateDeduction.h"
     35 #include "clang/Sema/TypoCorrection.h"
     36 #include "llvm/ADT/STLExtras.h"
     37 #include "llvm/ADT/SetVector.h"
     38 #include "llvm/ADT/SmallPtrSet.h"
     39 #include "llvm/ADT/StringMap.h"
     40 #include "llvm/ADT/TinyPtrVector.h"
     41 #include "llvm/ADT/edit_distance.h"
     42 #include "llvm/Support/ErrorHandling.h"
     43 #include <algorithm>
     44 #include <iterator>
     45 #include <limits>
     46 #include <list>
     47 #include <map>
     48 #include <set>
     49 #include <utility>
     50 #include <vector>
     51 
     52 using namespace clang;
     53 using namespace sema;
     54 
     55 namespace {
     56   class UnqualUsingEntry {
     57     const DeclContext *Nominated;
     58     const DeclContext *CommonAncestor;
     59 
     60   public:
     61     UnqualUsingEntry(const DeclContext *Nominated,
     62                      const DeclContext *CommonAncestor)
     63       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
     64     }
     65 
     66     const DeclContext *getCommonAncestor() const {
     67       return CommonAncestor;
     68     }
     69 
     70     const DeclContext *getNominatedNamespace() const {
     71       return Nominated;
     72     }
     73 
     74     // Sort by the pointer value of the common ancestor.
     75     struct Comparator {
     76       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
     77         return L.getCommonAncestor() < R.getCommonAncestor();
     78       }
     79 
     80       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
     81         return E.getCommonAncestor() < DC;
     82       }
     83 
     84       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
     85         return DC < E.getCommonAncestor();
     86       }
     87     };
     88   };
     89 
     90   /// A collection of using directives, as used by C++ unqualified
     91   /// lookup.
     92   class UnqualUsingDirectiveSet {
     93     typedef SmallVector<UnqualUsingEntry, 8> ListTy;
     94 
     95     ListTy list;
     96     llvm::SmallPtrSet<DeclContext*, 8> visited;
     97 
     98   public:
     99     UnqualUsingDirectiveSet() {}
    100 
    101     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
    102       // C++ [namespace.udir]p1:
    103       //   During unqualified name lookup, the names appear as if they
    104       //   were declared in the nearest enclosing namespace which contains
    105       //   both the using-directive and the nominated namespace.
    106       DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
    107       assert(InnermostFileDC && InnermostFileDC->isFileContext());
    108 
    109       for (; S; S = S->getParent()) {
    110         // C++ [namespace.udir]p1:
    111         //   A using-directive shall not appear in class scope, but may
    112         //   appear in namespace scope or in block scope.
    113         DeclContext *Ctx = S->getEntity();
    114         if (Ctx && Ctx->isFileContext()) {
    115           visit(Ctx, Ctx);
    116         } else if (!Ctx || Ctx->isFunctionOrMethod()) {
    117           for (auto *I : S->using_directives())
    118             visit(I, InnermostFileDC);
    119         }
    120       }
    121     }
    122 
    123     // Visits a context and collect all of its using directives
    124     // recursively.  Treats all using directives as if they were
    125     // declared in the context.
    126     //
    127     // A given context is only every visited once, so it is important
    128     // that contexts be visited from the inside out in order to get
    129     // the effective DCs right.
    130     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
    131       if (!visited.insert(DC))
    132         return;
    133 
    134       addUsingDirectives(DC, EffectiveDC);
    135     }
    136 
    137     // Visits a using directive and collects all of its using
    138     // directives recursively.  Treats all using directives as if they
    139     // were declared in the effective DC.
    140     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
    141       DeclContext *NS = UD->getNominatedNamespace();
    142       if (!visited.insert(NS))
    143         return;
    144 
    145       addUsingDirective(UD, EffectiveDC);
    146       addUsingDirectives(NS, EffectiveDC);
    147     }
    148 
    149     // Adds all the using directives in a context (and those nominated
    150     // by its using directives, transitively) as if they appeared in
    151     // the given effective context.
    152     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
    153       SmallVector<DeclContext*,4> queue;
    154       while (true) {
    155         for (auto UD : DC->using_directives()) {
    156           DeclContext *NS = UD->getNominatedNamespace();
    157           if (visited.insert(NS)) {
    158             addUsingDirective(UD, EffectiveDC);
    159             queue.push_back(NS);
    160           }
    161         }
    162 
    163         if (queue.empty())
    164           return;
    165 
    166         DC = queue.pop_back_val();
    167       }
    168     }
    169 
    170     // Add a using directive as if it had been declared in the given
    171     // context.  This helps implement C++ [namespace.udir]p3:
    172     //   The using-directive is transitive: if a scope contains a
    173     //   using-directive that nominates a second namespace that itself
    174     //   contains using-directives, the effect is as if the
    175     //   using-directives from the second namespace also appeared in
    176     //   the first.
    177     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
    178       // Find the common ancestor between the effective context and
    179       // the nominated namespace.
    180       DeclContext *Common = UD->getNominatedNamespace();
    181       while (!Common->Encloses(EffectiveDC))
    182         Common = Common->getParent();
    183       Common = Common->getPrimaryContext();
    184 
    185       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
    186     }
    187 
    188     void done() {
    189       std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
    190     }
    191 
    192     typedef ListTy::const_iterator const_iterator;
    193 
    194     const_iterator begin() const { return list.begin(); }
    195     const_iterator end() const { return list.end(); }
    196 
    197     std::pair<const_iterator,const_iterator>
    198     getNamespacesFor(DeclContext *DC) const {
    199       return std::equal_range(begin(), end(), DC->getPrimaryContext(),
    200                               UnqualUsingEntry::Comparator());
    201     }
    202   };
    203 }
    204 
    205 // Retrieve the set of identifier namespaces that correspond to a
    206 // specific kind of name lookup.
    207 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
    208                                bool CPlusPlus,
    209                                bool Redeclaration) {
    210   unsigned IDNS = 0;
    211   switch (NameKind) {
    212   case Sema::LookupObjCImplicitSelfParam:
    213   case Sema::LookupOrdinaryName:
    214   case Sema::LookupRedeclarationWithLinkage:
    215   case Sema::LookupLocalFriendName:
    216     IDNS = Decl::IDNS_Ordinary;
    217     if (CPlusPlus) {
    218       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
    219       if (Redeclaration)
    220         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
    221     }
    222     if (Redeclaration)
    223       IDNS |= Decl::IDNS_LocalExtern;
    224     break;
    225 
    226   case Sema::LookupOperatorName:
    227     // Operator lookup is its own crazy thing;  it is not the same
    228     // as (e.g.) looking up an operator name for redeclaration.
    229     assert(!Redeclaration && "cannot do redeclaration operator lookup");
    230     IDNS = Decl::IDNS_NonMemberOperator;
    231     break;
    232 
    233   case Sema::LookupTagName:
    234     if (CPlusPlus) {
    235       IDNS = Decl::IDNS_Type;
    236 
    237       // When looking for a redeclaration of a tag name, we add:
    238       // 1) TagFriend to find undeclared friend decls
    239       // 2) Namespace because they can't "overload" with tag decls.
    240       // 3) Tag because it includes class templates, which can't
    241       //    "overload" with tag decls.
    242       if (Redeclaration)
    243         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
    244     } else {
    245       IDNS = Decl::IDNS_Tag;
    246     }
    247     break;
    248 
    249   case Sema::LookupLabel:
    250     IDNS = Decl::IDNS_Label;
    251     break;
    252 
    253   case Sema::LookupMemberName:
    254     IDNS = Decl::IDNS_Member;
    255     if (CPlusPlus)
    256       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
    257     break;
    258 
    259   case Sema::LookupNestedNameSpecifierName:
    260     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
    261     break;
    262 
    263   case Sema::LookupNamespaceName:
    264     IDNS = Decl::IDNS_Namespace;
    265     break;
    266 
    267   case Sema::LookupUsingDeclName:
    268     assert(Redeclaration && "should only be used for redecl lookup");
    269     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
    270            Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
    271            Decl::IDNS_LocalExtern;
    272     break;
    273 
    274   case Sema::LookupObjCProtocolName:
    275     IDNS = Decl::IDNS_ObjCProtocol;
    276     break;
    277 
    278   case Sema::LookupAnyName:
    279     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
    280       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
    281       | Decl::IDNS_Type;
    282     break;
    283   }
    284   return IDNS;
    285 }
    286 
    287 void LookupResult::configure() {
    288   IDNS = getIDNS(LookupKind, SemaRef.getLangOpts().CPlusPlus,
    289                  isForRedeclaration());
    290 
    291   // If we're looking for one of the allocation or deallocation
    292   // operators, make sure that the implicitly-declared new and delete
    293   // operators can be found.
    294   switch (NameInfo.getName().getCXXOverloadedOperator()) {
    295   case OO_New:
    296   case OO_Delete:
    297   case OO_Array_New:
    298   case OO_Array_Delete:
    299     SemaRef.DeclareGlobalNewDelete();
    300     break;
    301 
    302   default:
    303     break;
    304   }
    305 
    306   // Compiler builtins are always visible, regardless of where they end
    307   // up being declared.
    308   if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
    309     if (unsigned BuiltinID = Id->getBuiltinID()) {
    310       if (!SemaRef.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
    311         AllowHidden = true;
    312     }
    313   }
    314 }
    315 
    316 bool LookupResult::sanity() const {
    317   // This function is never called by NDEBUG builds.
    318   assert(ResultKind != NotFound || Decls.size() == 0);
    319   assert(ResultKind != Found || Decls.size() == 1);
    320   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
    321          (Decls.size() == 1 &&
    322           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
    323   assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
    324   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
    325          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
    326                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
    327   assert((Paths != nullptr) == (ResultKind == Ambiguous &&
    328                                 (Ambiguity == AmbiguousBaseSubobjectTypes ||
    329                                  Ambiguity == AmbiguousBaseSubobjects)));
    330   return true;
    331 }
    332 
    333 // Necessary because CXXBasePaths is not complete in Sema.h
    334 void LookupResult::deletePaths(CXXBasePaths *Paths) {
    335   delete Paths;
    336 }
    337 
    338 /// Get a representative context for a declaration such that two declarations
    339 /// will have the same context if they were found within the same scope.
    340 static DeclContext *getContextForScopeMatching(Decl *D) {
    341   // For function-local declarations, use that function as the context. This
    342   // doesn't account for scopes within the function; the caller must deal with
    343   // those.
    344   DeclContext *DC = D->getLexicalDeclContext();
    345   if (DC->isFunctionOrMethod())
    346     return DC;
    347 
    348   // Otherwise, look at the semantic context of the declaration. The
    349   // declaration must have been found there.
    350   return D->getDeclContext()->getRedeclContext();
    351 }
    352 
    353 /// Resolves the result kind of this lookup.
    354 void LookupResult::resolveKind() {
    355   unsigned N = Decls.size();
    356 
    357   // Fast case: no possible ambiguity.
    358   if (N == 0) {
    359     assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
    360     return;
    361   }
    362 
    363   // If there's a single decl, we need to examine it to decide what
    364   // kind of lookup this is.
    365   if (N == 1) {
    366     NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
    367     if (isa<FunctionTemplateDecl>(D))
    368       ResultKind = FoundOverloaded;
    369     else if (isa<UnresolvedUsingValueDecl>(D))
    370       ResultKind = FoundUnresolvedValue;
    371     return;
    372   }
    373 
    374   // Don't do any extra resolution if we've already resolved as ambiguous.
    375   if (ResultKind == Ambiguous) return;
    376 
    377   llvm::SmallPtrSet<NamedDecl*, 16> Unique;
    378   llvm::SmallPtrSet<QualType, 16> UniqueTypes;
    379 
    380   bool Ambiguous = false;
    381   bool HasTag = false, HasFunction = false, HasNonFunction = false;
    382   bool HasFunctionTemplate = false, HasUnresolved = false;
    383 
    384   unsigned UniqueTagIndex = 0;
    385 
    386   unsigned I = 0;
    387   while (I < N) {
    388     NamedDecl *D = Decls[I]->getUnderlyingDecl();
    389     D = cast<NamedDecl>(D->getCanonicalDecl());
    390 
    391     // Ignore an invalid declaration unless it's the only one left.
    392     if (D->isInvalidDecl() && I < N-1) {
    393       Decls[I] = Decls[--N];
    394       continue;
    395     }
    396 
    397     // Redeclarations of types via typedef can occur both within a scope
    398     // and, through using declarations and directives, across scopes. There is
    399     // no ambiguity if they all refer to the same type, so unique based on the
    400     // canonical type.
    401     if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
    402       if (!TD->getDeclContext()->isRecord()) {
    403         QualType T = SemaRef.Context.getTypeDeclType(TD);
    404         if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
    405           // The type is not unique; pull something off the back and continue
    406           // at this index.
    407           Decls[I] = Decls[--N];
    408           continue;
    409         }
    410       }
    411     }
    412 
    413     if (!Unique.insert(D)) {
    414       // If it's not unique, pull something off the back (and
    415       // continue at this index).
    416       Decls[I] = Decls[--N];
    417       continue;
    418     }
    419 
    420     // Otherwise, do some decl type analysis and then continue.
    421 
    422     if (isa<UnresolvedUsingValueDecl>(D)) {
    423       HasUnresolved = true;
    424     } else if (isa<TagDecl>(D)) {
    425       if (HasTag)
    426         Ambiguous = true;
    427       UniqueTagIndex = I;
    428       HasTag = true;
    429     } else if (isa<FunctionTemplateDecl>(D)) {
    430       HasFunction = true;
    431       HasFunctionTemplate = true;
    432     } else if (isa<FunctionDecl>(D)) {
    433       HasFunction = true;
    434     } else {
    435       if (HasNonFunction)
    436         Ambiguous = true;
    437       HasNonFunction = true;
    438     }
    439     I++;
    440   }
    441 
    442   // C++ [basic.scope.hiding]p2:
    443   //   A class name or enumeration name can be hidden by the name of
    444   //   an object, function, or enumerator declared in the same
    445   //   scope. If a class or enumeration name and an object, function,
    446   //   or enumerator are declared in the same scope (in any order)
    447   //   with the same name, the class or enumeration name is hidden
    448   //   wherever the object, function, or enumerator name is visible.
    449   // But it's still an error if there are distinct tag types found,
    450   // even if they're not visible. (ref?)
    451   if (HideTags && HasTag && !Ambiguous &&
    452       (HasFunction || HasNonFunction || HasUnresolved)) {
    453     if (getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
    454             getContextForScopeMatching(Decls[UniqueTagIndex ? 0 : N - 1])))
    455       Decls[UniqueTagIndex] = Decls[--N];
    456     else
    457       Ambiguous = true;
    458   }
    459 
    460   Decls.set_size(N);
    461 
    462   if (HasNonFunction && (HasFunction || HasUnresolved))
    463     Ambiguous = true;
    464 
    465   if (Ambiguous)
    466     setAmbiguous(LookupResult::AmbiguousReference);
    467   else if (HasUnresolved)
    468     ResultKind = LookupResult::FoundUnresolvedValue;
    469   else if (N > 1 || HasFunctionTemplate)
    470     ResultKind = LookupResult::FoundOverloaded;
    471   else
    472     ResultKind = LookupResult::Found;
    473 }
    474 
    475 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
    476   CXXBasePaths::const_paths_iterator I, E;
    477   for (I = P.begin(), E = P.end(); I != E; ++I)
    478     for (DeclContext::lookup_iterator DI = I->Decls.begin(),
    479          DE = I->Decls.end(); DI != DE; ++DI)
    480       addDecl(*DI);
    481 }
    482 
    483 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
    484   Paths = new CXXBasePaths;
    485   Paths->swap(P);
    486   addDeclsFromBasePaths(*Paths);
    487   resolveKind();
    488   setAmbiguous(AmbiguousBaseSubobjects);
    489 }
    490 
    491 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
    492   Paths = new CXXBasePaths;
    493   Paths->swap(P);
    494   addDeclsFromBasePaths(*Paths);
    495   resolveKind();
    496   setAmbiguous(AmbiguousBaseSubobjectTypes);
    497 }
    498 
    499 void LookupResult::print(raw_ostream &Out) {
    500   Out << Decls.size() << " result(s)";
    501   if (isAmbiguous()) Out << ", ambiguous";
    502   if (Paths) Out << ", base paths present";
    503 
    504   for (iterator I = begin(), E = end(); I != E; ++I) {
    505     Out << "\n";
    506     (*I)->print(Out, 2);
    507   }
    508 }
    509 
    510 /// \brief Lookup a builtin function, when name lookup would otherwise
    511 /// fail.
    512 static bool LookupBuiltin(Sema &S, LookupResult &R) {
    513   Sema::LookupNameKind NameKind = R.getLookupKind();
    514 
    515   // If we didn't find a use of this identifier, and if the identifier
    516   // corresponds to a compiler builtin, create the decl object for the builtin
    517   // now, injecting it into translation unit scope, and return it.
    518   if (NameKind == Sema::LookupOrdinaryName ||
    519       NameKind == Sema::LookupRedeclarationWithLinkage) {
    520     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
    521     if (II) {
    522       if (S.getLangOpts().CPlusPlus11 && S.getLangOpts().GNUMode &&
    523           II == S.getFloat128Identifier()) {
    524         // libstdc++4.7's type_traits expects type __float128 to exist, so
    525         // insert a dummy type to make that header build in gnu++11 mode.
    526         R.addDecl(S.getASTContext().getFloat128StubType());
    527         return true;
    528       }
    529 
    530       // If this is a builtin on this (or all) targets, create the decl.
    531       if (unsigned BuiltinID = II->getBuiltinID()) {
    532         // In C++, we don't have any predefined library functions like
    533         // 'malloc'. Instead, we'll just error.
    534         if (S.getLangOpts().CPlusPlus &&
    535             S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
    536           return false;
    537 
    538         if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
    539                                                  BuiltinID, S.TUScope,
    540                                                  R.isForRedeclaration(),
    541                                                  R.getNameLoc())) {
    542           R.addDecl(D);
    543           return true;
    544         }
    545       }
    546     }
    547   }
    548 
    549   return false;
    550 }
    551 
    552 /// \brief Determine whether we can declare a special member function within
    553 /// the class at this point.
    554 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
    555   // We need to have a definition for the class.
    556   if (!Class->getDefinition() || Class->isDependentContext())
    557     return false;
    558 
    559   // We can't be in the middle of defining the class.
    560   return !Class->isBeingDefined();
    561 }
    562 
    563 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
    564   if (!CanDeclareSpecialMemberFunction(Class))
    565     return;
    566 
    567   // If the default constructor has not yet been declared, do so now.
    568   if (Class->needsImplicitDefaultConstructor())
    569     DeclareImplicitDefaultConstructor(Class);
    570 
    571   // If the copy constructor has not yet been declared, do so now.
    572   if (Class->needsImplicitCopyConstructor())
    573     DeclareImplicitCopyConstructor(Class);
    574 
    575   // If the copy assignment operator has not yet been declared, do so now.
    576   if (Class->needsImplicitCopyAssignment())
    577     DeclareImplicitCopyAssignment(Class);
    578 
    579   if (getLangOpts().CPlusPlus11) {
    580     // If the move constructor has not yet been declared, do so now.
    581     if (Class->needsImplicitMoveConstructor())
    582       DeclareImplicitMoveConstructor(Class); // might not actually do it
    583 
    584     // If the move assignment operator has not yet been declared, do so now.
    585     if (Class->needsImplicitMoveAssignment())
    586       DeclareImplicitMoveAssignment(Class); // might not actually do it
    587   }
    588 
    589   // If the destructor has not yet been declared, do so now.
    590   if (Class->needsImplicitDestructor())
    591     DeclareImplicitDestructor(Class);
    592 }
    593 
    594 /// \brief Determine whether this is the name of an implicitly-declared
    595 /// special member function.
    596 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
    597   switch (Name.getNameKind()) {
    598   case DeclarationName::CXXConstructorName:
    599   case DeclarationName::CXXDestructorName:
    600     return true;
    601 
    602   case DeclarationName::CXXOperatorName:
    603     return Name.getCXXOverloadedOperator() == OO_Equal;
    604 
    605   default:
    606     break;
    607   }
    608 
    609   return false;
    610 }
    611 
    612 /// \brief If there are any implicit member functions with the given name
    613 /// that need to be declared in the given declaration context, do so.
    614 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
    615                                                    DeclarationName Name,
    616                                                    const DeclContext *DC) {
    617   if (!DC)
    618     return;
    619 
    620   switch (Name.getNameKind()) {
    621   case DeclarationName::CXXConstructorName:
    622     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
    623       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
    624         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
    625         if (Record->needsImplicitDefaultConstructor())
    626           S.DeclareImplicitDefaultConstructor(Class);
    627         if (Record->needsImplicitCopyConstructor())
    628           S.DeclareImplicitCopyConstructor(Class);
    629         if (S.getLangOpts().CPlusPlus11 &&
    630             Record->needsImplicitMoveConstructor())
    631           S.DeclareImplicitMoveConstructor(Class);
    632       }
    633     break;
    634 
    635   case DeclarationName::CXXDestructorName:
    636     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
    637       if (Record->getDefinition() && Record->needsImplicitDestructor() &&
    638           CanDeclareSpecialMemberFunction(Record))
    639         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
    640     break;
    641 
    642   case DeclarationName::CXXOperatorName:
    643     if (Name.getCXXOverloadedOperator() != OO_Equal)
    644       break;
    645 
    646     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
    647       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
    648         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
    649         if (Record->needsImplicitCopyAssignment())
    650           S.DeclareImplicitCopyAssignment(Class);
    651         if (S.getLangOpts().CPlusPlus11 &&
    652             Record->needsImplicitMoveAssignment())
    653           S.DeclareImplicitMoveAssignment(Class);
    654       }
    655     }
    656     break;
    657 
    658   default:
    659     break;
    660   }
    661 }
    662 
    663 // Adds all qualifying matches for a name within a decl context to the
    664 // given lookup result.  Returns true if any matches were found.
