1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include <limits.h> // For LONG_MIN, LONG_MAX. 6 7 #include "src/v8.h" 8 9 #if V8_TARGET_ARCH_MIPS 10 11 #include "src/base/bits.h" 12 #include "src/base/division-by-constant.h" 13 #include "src/bootstrapper.h" 14 #include "src/codegen.h" 15 #include "src/cpu-profiler.h" 16 #include "src/debug.h" 17 #include "src/isolate-inl.h" 18 #include "src/runtime.h" 19 20 namespace v8 { 21 namespace internal { 22 23 MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size) 24 : Assembler(arg_isolate, buffer, size), 25 generating_stub_(false), 26 has_frame_(false) { 27 if (isolate() != NULL) { 28 code_object_ = Handle<Object>(isolate()->heap()->undefined_value(), 29 isolate()); 30 } 31 } 32 33 34 void MacroAssembler::Load(Register dst, 35 const MemOperand& src, 36 Representation r) { 37 DCHECK(!r.IsDouble()); 38 if (r.IsInteger8()) { 39 lb(dst, src); 40 } else if (r.IsUInteger8()) { 41 lbu(dst, src); 42 } else if (r.IsInteger16()) { 43 lh(dst, src); 44 } else if (r.IsUInteger16()) { 45 lhu(dst, src); 46 } else { 47 lw(dst, src); 48 } 49 } 50 51 52 void MacroAssembler::Store(Register src, 53 const MemOperand& dst, 54 Representation r) { 55 DCHECK(!r.IsDouble()); 56 if (r.IsInteger8() || r.IsUInteger8()) { 57 sb(src, dst); 58 } else if (r.IsInteger16() || r.IsUInteger16()) { 59 sh(src, dst); 60 } else { 61 if (r.IsHeapObject()) { 62 AssertNotSmi(src); 63 } else if (r.IsSmi()) { 64 AssertSmi(src); 65 } 66 sw(src, dst); 67 } 68 } 69 70 71 void MacroAssembler::LoadRoot(Register destination, 72 Heap::RootListIndex index) { 73 lw(destination, MemOperand(s6, index << kPointerSizeLog2)); 74 } 75 76 77 void MacroAssembler::LoadRoot(Register destination, 78 Heap::RootListIndex index, 79 Condition cond, 80 Register src1, const Operand& src2) { 81 Branch(2, NegateCondition(cond), src1, src2); 82 lw(destination, MemOperand(s6, index << kPointerSizeLog2)); 83 } 84 85 86 void MacroAssembler::StoreRoot(Register source, 87 Heap::RootListIndex index) { 88 sw(source, MemOperand(s6, index << kPointerSizeLog2)); 89 } 90 91 92 void MacroAssembler::StoreRoot(Register source, 93 Heap::RootListIndex index, 94 Condition cond, 95 Register src1, const Operand& src2) { 96 Branch(2, NegateCondition(cond), src1, src2); 97 sw(source, MemOperand(s6, index << kPointerSizeLog2)); 98 } 99 100 101 // Push and pop all registers that can hold pointers. 102 void MacroAssembler::PushSafepointRegisters() { 103 // Safepoints expect a block of kNumSafepointRegisters values on the 104 // stack, so adjust the stack for unsaved registers. 105 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; 106 DCHECK(num_unsaved >= 0); 107 if (num_unsaved > 0) { 108 Subu(sp, sp, Operand(num_unsaved * kPointerSize)); 109 } 110 MultiPush(kSafepointSavedRegisters); 111 } 112 113 114 void MacroAssembler::PopSafepointRegisters() { 115 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; 116 MultiPop(kSafepointSavedRegisters); 117 if (num_unsaved > 0) { 118 Addu(sp, sp, Operand(num_unsaved * kPointerSize)); 119 } 120 } 121 122 123 void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) { 124 sw(src, SafepointRegisterSlot(dst)); 125 } 126 127 128 void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) { 129 lw(dst, SafepointRegisterSlot(src)); 130 } 131 132 133 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { 134 // The registers are pushed starting with the highest encoding, 135 // which means that lowest encodings are closest to the stack pointer. 