    665 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
    666   bool Found = false;
    667 
    668   // Lazily declare C++ special member functions.
    669   if (S.getLangOpts().CPlusPlus)
    670     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
    671 
    672   // Perform lookup into this declaration context.
    673   DeclContext::lookup_const_result DR = DC->lookup(R.getLookupName());
    674   for (DeclContext::lookup_const_iterator I = DR.begin(), E = DR.end(); I != E;
    675        ++I) {
    676     NamedDecl *D = *I;
    677     if ((D = R.getAcceptableDecl(D))) {
    678       R.addDecl(D);
    679       Found = true;
    680     }
    681   }
    682 
    683   if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
    684     return true;
    685 
    686   if (R.getLookupName().getNameKind()
    687         != DeclarationName::CXXConversionFunctionName ||
    688       R.getLookupName().getCXXNameType()->isDependentType() ||
    689       !isa<CXXRecordDecl>(DC))
    690     return Found;
    691 
    692   // C++ [temp.mem]p6:
    693   //   A specialization of a conversion function template is not found by
    694   //   name lookup. Instead, any conversion function templates visible in the
    695   //   context of the use are considered. [...]
    696   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
    697   if (!Record->isCompleteDefinition())
    698     return Found;
    699 
    700   for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
    701          UEnd = Record->conversion_end(); U != UEnd; ++U) {
    702     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
    703     if (!ConvTemplate)
    704       continue;
    705 
    706     // When we're performing lookup for the purposes of redeclaration, just
    707     // add the conversion function template. When we deduce template
    708     // arguments for specializations, we'll end up unifying the return
    709     // type of the new declaration with the type of the function template.
    710     if (R.isForRedeclaration()) {
    711       R.addDecl(ConvTemplate);
    712       Found = true;
    713       continue;
    714     }
    715 
    716     // C++ [temp.mem]p6:
    717     //   [...] For each such operator, if argument deduction succeeds
    718     //   (14.9.2.3), the resulting specialization is used as if found by
    719     //   name lookup.
    720     //
    721     // When referencing a conversion function for any purpose other than
    722     // a redeclaration (such that we'll be building an expression with the
    723     // result), perform template argument deduction and place the
    724     // specialization into the result set. We do this to avoid forcing all
    725     // callers to perform special deduction for conversion functions.
    726     TemplateDeductionInfo Info(R.getNameLoc());
    727     FunctionDecl *Specialization = nullptr;
    728 
    729     const FunctionProtoType *ConvProto
    730       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
    731     assert(ConvProto && "Nonsensical conversion function template type");
    732 
    733     // Compute the type of the function that we would expect the conversion
    734     // function to have, if it were to match the name given.
    735     // FIXME: Calling convention!
    736     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
    737     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
    738     EPI.ExceptionSpecType = EST_None;
    739     EPI.NumExceptions = 0;
    740     QualType ExpectedType
    741       = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
    742                                             None, EPI);
    743 
    744     // Perform template argument deduction against the type that we would
    745     // expect the function to have.
    746     if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
    747                                             Specialization, Info)
    748           == Sema::TDK_Success) {
    749       R.addDecl(Specialization);
    750       Found = true;
    751     }
    752   }
    753 
    754   return Found;
    755 }
    756 
    757 // Performs C++ unqualified lookup into the given file context.
    758 static bool
    759 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
    760                    DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
    761 
    762   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
    763 
    764   // Perform direct name lookup into the LookupCtx.
    765   bool Found = LookupDirect(S, R, NS);
    766 
    767   // Perform direct name lookup into the namespaces nominated by the
    768   // using directives whose common ancestor is this namespace.
    769   UnqualUsingDirectiveSet::const_iterator UI, UEnd;
    770   std::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
    771 
    772   for (; UI != UEnd; ++UI)
    773     if (LookupDirect(S, R, UI->getNominatedNamespace()))
    774       Found = true;
    775 
    776   R.resolveKind();
    777 
    778   return Found;
    779 }
    780 
    781 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
    782   if (DeclContext *Ctx = S->getEntity())
    783     return Ctx->isFileContext();
    784   return false;
    785 }
    786 
    787 // Find the next outer declaration context from this scope. This
    788 // routine actually returns the semantic outer context, which may
    789 // differ from the lexical context (encoded directly in the Scope
    790 // stack) when we are parsing a member of a class template. In this
    791 // case, the second element of the pair will be true, to indicate that
    792 // name lookup should continue searching in this semantic context when
    793 // it leaves the current template parameter scope.
    794 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
    795   DeclContext *DC = S->getEntity();
    796   DeclContext *Lexical = nullptr;
    797   for (Scope *OuterS = S->getParent(); OuterS;
    798        OuterS = OuterS->getParent()) {
    799     if (OuterS->getEntity()) {
    800       Lexical = OuterS->getEntity();
    801       break;
    802     }
    803   }
    804 
    805   // C++ [temp.local]p8:
    806   //   In the definition of a member of a class template that appears
    807   //   outside of the namespace containing the class template
    808   //   definition, the name of a template-parameter hides the name of
    809   //   a member of this namespace.
    810   //
    811   // Example:
    812   //
    813   //   namespace N {
    814   //     class C { };
    815   //
    816   //     template<class T> class B {
    817   //       void f(T);
    818   //     };
    819   //   }
    820   //
    821   //   template<class C> void N::B<C>::f(C) {
    822   //     C b;  // C is the template parameter, not N::C
    823   //   }
    824   //
    825   // In this example, the lexical context we return is the
    826   // TranslationUnit, while the semantic context is the namespace N.
    827   if (!Lexical || !DC || !S->getParent() ||
    828       !S->getParent()->isTemplateParamScope())
    829     return std::make_pair(Lexical, false);
    830 
    831   // Find the outermost template parameter scope.
    832   // For the example, this is the scope for the template parameters of
    833   // template<class C>.
    834   Scope *OutermostTemplateScope = S->getParent();
    835   while (OutermostTemplateScope->getParent() &&
    836          OutermostTemplateScope->getParent()->isTemplateParamScope())
    837     OutermostTemplateScope = OutermostTemplateScope->getParent();
    838 
    839   // Find the namespace context in which the original scope occurs. In
    840   // the example, this is namespace N.
    841   DeclContext *Semantic = DC;
    842   while (!Semantic->isFileContext())
    843     Semantic = Semantic->getParent();
    844 
    845   // Find the declaration context just outside of the template
    846   // parameter scope. This is the context in which the template is
    847   // being lexically declaration (a namespace context). In the
    848   // example, this is the global scope.
    849   if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
    850       Lexical->Encloses(Semantic))
    851     return std::make_pair(Semantic, true);
    852 
    853   return std::make_pair(Lexical, false);
    854 }
    855 
    856 namespace {
    857 /// An RAII object to specify that we want to find block scope extern
    858 /// declarations.
    859 struct FindLocalExternScope {
    860   FindLocalExternScope(LookupResult &R)
    861       : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
    862                                  Decl::IDNS_LocalExtern) {
    863     R.setFindLocalExtern(R.getIdentifierNamespace() & Decl::IDNS_Ordinary);
    864   }
    865   void restore() {
    866     R.setFindLocalExtern(OldFindLocalExtern);
    867   }
    868   ~FindLocalExternScope() {
    869     restore();
    870   }
    871   LookupResult &R;
    872   bool OldFindLocalExtern;
    873 };
    874 }
    875 
    876 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
    877   assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
    878 
    879   DeclarationName Name = R.getLookupName();
    880   Sema::LookupNameKind NameKind = R.getLookupKind();
    881 
    882   // If this is the name of an implicitly-declared special member function,
    883   // go through the scope stack to implicitly declare
    884   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
    885     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
    886       if (DeclContext *DC = PreS->getEntity())
    887         DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
    888   }
    889 
    890   // Implicitly declare member functions with the name we're looking for, if in
    891   // fact we are in a scope where it matters.
    892 
    893   Scope *Initial = S;
    894   IdentifierResolver::iterator
    895     I = IdResolver.begin(Name),
    896     IEnd = IdResolver.end();
    897 
    898   // First we lookup local scope.
    899   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
    900   // ...During unqualified name lookup (3.4.1), the names appear as if
    901   // they were declared in the nearest enclosing namespace which contains
    902   // both the using-directive and the nominated namespace.
    903   // [Note: in this context, "contains" means "contains directly or
    904   // indirectly".
    905   //
    906   // For example:
    907   // namespace A { int i; }
    908   // void foo() {
    909   //   int i;
    910   //   {
    911   //     using namespace A;
    912   //     ++i; // finds local 'i', A::i appears at global scope
    913   //   }
    914   // }
    915   //
    916   UnqualUsingDirectiveSet UDirs;
    917   bool VisitedUsingDirectives = false;
    918   bool LeftStartingScope = false;
    919   DeclContext *OutsideOfTemplateParamDC = nullptr;
    920 
    921   // When performing a scope lookup, we want to find local extern decls.
    922   FindLocalExternScope FindLocals(R);
    923 
    924   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
    925     DeclContext *Ctx = S->getEntity();
    926 
    927     // Check whether the IdResolver has anything in this scope.
    928     bool Found = false;
    929     for (; I != IEnd && S->isDeclScope(*I); ++I) {
    930       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
    931         if (NameKind == LookupRedeclarationWithLinkage) {
    932           // Determine whether this (or a previous) declaration is
    933           // out-of-scope.
    934           if (!LeftStartingScope && !Initial->isDeclScope(*I))
    935             LeftStartingScope = true;
    936 
    937           // If we found something outside of our starting scope that
    938           // does not have linkage, skip it. If it's a template parameter,
    939           // we still find it, so we can diagnose the invalid redeclaration.
    940           if (LeftStartingScope && !((*I)->hasLinkage()) &&
    941               !(*I)->isTemplateParameter()) {
    942             R.setShadowed();
    943             continue;
    944           }
    945         }
    946 
    947         Found = true;
    948         R.addDecl(ND);
    949       }
    950     }
    951     if (Found) {
    952       R.resolveKind();
    953       if (S->isClassScope())
    954         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
    955           R.setNamingClass(Record);
    956       return true;
    957     }
    958 
    959     if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
    960       // C++11 [class.friend]p11:
    961       //   If a friend declaration appears in a local class and the name
    962       //   specified is an unqualified name, a prior declaration is
    963       //   looked up without considering scopes that are outside the
    964       //   innermost enclosing non-class scope.
    965       return false;
    966     }
    967 
    968     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
    969         S->getParent() && !S->getParent()->isTemplateParamScope()) {
    970       // We've just searched the last template parameter scope and
    971       // found nothing, so look into the contexts between the
    972       // lexical and semantic declaration contexts returned by
    973       // findOuterContext(). This implements the name lookup behavior
    974       // of C++ [temp.local]p8.
    975       Ctx = OutsideOfTemplateParamDC;
    976       OutsideOfTemplateParamDC = nullptr;
    977     }
    978 
    979     if (Ctx) {
    980       DeclContext *OuterCtx;
    981       bool SearchAfterTemplateScope;
    982       std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
    983       if (SearchAfterTemplateScope)
    984         OutsideOfTemplateParamDC = OuterCtx;
    985 
    986       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
    987         // We do not directly look into transparent contexts, since
    988         // those entities will be found in the nearest enclosing
    989         // non-transparent context.
    990         if (Ctx->isTransparentContext())
    991           continue;
    992 
    993         // We do not look directly into function or method contexts,
    994         // since all of the local variables and parameters of the
    995         // function/method are present within the Scope.
    996         if (Ctx->isFunctionOrMethod()) {
    997           // If we have an Objective-C instance method, look for ivars
    998           // in the corresponding interface.
    999           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
   1000             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
   1001               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
   1002                 ObjCInterfaceDecl *ClassDeclared;
   1003                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
   1004                                                  Name.getAsIdentifierInfo(),
   1005                                                              ClassDeclared)) {
   1006                   if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
   1007                     R.addDecl(ND);
   1008                     R.resolveKind();
   1009                     return true;
   1010                   }
   1011                 }
   1012               }
   1013           }
   1014 
   1015           continue;
   1016         }
   1017 
   1018         // If this is a file context, we need to perform unqualified name
   1019         // lookup considering using directives.
   1020         if (Ctx->isFileContext()) {
   1021           // If we haven't handled using directives yet, do so now.
   1022           if (!VisitedUsingDirectives) {
   1023             // Add using directives from this context up to the top level.
   1024             for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
   1025               if (UCtx->isTransparentContext())
   1026                 continue;
   1027 
   1028               UDirs.visit(UCtx, UCtx);
   1029             }
   1030 
   1031             // Find the innermost file scope, so we can add using directives
   1032             // from local scopes.
   1033             Scope *InnermostFileScope = S;
   1034             while (InnermostFileScope &&
   1035                    !isNamespaceOrTranslationUnitScope(InnermostFileScope))
   1036               InnermostFileScope = InnermostFileScope->getParent();
   1037             UDirs.visitScopeChain(Initial, InnermostFileScope);
   1038 
   1039             UDirs.done();
   1040 
   1041             VisitedUsingDirectives = true;
   1042           }
   1043 
   1044           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
   1045             R.resolveKind();
   1046             return true;
   1047           }
   1048 
   1049           continue;
   1050         }
   1051 
   1052         // Perform qualified name lookup into this context.
   1053         // FIXME: In some cases, we know that every name that could be found by
   1054         // this qualified name lookup will also be on the identifier chain. For
   1055         // example, inside a class without any base classes, we never need to
   1056         // perform qualified lookup because all of the members are on top of the
   1057         // identifier chain.
   1058         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
   1059           return true;
   1060       }
   1061     }
   1062   }
   1063 
   1064   // Stop if we ran out of scopes.
   1065   // FIXME:  This really, really shouldn't be happening.
   1066   if (!S) return false;
   1067 
   1068   // If we are looking for members, no need to look into global/namespace scope.
   1069   if (NameKind == LookupMemberName)
   1070     return false;
   1071 
   1072   // Collect UsingDirectiveDecls in all scopes, and recursively all
   1073   // nominated namespaces by those using-directives.
   1074   //
   1075   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
   1076   // don't build it for each lookup!
   1077   if (!VisitedUsingDirectives) {
   1078     UDirs.visitScopeChain(Initial, S);
   1079     UDirs.done();
   1080   }
   1081 
   1082   // If we're not performing redeclaration lookup, do not look for local
   1083   // extern declarations outside of a function scope.
   1084   if (!R.isForRedeclaration())
   1085     FindLocals.restore();
   1086 
   1087   // Lookup namespace scope, and global scope.
   1088   // Unqualified name lookup in C++ requires looking into scopes
   1089   // that aren't strictly lexical, and therefore we walk through the
   1090   // context as well as walking through the scopes.
   1091   for (; S; S = S->getParent()) {
   1092     // Check whether the IdResolver has anything in this scope.
   1093     bool Found = false;
   1094     for (; I != IEnd && S->isDeclScope(*I); ++I) {
   1095       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
   1096         // We found something.  Look for anything else in our scope
   1097         // with this same name and in an acceptable identifier
   1098         // namespace, so that we can construct an overload set if we
   1099         // need to.
   1100         Found = true;
   1101         R.addDecl(ND);
   1102       }
   1103     }
   1104 
   1105     if (Found && S->isTemplateParamScope()) {
   1106       R.resolveKind();
   1107       return true;
   1108     }
   1109 
   1110     DeclContext *Ctx = S->getEntity();
   1111     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
   1112         S->getParent() && !S->getParent()->isTemplateParamScope()) {
   1113       // We've just searched the last template parameter scope and
   1114       // found nothing, so look into the contexts between the
   1115       // lexical and semantic declaration contexts returned by
   1116       // findOuterContext(). This implements the name lookup behavior
   1117       // of C++ [temp.local]p8.
   1118       Ctx = OutsideOfTemplateParamDC;
   1119       OutsideOfTemplateParamDC = nullptr;
   1120     }
   1121 
   1122     if (Ctx) {
   1123       DeclContext *OuterCtx;
   1124       bool SearchAfterTemplateScope;
   1125       std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
   1126       if (SearchAfterTemplateScope)
   1127         OutsideOfTemplateParamDC = OuterCtx;
   1128 
   1129       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
   1130         // We do not directly look into transparent contexts, since
   1131         // those entities will be found in the nearest enclosing
   1132         // non-transparent context.
   1133         if (Ctx->isTransparentContext())
   1134           continue;
   1135 
   1136         // If we have a context, and it's not a context stashed in the
   1137         // template parameter scope for an out-of-line definition, also
   1138         // look into that context.
   1139         if (!(Found && S && S->isTemplateParamScope())) {
   1140           assert(Ctx->isFileContext() &&
   1141               "We should have been looking only at file context here already.");
   1142 
   1143           // Look into context considering using-directives.
   1144           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
   1145             Found = true;
   1146         }
   1147 
   1148         if (Found) {
   1149           R.resolveKind();
   1150           return true;
   1151         }
   1152 
   1153         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
   1154           return false;
   1155       }
   1156     }
   1157 
   1158     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
   1159       return false;
   1160   }
   1161 
   1162   return !R.empty();
   1163 }
   1164 
   1165 /// \brief Find the declaration that a class temploid member specialization was
   1166 /// instantiated from, or the member itself if it is an explicit specialization.
   1167 static Decl *getInstantiatedFrom(Decl *D, MemberSpecializationInfo *MSInfo) {
   1168   return MSInfo->isExplicitSpecialization() ? D : MSInfo->getInstantiatedFrom();
   1169 }
   1170 
   1171 /// \brief Find the module in which the given declaration was defined.
   1172 static Module *getDefiningModule(Decl *Entity) {
   1173   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
   1174     // If this function was instantiated from a template, the defining module is
   1175     // the module containing the pattern.
   1176     if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
   1177       Entity = Pattern;
   1178   } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
   1179     // If it's a class template specialization, find the template or partial
   1180     // specialization from which it was instantiated.
   1181     if (ClassTemplateSpecializationDecl *SpecRD =
   1182             dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
   1183       llvm::PointerUnion<ClassTemplateDecl*,
   1184                          ClassTemplatePartialSpecializationDecl*> From =
   1185           SpecRD->getInstantiatedFrom();
   1186       if (ClassTemplateDecl *FromTemplate = From.dyn_cast<ClassTemplateDecl*>())
   1187         Entity = FromTemplate->getTemplatedDecl();
   1188       else if (From)
   1189         Entity = From.get<ClassTemplatePartialSpecializationDecl*>();
   1190       // Otherwise, it's an explicit specialization.
   1191     } else if (MemberSpecializationInfo *MSInfo =
   1192                    RD->getMemberSpecializationInfo())
   1193       Entity = getInstantiatedFrom(RD, MSInfo);
   1194   } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
   1195     if (MemberSpecializationInfo *MSInfo = ED->getMemberSpecializationInfo())
   1196       Entity = getInstantiatedFrom(ED, MSInfo);
   1197   } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
   1198     // FIXME: Map from variable template specializations back to the template.
   1199     if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo())
   1200       Entity = getInstantiatedFrom(VD, MSInfo);
   1201   }
   1202 
   1203   // Walk up to the containing context. That might also have been instantiated
   1204   // from a template.
   1205   DeclContext *Context = Entity->getDeclContext();
   1206   if (Context->isFileContext())
   1207     return Entity->getOwningModule();
   1208   return getDefiningModule(cast<Decl>(Context));
   1209 }
   1210 
   1211 llvm::DenseSet<Module*> &Sema::getLookupModules() {
   1212   unsigned N = ActiveTemplateInstantiations.size();
   1213   for (unsigned I = ActiveTemplateInstantiationLookupModules.size();
   1214        I != N; ++I) {
   1215     Module *M = getDefiningModule(ActiveTemplateInstantiations[I].Entity);
   1216     if (M && !LookupModulesCache.insert(M).second)
   1217       M = nullptr;
   1218     ActiveTemplateInstantiationLookupModules.push_back(M);
   1219   }
   1220   return LookupModulesCache;
   1221 }
   1222 
   1223 /// \brief Determine whether a declaration is visible to name lookup.
   1224 ///
   1225 /// This routine determines whether the declaration D is visible in the current
   1226 /// lookup context, taking into account the current template instantiation
   1227 /// stack. During template instantiation, a declaration is visible if it is
   1228 /// visible from a module containing any entity on the template instantiation
   1229 /// path (by instantiating a template, you allow it to see the declarations that
   1230 /// your module can see, including those later on in your module).
   1231 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
   1232   assert(D->isHidden() && !SemaRef.ActiveTemplateInstantiations.empty() &&
   1233          "should not call this: not in slow case");
   1234   Module *DeclModule = D->getOwningModule();
   1235   assert(DeclModule && "hidden decl not from a module");
   1236 
   1237   // Find the extra places where we need to look.
   1238   llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
   1239   if (LookupModules.empty())
   1240     return false;
   1241 
   1242   // If our lookup set contains the decl's module, it's visible.
   1243   if (LookupModules.count(DeclModule))
   1244     return true;
   1245 
   1246   // If the declaration isn't exported, it's not visible in any other module.