136 return kSafepointRegisterStackIndexMap[reg_code]; 137 } 138 139 140 MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) { 141 return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize); 142 } 143 144 145 MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) { 146 UNIMPLEMENTED_MIPS(); 147 // General purpose registers are pushed last on the stack. 148 int doubles_size = FPURegister::NumAllocatableRegisters() * kDoubleSize; 149 int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize; 150 return MemOperand(sp, doubles_size + register_offset); 151 } 152 153 154 void MacroAssembler::InNewSpace(Register object, 155 Register scratch, 156 Condition cc, 157 Label* branch) { 158 DCHECK(cc == eq || cc == ne); 159 And(scratch, object, Operand(ExternalReference::new_space_mask(isolate()))); 160 Branch(branch, cc, scratch, 161 Operand(ExternalReference::new_space_start(isolate()))); 162 } 163 164 165 void MacroAssembler::RecordWriteField( 166 Register object, 167 int offset, 168 Register value, 169 Register dst, 170 RAStatus ra_status, 171 SaveFPRegsMode save_fp, 172 RememberedSetAction remembered_set_action, 173 SmiCheck smi_check, 174 PointersToHereCheck pointers_to_here_check_for_value) { 175 DCHECK(!AreAliased(value, dst, t8, object)); 176 // First, check if a write barrier is even needed. The tests below 177 // catch stores of Smis. 178 Label done; 179 180 // Skip barrier if writing a smi. 181 if (smi_check == INLINE_SMI_CHECK) { 182 JumpIfSmi(value, &done); 183 } 184 185 // Although the object register is tagged, the offset is relative to the start 186 // of the object, so so offset must be a multiple of kPointerSize. 187 DCHECK(IsAligned(offset, kPointerSize)); 188 189 Addu(dst, object, Operand(offset - kHeapObjectTag)); 190 if (emit_debug_code()) { 191 Label ok; 192 And(t8, dst, Operand((1 << kPointerSizeLog2) - 1)); 193 Branch(&ok, eq, t8, Operand(zero_reg)); 194 stop("Unaligned cell in write barrier"); 195 bind(&ok); 196 } 197 198 RecordWrite(object, 199 dst, 200 value, 201 ra_status, 202 save_fp, 203 remembered_set_action, 204 OMIT_SMI_CHECK, 205 pointers_to_here_check_for_value); 206 207 bind(&done); 208 209 // Clobber clobbered input registers when running with the debug-code flag 210 // turned on to provoke errors. 211 if (emit_debug_code()) { 212 li(value, Operand(bit_cast<int32_t>(kZapValue + 4))); 213 li(dst, Operand(bit_cast<int32_t>(kZapValue + 8))); 214 } 215 } 216 217 218 // Will clobber 4 registers: object, map, dst, ip. The 219 // register 'object' contains a heap object pointer. 220 void MacroAssembler::RecordWriteForMap(Register object, 221 Register map, 222 Register dst, 223 RAStatus ra_status, 224 SaveFPRegsMode fp_mode) { 225 if (emit_debug_code()) { 226 DCHECK(!dst.is(at)); 227 lw(dst, FieldMemOperand(map, HeapObject::kMapOffset)); 228 Check(eq, 229 kWrongAddressOrValuePassedToRecordWrite, 230 dst, 231 Operand(isolate()->factory()->meta_map())); 232 } 233 234 if (!FLAG_incremental_marking) { 235 return; 236 } 237 238 if (emit_debug_code()) { 239 lw(at, FieldMemOperand(object, HeapObject::kMapOffset)); 240 Check(eq, 241 kWrongAddressOrValuePassedToRecordWrite, 242 map, 243 Operand(at)); 244 } 245 246 Label done; 247 248 // A single check of the map's pages interesting flag suffices, since it is 249 // only set during incremental collection, and then it's also guaranteed that 250 // the from object's page's interesting flag is also set. This optimization 251 // relies on the fact that maps can never be in new space. 