   1247   if (D->isModulePrivate())
   1248     return false;
   1249 
   1250   // Check whether DeclModule is transitively exported to an import of
   1251   // the lookup set.
   1252   for (llvm::DenseSet<Module *>::iterator I = LookupModules.begin(),
   1253                                           E = LookupModules.end();
   1254        I != E; ++I)
   1255     if ((*I)->isModuleVisible(DeclModule))
   1256       return true;
   1257   return false;
   1258 }
   1259 
   1260 /// \brief Retrieve the visible declaration corresponding to D, if any.
   1261 ///
   1262 /// This routine determines whether the declaration D is visible in the current
   1263 /// module, with the current imports. If not, it checks whether any
   1264 /// redeclaration of D is visible, and if so, returns that declaration.
   1265 ///
   1266 /// \returns D, or a visible previous declaration of D, whichever is more recent
   1267 /// and visible. If no declaration of D is visible, returns null.
   1268 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
   1269   assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
   1270 
   1271   for (auto RD : D->redecls()) {
   1272     if (auto ND = dyn_cast<NamedDecl>(RD)) {
   1273       if (LookupResult::isVisible(SemaRef, ND))
   1274         return ND;
   1275     }
   1276   }
   1277 
   1278   return nullptr;
   1279 }
   1280 
   1281 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
   1282   return findAcceptableDecl(SemaRef, D);
   1283 }
   1284 
   1285 /// @brief Perform unqualified name lookup starting from a given
   1286 /// scope.
   1287 ///
   1288 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
   1289 /// used to find names within the current scope. For example, 'x' in
   1290 /// @code
   1291 /// int x;
   1292 /// int f() {
   1293 ///   return x; // unqualified name look finds 'x' in the global scope
   1294 /// }
   1295 /// @endcode
   1296 ///
   1297 /// Different lookup criteria can find different names. For example, a
   1298 /// particular scope can have both a struct and a function of the same
   1299 /// name, and each can be found by certain lookup criteria. For more
   1300 /// information about lookup criteria, see the documentation for the
   1301 /// class LookupCriteria.
   1302 ///
   1303 /// @param S        The scope from which unqualified name lookup will
   1304 /// begin. If the lookup criteria permits, name lookup may also search
   1305 /// in the parent scopes.
   1306 ///
   1307 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
   1308 /// look up and the lookup kind), and is updated with the results of lookup
   1309 /// including zero or more declarations and possibly additional information
   1310 /// used to diagnose ambiguities.
   1311 ///
   1312 /// @returns \c true if lookup succeeded and false otherwise.
   1313 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
   1314   DeclarationName Name = R.getLookupName();
   1315   if (!Name) return false;
   1316 
   1317   LookupNameKind NameKind = R.getLookupKind();
   1318 
   1319   if (!getLangOpts().CPlusPlus) {
   1320     // Unqualified name lookup in C/Objective-C is purely lexical, so
   1321     // search in the declarations attached to the name.
   1322     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
   1323       // Find the nearest non-transparent declaration scope.
   1324       while (!(S->getFlags() & Scope::DeclScope) ||
   1325              (S->getEntity() && S->getEntity()->isTransparentContext()))
   1326         S = S->getParent();
   1327     }
   1328 
   1329     // When performing a scope lookup, we want to find local extern decls.
   1330     FindLocalExternScope FindLocals(R);
   1331 
   1332     // Scan up the scope chain looking for a decl that matches this
   1333     // identifier that is in the appropriate namespace.  This search
   1334     // should not take long, as shadowing of names is uncommon, and
   1335     // deep shadowing is extremely uncommon.
   1336     bool LeftStartingScope = false;
   1337 
   1338     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
   1339                                    IEnd = IdResolver.end();
   1340          I != IEnd; ++I)
   1341       if (NamedDecl *D = R.getAcceptableDecl(*I)) {
   1342         if (NameKind == LookupRedeclarationWithLinkage) {
   1343           // Determine whether this (or a previous) declaration is
   1344           // out-of-scope.
   1345           if (!LeftStartingScope && !S->isDeclScope(*I))
   1346             LeftStartingScope = true;
   1347 
   1348           // If we found something outside of our starting scope that
   1349           // does not have linkage, skip it.
   1350           if (LeftStartingScope && !((*I)->hasLinkage())) {
   1351             R.setShadowed();
   1352             continue;
   1353           }
   1354         }
   1355         else if (NameKind == LookupObjCImplicitSelfParam &&
   1356                  !isa<ImplicitParamDecl>(*I))
   1357           continue;
   1358 
   1359         R.addDecl(D);
   1360 
   1361         // Check whether there are any other declarations with the same name
   1362         // and in the same scope.
   1363         if (I != IEnd) {
   1364           // Find the scope in which this declaration was declared (if it
   1365           // actually exists in a Scope).
   1366           while (S && !S->isDeclScope(D))
   1367             S = S->getParent();
   1368 
   1369           // If the scope containing the declaration is the translation unit,
   1370           // then we'll need to perform our checks based on the matching
   1371           // DeclContexts rather than matching scopes.
   1372           if (S && isNamespaceOrTranslationUnitScope(S))
   1373             S = nullptr;
   1374 
   1375           // Compute the DeclContext, if we need it.
   1376           DeclContext *DC = nullptr;
   1377           if (!S)
   1378             DC = (*I)->getDeclContext()->getRedeclContext();
   1379 
   1380           IdentifierResolver::iterator LastI = I;
   1381           for (++LastI; LastI != IEnd; ++LastI) {
   1382             if (S) {
   1383               // Match based on scope.
   1384               if (!S->isDeclScope(*LastI))
   1385                 break;
   1386             } else {
   1387               // Match based on DeclContext.
   1388               DeclContext *LastDC
   1389                 = (*LastI)->getDeclContext()->getRedeclContext();
   1390               if (!LastDC->Equals(DC))
   1391                 break;
   1392             }
   1393 
   1394             // If the declaration is in the right namespace and visible, add it.
   1395             if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
   1396               R.addDecl(LastD);
   1397           }
   1398 
   1399           R.resolveKind();
   1400         }
   1401 
   1402         return true;
   1403       }
   1404   } else {
   1405     // Perform C++ unqualified name lookup.
   1406     if (CppLookupName(R, S))
   1407       return true;
   1408   }
   1409 
   1410   // If we didn't find a use of this identifier, and if the identifier
   1411   // corresponds to a compiler builtin, create the decl object for the builtin
   1412   // now, injecting it into translation unit scope, and return it.
   1413   if (AllowBuiltinCreation && LookupBuiltin(*this, R))
   1414     return true;
   1415 
   1416   // If we didn't find a use of this identifier, the ExternalSource
   1417   // may be able to handle the situation.
   1418   // Note: some lookup failures are expected!
   1419   // See e.g. R.isForRedeclaration().
   1420   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
   1421 }
   1422 
   1423 /// @brief Perform qualified name lookup in the namespaces nominated by
   1424 /// using directives by the given context.
   1425 ///
   1426 /// C++98 [namespace.qual]p2:
   1427 ///   Given X::m (where X is a user-declared namespace), or given \::m
   1428 ///   (where X is the global namespace), let S be the set of all
   1429 ///   declarations of m in X and in the transitive closure of all
   1430 ///   namespaces nominated by using-directives in X and its used
   1431 ///   namespaces, except that using-directives are ignored in any
   1432 ///   namespace, including X, directly containing one or more
   1433 ///   declarations of m. No namespace is searched more than once in
   1434 ///   the lookup of a name. If S is the empty set, the program is
   1435 ///   ill-formed. Otherwise, if S has exactly one member, or if the
   1436 ///   context of the reference is a using-declaration
   1437 ///   (namespace.udecl), S is the required set of declarations of
   1438 ///   m. Otherwise if the use of m is not one that allows a unique
   1439 ///   declaration to be chosen from S, the program is ill-formed.
   1440 ///
   1441 /// C++98 [namespace.qual]p5:
   1442 ///   During the lookup of a qualified namespace member name, if the
   1443 ///   lookup finds more than one declaration of the member, and if one
   1444 ///   declaration introduces a class name or enumeration name and the
   1445 ///   other declarations either introduce the same object, the same
   1446 ///   enumerator or a set of functions, the non-type name hides the
   1447 ///   class or enumeration name if and only if the declarations are
   1448 ///   from the same namespace; otherwise (the declarations are from
   1449 ///   different namespaces), the program is ill-formed.
   1450 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
   1451                                                  DeclContext *StartDC) {
   1452   assert(StartDC->isFileContext() && "start context is not a file context");
   1453 
   1454   DeclContext::udir_range UsingDirectives = StartDC->using_directives();
   1455   if (UsingDirectives.begin() == UsingDirectives.end()) return false;
   1456 
   1457   // We have at least added all these contexts to the queue.
   1458   llvm::SmallPtrSet<DeclContext*, 8> Visited;
   1459   Visited.insert(StartDC);
   1460 
   1461   // We have not yet looked into these namespaces, much less added
   1462   // their "using-children" to the queue.
   1463   SmallVector<NamespaceDecl*, 8> Queue;
   1464 
   1465   // We have already looked into the initial namespace; seed the queue
   1466   // with its using-children.
   1467   for (auto *I : UsingDirectives) {
   1468     NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
   1469     if (Visited.insert(ND))
   1470       Queue.push_back(ND);
   1471   }
   1472 
   1473   // The easiest way to implement the restriction in [namespace.qual]p5
   1474   // is to check whether any of the individual results found a tag
   1475   // and, if so, to declare an ambiguity if the final result is not
   1476   // a tag.
   1477   bool FoundTag = false;
   1478   bool FoundNonTag = false;
   1479 
   1480   LookupResult LocalR(LookupResult::Temporary, R);
   1481 
   1482   bool Found = false;
   1483   while (!Queue.empty()) {
   1484     NamespaceDecl *ND = Queue.pop_back_val();
   1485 
   1486     // We go through some convolutions here to avoid copying results
   1487     // between LookupResults.
   1488     bool UseLocal = !R.empty();
   1489     LookupResult &DirectR = UseLocal ? LocalR : R;
   1490     bool FoundDirect = LookupDirect(S, DirectR, ND);
   1491 
   1492     if (FoundDirect) {
   1493       // First do any local hiding.
   1494       DirectR.resolveKind();
   1495 
   1496       // If the local result is a tag, remember that.
   1497       if (DirectR.isSingleTagDecl())
   1498         FoundTag = true;
   1499       else
   1500         FoundNonTag = true;
   1501 
   1502       // Append the local results to the total results if necessary.
   1503       if (UseLocal) {
   1504         R.addAllDecls(LocalR);
   1505         LocalR.clear();
   1506       }
   1507     }
   1508 
   1509     // If we find names in this namespace, ignore its using directives.
   1510     if (FoundDirect) {
   1511       Found = true;
   1512       continue;
   1513     }
   1514 
   1515     for (auto I : ND->using_directives()) {
   1516       NamespaceDecl *Nom = I->getNominatedNamespace();
   1517       if (Visited.insert(Nom))
   1518         Queue.push_back(Nom);
   1519     }
   1520   }
   1521 
   1522   if (Found) {
   1523     if (FoundTag && FoundNonTag)
   1524       R.setAmbiguousQualifiedTagHiding();
   1525     else
   1526       R.resolveKind();
   1527   }
   1528 
   1529   return Found;
   1530 }
   1531 
   1532 /// \brief Callback that looks for any member of a class with the given name.
   1533 static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
   1534                             CXXBasePath &Path,
   1535                             void *Name) {
   1536   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
   1537 
   1538   DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
   1539   Path.Decls = BaseRecord->lookup(N);
   1540   return !Path.Decls.empty();
   1541 }
   1542 
   1543 /// \brief Determine whether the given set of member declarations contains only
   1544 /// static members, nested types, and enumerators.
   1545 template<typename InputIterator>
   1546 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
   1547   Decl *D = (*First)->getUnderlyingDecl();
   1548   if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
   1549     return true;
   1550 
   1551   if (isa<CXXMethodDecl>(D)) {
   1552     // Determine whether all of the methods are static.
   1553     bool AllMethodsAreStatic = true;
   1554     for(; First != Last; ++First) {
   1555       D = (*First)->getUnderlyingDecl();
   1556 
   1557       if (!isa<CXXMethodDecl>(D)) {
   1558         assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
   1559         break;
   1560       }
   1561 
   1562       if (!cast<CXXMethodDecl>(D)->isStatic()) {
   1563         AllMethodsAreStatic = false;
   1564         break;
   1565       }
   1566     }
   1567 
   1568     if (AllMethodsAreStatic)
   1569       return true;
   1570   }
   1571 
   1572   return false;
   1573 }
   1574 
   1575 /// \brief Perform qualified name lookup into a given context.
   1576 ///
   1577 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
   1578 /// names when the context of those names is explicit specified, e.g.,
   1579 /// "std::vector" or "x->member", or as part of unqualified name lookup.
   1580 ///
   1581 /// Different lookup criteria can find different names. For example, a
   1582 /// particular scope can have both a struct and a function of the same
   1583 /// name, and each can be found by certain lookup criteria. For more
   1584 /// information about lookup criteria, see the documentation for the
   1585 /// class LookupCriteria.
   1586 ///
   1587 /// \param R captures both the lookup criteria and any lookup results found.
   1588 ///
   1589 /// \param LookupCtx The context in which qualified name lookup will
   1590 /// search. If the lookup criteria permits, name lookup may also search
   1591 /// in the parent contexts or (for C++ classes) base classes.
   1592 ///
   1593 /// \param InUnqualifiedLookup true if this is qualified name lookup that
   1594 /// occurs as part of unqualified name lookup.
   1595 ///
   1596 /// \returns true if lookup succeeded, false if it failed.
   1597 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
   1598                                bool InUnqualifiedLookup) {
   1599   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
   1600 
   1601   if (!R.getLookupName())
   1602     return false;
   1603 
   1604   // Make sure that the declaration context is complete.
   1605   assert((!isa<TagDecl>(LookupCtx) ||
   1606           LookupCtx->isDependentContext() ||
   1607           cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
   1608           cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
   1609          "Declaration context must already be complete!");
   1610 
   1611   // Perform qualified name lookup into the LookupCtx.
   1612   if (LookupDirect(*this, R, LookupCtx)) {
   1613     R.resolveKind();
   1614     if (isa<CXXRecordDecl>(LookupCtx))
   1615       R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
   1616     return true;
   1617   }
   1618 
   1619   // Don't descend into implied contexts for redeclarations.
   1620   // C++98 [namespace.qual]p6:
   1621   //   In a declaration for a namespace member in which the
   1622   //   declarator-id is a qualified-id, given that the qualified-id
   1623   //   for the namespace member has the form
   1624   //     nested-name-specifier unqualified-id
   1625   //   the unqualified-id shall name a member of the namespace
   1626   //   designated by the nested-name-specifier.
   1627   // See also [class.mfct]p5 and [class.static.data]p2.
   1628   if (R.isForRedeclaration())
   1629     return false;
   1630 
   1631   // If this is a namespace, look it up in the implied namespaces.
   1632   if (LookupCtx->isFileContext())
   1633     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
   1634 
   1635   // If this isn't a C++ class, we aren't allowed to look into base
   1636   // classes, we're done.
   1637   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
   1638   if (!LookupRec || !LookupRec->getDefinition())
   1639     return false;
   1640 
   1641   // If we're performing qualified name lookup into a dependent class,
   1642   // then we are actually looking into a current instantiation. If we have any
   1643   // dependent base classes, then we either have to delay lookup until
   1644   // template instantiation time (at which point all bases will be available)
   1645   // or we have to fail.
   1646   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
   1647       LookupRec->hasAnyDependentBases()) {
   1648     R.setNotFoundInCurrentInstantiation();
   1649     return false;
   1650   }
   1651 
   1652   // Perform lookup into our base classes.
   1653   CXXBasePaths Paths;
   1654   Paths.setOrigin(LookupRec);
   1655 
   1656   // Look for this member in our base classes
   1657   CXXRecordDecl::BaseMatchesCallback *BaseCallback = nullptr;
   1658   switch (R.getLookupKind()) {
   1659     case LookupObjCImplicitSelfParam:
   1660     case LookupOrdinaryName:
   1661     case LookupMemberName:
   1662     case LookupRedeclarationWithLinkage:
   1663     case LookupLocalFriendName:
   1664       BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
   1665       break;
   1666 
   1667     case LookupTagName:
   1668       BaseCallback = &CXXRecordDecl::FindTagMember;
   1669       break;
   1670 
   1671     case LookupAnyName:
   1672       BaseCallback = &LookupAnyMember;
   1673       break;
   1674 
   1675     case LookupUsingDeclName:
   1676       // This lookup is for redeclarations only.
   1677 
   1678     case LookupOperatorName:
   1679     case LookupNamespaceName:
   1680     case LookupObjCProtocolName:
   1681     case LookupLabel:
   1682       // These lookups will never find a member in a C++ class (or base class).
   1683       return false;
   1684 
   1685     case LookupNestedNameSpecifierName:
   1686       BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
   1687       break;
   1688   }
   1689 
   1690   if (!LookupRec->lookupInBases(BaseCallback,
   1691                                 R.getLookupName().getAsOpaquePtr(), Paths))
   1692     return false;
   1693 
   1694   R.setNamingClass(LookupRec);
   1695 
   1696   // C++ [class.member.lookup]p2:
   1697   //   [...] If the resulting set of declarations are not all from
   1698   //   sub-objects of the same type, or the set has a nonstatic member
   1699   //   and includes members from distinct sub-objects, there is an
   1700   //   ambiguity and the program is ill-formed. Otherwise that set is
   1701   //   the result of the lookup.
   1702   QualType SubobjectType;
   1703   int SubobjectNumber = 0;
   1704   AccessSpecifier SubobjectAccess = AS_none;
   1705 
   1706   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
   1707        Path != PathEnd; ++Path) {
   1708     const CXXBasePathElement &PathElement = Path->back();
   1709 
   1710     // Pick the best (i.e. most permissive i.e. numerically lowest) access
   1711     // across all paths.
   1712     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
   1713 
   1714     // Determine whether we're looking at a distinct sub-object or not.
   1715     if (SubobjectType.isNull()) {
   1716       // This is the first subobject we've looked at. Record its type.
   1717       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
   1718       SubobjectNumber = PathElement.SubobjectNumber;
   1719       continue;
   1720     }
   1721 
   1722     if (SubobjectType
   1723                  != Context.getCanonicalType(PathElement.Base->getType())) {
   1724       // We found members of the given name in two subobjects of
   1725       // different types. If the declaration sets aren't the same, this
   1726       // lookup is ambiguous.
   1727       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
   1728         CXXBasePaths::paths_iterator FirstPath = Paths.begin();
   1729         DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
   1730         DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
   1731 
   1732         while (FirstD != FirstPath->Decls.end() &&
   1733                CurrentD != Path->Decls.end()) {
   1734          if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
   1735              (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
   1736            break;
   1737 
   1738           ++FirstD;
   1739           ++CurrentD;
   1740         }
   1741 
   1742         if (FirstD == FirstPath->Decls.end() &&
   1743             CurrentD == Path->Decls.end())
   1744           continue;
   1745       }
   1746 
   1747       R.setAmbiguousBaseSubobjectTypes(Paths);
   1748       return true;
   1749     }
   1750 
   1751     if (SubobjectNumber != PathElement.SubobjectNumber) {
   1752       // We have a different subobject of the same type.
   1753 
   1754       // C++ [class.member.lookup]p5:
   1755       //   A static member, a nested type or an enumerator defined in
   1756       //   a base class T can unambiguously be found even if an object
   1757       //   has more than one base class subobject of type T.
   1758       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
   1759         continue;
   1760 
   1761       // We have found a nonstatic member name in multiple, distinct
   1762       // subobjects. Name lookup is ambiguous.
   1763       R.setAmbiguousBaseSubobjects(Paths);
   1764       return true;
   1765     }
   1766   }
   1767 
   1768   // Lookup in a base class succeeded; return these results.
   1769 
   1770   DeclContext::lookup_result DR = Paths.front().Decls;
   1771   for (DeclContext::lookup_iterator I = DR.begin(), E = DR.end(); I != E; ++I) {
   1772     NamedDecl *D = *I;
   1773     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
   1774                                                     D->getAccess());
   1775     R.addDecl(D, AS);
   1776   }
   1777   R.resolveKind();
   1778   return true;
   1779 }
   1780 
   1781 /// @brief Performs name lookup for a name that was parsed in the
   1782 /// source code, and may contain a C++ scope specifier.
   1783 ///
   1784 /// This routine is a convenience routine meant to be called from
   1785 /// contexts that receive a name and an optional C++ scope specifier
   1786 /// (e.g., "N::M::x"). It will then perform either qualified or
   1787 /// unqualified name lookup (with LookupQualifiedName or LookupName,
   1788 /// respectively) on the given name and return those results.
   1789 ///
   1790 /// @param S        The scope from which unqualified name lookup will
   1791 /// begin.
   1792 ///
   1793 /// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
   1794 ///
   1795 /// @param EnteringContext Indicates whether we are going to enter the
   1796 /// context of the scope-specifier SS (if present).
   1797 ///
   1798 /// @returns True if any decls were found (but possibly ambiguous)
   1799 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
   1800                             bool AllowBuiltinCreation, bool EnteringContext) {
   1801   if (SS && SS->isInvalid()) {
   1802     // When the scope specifier is invalid, don't even look for
   1803     // anything.
   1804     return false;
   1805   }
   1806 
   1807   if (SS && SS->isSet()) {
   1808     if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
   1809       // We have resolved the scope specifier to a particular declaration
   1810       // contex, and will perform name lookup in that context.
   1811       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
   1812         return false;
   1813 
   1814       R.setContextRange(SS->getRange());
   1815       return LookupQualifiedName(R, DC);
   1816     }
   1817 
   1818     // We could not resolve the scope specified to a specific declaration
   1819     // context, which means that SS refers to an unknown specialization.
   1820     // Name lookup can't find anything in this case.
   1821     R.setNotFoundInCurrentInstantiation();
   1822     R.setContextRange(SS->getRange());
   1823     return false;
   1824   }
   1825 
   1826   // Perform unqualified name lookup starting in the given scope.
   1827   return LookupName(R, S, AllowBuiltinCreation);
   1828 }
   1829 
   1830 
   1831 /// \brief Produce a diagnostic describing the ambiguity that resulted
   1832 /// from name lookup.
   1833 ///
   1834 /// \param Result The result of the ambiguous lookup to be diagnosed.
   1835 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
   1836   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
   1837 
   1838   DeclarationName Name = Result.getLookupName();
   1839   SourceLocation NameLoc = Result.getNameLoc();
   1840   SourceRange LookupRange = Result.getContextRange();
   1841 
   1842   switch (Result.getAmbiguityKind()) {
   1843   case LookupResult::AmbiguousBaseSubobjects: {
   1844     CXXBasePaths *Paths = Result.getBasePaths();
   1845     QualType SubobjectType = Paths->front().back().Base->getType();
   1846     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
   1847       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
   1848       << LookupRange;
   1849 
   1850     DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
   1851     while (isa<CXXMethodDecl>(*Found) &&
   1852            cast<CXXMethodDecl>(*Found)->isStatic())
   1853       ++Found;
   1854 
   1855     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
   1856     break;
   1857   }
   1858 
   1859   case LookupResult::AmbiguousBaseSubobjectTypes: {
   1860     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
   1861       << Name << LookupRange;
   1862 
   1863     CXXBasePaths *Paths = Result.getBasePaths();
   1864     std::set<Decl *> DeclsPrinted;
   1865     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
   1866                                       PathEnd = Paths->end();
   1867          Path != PathEnd; ++Path) {
   1868       Decl *D = Path->Decls.front();
   1869       if (DeclsPrinted.insert(D).second)
   1870         Diag(D->getLocation(), diag::note_ambiguous_member_found);
   1871     }
   1872     break;
   1873   }
   1874 
   1875   case LookupResult::AmbiguousTagHiding: {
   1876     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
   1877 
   1878     llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
   1879 
   1880     LookupResult::iterator DI, DE = Result.end();
   1881     for (DI = Result.begin(); DI != DE; ++DI)
   1882       if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
   1883         TagDecls.insert(TD);
   1884         Diag(TD->getLocation(), diag::note_hidden_tag);
   1885       }
   1886 
   1887     for (DI = Result.begin(); DI != DE; ++DI)
   1888       if (!isa<TagDecl>(*DI))
   1889         Diag((*DI)->getLocation(), diag::note_hiding_object);
   1890 
   1891     // For recovery purposes, go ahead and implement the hiding.
   1892     LookupResult::Filter F = Result.makeFilter();
   1893     while (F.hasNext()) {
   1894       if (TagDecls.count(F.next()))
   1895         F.erase();
   1896     }
   1897     F.done();
   1898     break;
   1899   }
   1900 
   1901   case LookupResult::AmbiguousReference: {
   1902     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
   1903 
   1904     LookupResult::iterator DI = Result.begin(), DE = Result.end();
   1905     for (; DI != DE; ++DI)
   1906       Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
   1907     break;
   1908   }
   1909   }
   1910 }
   1911 
   1912 namespace {
   1913   struct AssociatedLookup {
   1914     AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
   1915                      Sema::AssociatedNamespaceSet &Namespaces,
   1916                      Sema::AssociatedClassSet &Classes)
   1917       : S(S), Namespaces(Namespaces), Classes(Classes),
   1918         InstantiationLoc(InstantiationLoc) {
   1919     }
   1920 
   1921     Sema &S;
   1922     Sema::AssociatedNamespaceSet &Namespaces;
   1923     Sema::AssociatedClassSet &Classes;
   1924     SourceLocation InstantiationLoc;
   1925   };
   1926 }
   1927 
   1928 static void
   1929 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
   1930 
   1931 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
   1932                                       DeclContext *Ctx) {
   1933   // Add the associated namespace for this class.
   1934 
   1935   // We don't use DeclContext::getEnclosingNamespaceContext() as this may
   1936   // be a locally scoped record.
   1937 
   1938   // We skip out of inline namespaces. The innermost non-inline namespace
   1939   // contains all names of all its nested inline namespaces anyway, so we can
   1940   // replace the entire inline namespace tree with its root.
   1941   while (Ctx->isRecord() || Ctx->isTransparentContext() ||
   1942          Ctx->isInlineNamespace())
   1943     Ctx = Ctx->getParent();
   1944 
   1945   if (Ctx->isFileContext())
   1946     Namespaces.insert(Ctx->getPrimaryContext());
   1947 }
   1948 
   1949 // \brief Add the associated classes and namespaces for argument-dependent
   1950 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
   1951 static void
   1952 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
   1953                                   const TemplateArgument &Arg) {
   1954   // C++ [basic.lookup.koenig]p2, last bullet:
   1955   //   -- [...] ;
   1956   switch (Arg.getKind()) {
   1957     case TemplateArgument::Null:
   1958       break;
   1959 
   1960     case TemplateArgument::Type:
   1961       // [...] the namespaces and classes associated with the types of the
   1962       // template arguments provided for template type parameters (excluding
   1963       // template template parameters)
   1964       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
   1965       break;
   1966 
   1967     case TemplateArgument::Template:
   1968     case TemplateArgument::TemplateExpansion: {
   1969       // [...] the namespaces in which any template template arguments are
   1970       // defined; and the classes in which any member templates used as
   1971       // template template arguments are defined.
   1972       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
   1973       if (ClassTemplateDecl *ClassTemplate
   1974                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
   1975         DeclContext *Ctx = ClassTemplate->getDeclContext();
   1976         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   1977           Result.Classes.insert(EnclosingClass);
   1978         // Add the associated namespace for this class.
   1979         CollectEnclosingNamespace(Result.Namespaces, Ctx);
   1980       }
   1981       break;
   1982     }
   1983 
   1984     case TemplateArgument::Declaration:
   1985     case TemplateArgument::Integral:
   1986     case TemplateArgument::Expression:
   1987     case TemplateArgument::NullPtr:
   1988       // [Note: non-type template arguments do not contribute to the set of
   1989       //  associated namespaces. ]
   1990       break;
   1991 
   1992     case TemplateArgument::Pack:
   1993       for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
   1994                                         PEnd = Arg.pack_end();
   1995            P != PEnd; ++P)
   1996         addAssociatedClassesAndNamespaces(Result, *P);
   1997       break;
   1998   }
   1999 }
   2000 
   2001 // \brief Add the associated classes and namespaces for
   2002 // argument-dependent lookup with an argument of class type
   2003 // (C++ [basic.lookup.koenig]p2).
   2004 static void
   2005 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
   2006                                   CXXRecordDecl *Class) {
   2007 
   2008   // Just silently ignore anything whose name is __va_list_tag.
   2009   if (Class->getDeclName() == Result.S.VAListTagName)
   2010     return;
   2011 
   2012   // C++ [basic.lookup.koenig]p2:
   2013   //   [...]
   2014   //     -- If T is a class type (including unions), its associated
   2015   //        classes are: the class itself; the class of which it is a
   2016   //        member, if any; and its direct and indirect base
   2017   //        classes. Its associated namespaces are the namespaces in
   2018   //        which its associated classes are defined.
   2019 
   2020   // Add the class of which it is a member, if any.
   2021   DeclContext *Ctx = Class->getDeclContext();
   2022   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   2023     Result.Classes.insert(EnclosingClass);
   2024   // Add the associated namespace for this class.
   2025   CollectEnclosingNamespace(Result.Namespaces, Ctx);
   2026 
   2027   // Add the class itself. If we've already seen this class, we don't
   2028   // need to visit base classes.
   2029   //
   2030   // FIXME: That's not correct, we may have added this class only because it
   2031   // was the enclosing class of another class, and in that case we won't have
   2032   // added its base classes yet.
   2033   if (!Result.Classes.insert(Class))
   2034     return;
   2035 
   2036   // -- If T is a template-id, its associated namespaces and classes are
   2037   //    the namespace in which the template is defined; for member
   2038   //    templates, the member template's class; the namespaces and classes
   2039   //    associated with the types of the template arguments provided for
   2040   //    template type parameters (excluding template template parameters); the
   2041   //    namespaces in which any template template arguments are defined; and
   2042   //    the classes in which any member templates used as template template
   2043   //    arguments are defined. [Note: non-type template arguments do not
   2044   //    contribute to the set of associated namespaces. ]
   2045   if (ClassTemplateSpecializationDecl *Spec
   2046         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
   2047     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
   2048     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   2049       Result.Classes.insert(EnclosingClass);
   2050     // Add the associated namespace for this class.
   2051     CollectEnclosingNamespace(Result.Namespaces, Ctx);
   2052 
   2053     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
   2054     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   2055       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
   2056   }
   2057 
   2058   // Only recurse into base classes for complete types.
   2059   if (!Class->hasDefinition())
   2060     return;
   2061 
   2062   // Add direct and indirect base classes along with their associated
   2063   // namespaces.
   2064   SmallVector<CXXRecordDecl *, 32> Bases;
   2065   Bases.push_back(Class);
   2066   while (!Bases.empty()) {
   2067     // Pop this class off the stack.
   2068     Class = Bases.pop_back_val();
   2069 
   2070     // Visit the base classes.
   2071     for (const auto &Base : Class->bases()) {
   2072       const RecordType *BaseType = Base.getType()->getAs<RecordType>();
   2073       // In dependent contexts, we do ADL twice, and the first time around,
   2074       // the base type might be a dependent TemplateSpecializationType, or a
   2075       // TemplateTypeParmType. If that happens, simply ignore it.
   2076       // FIXME: If we want to support export, we probably need to add the
   2077       // namespace of the template in a TemplateSpecializationType, or even
   2078       // the classes and namespaces of known non-dependent arguments.
   2079       if (!BaseType)
   2080         continue;
   2081       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
   2082       if (Result.Classes.insert(BaseDecl)) {
   2083         // Find the associated namespace for this base class.
   2084         DeclContext *BaseCtx = BaseDecl->getDeclContext();
   2085         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
   2086 
   2087         // Make sure we visit the bases of this base class.
   2088         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
   2089           Bases.push_back(BaseDecl);
   2090       }
   2091     }
   2092   }
   2093 }
   2094 
   2095 // \brief Add the associated classes and namespaces for
   2096 // argument-dependent lookup with an argument of type T
   2097 // (C++ [basic.lookup.koenig]p2).
   2098 static void
   2099 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
   2100   // C++ [basic.lookup.koenig]p2:
   2101   //
   2102   //   For each argument type T in the function call, there is a set
   2103   //   of zero or more associated namespaces and a set of zero or more
   2104   //   associated classes to be considered. The sets of namespaces and
   2105   //   classes is determined entirely by the types of the function
   2106   //   arguments (and the namespace of any template template
   2107   //   argument). Typedef names and using-declarations used to specify
   2108   //   the types do not contribute to this set. The sets of namespaces
   2109   //   and classes are determined in the following way:
   2110 
   2111   SmallVector<const Type *, 16> Queue;
   2112   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
   2113 
   2114   while (true) {
   2115     switch (T->getTypeClass()) {
   2116 
   2117 #define TYPE(Class, Base)
   2118 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   2119 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   2120 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
   2121 #define ABSTRACT_TYPE(Class, Base)
   2122 #include "clang/AST/TypeNodes.def"
   2123       // T is canonical.  We can also ignore dependent types because
   2124       // we don't need to do ADL at the definition point, but if we
   2125       // wanted to implement template export (or if we find some other
   2126       // use for associated classes and namespaces...) this would be
   2127       // wrong.
   2128       break;
   2129 
   2130     //    -- If T is a pointer to U or an array of U, its associated
   2131     //       namespaces and classes are those associated with U.
   2132     case Type::Pointer:
   2133       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
   2134       continue;
   2135     case Type::ConstantArray:
   2136     case Type::IncompleteArray:
   2137     case Type::VariableArray:
   2138       T = cast<ArrayType>(T)->getElementType().getTypePtr();
   2139       continue;
   2140 
   2141     //     -- If T is a fundamental type, its associated sets of
   2142     //        namespaces and classes are both empty.
   2143     case Type::Builtin:
   2144       break;
   2145 
   2146     //     -- If T is a class type (including unions), its associated
   2147     //        classes are: the class itself; the class of which it is a
   2148     //        member, if any; and its direct and indirect base
   2149     //        classes. Its associated namespaces are the namespaces in
   2150     //        which its associated classes are defined.
   2151     case Type::Record: {
   2152       Result.S.RequireCompleteType(Result.InstantiationLoc, QualType(T, 0),
   2153                                    /*no diagnostic*/ 0);
   2154       CXXRecordDecl *Class
   2155         = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
   2156       addAssociatedClassesAndNamespaces(Result, Class);
   2157       break;
   2158     }
   2159 
   2160     //     -- If T is an enumeration type, its associated namespace is
   2161     //        the namespace in which it is defined. If it is class
   2162     //        member, its associated class is the member's class; else
   2163     //        it has no associated class.
   2164     case Type::Enum: {
   2165       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
   2166 
   2167       DeclContext *Ctx = Enum->getDeclContext();
   2168       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
   2169         Result.Classes.insert(EnclosingClass);
   2170 
   2171       // Add the associated namespace for this class.
   2172       CollectEnclosingNamespace(Result.Namespaces, Ctx);
   2173 
   2174       break;
   2175     }
   2176 
   2177     //     -- If T is a function type, its associated namespaces and
   2178     //        classes are those associated with the function parameter
   2179     //        types and those associated with the return type.
   2180     case Type::FunctionProto: {
   2181       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
   2182       for (const auto &Arg : Proto->param_types())
   2183         Queue.push_back(Arg.getTypePtr());
   2184       // fallthrough
   2185     }
   2186     case Type::FunctionNoProto: {
   2187       const FunctionType *FnType = cast<FunctionType>(T);
   2188       T = FnType->getReturnType().getTypePtr();
   2189       continue;
   2190     }
   2191 
   2192     //     -- If T is a pointer to a member function of a class X, its
   2193     //        associated namespaces and classes are those associated
   2194     //        with the function parameter types and return type,
   2195     //        together with those associated with X.
   2196     //
   2197     //     -- If T is a pointer to a data member of class X, its
   2198     //        associated namespaces and classes are those associated
   2199     //        with the member type together with those associated with
   2200     //        X.
   2201     case Type::MemberPointer: {
   2202       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
   2203 
   2204       // Queue up the class type into which this points.
   2205       Queue.push_back(MemberPtr->getClass());
   2206 
   2207       // And directly continue with the pointee type.
   2208       T = MemberPtr->getPointeeType().getTypePtr();
   2209       continue;
   2210     }
   2211 
   2212     // As an extension, treat this like a normal pointer.
   2213     case Type::BlockPointer:
   2214       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
   2215       continue;
   2216 
   2217     // References aren't covered by the standard, but that's such an
   2218     // obvious defect that we cover them anyway.
   2219     case Type::LValueReference:
   2220     case Type::RValueReference:
   2221       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
   2222       continue;
   2223 
   2224     // These are fundamental types.
   2225     case Type::Vector:
   2226     case Type::ExtVector:
   2227     case Type::Complex:
   2228       break;
   2229 
   2230     // Non-deduced auto types only get here for error cases.
   2231     case Type::Auto:
   2232       break;
   2233 
   2234     // If T is an Objective-C object or interface type, or a pointer to an
   2235     // object or interface type, the associated namespace is the global
   2236     // namespace.
   2237     case Type::ObjCObject:
   2238     case Type::ObjCInterface:
   2239     case Type::ObjCObjectPointer:
   2240       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
   2241       break;
   2242 
   2243     // Atomic types are just wrappers; use the associations of the
   2244     // contained type.
   2245     case Type::Atomic:
   2246       T = cast<AtomicType>(T)->getValueType().getTypePtr();
   2247       continue;
   2248     }
   2249 
   2250     if (Queue.empty())
   2251       break;
   2252     T = Queue.pop_back_val();
   2253   }
   2254 }
   2255 
   2256 /// \brief Find the associated classes and namespaces for
   2257 /// argument-dependent lookup for a call with the given set of
   2258 /// arguments.
   2259 ///
   2260 /// This routine computes the sets of associated classes and associated
   2261 /// namespaces searched by argument-dependent lookup
   2262 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
   2263 void Sema::FindAssociatedClassesAndNamespaces(
   2264     SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
   2265     AssociatedNamespaceSet &AssociatedNamespaces,
   2266     AssociatedClassSet &AssociatedClasses) {
   2267   AssociatedNamespaces.clear();
   2268   AssociatedClasses.clear();
   2269 
   2270   AssociatedLookup Result(*this, InstantiationLoc,
   2271                           AssociatedNamespaces, AssociatedClasses);
   2272 
   2273   // C++ [basic.lookup.koenig]p2:
   2274   //   For each argument type T in the function call, there is a set
   2275   //   of zero or more associated namespaces and a set of zero or more
   2276   //   associated classes to be considered. The sets of namespaces and
   2277   //   classes is determined entirely by the types of the function
   2278   //   arguments (and the namespace of any template template
   2279   //   argument).
   2280   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
   2281     Expr *Arg = Args[ArgIdx];
   2282 
   2283     if (Arg->getType() != Context.OverloadTy) {
   2284       addAssociatedClassesAndNamespaces(Result, Arg->getType());
   2285       continue;
   2286     }
   2287 
   2288     // [...] In addition, if the argument is the name or address of a
   2289     // set of overloaded functions and/or function templates, its
   2290     // associated classes and namespaces are the union of those
   2291     // associated with each of the members of the set: the namespace
   2292     // in which the function or function template is defined and the
   2293     // classes and namespaces associated with its (non-dependent)
   2294     // parameter types and return type.
   2295     Arg = Arg->IgnoreParens();
   2296     if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
   2297       if (unaryOp->getOpcode() == UO_AddrOf)
   2298         Arg = unaryOp->getSubExpr();
   2299 
   2300     UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
   2301     if (!ULE) continue;
   2302 
   2303     for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
   2304            I != E; ++I) {
   2305       // Look through any using declarations to find the underlying function.
   2306       FunctionDecl *FDecl = (*I)->getUnderlyingDecl()->getAsFunction();
   2307 
   2308       // Add the classes and namespaces associated with the parameter
   2309       // types and return type of this function.
   2310       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
   2311     }
   2312   }
   2313 }
   2314 
   2315 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
   2316                                   SourceLocation Loc,
   2317                                   LookupNameKind NameKind,
   2318                                   RedeclarationKind Redecl) {
   2319   LookupResult R(*this, Name, Loc, NameKind, Redecl);
   2320   LookupName(R, S);
   2321   return R.getAsSingle<NamedDecl>();
   2322 }
   2323 
   2324 /// \brief Find the protocol with the given name, if any.
   2325 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
   2326                                        SourceLocation IdLoc,
   2327                                        RedeclarationKind Redecl) {
   2328   Decl *D = LookupSingleName(TUScope, II, IdLoc,
   2329                              LookupObjCProtocolName, Redecl);
   2330   return cast_or_null<ObjCProtocolDecl>(D);
   2331 }
   2332 
   2333 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
   2334                                         QualType T1, QualType T2,
   2335                                         UnresolvedSetImpl &Functions) {
   2336   // C++ [over.match.oper]p3:
   2337   //     -- The set of non-member candidates is the result of the
   2338   //        unqualified lookup of operator@ in the context of the
   2339   //        expression according to the usual rules for name lookup in
   2340   //        unqualified function calls (3.4.2) except that all member
   2341   //        functions are ignored.
   2342   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
   2343   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
   2344   LookupName(Operators, S);
   2345 
   2346   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
   2347   Functions.append(Operators.begin(), Operators.end());
   2348 }
   2349 
   2350 Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
   2351                                                             CXXSpecialMember SM,
   2352                                                             bool ConstArg,
   2353                                                             bool VolatileArg,
   2354                                                             bool RValueThis,
   2355                                                             bool ConstThis,
   2356                                                             bool VolatileThis) {
   2357   assert(CanDeclareSpecialMemberFunction(RD) &&
   2358          "doing special member lookup into record that isn't fully complete");
   2359   RD = RD->getDefinition();
   2360   if (RValueThis || ConstThis || VolatileThis)
   2361     assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
   2362            "constructors and destructors always have unqualified lvalue this");
   2363   if (ConstArg || VolatileArg)
   2364     assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
   2365            "parameter-less special members can't have qualified arguments");
   2366 
   2367   llvm::FoldingSetNodeID ID;
   2368   ID.AddPointer(RD);
   2369   ID.AddInteger(SM);
   2370   ID.AddInteger(ConstArg);
   2371   ID.AddInteger(VolatileArg);
   2372   ID.AddInteger(RValueThis);
   2373   ID.AddInteger(ConstThis);
   2374   ID.AddInteger(VolatileThis);
   2375 
   2376   void *InsertPoint;
   2377   SpecialMemberOverloadResult *Result =
   2378     SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
   2379 
   2380   // This was already cached
   2381   if (Result)
   2382     return Result;
   2383 
   2384   Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
   2385   Result = new (Result) SpecialMemberOverloadResult(ID);
   2386   SpecialMemberCache.InsertNode(Result, InsertPoint);
   2387 
   2388   if (SM == CXXDestructor) {
   2389     if (RD->needsImplicitDestructor())
   2390       DeclareImplicitDestructor(RD);
   2391     CXXDestructorDecl *DD = RD->getDestructor();
   2392     assert(DD && "record without a destructor");
   2393     Result->setMethod(DD);
   2394     Result->setKind(DD->isDeleted() ?
   2395                     SpecialMemberOverloadResult::NoMemberOrDeleted :
   2396                     SpecialMemberOverloadResult::Success);
   2397     return Result;
   2398   }
   2399 
   2400   // Prepare for overload resolution. Here we construct a synthetic argument
   2401   // if necessary and make sure that implicit functions are declared.