252 CheckPageFlag(map, 253 map, // Used as scratch. 254 MemoryChunk::kPointersToHereAreInterestingMask, 255 eq, 256 &done); 257 258 Addu(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag)); 259 if (emit_debug_code()) { 260 Label ok; 261 And(at, dst, Operand((1 << kPointerSizeLog2) - 1)); 262 Branch(&ok, eq, at, Operand(zero_reg)); 263 stop("Unaligned cell in write barrier"); 264 bind(&ok); 265 } 266 267 // Record the actual write. 268 if (ra_status == kRAHasNotBeenSaved) { 269 push(ra); 270 } 271 RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET, 272 fp_mode); 273 CallStub(&stub); 274 if (ra_status == kRAHasNotBeenSaved) { 275 pop(ra); 276 } 277 278 bind(&done); 279 280 // Count number of write barriers in generated code. 281 isolate()->counters()->write_barriers_static()->Increment(); 282 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, at, dst); 283 284 // Clobber clobbered registers when running with the debug-code flag 285 // turned on to provoke errors. 286 if (emit_debug_code()) { 287 li(dst, Operand(bit_cast<int32_t>(kZapValue + 12))); 288 li(map, Operand(bit_cast<int32_t>(kZapValue + 16))); 289 } 290 } 291 292 293 // Will clobber 4 registers: object, address, scratch, ip. The 294 // register 'object' contains a heap object pointer. The heap object 295 // tag is shifted away. 296 void MacroAssembler::RecordWrite( 297 Register object, 298 Register address, 299 Register value, 300 RAStatus ra_status, 301 SaveFPRegsMode fp_mode, 302 RememberedSetAction remembered_set_action, 303 SmiCheck smi_check, 304 PointersToHereCheck pointers_to_here_check_for_value) { 305 DCHECK(!AreAliased(object, address, value, t8)); 306 DCHECK(!AreAliased(object, address, value, t9)); 307 308 if (emit_debug_code()) { 309 lw(at, MemOperand(address)); 310 Assert( 311 eq, kWrongAddressOrValuePassedToRecordWrite, at, Operand(value)); 312 } 313 314 if (remembered_set_action == OMIT_REMEMBERED_SET && 315 !FLAG_incremental_marking) { 316 return; 317 } 318 319 // First, check if a write barrier is even needed. The tests below 320 // catch stores of smis and stores into the young generation. 321 Label done; 322 323 if (smi_check == INLINE_SMI_CHECK) { 324 DCHECK_EQ(0, kSmiTag); 325 JumpIfSmi(value, &done); 326 } 327 328 if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) { 329 CheckPageFlag(value, 330 value, // Used as scratch. 331 MemoryChunk::kPointersToHereAreInterestingMask, 332 eq, 333 &done); 334 } 335 CheckPageFlag(object, 336 value, // Used as scratch. 337 MemoryChunk::kPointersFromHereAreInterestingMask, 338 eq, 339 &done); 340 341 // Record the actual write. 