   2402   CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
   2403   DeclarationName Name;
   2404   Expr *Arg = nullptr;
   2405   unsigned NumArgs;
   2406 
   2407   QualType ArgType = CanTy;
   2408   ExprValueKind VK = VK_LValue;
   2409 
   2410   if (SM == CXXDefaultConstructor) {
   2411     Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
   2412     NumArgs = 0;
   2413     if (RD->needsImplicitDefaultConstructor())
   2414       DeclareImplicitDefaultConstructor(RD);
   2415   } else {
   2416     if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
   2417       Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
   2418       if (RD->needsImplicitCopyConstructor())
   2419         DeclareImplicitCopyConstructor(RD);
   2420       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
   2421         DeclareImplicitMoveConstructor(RD);
   2422     } else {
   2423       Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
   2424       if (RD->needsImplicitCopyAssignment())
   2425         DeclareImplicitCopyAssignment(RD);
   2426       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
   2427         DeclareImplicitMoveAssignment(RD);
   2428     }
   2429 
   2430     if (ConstArg)
   2431       ArgType.addConst();
   2432     if (VolatileArg)
   2433       ArgType.addVolatile();
   2434 
   2435     // This isn't /really/ specified by the standard, but it's implied
   2436     // we should be working from an RValue in the case of move to ensure
   2437     // that we prefer to bind to rvalue references, and an LValue in the
   2438     // case of copy to ensure we don't bind to rvalue references.
   2439     // Possibly an XValue is actually correct in the case of move, but
   2440     // there is no semantic difference for class types in this restricted
   2441     // case.
   2442     if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
   2443       VK = VK_LValue;
   2444     else
   2445       VK = VK_RValue;
   2446   }
   2447 
   2448   OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
   2449 
   2450   if (SM != CXXDefaultConstructor) {
   2451     NumArgs = 1;
   2452     Arg = &FakeArg;
   2453   }
   2454 
   2455   // Create the object argument
   2456   QualType ThisTy = CanTy;
   2457   if (ConstThis)
   2458     ThisTy.addConst();
   2459   if (VolatileThis)
   2460     ThisTy.addVolatile();
   2461   Expr::Classification Classification =
   2462     OpaqueValueExpr(SourceLocation(), ThisTy,
   2463                     RValueThis ? VK_RValue : VK_LValue).Classify(Context);
   2464 
   2465   // Now we perform lookup on the name we computed earlier and do overload
   2466   // resolution. Lookup is only performed directly into the class since there
   2467   // will always be a (possibly implicit) declaration to shadow any others.
   2468   OverloadCandidateSet OCS(RD->getLocation(), OverloadCandidateSet::CSK_Normal);
   2469   DeclContext::lookup_result R = RD->lookup(Name);
   2470   assert(!R.empty() &&
   2471          "lookup for a constructor or assignment operator was empty");
   2472 
   2473   // Copy the candidates as our processing of them may load new declarations
   2474   // from an external source and invalidate lookup_result.
   2475   SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
   2476 
   2477   for (SmallVectorImpl<NamedDecl *>::iterator I = Candidates.begin(),
   2478                                               E = Candidates.end();
   2479        I != E; ++I) {
   2480     NamedDecl *Cand = *I;
   2481 
   2482     if (Cand->isInvalidDecl())
   2483       continue;
   2484 
   2485     if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
   2486       // FIXME: [namespace.udecl]p15 says that we should only consider a
   2487       // using declaration here if it does not match a declaration in the
   2488       // derived class. We do not implement this correctly in other cases
   2489       // either.
   2490       Cand = U->getTargetDecl();
   2491 
   2492       if (Cand->isInvalidDecl())
   2493         continue;
   2494     }
   2495 
   2496     if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
   2497       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
   2498         AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
   2499                            Classification, llvm::makeArrayRef(&Arg, NumArgs),
   2500                            OCS, true);
   2501       else
   2502         AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
   2503                              llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
   2504     } else if (FunctionTemplateDecl *Tmpl =
   2505                  dyn_cast<FunctionTemplateDecl>(Cand)) {
   2506       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
   2507         AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
   2508                                    RD, nullptr, ThisTy, Classification,
   2509                                    llvm::makeArrayRef(&Arg, NumArgs),
   2510                                    OCS, true);
   2511       else
   2512         AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
   2513                                      nullptr, llvm::makeArrayRef(&Arg, NumArgs),
   2514                                      OCS, true);
   2515     } else {
   2516       assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
   2517     }
   2518   }
   2519 
   2520   OverloadCandidateSet::iterator Best;
   2521   switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
   2522     case OR_Success:
   2523       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
   2524       Result->setKind(SpecialMemberOverloadResult::Success);
   2525       break;
   2526 
   2527     case OR_Deleted:
   2528       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
   2529       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
   2530       break;
   2531 
   2532     case OR_Ambiguous:
   2533       Result->setMethod(nullptr);
   2534       Result->setKind(SpecialMemberOverloadResult::Ambiguous);
   2535       break;
   2536 
   2537     case OR_No_Viable_Function:
   2538       Result->setMethod(nullptr);
   2539       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
   2540       break;
   2541   }
   2542 
   2543   return Result;
   2544 }
   2545 
   2546 /// \brief Look up the default constructor for the given class.
   2547 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
   2548   SpecialMemberOverloadResult *Result =
   2549     LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
   2550                         false, false);
   2551 
   2552   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
   2553 }
   2554 
   2555 /// \brief Look up the copying constructor for the given class.
   2556 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
   2557                                                    unsigned Quals) {
   2558   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   2559          "non-const, non-volatile qualifiers for copy ctor arg");
   2560   SpecialMemberOverloadResult *Result =
   2561     LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
   2562                         Quals & Qualifiers::Volatile, false, false, false);
   2563 
   2564   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
   2565 }
   2566 
   2567 /// \brief Look up the moving constructor for the given class.
   2568 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
   2569                                                   unsigned Quals) {
   2570   SpecialMemberOverloadResult *Result =
   2571     LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
   2572                         Quals & Qualifiers::Volatile, false, false, false);
   2573 
   2574   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
   2575 }
   2576 
   2577 /// \brief Look up the constructors for the given class.
   2578 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
   2579   // If the implicit constructors have not yet been declared, do so now.
   2580   if (CanDeclareSpecialMemberFunction(Class)) {
   2581     if (Class->needsImplicitDefaultConstructor())
   2582       DeclareImplicitDefaultConstructor(Class);
   2583     if (Class->needsImplicitCopyConstructor())
   2584       DeclareImplicitCopyConstructor(Class);
   2585     if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
   2586       DeclareImplicitMoveConstructor(Class);
   2587   }
   2588 
   2589   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
   2590   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
   2591   return Class->lookup(Name);
   2592 }
   2593 
   2594 /// \brief Look up the copying assignment operator for the given class.
   2595 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
   2596                                              unsigned Quals, bool RValueThis,
   2597                                              unsigned ThisQuals) {
   2598   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   2599          "non-const, non-volatile qualifiers for copy assignment arg");
   2600   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   2601          "non-const, non-volatile qualifiers for copy assignment this");
   2602   SpecialMemberOverloadResult *Result =
   2603     LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
   2604                         Quals & Qualifiers::Volatile, RValueThis,
   2605                         ThisQuals & Qualifiers::Const,
   2606                         ThisQuals & Qualifiers::Volatile);
   2607 
   2608   return Result->getMethod();
   2609 }
   2610 
   2611 /// \brief Look up the moving assignment operator for the given class.
   2612 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
   2613                                             unsigned Quals,
   2614                                             bool RValueThis,
   2615                                             unsigned ThisQuals) {
   2616   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
   2617          "non-const, non-volatile qualifiers for copy assignment this");
   2618   SpecialMemberOverloadResult *Result =
   2619     LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
   2620                         Quals & Qualifiers::Volatile, RValueThis,
   2621                         ThisQuals & Qualifiers::Const,
   2622                         ThisQuals & Qualifiers::Volatile);
   2623 
   2624   return Result->getMethod();
   2625 }
   2626 
   2627 /// \brief Look for the destructor of the given class.
   2628 ///
   2629 /// During semantic analysis, this routine should be used in lieu of
   2630 /// CXXRecordDecl::getDestructor().
   2631 ///
   2632 /// \returns The destructor for this class.
   2633 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
   2634   return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
   2635                                                      false, false, false,
   2636                                                      false, false)->getMethod());
   2637 }
   2638 
   2639 /// LookupLiteralOperator - Determine which literal operator should be used for
   2640 /// a user-defined literal, per C++11 [lex.ext].
   2641 ///
   2642 /// Normal overload resolution is not used to select which literal operator to
   2643 /// call for a user-defined literal. Look up the provided literal operator name,
   2644 /// and filter the results to the appropriate set for the given argument types.
   2645 Sema::LiteralOperatorLookupResult
   2646 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
   2647                             ArrayRef<QualType> ArgTys,
   2648                             bool AllowRaw, bool AllowTemplate,
   2649                             bool AllowStringTemplate) {
   2650   LookupName(R, S);
   2651   assert(R.getResultKind() != LookupResult::Ambiguous &&
   2652          "literal operator lookup can't be ambiguous");
   2653 
   2654   // Filter the lookup results appropriately.
   2655   LookupResult::Filter F = R.makeFilter();
   2656 
   2657   bool FoundRaw = false;
   2658   bool FoundTemplate = false;
   2659   bool FoundStringTemplate = false;
   2660   bool FoundExactMatch = false;
   2661 
   2662   while (F.hasNext()) {
   2663     Decl *D = F.next();
   2664     if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
   2665       D = USD->getTargetDecl();
   2666 
   2667     // If the declaration we found is invalid, skip it.
   2668     if (D->isInvalidDecl()) {
   2669       F.erase();
   2670       continue;
   2671     }
   2672 
   2673     bool IsRaw = false;
   2674     bool IsTemplate = false;
   2675     bool IsStringTemplate = false;
   2676     bool IsExactMatch = false;
   2677 
   2678     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   2679       if (FD->getNumParams() == 1 &&
   2680           FD->getParamDecl(0)->getType()->getAs<PointerType>())
   2681         IsRaw = true;
   2682       else if (FD->getNumParams() == ArgTys.size()) {
   2683         IsExactMatch = true;
   2684         for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
   2685           QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
   2686           if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
   2687             IsExactMatch = false;
   2688             break;
   2689           }
   2690         }
   2691       }
   2692     }
   2693     if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
   2694       TemplateParameterList *Params = FD->getTemplateParameters();
   2695       if (Params->size() == 1)
   2696         IsTemplate = true;
   2697       else
   2698         IsStringTemplate = true;
   2699     }
   2700 
   2701     if (IsExactMatch) {
   2702       FoundExactMatch = true;
   2703       AllowRaw = false;
   2704       AllowTemplate = false;
   2705       AllowStringTemplate = false;
   2706       if (FoundRaw || FoundTemplate || FoundStringTemplate) {
   2707         // Go through again and remove the raw and template decls we've
   2708         // already found.
   2709         F.restart();
   2710         FoundRaw = FoundTemplate = FoundStringTemplate = false;
   2711       }
   2712     } else if (AllowRaw && IsRaw) {
   2713       FoundRaw = true;
   2714     } else if (AllowTemplate && IsTemplate) {
   2715       FoundTemplate = true;
   2716     } else if (AllowStringTemplate && IsStringTemplate) {
   2717       FoundStringTemplate = true;
   2718     } else {
   2719       F.erase();
   2720     }
   2721   }
   2722 
   2723   F.done();
   2724 
   2725   // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
   2726   // parameter type, that is used in preference to a raw literal operator
   2727   // or literal operator template.
   2728   if (FoundExactMatch)
   2729     return LOLR_Cooked;
   2730 
   2731   // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
   2732   // operator template, but not both.
   2733   if (FoundRaw && FoundTemplate) {
   2734     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
   2735     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
   2736       NoteOverloadCandidate((*I)->getUnderlyingDecl()->getAsFunction());
   2737     return LOLR_Error;
   2738   }
   2739 
   2740   if (FoundRaw)
   2741     return LOLR_Raw;
   2742 
   2743   if (FoundTemplate)
   2744     return LOLR_Template;
   2745 
   2746   if (FoundStringTemplate)
   2747     return LOLR_StringTemplate;
   2748 
   2749   // Didn't find anything we could use.
   2750   Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
   2751     << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
   2752     << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
   2753     << (AllowTemplate || AllowStringTemplate);
   2754   return LOLR_Error;
   2755 }
   2756 
   2757 void ADLResult::insert(NamedDecl *New) {
   2758   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
   2759 
   2760   // If we haven't yet seen a decl for this key, or the last decl
   2761   // was exactly this one, we're done.
   2762   if (Old == nullptr || Old == New) {
   2763     Old = New;
   2764     return;
   2765   }
   2766 
   2767   // Otherwise, decide which is a more recent redeclaration.
   2768   FunctionDecl *OldFD = Old->getAsFunction();
   2769   FunctionDecl *NewFD = New->getAsFunction();
   2770 
   2771   FunctionDecl *Cursor = NewFD;
   2772   while (true) {
   2773     Cursor = Cursor->getPreviousDecl();
   2774 
   2775     // If we got to the end without finding OldFD, OldFD is the newer
   2776     // declaration;  leave things as they are.
   2777     if (!Cursor) return;
   2778 
   2779     // If we do find OldFD, then NewFD is newer.
   2780     if (Cursor == OldFD) break;
   2781 
   2782     // Otherwise, keep looking.
   2783   }
   2784 
   2785   Old = New;
   2786 }
   2787 
   2788 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
   2789                                    ArrayRef<Expr *> Args, ADLResult &Result) {
   2790   // Find all of the associated namespaces and classes based on the
   2791   // arguments we have.
   2792   AssociatedNamespaceSet AssociatedNamespaces;
   2793   AssociatedClassSet AssociatedClasses;
   2794   FindAssociatedClassesAndNamespaces(Loc, Args,
   2795                                      AssociatedNamespaces,
   2796                                      AssociatedClasses);
   2797 
   2798   // C++ [basic.lookup.argdep]p3:
   2799   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
   2800   //   and let Y be the lookup set produced by argument dependent
   2801   //   lookup (defined as follows). If X contains [...] then Y is
   2802   //   empty. Otherwise Y is the set of declarations found in the
   2803   //   namespaces associated with the argument types as described
   2804   //   below. The set of declarations found by the lookup of the name
   2805   //   is the union of X and Y.
   2806   //
   2807   // Here, we compute Y and add its members to the overloaded
   2808   // candidate set.
   2809   for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
   2810                                      NSEnd = AssociatedNamespaces.end();
   2811        NS != NSEnd; ++NS) {
   2812     //   When considering an associated namespace, the lookup is the
   2813     //   same as the lookup performed when the associated namespace is
   2814     //   used as a qualifier (3.4.3.2) except that:
   2815     //
   2816     //     -- Any using-directives in the associated namespace are
   2817     //        ignored.
   2818     //
   2819     //     -- Any namespace-scope friend functions declared in
   2820     //        associated classes are visible within their respective
   2821     //        namespaces even if they are not visible during an ordinary
   2822     //        lookup (11.4).
   2823     DeclContext::lookup_result R = (*NS)->lookup(Name);
   2824     for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
   2825          ++I) {
   2826       NamedDecl *D = *I;
   2827       // If the only declaration here is an ordinary friend, consider
   2828       // it only if it was declared in an associated classes.
   2829       if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
   2830         // If it's neither ordinarily visible nor a friend, we can't find it.
   2831         if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
   2832           continue;
   2833 
   2834         bool DeclaredInAssociatedClass = false;
   2835         for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
   2836           DeclContext *LexDC = DI->getLexicalDeclContext();
   2837           if (isa<CXXRecordDecl>(LexDC) &&
   2838               AssociatedClasses.count(cast<CXXRecordDecl>(LexDC))) {
   2839             DeclaredInAssociatedClass = true;
   2840             break;
   2841           }
   2842         }
   2843         if (!DeclaredInAssociatedClass)
   2844           continue;
   2845       }
   2846 
   2847       if (isa<UsingShadowDecl>(D))
   2848         D = cast<UsingShadowDecl>(D)->getTargetDecl();
   2849 
   2850       if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D))
   2851         continue;
   2852 
   2853       Result.insert(D);
   2854     }
   2855   }
   2856 }
   2857 
   2858 //----------------------------------------------------------------------------
   2859 // Search for all visible declarations.
   2860 //----------------------------------------------------------------------------
   2861 VisibleDeclConsumer::~VisibleDeclConsumer() { }
   2862 
   2863 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
   2864 
   2865 namespace {
   2866 
   2867 class ShadowContextRAII;
   2868 
   2869 class VisibleDeclsRecord {
   2870 public:
   2871   /// \brief An entry in the shadow map, which is optimized to store a
   2872   /// single declaration (the common case) but can also store a list
   2873   /// of declarations.
   2874   typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
   2875 
   2876 private:
   2877   /// \brief A mapping from declaration names to the declarations that have
   2878   /// this name within a particular scope.
   2879   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
   2880 
   2881   /// \brief A list of shadow maps, which is used to model name hiding.
   2882   std::list<ShadowMap> ShadowMaps;
   2883 
   2884   /// \brief The declaration contexts we have already visited.
   2885   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
   2886 
   2887   friend class ShadowContextRAII;
   2888 
   2889 public:
   2890   /// \brief Determine whether we have already visited this context
   2891   /// (and, if not, note that we are going to visit that context now).
   2892   bool visitedContext(DeclContext *Ctx) {
   2893     return !VisitedContexts.insert(Ctx);
   2894   }
   2895 
   2896   bool alreadyVisitedContext(DeclContext *Ctx) {
   2897     return VisitedContexts.count(Ctx);
   2898   }
   2899 
   2900   /// \brief Determine whether the given declaration is hidden in the
   2901   /// current scope.
   2902   ///
   2903   /// \returns the declaration that hides the given declaration, or
   2904   /// NULL if no such declaration exists.
   2905   NamedDecl *checkHidden(NamedDecl *ND);
   2906 
   2907   /// \brief Add a declaration to the current shadow map.
   2908   void add(NamedDecl *ND) {
   2909     ShadowMaps.back()[ND->getDeclName()].push_back(ND);
   2910   }
   2911 };
   2912 
   2913 /// \brief RAII object that records when we've entered a shadow context.
   2914 class ShadowContextRAII {
   2915   VisibleDeclsRecord &Visible;
   2916 
   2917   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
   2918 
   2919 public:
   2920   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
   2921     Visible.ShadowMaps.push_back(ShadowMap());
   2922   }
   2923 
   2924   ~ShadowContextRAII() {
   2925     Visible.ShadowMaps.pop_back();
   2926   }
   2927 };
   2928 
   2929 } // end anonymous namespace
   2930 
   2931 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
   2932   // Look through using declarations.
   2933   ND = ND->getUnderlyingDecl();
   2934 
   2935   unsigned IDNS = ND->getIdentifierNamespace();
   2936   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
   2937   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
   2938        SM != SMEnd; ++SM) {
   2939     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
   2940     if (Pos == SM->end())
   2941       continue;
   2942 
   2943     for (ShadowMapEntry::iterator I = Pos->second.begin(),
   2944                                IEnd = Pos->second.end();
   2945          I != IEnd; ++I) {
   2946       // A tag declaration does not hide a non-tag declaration.
   2947       if ((*I)->hasTagIdentifierNamespace() &&
   2948           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
   2949                    Decl::IDNS_ObjCProtocol)))
   2950         continue;
   2951 
   2952       // Protocols are in distinct namespaces from everything else.
   2953       if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
   2954            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
   2955           (*I)->getIdentifierNamespace() != IDNS)
   2956         continue;
   2957 
   2958       // Functions and function templates in the same scope overload
   2959       // rather than hide.  FIXME: Look for hiding based on function
   2960       // signatures!
   2961       if ((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
   2962           ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
   2963           SM == ShadowMaps.rbegin())
   2964         continue;
   2965 
   2966       // We've found a declaration that hides this one.
   2967       return *I;
   2968     }
   2969   }
   2970 
   2971   return nullptr;
   2972 }
   2973 
   2974 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
   2975                                bool QualifiedNameLookup,
   2976                                bool InBaseClass,
   2977                                VisibleDeclConsumer &Consumer,
   2978                                VisibleDeclsRecord &Visited) {
   2979   if (!Ctx)
   2980     return;
   2981 
   2982   // Make sure we don't visit the same context twice.
   2983   if (Visited.visitedContext(Ctx->getPrimaryContext()))
   2984     return;
   2985 
   2986   if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
   2987     Result.getSema().ForceDeclarationOfImplicitMembers(Class);
   2988 
   2989   // Enumerate all of the results in this context.
   2990   for (const auto &R : Ctx->lookups()) {
   2991     for (auto *I : R) {
   2992       if (NamedDecl *ND = dyn_cast<NamedDecl>(I)) {
   2993         if ((ND = Result.getAcceptableDecl(ND))) {
   2994           Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
   2995           Visited.add(ND);
   2996         }
   2997       }
   2998     }
   2999   }
   3000 
   3001   // Traverse using directives for qualified name lookup.
   3002   if (QualifiedNameLookup) {
   3003     ShadowContextRAII Shadow(Visited);
   3004     for (auto I : Ctx->using_directives()) {
   3005       LookupVisibleDecls(I->getNominatedNamespace(), Result,
   3006                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
   3007     }
   3008   }
   3009 
   3010   // Traverse the contexts of inherited C++ classes.
   3011   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
   3012     if (!Record->hasDefinition())
   3013       return;
   3014 
   3015     for (const auto &B : Record->bases()) {
   3016       QualType BaseType = B.getType();
   3017 
   3018       // Don't look into dependent bases, because name lookup can't look
   3019       // there anyway.
   3020       if (BaseType->isDependentType())
   3021         continue;
   3022 
   3023       const RecordType *Record = BaseType->getAs<RecordType>();
   3024       if (!Record)
   3025         continue;
   3026 
   3027       // FIXME: It would be nice to be able to determine whether referencing
   3028       // a particular member would be ambiguous. For example, given
   3029       //
   3030       //   struct A { int member; };
   3031       //   struct B { int member; };
   3032       //   struct C : A, B { };
   3033       //
   3034       //   void f(C *c) { c->### }
   3035       //
   3036       // accessing 'member' would result in an ambiguity. However, we
   3037       // could be smart enough to qualify the member with the base
   3038       // class, e.g.,
   3039       //
   3040       //   c->B::member
   3041       //
   3042       // or
   3043       //
   3044       //   c->A::member
   3045 
   3046       // Find results in this base class (and its bases).
   3047       ShadowContextRAII Shadow(Visited);
   3048       LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
   3049                          true, Consumer, Visited);
   3050     }
   3051   }
   3052 
   3053   // Traverse the contexts of Objective-C classes.
   3054   if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
   3055     // Traverse categories.
   3056     for (auto *Cat : IFace->visible_categories()) {
   3057       ShadowContextRAII Shadow(Visited);
   3058       LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false,
   3059                          Consumer, Visited);
   3060     }
   3061 
   3062     // Traverse protocols.
   3063     for (auto *I : IFace->all_referenced_protocols()) {
   3064       ShadowContextRAII Shadow(Visited);
   3065       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
   3066                          Visited);
   3067     }
   3068 
   3069     // Traverse the superclass.
   3070     if (IFace->getSuperClass()) {
   3071       ShadowContextRAII Shadow(Visited);
   3072       LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
   3073                          true, Consumer, Visited);
   3074     }
   3075 
   3076     // If there is an implementation, traverse it. We do this to find
   3077     // synthesized ivars.
   3078     if (IFace->getImplementation()) {
   3079       ShadowContextRAII Shadow(Visited);
   3080       LookupVisibleDecls(IFace->getImplementation(), Result,
   3081                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
   3082     }
   3083   } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
   3084     for (auto *I : Protocol->protocols()) {
   3085       ShadowContextRAII Shadow(Visited);
   3086       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
   3087                          Visited);
   3088     }
   3089   } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
   3090     for (auto *I : Category->protocols()) {
   3091       ShadowContextRAII Shadow(Visited);
   3092       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
   3093                          Visited);
   3094     }
   3095 
   3096     // If there is an implementation, traverse it.
   3097     if (Category->getImplementation()) {
   3098       ShadowContextRAII Shadow(Visited);
   3099       LookupVisibleDecls(Category->getImplementation(), Result,
   3100                          QualifiedNameLookup, true, Consumer, Visited);
   3101     }
   3102   }
   3103 }
   3104 
   3105 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
   3106                                UnqualUsingDirectiveSet &UDirs,
   3107                                VisibleDeclConsumer &Consumer,
   3108                                VisibleDeclsRecord &Visited) {
   3109   if (!S)
   3110     return;
   3111 
   3112   if (!S->getEntity() ||
   3113       (!S->getParent() &&
   3114        !Visited.alreadyVisitedContext(S->getEntity())) ||
   3115       (S->getEntity())->isFunctionOrMethod()) {
   3116     FindLocalExternScope FindLocals(Result);
   3117     // Walk through the declarations in this Scope.
   3118     for (auto *D : S->decls()) {
   3119       if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
   3120         if ((ND = Result.getAcceptableDecl(ND))) {
   3121           Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
   3122           Visited.add(ND);
   3123         }
   3124     }
   3125   }
   3126 
   3127   // FIXME: C++ [temp.local]p8
   3128   DeclContext *Entity = nullptr;
   3129   if (S->getEntity()) {
   3130     // Look into this scope's declaration context, along with any of its
   3131     // parent lookup contexts (e.g., enclosing classes), up to the point
   3132     // where we hit the context stored in the next outer scope.
   3133     Entity = S->getEntity();
   3134     DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
   3135 
   3136     for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
   3137          Ctx = Ctx->getLookupParent()) {
   3138       if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
   3139         if (Method->isInstanceMethod()) {
   3140           // For instance methods, look for ivars in the method's interface.
   3141           LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
   3142                                   Result.getNameLoc(), Sema::LookupMemberName);
   3143           if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
   3144             LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
   3145                                /*InBaseClass=*/false, Consumer, Visited);
   3146           }
   3147         }
   3148 
   3149         // We've already performed all of the name lookup that we need
   3150         // to for Objective-C methods; the next context will be the
   3151         // outer scope.
   3152         break;
   3153       }
   3154 
   3155       if (Ctx->isFunctionOrMethod())
   3156         continue;
   3157 
   3158       LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
   3159                          /*InBaseClass=*/false, Consumer, Visited);
   3160     }
   3161   } else if (!S->getParent()) {
   3162     // Look into the translation unit scope. We walk through the translation
   3163     // unit's declaration context, because the Scope itself won't have all of
   3164     // the declarations if we loaded a precompiled header.
   3165     // FIXME: We would like the translation unit's Scope object to point to the
   3166     // translation unit, so we don't need this special "if" branch. However,
   3167     // doing so would force the normal C++ name-lookup code to look into the
   3168     // translation unit decl when the IdentifierInfo chains would suffice.
   3169     // Once we fix that problem (which is part of a more general "don't look
   3170     // in DeclContexts unless we have to" optimization), we can eliminate this.
   3171     Entity = Result.getSema().Context.getTranslationUnitDecl();
   3172     LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
   3173                        /*InBaseClass=*/false, Consumer, Visited);
   3174   }
   3175 
   3176   if (Entity) {
   3177     // Lookup visible declarations in any namespaces found by using
   3178     // directives.
   3179     UnqualUsingDirectiveSet::const_iterator UI, UEnd;
   3180     std::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
   3181     for (; UI != UEnd; ++UI)
   3182       LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
   3183                          Result, /*QualifiedNameLookup=*/false,
   3184                          /*InBaseClass=*/false, Consumer, Visited);
   3185   }
   3186 
   3187   // Lookup names in the parent scope.
   3188   ShadowContextRAII Shadow(Visited);
   3189   LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
   3190 }
   3191 
   3192 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
   3193                               VisibleDeclConsumer &Consumer,
   3194                               bool IncludeGlobalScope) {
   3195   // Determine the set of using directives available during
   3196   // unqualified name lookup.
   3197   Scope *Initial = S;
   3198   UnqualUsingDirectiveSet UDirs;
   3199   if (getLangOpts().CPlusPlus) {
   3200     // Find the first namespace or translation-unit scope.
   3201     while (S && !isNamespaceOrTranslationUnitScope(S))
   3202       S = S->getParent();
   3203 
   3204     UDirs.visitScopeChain(Initial, S);
   3205   }
   3206   UDirs.done();
   3207 
   3208   // Look for visible declarations.
   3209   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
   3210   Result.setAllowHidden(Consumer.includeHiddenDecls());
   3211   VisibleDeclsRecord Visited;
   3212   if (!IncludeGlobalScope)
   3213     Visited.visitedContext(Context.getTranslationUnitDecl());
   3214   ShadowContextRAII Shadow(Visited);
   3215   ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
   3216 }
   3217 
   3218 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
   3219                               VisibleDeclConsumer &Consumer,
   3220                               bool IncludeGlobalScope) {
   3221   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
   3222   Result.setAllowHidden(Consumer.includeHiddenDecls());
   3223   VisibleDeclsRecord Visited;
   3224   if (!IncludeGlobalScope)
   3225     Visited.visitedContext(Context.getTranslationUnitDecl());
   3226   ShadowContextRAII Shadow(Visited);
   3227   ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
   3228                        /*InBaseClass=*/false, Consumer, Visited);
   3229 }
   3230 
   3231 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
   3232 /// If GnuLabelLoc is a valid source location, then this is a definition
   3233 /// of an __label__ label name, otherwise it is a normal label definition
   3234 /// or use.
   3235 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
   3236                                      SourceLocation GnuLabelLoc) {
   3237   // Do a lookup to see if we have a label with this name already.
   3238   NamedDecl *Res = nullptr;
   3239 
   3240   if (GnuLabelLoc.isValid()) {
   3241     // Local label definitions always shadow existing labels.
   3242     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
   3243     Scope *S = CurScope;
   3244     PushOnScopeChains(Res, S, true);
   3245     return cast<LabelDecl>(Res);
   3246   }
   3247 
   3248   // Not a GNU local label.
   3249   Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
   3250   // If we found a label, check to see if it is in the same context as us.
   3251   // When in a Block, we don't want to reuse a label in an enclosing function.
   3252   if (Res && Res->getDeclContext() != CurContext)
   3253     Res = nullptr;
   3254   if (!Res) {
   3255     // If not forward referenced or defined already, create the backing decl.
   3256     Res = LabelDecl::Create(Context, CurContext, Loc, II);
   3257     Scope *S = CurScope->getFnParent();
   3258     assert(S && "Not in a function?");
   3259     PushOnScopeChains(Res, S, true);
   3260   }
   3261   return cast<LabelDecl>(Res);
   3262 }
   3263 
   3264 //===----------------------------------------------------------------------===//
   3265 // Typo correction
   3266 //===----------------------------------------------------------------------===//
   3267 
   3268 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
   3269                               TypoCorrection &Candidate) {
   3270   Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
   3271   return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
   3272 }
   3273 
   3274 static void LookupPotentialTypoResult(Sema &SemaRef,
   3275                                       LookupResult &Res,
   3276                                       IdentifierInfo *Name,
   3277                                       Scope *S, CXXScopeSpec *SS,
   3278                                       DeclContext *MemberContext,
   3279                                       bool EnteringContext,
   3280                                       bool isObjCIvarLookup,
   3281                                       bool FindHidden);
   3282 
   3283 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
   3284 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
   3285 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
   3286 static void getNestedNameSpecifierIdentifiers(
   3287     NestedNameSpecifier *NNS,
   3288     SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
   3289   if (NestedNameSpecifier *Prefix = NNS->getPrefix())
   3290     getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
   3291   else
   3292     Identifiers.clear();
   3293 
   3294   const IdentifierInfo *II = nullptr;
   3295 
   3296   switch (NNS->getKind()) {
   3297   case NestedNameSpecifier::Identifier:
   3298     II = NNS->getAsIdentifier();
   3299     break;
   3300 
   3301   case NestedNameSpecifier::Namespace:
   3302     if (NNS->getAsNamespace()->isAnonymousNamespace())
   3303       return;
   3304     II = NNS->getAsNamespace()->getIdentifier();
   3305     break;
   3306 
   3307   case NestedNameSpecifier::NamespaceAlias:
   3308     II = NNS->getAsNamespaceAlias()->getIdentifier();
   3309     break;
   3310 
   3311   case NestedNameSpecifier::TypeSpecWithTemplate:
   3312   case NestedNameSpecifier::TypeSpec:
   3313     II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
   3314     break;
   3315 
   3316   case NestedNameSpecifier::Global:
   3317     return;
   3318   }
   3319 
   3320   if (II)
   3321     Identifiers.push_back(II);
   3322 }
   3323 
   3324 namespace {
   3325 
   3326 static const unsigned MaxTypoDistanceResultSets = 5;
   3327 
   3328 class TypoCorrectionConsumer : public VisibleDeclConsumer {
   3329   typedef SmallVector<TypoCorrection, 1> TypoResultList;
   3330   typedef llvm::StringMap<TypoResultList> TypoResultsMap;
   3331   typedef std::map<unsigned, TypoResultsMap> TypoEditDistanceMap;
   3332 
   3333 public:
   3334   explicit TypoCorrectionConsumer(Sema &SemaRef,
   3335                                   const DeclarationNameInfo &TypoName,
   3336                                   Sema::LookupNameKind LookupKind,
   3337                                   Scope *S, CXXScopeSpec *SS,
   3338                                   CorrectionCandidateCallback &CCC,
   3339                                   DeclContext *MemberContext,
   3340                                   bool EnteringContext)
   3341       : Typo(TypoName.getName().getAsIdentifierInfo()), SemaRef(SemaRef), S(S),
   3342         SS(SS), CorrectionValidator(CCC), MemberContext(MemberContext),
   3343         Result(SemaRef, TypoName, LookupKind),
   3344         Namespaces(SemaRef.Context, SemaRef.CurContext, SS),
   3345         EnteringContext(EnteringContext), SearchNamespaces(false) {
   3346     Result.suppressDiagnostics();
   3347   }
   3348 
   3349   bool includeHiddenDecls() const override { return true; }
   3350 
   3351   // Methods for adding potential corrections to the consumer.
   3352   void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx,
   3353                  bool InBaseClass) override;
   3354   void FoundName(StringRef Name);
   3355   void addKeywordResult(StringRef Keyword);
   3356   void addCorrection(TypoCorrection Correction);
   3357 
   3358   bool empty() const { return CorrectionResults.empty(); }
   3359 
   3360   /// \brief Return the list of TypoCorrections for the given identifier from
   3361   /// the set of corrections that have the closest edit distance, if any.
   3362   TypoResultList &operator[](StringRef Name) {
   3363     return CorrectionResults.begin()->second[Name];
   3364   }
   3365 
   3366   /// \brief Return the edit distance of the corrections that have the
   3367   /// closest/best edit distance from the original typop.
   3368   unsigned getBestEditDistance(bool Normalized) {
   3369     if (CorrectionResults.empty())
   3370       return (std::numeric_limits<unsigned>::max)();
   3371 
   3372     unsigned BestED = CorrectionResults.begin()->first;
   3373     return Normalized ? TypoCorrection::NormalizeEditDistance(BestED) : BestED;
   3374   }
   3375 
   3376   /// \brief Set-up method to add to the consumer the set of namespaces to use
   3377   /// in performing corrections to nested name specifiers. This method also
   3378   /// implicitly adds all of the known classes in the current AST context to the
   3379   /// to the consumer for correcting nested name specifiers.
   3380   void
   3381   addNamespaces(const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces);
   3382 
   3383   /// \brief Return the next typo correction that passes all internal filters
   3384   /// and is deemed valid by the consumer's CorrectionCandidateCallback,
   3385   /// starting with the corrections that have the closest edit distance. An
   3386   /// empty TypoCorrection is returned once no more viable corrections remain
   3387   /// in the consumer.
   3388   TypoCorrection getNextCorrection();
   3389 
   3390 private:
   3391   class NamespaceSpecifierSet {
   3392     struct SpecifierInfo {
   3393       DeclContext* DeclCtx;
   3394       NestedNameSpecifier* NameSpecifier;
   3395       unsigned EditDistance;
   3396     };
   3397 
   3398     typedef SmallVector<DeclContext*, 4> DeclContextList;
   3399     typedef SmallVector<SpecifierInfo, 16> SpecifierInfoList;
   3400 
   3401     ASTContext &Context;
   3402     DeclContextList CurContextChain;
   3403     std::string CurNameSpecifier;
   3404     SmallVector<const IdentifierInfo*, 4> CurContextIdentifiers;
   3405     SmallVector<const IdentifierInfo*, 4> CurNameSpecifierIdentifiers;
   3406     bool isSorted;
   3407 
   3408     SpecifierInfoList Specifiers;
   3409     llvm::SmallSetVector<unsigned, 4> Distances;
   3410     llvm::DenseMap<unsigned, SpecifierInfoList> DistanceMap;
   3411 
   3412     /// \brief Helper for building the list of DeclContexts between the current
   3413     /// context and the top of the translation unit
   3414     static DeclContextList buildContextChain(DeclContext *Start);
   3415 
   3416     void sortNamespaces();
   3417 
   3418     unsigned buildNestedNameSpecifier(DeclContextList &DeclChain,
   3419                                       NestedNameSpecifier *&NNS);
   3420 
   3421    public:
   3422     NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext,
   3423                           CXXScopeSpec *CurScopeSpec);
   3424 
   3425     /// \brief Add the DeclContext (a namespace or record) to the set, computing
   3426     /// the corresponding NestedNameSpecifier and its distance in the process.
   3427     void addNameSpecifier(DeclContext *Ctx);
   3428 
   3429     typedef SpecifierInfoList::iterator iterator;
   3430     iterator begin() {
   3431       if (!isSorted) sortNamespaces();
   3432       return Specifiers.begin();
   3433     }
   3434     iterator end() { return Specifiers.end(); }
   3435   };
   3436 
   3437   void addName(StringRef Name, NamedDecl *ND,
   3438                NestedNameSpecifier *NNS = nullptr, bool isKeyword = false);
   3439 
   3440   /// \brief Find any visible decls for the given typo correction candidate.
   3441   /// If none are found, it to the set of candidates for which qualified lookups
   3442   /// will be performed to find possible nested name specifier changes.
   3443   bool resolveCorrection(TypoCorrection &Candidate);
   3444 
   3445   /// \brief Perform qualified lookups on the queued set of typo correction
   3446   /// candidates and add the nested name specifier changes to each candidate if
   3447   /// a lookup succeeds (at which point the candidate will be returned to the
   3448   /// main pool of potential corrections).
   3449   void performQualifiedLookups();
   3450 
   3451   /// \brief The name written that is a typo in the source.
   3452   IdentifierInfo *Typo;
   3453 
   3454   /// \brief The results found that have the smallest edit distance
   3455   /// found (so far) with the typo name.
   3456   ///
   3457   /// The pointer value being set to the current DeclContext indicates
   3458   /// whether there is a keyword with this name.
   3459   TypoEditDistanceMap CorrectionResults;
   3460 
   3461   Sema &SemaRef;
   3462   Scope *S;
   3463   CXXScopeSpec *SS;
   3464   CorrectionCandidateCallback &CorrectionValidator;
   3465   DeclContext *MemberContext;
   3466   LookupResult Result;
   3467   NamespaceSpecifierSet Namespaces;
   3468   SmallVector<TypoCorrection, 2> QualifiedResults;
   3469   bool EnteringContext;
   3470   bool SearchNamespaces;
   3471 };
   3472 
   3473 }
   3474 
   3475 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
   3476                                        DeclContext *Ctx, bool InBaseClass) {
   3477   // Don't consider hidden names for typo correction.
   3478   if (Hiding)
   3479     return;
   3480 
   3481   // Only consider entities with identifiers for names, ignoring
   3482   // special names (constructors, overloaded operators, selectors,
   3483   // etc.).
   3484   IdentifierInfo *Name = ND->getIdentifier();
   3485   if (!Name)
   3486     return;
   3487 
   3488   // Only consider visible declarations and declarations from modules with
   3489   // names that exactly match.
   3490   if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo &&
   3491       !findAcceptableDecl(SemaRef, ND))
   3492     return;
   3493 
   3494   FoundName(Name->getName());
   3495 }
   3496 
   3497 void TypoCorrectionConsumer::FoundName(StringRef Name) {
   3498   // Compute the edit distance between the typo and the name of this
   3499   // entity, and add the identifier to the list of results.
   3500   addName(Name, nullptr);
   3501 }
   3502 
   3503 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
   3504   // Compute the edit distance between the typo and this keyword,
   3505   // and add the keyword to the list of results.
   3506   addName(Keyword, nullptr, nullptr, true);
   3507 }
   3508 
   3509 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
   3510                                      NestedNameSpecifier *NNS, bool isKeyword) {
   3511   // Use a simple length-based heuristic to determine the minimum possible
   3512   // edit distance. If the minimum isn't good enough, bail out early.
   3513   StringRef TypoStr = Typo->getName();
   3514   unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
   3515   if (MinED && TypoStr.size() / MinED < 3)
   3516     return;
   3517 
   3518   // Compute an upper bound on the allowable edit distance, so that the
   3519   // edit-distance algorithm can short-circuit.
   3520   unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
   3521   unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
   3522   if (ED >= UpperBound) return;
   3523 
   3524   TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
   3525   if (isKeyword) TC.makeKeyword();
   3526   addCorrection(TC);
   3527 }
   3528 
   3529 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
   3530   StringRef TypoStr = Typo->getName();
   3531   StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
   3532 
   3533   // For very short typos, ignore potential corrections that have a different
   3534   // base identifier from the typo or which have a normalized edit distance
   3535   // longer than the typo itself.
   3536   if (TypoStr.size() < 3 &&
   3537       (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
   3538     return;
   3539 
   3540   // If the correction is resolved but is not viable, ignore it.