342 if (ra_status == kRAHasNotBeenSaved) { 343 push(ra); 344 } 345 RecordWriteStub stub(isolate(), object, value, address, remembered_set_action, 346 fp_mode); 347 CallStub(&stub); 348 if (ra_status == kRAHasNotBeenSaved) { 349 pop(ra); 350 } 351 352 bind(&done); 353 354 // Count number of write barriers in generated code. 355 isolate()->counters()->write_barriers_static()->Increment(); 356 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, at, 357 value); 358 359 // Clobber clobbered registers when running with the debug-code flag 360 // turned on to provoke errors. 361 if (emit_debug_code()) { 362 li(address, Operand(bit_cast<int32_t>(kZapValue + 12))); 363 li(value, Operand(bit_cast<int32_t>(kZapValue + 16))); 364 } 365 } 366 367 368 void MacroAssembler::RememberedSetHelper(Register object, // For debug tests. 369 Register address, 370 Register scratch, 371 SaveFPRegsMode fp_mode, 372 RememberedSetFinalAction and_then) { 373 Label done; 374 if (emit_debug_code()) { 375 Label ok; 376 JumpIfNotInNewSpace(object, scratch, &ok); 377 stop("Remembered set pointer is in new space"); 378 bind(&ok); 379 } 380 // Load store buffer top. 381 ExternalReference store_buffer = 382 ExternalReference::store_buffer_top(isolate()); 383 li(t8, Operand(store_buffer)); 384 lw(scratch, MemOperand(t8)); 385 // Store pointer to buffer and increment buffer top. 386 sw(address, MemOperand(scratch)); 387 Addu(scratch, scratch, kPointerSize); 388 // Write back new top of buffer. 389 sw(scratch, MemOperand(t8)); 390 // Call stub on end of buffer. 391 // Check for end of buffer. 392 And(t8, scratch, Operand(StoreBuffer::kStoreBufferOverflowBit)); 393 if (and_then == kFallThroughAtEnd) { 394 Branch(&done, eq, t8, Operand(zero_reg)); 395 } else { 396 DCHECK(and_then == kReturnAtEnd); 397 Ret(eq, t8, Operand(zero_reg)); 398 } 399 push(ra); 400 StoreBufferOverflowStub store_buffer_overflow(isolate(), fp_mode); 401 CallStub(&store_buffer_overflow); 402 pop(ra); 403 bind(&done); 404 if (and_then == kReturnAtEnd) { 405 Ret(); 406 } 407 } 408 409 410 // ----------------------------------------------------------------------------- 411 // Allocation support. 412 413 414 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, 415 Register scratch, 416 Label* miss) { 417 Label same_contexts; 418 419 DCHECK(!holder_reg.is(scratch)); 420 DCHECK(!holder_reg.is(at)); 421 DCHECK(!scratch.is(at)); 422 423 // Load current lexical context from the stack frame. 424 lw(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset)); 425 // In debug mode, make sure the lexical context is set. 426 #ifdef DEBUG 427 Check(ne, kWeShouldNotHaveAnEmptyLexicalContext, 428 scratch, Operand(zero_reg)); 429 #endif 430 431 // Load the native context of the current context. 432 int offset = 433 Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize; 434 lw(scratch, FieldMemOperand(scratch, offset)); 435 lw(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset)); 436 437 // Check the context is a native context. 438 if (emit_debug_code()) { 439 push(holder_reg); // Temporarily save holder on the stack. 440 // Read the first word and compare to the native_context_map. 441 lw(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset)); 442 LoadRoot(at, Heap::kNativeContextMapRootIndex); 443 Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext, 444 holder_reg, Operand(at)); 445 pop(holder_reg); // Restore holder. 446 } 447 448 // Check if both contexts are the same. 449 lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset)); 450 Branch(&same_contexts, eq, scratch, Operand(at)); 451 452 // Check the context is a native context. 453 if (emit_debug_code()) { 454 push(holder_reg); // Temporarily save holder on the stack. 455 mov(holder_reg, at); // Move at to its holding place. 456 LoadRoot(at, Heap::kNullValueRootIndex); 457 Check(ne, kJSGlobalProxyContextShouldNotBeNull, 458 holder_reg, Operand(at)); 459 460 lw(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset)); 461 LoadRoot(at, Heap::kNativeContextMapRootIndex); 462 Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext, 463 holder_reg, Operand(at)); 464 // Restore at is not needed. at is reloaded below. 465 pop(holder_reg); // Restore holder. 466 // Restore at to holder's context. 467 lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset)); 468 } 469 470 // Check that the security token in the calling global object is 471 // compatible with the security token in the receiving global 472 // object. 473 int token_offset = Context::kHeaderSize + 474 Context::SECURITY_TOKEN_INDEX * kPointerSize; 475 476 lw(scratch, FieldMemOperand(scratch, token_offset)); 477 lw(at, FieldMemOperand(at, token_offset)); 478 Branch(miss, ne, scratch, Operand(at)); 479 480 bind(&same_contexts); 481 } 482 483 484 // Compute the hash code from the untagged key. This must be kept in sync with 485 // ComputeIntegerHash in utils.h and KeyedLoadGenericStub in 486 // code-stub-hydrogen.cc 487 void MacroAssembler::GetNumberHash(Register reg0, Register scratch) { 488 // First of all we assign the hash seed to scratch. 489 LoadRoot(scratch, Heap::kHashSeedRootIndex); 490 SmiUntag(scratch); 491 492 // Xor original key with a seed. 493 xor_(reg0, reg0, scratch); 494 495 // Compute the hash code from the untagged key. This must be kept in sync 496 // with ComputeIntegerHash in utils.h. 497 // 498 // hash = ~hash + (hash << 15); 499 nor(scratch, reg0, zero_reg); 500 sll(at, reg0, 15); 501 addu(reg0, scratch, at); 502 503 // hash = hash ^ (hash >> 12); 504 srl(at, reg0, 12); 505 xor_(reg0, reg0, at); 506 507 // hash = hash + (hash << 2); 508 sll(at, reg0, 2); 509 addu(reg0, reg0, at); 510 511 // hash = hash ^ (hash >> 4); 512 srl(at, reg0, 4); 513 xor_(reg0, reg0, at); 514 515 // hash = hash * 2057; 516 sll(scratch, reg0, 11); 517 sll(at, reg0, 3); 518 addu(reg0, reg0, at); 519 addu(reg0, reg0, scratch); 520 521 // hash = hash ^ (hash >> 16); 522 srl(at, reg0, 16); 523 xor_(reg0, reg0, at); 524 } 525 526 527 void MacroAssembler::LoadFromNumberDictionary(Label* miss, 528 Register elements, 529 Register key, 530 Register result, 531 Register reg0, 532 Register reg1, 533 Register reg2) { 534 // Register use: 535 // 536 // elements - holds the slow-case elements of the receiver on entry. 537 // Unchanged unless 'result' is the same register. 538 // 539 // key - holds the smi key on entry. 540 // Unchanged unless 'result' is the same register. 541 // 542 // 543 // result - holds the result on exit if the load succeeded. 544 // Allowed to be the same as 'key' or 'result'. 545 // Unchanged on bailout so 'key' or 'result' can be used 546 // in further computation. 547 // 548 // Scratch registers: 549 // 550 // reg0 - holds the untagged key on entry and holds the hash once computed. 