   3541   if (Correction.isResolved() &&
   3542       !isCandidateViable(CorrectionValidator, Correction))
   3543     return;
   3544 
   3545   TypoResultList &CList =
   3546       CorrectionResults[Correction.getEditDistance(false)][Name];
   3547 
   3548   if (!CList.empty() && !CList.back().isResolved())
   3549     CList.pop_back();
   3550   if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
   3551     std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
   3552     for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
   3553          RI != RIEnd; ++RI) {
   3554       // If the Correction refers to a decl already in the result list,
   3555       // replace the existing result if the string representation of Correction
   3556       // comes before the current result alphabetically, then stop as there is
   3557       // nothing more to be done to add Correction to the candidate set.
   3558       if (RI->getCorrectionDecl() == NewND) {
   3559         if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
   3560           *RI = Correction;
   3561         return;
   3562       }
   3563     }
   3564   }
   3565   if (CList.empty() || Correction.isResolved())
   3566     CList.push_back(Correction);
   3567 
   3568   while (CorrectionResults.size() > MaxTypoDistanceResultSets)
   3569     CorrectionResults.erase(std::prev(CorrectionResults.end()));
   3570 }
   3571 
   3572 void TypoCorrectionConsumer::addNamespaces(
   3573     const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
   3574   SearchNamespaces = true;
   3575 
   3576   for (auto KNPair : KnownNamespaces)
   3577     Namespaces.addNameSpecifier(KNPair.first);
   3578 
   3579   bool SSIsTemplate = false;
   3580   if (NestedNameSpecifier *NNS =
   3581           (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
   3582     if (const Type *T = NNS->getAsType())
   3583       SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
   3584   }
   3585   for (const auto *TI : SemaRef.getASTContext().types()) {
   3586     if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
   3587       CD = CD->getCanonicalDecl();
   3588       if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
   3589           !CD->isUnion() && CD->getIdentifier() &&
   3590           (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
   3591           (CD->isBeingDefined() || CD->isCompleteDefinition()))
   3592         Namespaces.addNameSpecifier(CD);
   3593     }
   3594   }
   3595 }
   3596 
   3597 TypoCorrection TypoCorrectionConsumer::getNextCorrection() {
   3598   while (!CorrectionResults.empty()) {
   3599     auto DI = CorrectionResults.begin();
   3600     if (DI->second.empty()) {
   3601       CorrectionResults.erase(DI);
   3602       continue;
   3603     }
   3604 
   3605     auto RI = DI->second.begin();
   3606     if (RI->second.empty()) {
   3607       DI->second.erase(RI);
   3608       performQualifiedLookups();
   3609       continue;
   3610     }
   3611 
   3612     TypoCorrection TC = RI->second.pop_back_val();
   3613     if (TC.isResolved() || resolveCorrection(TC))
   3614       return TC;
   3615   }
   3616   return TypoCorrection();
   3617 }
   3618 
   3619 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
   3620   IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
   3621   DeclContext *TempMemberContext = MemberContext;
   3622   CXXScopeSpec *TempSS = SS;
   3623 retry_lookup:
   3624   LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
   3625                             EnteringContext,
   3626                             CorrectionValidator.IsObjCIvarLookup,
   3627                             Name == Typo && !Candidate.WillReplaceSpecifier());
   3628   switch (Result.getResultKind()) {
   3629   case LookupResult::NotFound:
   3630   case LookupResult::NotFoundInCurrentInstantiation:
   3631   case LookupResult::FoundUnresolvedValue:
   3632     if (TempSS) {
   3633       // Immediately retry the lookup without the given CXXScopeSpec
   3634       TempSS = nullptr;
   3635       Candidate.WillReplaceSpecifier(true);
   3636       goto retry_lookup;
   3637     }
   3638     if (TempMemberContext) {
   3639       if (SS && !TempSS)
   3640         TempSS = SS;
   3641       TempMemberContext = nullptr;
   3642       goto retry_lookup;
   3643     }
   3644     if (SearchNamespaces)
   3645       QualifiedResults.push_back(Candidate);
   3646     break;
   3647 
   3648   case LookupResult::Ambiguous:
   3649     // We don't deal with ambiguities.
   3650     break;
   3651 
   3652   case LookupResult::Found:
   3653   case LookupResult::FoundOverloaded:
   3654     // Store all of the Decls for overloaded symbols
   3655     for (auto *TRD : Result)
   3656       Candidate.addCorrectionDecl(TRD);
   3657     if (!isCandidateViable(CorrectionValidator, Candidate)) {
   3658       if (SearchNamespaces)
   3659         QualifiedResults.push_back(Candidate);
   3660       break;
   3661     }
   3662     return true;
   3663   }
   3664   return false;
   3665 }
   3666 
   3667 void TypoCorrectionConsumer::performQualifiedLookups() {
   3668   unsigned TypoLen = Typo->getName().size();
   3669   for (auto QR : QualifiedResults) {
   3670     for (auto NSI : Namespaces) {
   3671       DeclContext *Ctx = NSI.DeclCtx;
   3672       const Type *NSType = NSI.NameSpecifier->getAsType();
   3673 
   3674       // If the current NestedNameSpecifier refers to a class and the
   3675       // current correction candidate is the name of that class, then skip
   3676       // it as it is unlikely a qualified version of the class' constructor
   3677       // is an appropriate correction.
   3678       if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : 0) {
   3679         if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
   3680           continue;
   3681       }
   3682 
   3683       TypoCorrection TC(QR);
   3684       TC.ClearCorrectionDecls();
   3685       TC.setCorrectionSpecifier(NSI.NameSpecifier);
   3686       TC.setQualifierDistance(NSI.EditDistance);
   3687       TC.setCallbackDistance(0); // Reset the callback distance
   3688 
   3689       // If the current correction candidate and namespace combination are
   3690       // too far away from the original typo based on the normalized edit
   3691       // distance, then skip performing a qualified name lookup.
   3692       unsigned TmpED = TC.getEditDistance(true);
   3693       if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
   3694           TypoLen / TmpED < 3)
   3695         continue;
   3696 
   3697       Result.clear();
   3698       Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
   3699       if (!SemaRef.LookupQualifiedName(Result, Ctx))
   3700         continue;
   3701 
   3702       // Any corrections added below will be validated in subsequent
   3703       // iterations of the main while() loop over the Consumer's contents.
   3704       switch (Result.getResultKind()) {
   3705       case LookupResult::Found:
   3706       case LookupResult::FoundOverloaded: {
   3707         if (SS && SS->isValid()) {
   3708           std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
   3709           std::string OldQualified;
   3710           llvm::raw_string_ostream OldOStream(OldQualified);
   3711           SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
   3712           OldOStream << Typo->getName();
   3713           // If correction candidate would be an identical written qualified
   3714           // identifer, then the existing CXXScopeSpec probably included a
   3715           // typedef that didn't get accounted for properly.
   3716           if (OldOStream.str() == NewQualified)
   3717             break;
   3718         }
   3719         for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
   3720              TRD != TRDEnd; ++TRD) {
   3721           if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
   3722                                         NSType ? NSType->getAsCXXRecordDecl()
   3723                                                : nullptr,
   3724                                         TRD.getPair()) == Sema::AR_accessible)
   3725             TC.addCorrectionDecl(*TRD);
   3726         }
   3727         if (TC.isResolved())
   3728           addCorrection(TC);
   3729         break;
   3730       }
   3731       case LookupResult::NotFound:
   3732       case LookupResult::NotFoundInCurrentInstantiation:
   3733       case LookupResult::Ambiguous:
   3734       case LookupResult::FoundUnresolvedValue:
   3735         break;
   3736       }
   3737     }
   3738   }
   3739   QualifiedResults.clear();
   3740 }
   3741 
   3742 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
   3743     ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
   3744     : Context(Context), CurContextChain(buildContextChain(CurContext)),
   3745       isSorted(false) {
   3746   if (NestedNameSpecifier *NNS =
   3747           CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
   3748     llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
   3749     NNS->print(SpecifierOStream, Context.getPrintingPolicy());
   3750 
   3751     getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
   3752   }
   3753   // Build the list of identifiers that would be used for an absolute
   3754   // (from the global context) NestedNameSpecifier referring to the current
   3755   // context.
   3756   for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
   3757                                          CEnd = CurContextChain.rend();
   3758        C != CEnd; ++C) {
   3759     if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
   3760       CurContextIdentifiers.push_back(ND->getIdentifier());
   3761   }
   3762 
   3763   // Add the global context as a NestedNameSpecifier
   3764   Distances.insert(1);
   3765   SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
   3766                       NestedNameSpecifier::GlobalSpecifier(Context), 1};
   3767   DistanceMap[1].push_back(SI);
   3768 }
   3769 
   3770 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
   3771     DeclContext *Start) -> DeclContextList {
   3772   assert(Start && "Building a context chain from a null context");
   3773   DeclContextList Chain;
   3774   for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
   3775        DC = DC->getLookupParent()) {
   3776     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
   3777     if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
   3778         !(ND && ND->isAnonymousNamespace()))
   3779       Chain.push_back(DC->getPrimaryContext());
   3780   }
   3781   return Chain;
   3782 }
   3783 
   3784 void TypoCorrectionConsumer::NamespaceSpecifierSet::sortNamespaces() {
   3785   SmallVector<unsigned, 4> sortedDistances;
   3786   sortedDistances.append(Distances.begin(), Distances.end());
   3787 
   3788   if (sortedDistances.size() > 1)
   3789     std::sort(sortedDistances.begin(), sortedDistances.end());
   3790 
   3791   Specifiers.clear();
   3792   for (SmallVectorImpl<unsigned>::iterator DI = sortedDistances.begin(),
   3793                                         DIEnd = sortedDistances.end();
   3794        DI != DIEnd; ++DI) {
   3795     SpecifierInfoList &SpecList = DistanceMap[*DI];
   3796     Specifiers.append(SpecList.begin(), SpecList.end());
   3797   }
   3798 
   3799   isSorted = true;
   3800 }
   3801 
   3802 unsigned
   3803 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
   3804     DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
   3805   unsigned NumSpecifiers = 0;
   3806   for (DeclContextList::reverse_iterator C = DeclChain.rbegin(),
   3807                                       CEnd = DeclChain.rend();
   3808        C != CEnd; ++C) {
   3809     if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C)) {
   3810       NNS = NestedNameSpecifier::Create(Context, NNS, ND);
   3811       ++NumSpecifiers;
   3812     } else if (RecordDecl *RD = dyn_cast_or_null<RecordDecl>(*C)) {
   3813       NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
   3814                                         RD->getTypeForDecl());
   3815       ++NumSpecifiers;
   3816     }
   3817   }
   3818   return NumSpecifiers;
   3819 }
   3820 
   3821 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
   3822     DeclContext *Ctx) {
   3823   NestedNameSpecifier *NNS = nullptr;
   3824   unsigned NumSpecifiers = 0;
   3825   DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
   3826   DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
   3827 
   3828   // Eliminate common elements from the two DeclContext chains.
   3829   for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
   3830                                       CEnd = CurContextChain.rend();
   3831        C != CEnd && !NamespaceDeclChain.empty() &&
   3832        NamespaceDeclChain.back() == *C; ++C) {
   3833     NamespaceDeclChain.pop_back();
   3834   }
   3835 
   3836   // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
   3837   NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
   3838 
   3839   // Add an explicit leading '::' specifier if needed.
   3840   if (NamespaceDeclChain.empty()) {
   3841     // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
   3842     NNS = NestedNameSpecifier::GlobalSpecifier(Context);
   3843     NumSpecifiers =
   3844         buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
   3845   } else if (NamedDecl *ND =
   3846                  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
   3847     IdentifierInfo *Name = ND->getIdentifier();
   3848     bool SameNameSpecifier = false;
   3849     if (std::find(CurNameSpecifierIdentifiers.begin(),
   3850                   CurNameSpecifierIdentifiers.end(),
   3851                   Name) != CurNameSpecifierIdentifiers.end()) {
   3852       std::string NewNameSpecifier;
   3853       llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
   3854       SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
   3855       getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
   3856       NNS->print(SpecifierOStream, Context.getPrintingPolicy());
   3857       SpecifierOStream.flush();
   3858       SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
   3859     }
   3860     if (SameNameSpecifier ||
   3861         std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
   3862                   Name) != CurContextIdentifiers.end()) {
   3863       // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
   3864       NNS = NestedNameSpecifier::GlobalSpecifier(Context);
   3865       NumSpecifiers =
   3866           buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
   3867     }
   3868   }
   3869 
   3870   // If the built NestedNameSpecifier would be replacing an existing
   3871   // NestedNameSpecifier, use the number of component identifiers that
   3872   // would need to be changed as the edit distance instead of the number
   3873   // of components in the built NestedNameSpecifier.
   3874   if (NNS && !CurNameSpecifierIdentifiers.empty()) {
   3875     SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
   3876     getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
   3877     NumSpecifiers = llvm::ComputeEditDistance(
   3878         ArrayRef<const IdentifierInfo *>(CurNameSpecifierIdentifiers),
   3879         ArrayRef<const IdentifierInfo *>(NewNameSpecifierIdentifiers));
   3880   }
   3881 
   3882   isSorted = false;
   3883   Distances.insert(NumSpecifiers);
   3884   SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
   3885   DistanceMap[NumSpecifiers].push_back(SI);
   3886 }
   3887 
   3888 /// \brief Perform name lookup for a possible result for typo correction.
   3889 static void LookupPotentialTypoResult(Sema &SemaRef,
   3890                                       LookupResult &Res,
   3891                                       IdentifierInfo *Name,
   3892                                       Scope *S, CXXScopeSpec *SS,
   3893                                       DeclContext *MemberContext,
   3894                                       bool EnteringContext,
   3895                                       bool isObjCIvarLookup,
   3896                                       bool FindHidden) {
   3897   Res.suppressDiagnostics();
   3898   Res.clear();
   3899   Res.setLookupName(Name);
   3900   Res.setAllowHidden(FindHidden);
   3901   if (MemberContext) {
   3902     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
   3903       if (isObjCIvarLookup) {
   3904         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
   3905           Res.addDecl(Ivar);
   3906           Res.resolveKind();
   3907           return;
   3908         }
   3909       }
   3910 
   3911       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
   3912         Res.addDecl(Prop);
   3913         Res.resolveKind();
   3914         return;
   3915       }
   3916     }
   3917 
   3918     SemaRef.LookupQualifiedName(Res, MemberContext);
   3919     return;
   3920   }
   3921 
   3922   SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
   3923                            EnteringContext);
   3924 
   3925   // Fake ivar lookup; this should really be part of
   3926   // LookupParsedName.
   3927   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
   3928     if (Method->isInstanceMethod() && Method->getClassInterface() &&
   3929         (Res.empty() ||
   3930          (Res.isSingleResult() &&
   3931           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
   3932        if (ObjCIvarDecl *IV
   3933              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
   3934          Res.addDecl(IV);
   3935          Res.resolveKind();
   3936        }
   3937      }
   3938   }
   3939 }
   3940 
   3941 /// \brief Add keywords to the consumer as possible typo corrections.
   3942 static void AddKeywordsToConsumer(Sema &SemaRef,
   3943                                   TypoCorrectionConsumer &Consumer,
   3944                                   Scope *S, CorrectionCandidateCallback &CCC,
   3945                                   bool AfterNestedNameSpecifier) {
   3946   if (AfterNestedNameSpecifier) {
   3947     // For 'X::', we know exactly which keywords can appear next.
   3948     Consumer.addKeywordResult("template");
   3949     if (CCC.WantExpressionKeywords)
   3950       Consumer.addKeywordResult("operator");
   3951     return;
   3952   }
   3953 
   3954   if (CCC.WantObjCSuper)
   3955     Consumer.addKeywordResult("super");
   3956 
   3957   if (CCC.WantTypeSpecifiers) {
   3958     // Add type-specifier keywords to the set of results.
   3959     static const char *const CTypeSpecs[] = {
   3960       "char", "const", "double", "enum", "float", "int", "long", "short",
   3961       "signed", "struct", "union", "unsigned", "void", "volatile",
   3962       "_Complex", "_Imaginary",
   3963       // storage-specifiers as well
   3964       "extern", "inline", "static", "typedef"
   3965     };
   3966 
   3967     const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
   3968     for (unsigned I = 0; I != NumCTypeSpecs; ++I)
   3969       Consumer.addKeywordResult(CTypeSpecs[I]);
   3970 
   3971     if (SemaRef.getLangOpts().C99)
   3972       Consumer.addKeywordResult("restrict");
   3973     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
   3974       Consumer.addKeywordResult("bool");
   3975     else if (SemaRef.getLangOpts().C99)
   3976       Consumer.addKeywordResult("_Bool");
   3977 
   3978     if (SemaRef.getLangOpts().CPlusPlus) {
   3979       Consumer.addKeywordResult("class");
   3980       Consumer.addKeywordResult("typename");
   3981       Consumer.addKeywordResult("wchar_t");
   3982 
   3983       if (SemaRef.getLangOpts().CPlusPlus11) {
   3984         Consumer.addKeywordResult("char16_t");
   3985         Consumer.addKeywordResult("char32_t");
   3986         Consumer.addKeywordResult("constexpr");
   3987         Consumer.addKeywordResult("decltype");
   3988         Consumer.addKeywordResult("thread_local");
   3989       }
   3990     }
   3991 
   3992     if (SemaRef.getLangOpts().GNUMode)
   3993       Consumer.addKeywordResult("typeof");
   3994   }
   3995 
   3996   if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
   3997     Consumer.addKeywordResult("const_cast");
   3998     Consumer.addKeywordResult("dynamic_cast");
   3999     Consumer.addKeywordResult("reinterpret_cast");
   4000     Consumer.addKeywordResult("static_cast");
   4001   }
   4002 
   4003   if (CCC.WantExpressionKeywords) {
   4004     Consumer.addKeywordResult("sizeof");
   4005     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
   4006       Consumer.addKeywordResult("false");
   4007       Consumer.addKeywordResult("true");
   4008     }
   4009 
   4010     if (SemaRef.getLangOpts().CPlusPlus) {
   4011       static const char *const CXXExprs[] = {
   4012         "delete", "new", "operator", "throw", "typeid"
   4013       };
   4014       const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
   4015       for (unsigned I = 0; I != NumCXXExprs; ++I)
   4016         Consumer.addKeywordResult(CXXExprs[I]);
   4017 
   4018       if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
   4019           cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
   4020         Consumer.addKeywordResult("this");
   4021 
   4022       if (SemaRef.getLangOpts().CPlusPlus11) {
   4023         Consumer.addKeywordResult("alignof");
   4024         Consumer.addKeywordResult("nullptr");
   4025       }
   4026     }
   4027 
   4028     if (SemaRef.getLangOpts().C11) {
   4029       // FIXME: We should not suggest _Alignof if the alignof macro
   4030       // is present.
   4031       Consumer.addKeywordResult("_Alignof");
   4032     }
   4033   }
   4034 
   4035   if (CCC.WantRemainingKeywords) {
   4036     if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
   4037       // Statements.
   4038       static const char *const CStmts[] = {
   4039         "do", "else", "for", "goto", "if", "return", "switch", "while" };
   4040       const unsigned NumCStmts = llvm::array_lengthof(CStmts);
   4041       for (unsigned I = 0; I != NumCStmts; ++I)
   4042         Consumer.addKeywordResult(CStmts[I]);
   4043 
   4044       if (SemaRef.getLangOpts().CPlusPlus) {
   4045         Consumer.addKeywordResult("catch");
   4046         Consumer.addKeywordResult("try");
   4047       }
   4048 
   4049       if (S && S->getBreakParent())
   4050         Consumer.addKeywordResult("break");
   4051 
   4052       if (S && S->getContinueParent())
   4053         Consumer.addKeywordResult("continue");
   4054 
   4055       if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
   4056         Consumer.addKeywordResult("case");
   4057         Consumer.addKeywordResult("default");
   4058       }
   4059     } else {
   4060       if (SemaRef.getLangOpts().CPlusPlus) {
   4061         Consumer.addKeywordResult("namespace");
   4062         Consumer.addKeywordResult("template");
   4063       }
   4064 
   4065       if (S && S->isClassScope()) {
   4066         Consumer.addKeywordResult("explicit");
   4067         Consumer.addKeywordResult("friend");
   4068         Consumer.addKeywordResult("mutable");
   4069         Consumer.addKeywordResult("private");
   4070         Consumer.addKeywordResult("protected");
   4071         Consumer.addKeywordResult("public");
   4072         Consumer.addKeywordResult("virtual");
   4073       }
   4074     }
   4075 
   4076     if (SemaRef.getLangOpts().CPlusPlus) {
   4077       Consumer.addKeywordResult("using");
   4078 
   4079       if (SemaRef.getLangOpts().CPlusPlus11)
   4080         Consumer.addKeywordResult("static_assert");
   4081     }
   4082   }
   4083 }
   4084 
   4085 /// \brief Check whether the declarations found for a typo correction are
   4086 /// visible, and if none of them are, convert the correction to an 'import
   4087 /// a module' correction.
   4088 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
   4089   if (TC.begin() == TC.end())
   4090     return;
   4091 
   4092   TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
   4093 
   4094   for (/**/; DI != DE; ++DI)
   4095     if (!LookupResult::isVisible(SemaRef, *DI))
   4096       break;
   4097   // Nothing to do if all decls are visible.