551 // 552 // reg1 - Used to hold the capacity mask of the dictionary. 553 // 554 // reg2 - Used for the index into the dictionary. 555 // at - Temporary (avoid MacroAssembler instructions also using 'at'). 556 Label done; 557 558 GetNumberHash(reg0, reg1); 559 560 // Compute the capacity mask. 561 lw(reg1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset)); 562 sra(reg1, reg1, kSmiTagSize); 563 Subu(reg1, reg1, Operand(1)); 564 565 // Generate an unrolled loop that performs a few probes before giving up. 566 for (int i = 0; i < kNumberDictionaryProbes; i++) { 567 // Use reg2 for index calculations and keep the hash intact in reg0. 568 mov(reg2, reg0); 569 // Compute the masked index: (hash + i + i * i) & mask. 570 if (i > 0) { 571 Addu(reg2, reg2, Operand(SeededNumberDictionary::GetProbeOffset(i))); 572 } 573 and_(reg2, reg2, reg1); 574 575 // Scale the index by multiplying by the element size. 576 DCHECK(SeededNumberDictionary::kEntrySize == 3); 577 sll(at, reg2, 1); // 2x. 578 addu(reg2, reg2, at); // reg2 = reg2 * 3. 579 580 // Check if the key is identical to the name. 581 sll(at, reg2, kPointerSizeLog2); 582 addu(reg2, elements, at); 583 584 lw(at, FieldMemOperand(reg2, SeededNumberDictionary::kElementsStartOffset)); 585 if (i != kNumberDictionaryProbes - 1) { 586 Branch(&done, eq, key, Operand(at)); 587 } else { 588 Branch(miss, ne, key, Operand(at)); 589 } 590 } 591 592 bind(&done); 593 // Check that the value is a normal property. 594 // reg2: elements + (index * kPointerSize). 595 const int kDetailsOffset = 596 SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize; 597 lw(reg1, FieldMemOperand(reg2, kDetailsOffset)); 598 And(at, reg1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask))); 599 Branch(miss, ne, at, Operand(zero_reg)); 600 601 // Get the value at the masked, scaled index and return. 602 const int kValueOffset = 603 SeededNumberDictionary::kElementsStartOffset + kPointerSize; 604 lw(result, FieldMemOperand(reg2, kValueOffset)); 605 } 606 607 608 // --------------------------------------------------------------------------- 609 // Instruction macros. 610 611 void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) { 612 if (rt.is_reg()) { 613 addu(rd, rs, rt.rm()); 614 } else { 615 if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 616 addiu(rd, rs, rt.imm32_); 617 } else { 618 // li handles the relocation. 619 DCHECK(!rs.is(at)); 620 li(at, rt); 621 addu(rd, rs, at); 622 } 623 } 624 } 625 626 627 void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) { 628 if (rt.is_reg()) { 629 subu(rd, rs, rt.rm()); 630 } else { 631 if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 632 addiu(rd, rs, -rt.imm32_); // No subiu instr, use addiu(x, y, -imm). 633 } else { 634 // li handles the relocation. 635 DCHECK(!rs.is(at)); 636 li(at, rt); 637 subu(rd, rs, at); 638 } 639 } 640 } 641 642 643 void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) { 644 if (rt.is_reg()) { 645 if (IsMipsArchVariant(kLoongson)) { 646 mult(rs, rt.rm()); 647 mflo(rd); 648 } else { 649 mul(rd, rs, rt.rm()); 650 } 651 } else { 652 // li handles the relocation. 653 DCHECK(!rs.is(at)); 654 li(at, rt); 655 if (IsMipsArchVariant(kLoongson)) { 656 mult(rs, at); 657 mflo(rd); 658 } else { 659 mul(rd, rs, at); 660 } 661 } 662 } 663 664 665 void MacroAssembler::Mul(Register rd_hi, Register rd_lo, 666 Register rs, const Operand& rt) { 667 if (rt.is_reg()) { 668 if (!IsMipsArchVariant(kMips32r6)) { 669 mult(rs, rt.rm()); 670 mflo(rd_lo); 671 mfhi(rd_hi); 672 } else { 673 if (rd_lo.is(rs)) { 674 DCHECK(!rd_hi.is(rs)); 675 DCHECK(!rd_hi.is(rt.rm()) && !rd_lo.is(rt.rm())); 676 muh(rd_hi, rs, rt.rm()); 677 mul(rd_lo, rs, rt.rm()); 678 } else { 679 DCHECK(!rd_hi.is(rt.rm()) && !rd_lo.is(rt.rm())); 680 mul(rd_lo, rs, rt.rm()); 681 muh(rd_hi, rs, rt.rm()); 682 } 683 } 684 } else { 685 // li handles the relocation. 686 DCHECK(!rs.is(at)); 687 li(at, rt); 688 if (!IsMipsArchVariant(kMips32r6)) { 689 mult(rs, at); 690 mflo(rd_lo); 691 mfhi(rd_hi); 692 } else { 693 if (rd_lo.is(rs)) { 694 DCHECK(!rd_hi.is(rs)); 695 DCHECK(!rd_hi.is(at) && !rd_lo.is(at)); 696 muh(rd_hi, rs, at); 697 mul(rd_lo, rs, at); 698 } else { 699 DCHECK(!rd_hi.is(at) && !rd_lo.is(at)); 700 mul(rd_lo, rs, at); 701 muh(rd_hi, rs, at); 702 } 703 } 704 } 705 } 706 707 708 void MacroAssembler::Mulh(Register rd, Register rs, const Operand& rt) { 709 if (rt.is_reg()) { 710 if (!IsMipsArchVariant(kMips32r6)) { 711 mult(rs, rt.rm()); 712 mfhi(rd); 713 } else { 714 muh(rd, rs, rt.rm()); 715 } 716 } else { 717 // li handles the relocation. 718 DCHECK(!rs.is(at)); 719 li(at, rt); 720 if (!IsMipsArchVariant(kMips32r6)) { 721 mult(rs, at); 722 mfhi(rd); 723 } else { 724 muh(rd, rs, at); 725 } 726 } 727 } 728 729 730 void MacroAssembler::Mult(Register rs, const Operand& rt) { 731 if (rt.is_reg()) { 732 mult(rs, rt.rm()); 733 } else { 734 // li handles the relocation. 735 DCHECK(!rs.is(at)); 736 li(at, rt); 737 mult(rs, at); 738 } 739 } 740 741 742 void MacroAssembler::Multu(Register rs, const Operand& rt) { 743 if (rt.is_reg()) { 744 multu(rs, rt.rm()); 745 } else { 746 // li handles the relocation. 747 DCHECK(!rs.is(at)); 748 li(at, rt); 749 multu(rs, at); 750 } 751 } 752 753 754 void MacroAssembler::Div(Register rs, const Operand& rt) { 755 if (rt.is_reg()) { 756 div(rs, rt.rm()); 757 } else { 758 // li handles the relocation. 759 DCHECK(!rs.is(at)); 760 li(at, rt); 761 div(rs, at); 762 } 763 } 764 765 766 void MacroAssembler::Div(Register rem, Register res, 767 Register rs, const Operand& rt) { 768 if (rt.is_reg()) { 769 if (!IsMipsArchVariant(kMips32r6)) { 770 div(rs, rt.rm()); 771 mflo(res); 772 mfhi(rem); 773 } else { 774 div(res, rs, rt.rm()); 775 mod(rem, rs, rt.rm()); 776 } 777 } else { 778 // li handles the relocation. 779 DCHECK(!rs.is(at)); 780 li(at, rt); 781 if (!IsMipsArchVariant(kMips32r6)) { 782 div(rs, at); 783 mflo(res); 784 mfhi(rem); 785 } else { 786 div(res, rs, at); 787 mod(rem, rs, at); 788 } 789 } 790 } 791 792 793 void MacroAssembler::Mod(Register rd, Register rs, const Operand& rt) { 794 if (rt.is_reg()) { 795 if (!IsMipsArchVariant(kMips32r6)) { 796 div(rs, rt.rm()); 797 mfhi(rd); 798 } else { 799 mod(rd, rs, rt.rm()); 800 } 801 } else { 802 // li handles the relocation. 803 DCHECK(!rs.is(at)); 804 li(at, rt); 805 if (!IsMipsArchVariant(kMips32r6)) { 806 div(rs, at); 807 mfhi(rd); 808 } else { 809 mod(rd, rs, at); 810 } 811 } 812 } 813 814 815 void MacroAssembler::Divu(Register rs, const Operand& rt) { 816 if (rt.is_reg()) { 817 divu(rs, rt.rm()); 818 } else { 819 // li handles the relocation. 