   4098   if (DI == DE)
   4099     return;
   4100 
   4101   llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
   4102   bool AnyVisibleDecls = !NewDecls.empty();
   4103 
   4104   for (/**/; DI != DE; ++DI) {
   4105     NamedDecl *VisibleDecl = *DI;
   4106     if (!LookupResult::isVisible(SemaRef, *DI))
   4107       VisibleDecl = findAcceptableDecl(SemaRef, *DI);
   4108 
   4109     if (VisibleDecl) {
   4110       if (!AnyVisibleDecls) {
   4111         // Found a visible decl, discard all hidden ones.
   4112         AnyVisibleDecls = true;
   4113         NewDecls.clear();
   4114       }
   4115       NewDecls.push_back(VisibleDecl);
   4116     } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
   4117       NewDecls.push_back(*DI);
   4118   }
   4119 
   4120   if (NewDecls.empty())
   4121     TC = TypoCorrection();
   4122   else {
   4123     TC.setCorrectionDecls(NewDecls);
   4124     TC.setRequiresImport(!AnyVisibleDecls);
   4125   }
   4126 }
   4127 
   4128 /// \brief Try to "correct" a typo in the source code by finding
   4129 /// visible declarations whose names are similar to the name that was
   4130 /// present in the source code.
   4131 ///
   4132 /// \param TypoName the \c DeclarationNameInfo structure that contains
   4133 /// the name that was present in the source code along with its location.
   4134 ///
   4135 /// \param LookupKind the name-lookup criteria used to search for the name.
   4136 ///
   4137 /// \param S the scope in which name lookup occurs.
   4138 ///
   4139 /// \param SS the nested-name-specifier that precedes the name we're
   4140 /// looking for, if present.
   4141 ///
   4142 /// \param CCC A CorrectionCandidateCallback object that provides further
   4143 /// validation of typo correction candidates. It also provides flags for
   4144 /// determining the set of keywords permitted.
   4145 ///
   4146 /// \param MemberContext if non-NULL, the context in which to look for
   4147 /// a member access expression.
   4148 ///
   4149 /// \param EnteringContext whether we're entering the context described by
   4150 /// the nested-name-specifier SS.
   4151 ///
   4152 /// \param OPT when non-NULL, the search for visible declarations will
   4153 /// also walk the protocols in the qualified interfaces of \p OPT.
   4154 ///
   4155 /// \returns a \c TypoCorrection containing the corrected name if the typo
   4156 /// along with information such as the \c NamedDecl where the corrected name
   4157 /// was declared, and any additional \c NestedNameSpecifier needed to access
   4158 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
   4159 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
   4160                                  Sema::LookupNameKind LookupKind,
   4161                                  Scope *S, CXXScopeSpec *SS,
   4162                                  CorrectionCandidateCallback &CCC,
   4163                                  CorrectTypoKind Mode,
   4164                                  DeclContext *MemberContext,
   4165                                  bool EnteringContext,
   4166                                  const ObjCObjectPointerType *OPT,
   4167                                  bool RecordFailure) {
   4168   // Always let the ExternalSource have the first chance at correction, even
   4169   // if we would otherwise have given up.
   4170   if (ExternalSource) {
   4171     if (TypoCorrection Correction = ExternalSource->CorrectTypo(
   4172         TypoName, LookupKind, S, SS, CCC, MemberContext, EnteringContext, OPT))
   4173       return Correction;
   4174   }
   4175 
   4176   if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
   4177       DisableTypoCorrection)
   4178     return TypoCorrection();
   4179 
   4180   // In Microsoft mode, don't perform typo correction in a template member
   4181   // function dependent context because it interferes with the "lookup into
   4182   // dependent bases of class templates" feature.
   4183   if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
   4184       isa<CXXMethodDecl>(CurContext))
   4185     return TypoCorrection();
   4186 
   4187   // We only attempt to correct typos for identifiers.
   4188   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
   4189   if (!Typo)
   4190     return TypoCorrection();
   4191 
   4192   // If the scope specifier itself was invalid, don't try to correct
   4193   // typos.
   4194   if (SS && SS->isInvalid())
   4195     return TypoCorrection();
   4196 
   4197   // Never try to correct typos during template deduction or
   4198   // instantiation.
   4199   if (!ActiveTemplateInstantiations.empty())
   4200     return TypoCorrection();
   4201 
   4202   // Don't try to correct 'super'.
   4203   if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
   4204     return TypoCorrection();
   4205 
   4206   // Abort if typo correction already failed for this specific typo.
   4207   IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
   4208   if (locs != TypoCorrectionFailures.end() &&
   4209       locs->second.count(TypoName.getLoc()))
   4210     return TypoCorrection();
   4211 
   4212   // Don't try to correct the identifier "vector" when in AltiVec mode.
   4213   // TODO: Figure out why typo correction misbehaves in this case, fix it, and
   4214   // remove this workaround.
   4215   if (getLangOpts().AltiVec && Typo->isStr("vector"))
   4216     return TypoCorrection();
   4217 
   4218   // If we're handling a missing symbol error, using modules, and the
   4219   // special search all modules option is used, look for a missing import.
   4220   if ((Mode == CTK_ErrorRecovery) &&  getLangOpts().Modules &&
   4221       getLangOpts().ModulesSearchAll) {
   4222     // The following has the side effect of loading the missing module.
   4223     getModuleLoader().lookupMissingImports(Typo->getName(),
   4224                                            TypoName.getLocStart());
   4225   }
   4226 
   4227   TypoCorrectionConsumer Consumer(*this, TypoName, LookupKind, S, SS, CCC,
   4228                                   MemberContext, EnteringContext);
   4229 
   4230   // If a callback object considers an empty typo correction candidate to be
   4231   // viable, assume it does not do any actual validation of the candidates.
   4232   TypoCorrection EmptyCorrection;
   4233   bool ValidatingCallback = !isCandidateViable(CCC, EmptyCorrection);
   4234 
   4235   // Perform name lookup to find visible, similarly-named entities.
   4236   bool IsUnqualifiedLookup = false;
   4237   DeclContext *QualifiedDC = MemberContext;
   4238   if (MemberContext) {
   4239     LookupVisibleDecls(MemberContext, LookupKind, Consumer);
   4240 
   4241     // Look in qualified interfaces.
   4242     if (OPT) {
   4243       for (auto *I : OPT->quals())
   4244         LookupVisibleDecls(I, LookupKind, Consumer);
   4245     }
   4246   } else if (SS && SS->isSet()) {
   4247     QualifiedDC = computeDeclContext(*SS, EnteringContext);
   4248     if (!QualifiedDC)
   4249       return TypoCorrection();
   4250 
   4251     // Provide a stop gap for files that are just seriously broken.  Trying
   4252     // to correct all typos can turn into a HUGE performance penalty, causing
   4253     // some files to take minutes to get rejected by the parser.
   4254     if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
   4255       return TypoCorrection();
   4256     ++TyposCorrected;
   4257 
   4258     LookupVisibleDecls(QualifiedDC, LookupKind, Consumer);
   4259   } else {
   4260     IsUnqualifiedLookup = true;
   4261     UnqualifiedTyposCorrectedMap::iterator Cached
   4262       = UnqualifiedTyposCorrected.find(Typo);
   4263     if (Cached != UnqualifiedTyposCorrected.end()) {
   4264       // Add the cached value, unless it's a keyword or fails validation. In the
   4265       // keyword case, we'll end up adding the keyword below.
   4266       if (Cached->second) {
   4267         if (!Cached->second.isKeyword() &&
   4268             isCandidateViable(CCC, Cached->second)) {
   4269           // Do not use correction that is unaccessible in the given scope.
   4270           NamedDecl *CorrectionDecl = Cached->second.getCorrectionDecl();
   4271           DeclarationNameInfo NameInfo(CorrectionDecl->getDeclName(),
   4272                                        CorrectionDecl->getLocation());
   4273           LookupResult R(*this, NameInfo, LookupOrdinaryName);
   4274           if (LookupName(R, S))
   4275             Consumer.addCorrection(Cached->second);
   4276         }
   4277       } else {
   4278         // Only honor no-correction cache hits when a callback that will validate
   4279         // correction candidates is not being used.
   4280         if (!ValidatingCallback)
   4281           return TypoCorrection();
   4282       }
   4283     }
   4284     if (Cached == UnqualifiedTyposCorrected.end()) {
   4285       // Provide a stop gap for files that are just seriously broken.  Trying
   4286       // to correct all typos can turn into a HUGE performance penalty, causing
   4287       // some files to take minutes to get rejected by the parser.
   4288       if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
   4289         return TypoCorrection();
   4290     }
   4291   }
   4292 
   4293   // Determine whether we are going to search in the various namespaces for
   4294   // corrections.
   4295   bool SearchNamespaces
   4296     = getLangOpts().CPlusPlus &&
   4297       (IsUnqualifiedLookup || (SS && SS->isSet()));
   4298   // In a few cases we *only* want to search for corrections based on just
   4299   // adding or changing the nested name specifier.
   4300   unsigned TypoLen = Typo->getName().size();
   4301   bool AllowOnlyNNSChanges = TypoLen < 3;
   4302 
   4303   if (IsUnqualifiedLookup || SearchNamespaces) {
   4304     // For unqualified lookup, look through all of the names that we have
   4305     // seen in this translation unit.
   4306     // FIXME: Re-add the ability to skip very unlikely potential corrections.
   4307     for (IdentifierTable::iterator I = Context.Idents.begin(),
   4308                                 IEnd = Context.Idents.end();
   4309          I != IEnd; ++I)
   4310       Consumer.FoundName(I->getKey());
   4311 
   4312     // Walk through identifiers in external identifier sources.
   4313     // FIXME: Re-add the ability to skip very unlikely potential corrections.
   4314     if (IdentifierInfoLookup *External
   4315                             = Context.Idents.getExternalIdentifierLookup()) {
   4316       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
   4317       do {
   4318         StringRef Name = Iter->Next();
   4319         if (Name.empty())
   4320           break;
   4321 
   4322         Consumer.FoundName(Name);
   4323       } while (true);
   4324     }
   4325   }
   4326 
   4327   AddKeywordsToConsumer(*this, Consumer, S, CCC, SS && SS->isNotEmpty());
   4328 
   4329   // If we haven't found anything, we're done.
   4330   if (Consumer.empty())
   4331     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure,
   4332                             IsUnqualifiedLookup);
   4333 
   4334   // Make sure the best edit distance (prior to adding any namespace qualifiers)
   4335   // is not more that about a third of the length of the typo's identifier.
   4336   unsigned ED = Consumer.getBestEditDistance(true);
   4337   if (ED > 0 && TypoLen / ED < 3)
   4338     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure,
   4339                             IsUnqualifiedLookup);
   4340 
   4341   // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
   4342   // to search those namespaces.
   4343   if (SearchNamespaces) {
   4344     // Load any externally-known namespaces.
   4345     if (ExternalSource && !LoadedExternalKnownNamespaces) {
   4346       SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
   4347       LoadedExternalKnownNamespaces = true;
   4348       ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
   4349       for (unsigned I = 0, N = ExternalKnownNamespaces.size(); I != N; ++I)
   4350         KnownNamespaces[ExternalKnownNamespaces[I]] = true;
   4351     }
   4352 
   4353     Consumer.addNamespaces(KnownNamespaces);
   4354   }
   4355 
   4356   TypoCorrection BestTC = Consumer.getNextCorrection();
   4357   TypoCorrection SecondBestTC = Consumer.getNextCorrection();
   4358   if (!BestTC)
   4359     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4360 
   4361   ED = BestTC.getEditDistance();
   4362 
   4363   if (!AllowOnlyNNSChanges && ED > 0 && TypoLen / ED < 3) {
   4364     // If this was an unqualified lookup and we believe the callback
   4365     // object wouldn't have filtered out possible corrections, note
   4366     // that no correction was found.
   4367     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure,
   4368                             IsUnqualifiedLookup && !ValidatingCallback);
   4369   }
   4370 
   4371   // If only a single name remains, return that result.
   4372   if (!SecondBestTC ||
   4373       SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
   4374     const TypoCorrection &Result = BestTC;
   4375 
   4376     // Don't correct to a keyword that's the same as the typo; the keyword
   4377     // wasn't actually in scope.
   4378     if (ED == 0 && Result.isKeyword())
   4379       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4380 
   4381     // Record the correction for unqualified lookup.
   4382     if (IsUnqualifiedLookup)
   4383       UnqualifiedTyposCorrected[Typo] = Result;
   4384 
   4385     TypoCorrection TC = Result;
   4386     TC.setCorrectionRange(SS, TypoName);
   4387     checkCorrectionVisibility(*this, TC);
   4388     return TC;
   4389   }
   4390   // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
   4391   // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
   4392   // some instances of CTC_Unknown, while WantRemainingKeywords is true
   4393   // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
   4394   else if (SecondBestTC && CCC.WantObjCSuper && !CCC.WantRemainingKeywords) {
   4395     // Prefer 'super' when we're completing in a message-receiver
   4396     // context.
   4397 
   4398     if (BestTC.getCorrection().getAsString() != "super") {
   4399       if (SecondBestTC.getCorrection().getAsString() == "super")
   4400         BestTC = SecondBestTC;
   4401       else if (Consumer["super"].front().isKeyword())
   4402         BestTC = Consumer["super"].front();
   4403     }
   4404     // Don't correct to a keyword that's the same as the typo; the keyword
   4405     // wasn't actually in scope.
   4406     if (BestTC.getEditDistance() == 0 ||
   4407         BestTC.getCorrection().getAsString() != "super")
   4408       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
   4409 
   4410     // Record the correction for unqualified lookup.
   4411     if (IsUnqualifiedLookup)
   4412       UnqualifiedTyposCorrected[Typo] = BestTC;
   4413 
   4414     BestTC.setCorrectionRange(SS, TypoName);
   4415     return BestTC;
   4416   }
   4417 
   4418   // Record the failure's location if needed and return an empty correction. If
   4419   // this was an unqualified lookup and we believe the callback object did not
   4420   // filter out possible corrections, also cache the failure for the typo.
   4421   return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure,
   4422                           IsUnqualifiedLookup && !ValidatingCallback);
   4423 }
   4424 
   4425 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
   4426   if (!CDecl) return;
   4427 
   4428   if (isKeyword())
   4429     CorrectionDecls.clear();
   4430 
   4431   CorrectionDecls.push_back(CDecl->getUnderlyingDecl());
   4432 
   4433   if (!CorrectionName)
   4434     CorrectionName = CDecl->getDeclName();
   4435 }
   4436 
   4437 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
   4438   if (CorrectionNameSpec) {
   4439     std::string tmpBuffer;
   4440     llvm::raw_string_ostream PrefixOStream(tmpBuffer);
   4441     CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
   4442     PrefixOStream << CorrectionName;
   4443     return PrefixOStream.str();
   4444   }
   4445 
   4446   return CorrectionName.getAsString();
   4447 }
   4448 
   4449 bool CorrectionCandidateCallback::ValidateCandidate(const TypoCorrection &candidate) {
   4450   if (!candidate.isResolved())
   4451     return true;
   4452 
   4453   if (candidate.isKeyword())
   4454     return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
   4455            WantRemainingKeywords || WantObjCSuper;
   4456 
   4457   bool HasNonType = false;
   4458   bool HasStaticMethod = false;
   4459   bool HasNonStaticMethod = false;
   4460   for (Decl *D : candidate) {
   4461     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
   4462       D = FTD->getTemplatedDecl();
   4463     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
   4464       if (Method->isStatic())
   4465         HasStaticMethod = true;
   4466       else
   4467         HasNonStaticMethod = true;
   4468     }
   4469     if (!isa<TypeDecl>(D))
   4470       HasNonType = true;
   4471   }
   4472 
   4473   if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
   4474       !candidate.getCorrectionSpecifier())
   4475     return false;
   4476 
   4477   return WantTypeSpecifiers || HasNonType;
   4478 }
   4479 
   4480 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
   4481                                              bool HasExplicitTemplateArgs,
   4482                                              MemberExpr *ME)
   4483     : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
   4484       CurContext(SemaRef.CurContext), MemberFn(ME) {
   4485   WantTypeSpecifiers = SemaRef.getLangOpts().CPlusPlus;
   4486   WantRemainingKeywords = false;
   4487 }
   4488 
   4489 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
   4490   if (!candidate.getCorrectionDecl())
   4491     return candidate.isKeyword();
   4492 
   4493   for (TypoCorrection::const_decl_iterator DI = candidate.begin(),
   4494                                            DIEnd = candidate.end();
   4495        DI != DIEnd; ++DI) {
   4496     FunctionDecl *FD = nullptr;
   4497     NamedDecl *ND = (*DI)->getUnderlyingDecl();
   4498     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
   4499       FD = FTD->getTemplatedDecl();
   4500     if (!HasExplicitTemplateArgs && !FD) {
   4501       if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
   4502         // If the Decl is neither a function nor a template function,
   4503         // determine if it is a pointer or reference to a function. If so,
   4504         // check against the number of arguments expected for the pointee.
   4505         QualType ValType = cast<ValueDecl>(ND)->getType();
   4506         if (ValType->isAnyPointerType() || ValType->isReferenceType())
   4507           ValType = ValType->getPointeeType();
   4508         if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
   4509           if (FPT->getNumParams() == NumArgs)
   4510             return true;
   4511       }
   4512     }
   4513 
   4514     // Skip the current candidate if it is not a FunctionDecl or does not accept
   4515     // the current number of arguments.
   4516     if (!FD || !(FD->getNumParams() >= NumArgs &&
   4517                  FD->getMinRequiredArguments() <= NumArgs))
   4518       continue;
   4519 
   4520     // If the current candidate is a non-static C++ method, skip the candidate
   4521     // unless the method being corrected--or the current DeclContext, if the
   4522     // function being corrected is not a method--is a method in the same class
   4523     // or a descendent class of the candidate's parent class.
   4524     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   4525       if (MemberFn || !MD->isStatic()) {
   4526         CXXMethodDecl *CurMD =
   4527             MemberFn
   4528                 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
   4529                 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
   4530         CXXRecordDecl *CurRD =
   4531             CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
   4532         CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
   4533         if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
   4534           continue;
   4535       }
   4536     }
   4537     return true;
   4538   }
   4539   return false;
   4540 }
   4541 
   4542 void Sema::diagnoseTypo(const TypoCorrection &Correction,
   4543                         const PartialDiagnostic &TypoDiag,
   4544                         bool ErrorRecovery) {
   4545   diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
   4546                ErrorRecovery);
   4547 }
   4548 
   4549 /// Find which declaration we should import to provide the definition of
   4550 /// the given declaration.
   4551 static const NamedDecl *getDefinitionToImport(const NamedDecl *D) {
   4552   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
   4553     return VD->getDefinition();
   4554   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
   4555     return FD->isDefined(FD) ? FD : nullptr;
   4556   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
   4557     return TD->getDefinition();
   4558   if (const ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
   4559     return ID->getDefinition();
   4560   if (const ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
   4561     return PD->getDefinition();
   4562   if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
   4563     return getDefinitionToImport(TD->getTemplatedDecl());
   4564   return nullptr;
   4565 }
   4566 
   4567 /// \brief Diagnose a successfully-corrected typo. Separated from the correction
   4568 /// itself to allow external validation of the result, etc.
   4569 ///
   4570 /// \param Correction The result of performing typo correction.
   4571 /// \param TypoDiag The diagnostic to produce. This will have the corrected
   4572 ///        string added to it (and usually also a fixit).
   4573 /// \param PrevNote A note to use when indicating the location of the entity to
   4574 ///        which we are correcting. Will have the correction string added to it.
   4575 /// \param ErrorRecovery If \c true (the default), the caller is going to
   4576 ///        recover from the typo as if the corrected string had been typed.
   4577 ///        In this case, \c PDiag must be an error, and we will attach a fixit
   4578 ///        to it.
   4579 void Sema::diagnoseTypo(const TypoCorrection &Correction,
   4580                         const PartialDiagnostic &TypoDiag,
   4581                         const PartialDiagnostic &PrevNote,
   4582                         bool ErrorRecovery) {
   4583   std::string CorrectedStr = Correction.getAsString(getLangOpts());
   4584   std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
   4585   FixItHint FixTypo = FixItHint::CreateReplacement(
   4586       Correction.getCorrectionRange(), CorrectedStr);
   4587 
   4588   // Maybe we're just missing a module import.
   4589   if (Correction.requiresImport()) {
   4590     NamedDecl *Decl = Correction.getCorrectionDecl();
   4591     assert(Decl && "import required but no declaration to import");
   4592 
   4593     // Suggest importing a module providing the definition of this entity, if
   4594     // possible.
   4595     const NamedDecl *Def = getDefinitionToImport(Decl);
   4596     if (!Def)
   4597       Def = Decl;
   4598     Module *Owner = Def->getOwningModule();
   4599     assert(Owner && "definition of hidden declaration is not in a module");
   4600 
   4601     Diag(Correction.getCorrectionRange().getBegin(),
   4602          diag::err_module_private_declaration)
   4603       << Def << Owner->getFullModuleName();
   4604     Diag(Def->getLocation(), diag::note_previous_declaration);
   4605 
   4606     // Recover by implicitly importing this module.
   4607     if (ErrorRecovery)
   4608       createImplicitModuleImportForErrorRecovery(
   4609           Correction.getCorrectionRange().getBegin(), Owner);
   4610     return;
   4611   }
   4612 
   4613   Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
   4614     << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
   4615 
   4616   NamedDecl *ChosenDecl =
   4617       Correction.isKeyword() ? nullptr : Correction.getCorrectionDecl();
   4618   if (PrevNote.getDiagID() && ChosenDecl)
   4619     Diag(ChosenDecl->getLocation(), PrevNote)
   4620       << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
   4621 }
   4622