820 DCHECK(!rs.is(at)); 821 li(at, rt); 822 divu(rs, at); 823 } 824 } 825 826 827 void MacroAssembler::And(Register rd, Register rs, const Operand& rt) { 828 if (rt.is_reg()) { 829 and_(rd, rs, rt.rm()); 830 } else { 831 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 832 andi(rd, rs, rt.imm32_); 833 } else { 834 // li handles the relocation. 835 DCHECK(!rs.is(at)); 836 li(at, rt); 837 and_(rd, rs, at); 838 } 839 } 840 } 841 842 843 void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) { 844 if (rt.is_reg()) { 845 or_(rd, rs, rt.rm()); 846 } else { 847 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 848 ori(rd, rs, rt.imm32_); 849 } else { 850 // li handles the relocation. 851 DCHECK(!rs.is(at)); 852 li(at, rt); 853 or_(rd, rs, at); 854 } 855 } 856 } 857 858 859 void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) { 860 if (rt.is_reg()) { 861 xor_(rd, rs, rt.rm()); 862 } else { 863 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 864 xori(rd, rs, rt.imm32_); 865 } else { 866 // li handles the relocation. 867 DCHECK(!rs.is(at)); 868 li(at, rt); 869 xor_(rd, rs, at); 870 } 871 } 872 } 873 874 875 void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) { 876 if (rt.is_reg()) { 877 nor(rd, rs, rt.rm()); 878 } else { 879 // li handles the relocation. 880 DCHECK(!rs.is(at)); 881 li(at, rt); 882 nor(rd, rs, at); 883 } 884 } 885 886 887 void MacroAssembler::Neg(Register rs, const Operand& rt) { 888 DCHECK(rt.is_reg()); 889 DCHECK(!at.is(rs)); 890 DCHECK(!at.is(rt.rm())); 891 li(at, -1); 892 xor_(rs, rt.rm(), at); 893 } 894 895 896 void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) { 897 if (rt.is_reg()) { 898 slt(rd, rs, rt.rm()); 899 } else { 900 if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 901 slti(rd, rs, rt.imm32_); 902 } else { 903 // li handles the relocation. 904 DCHECK(!rs.is(at)); 905 li(at, rt); 906 slt(rd, rs, at); 907 } 908 } 909 } 910 911 912 void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) { 913 if (rt.is_reg()) { 914 sltu(rd, rs, rt.rm()); 915 } else { 916 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 917 sltiu(rd, rs, rt.imm32_); 918 } else { 919 // li handles the relocation. 920 DCHECK(!rs.is(at)); 921 li(at, rt); 922 sltu(rd, rs, at); 923 } 924 } 925 } 926 927 928 void MacroAssembler::Ror(Register rd, Register rs, const Operand& rt) { 929 if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) { 930 if (rt.is_reg()) { 931 rotrv(rd, rs, rt.rm()); 932 } else { 933 rotr(rd, rs, rt.imm32_); 934 } 935 } else { 936 if (rt.is_reg()) { 937 subu(at, zero_reg, rt.rm()); 938 sllv(at, rs, at); 939 srlv(rd, rs, rt.rm()); 940 or_(rd, rd, at); 941 } else { 942 if (rt.imm32_ == 0) { 943 srl(rd, rs, 0); 944 } else { 945 srl(at, rs, rt.imm32_); 946 sll(rd, rs, (0x20 - rt.imm32_) & 0x1f); 947 or_(rd, rd, at); 948 } 949 } 950 } 951 } 952 953 954 void MacroAssembler::Pref(int32_t hint, const MemOperand& rs) { 955 if (IsMipsArchVariant(kLoongson)) { 956 lw(zero_reg, rs); 957 } else { 958 pref(hint, rs); 959 } 960 } 961 962 963 // ------------Pseudo-instructions------------- 964 965 void MacroAssembler::Ulw(Register rd, const MemOperand& rs) { 966 lwr(rd, rs); 967 lwl(rd, MemOperand(rs.rm(), rs.offset() + 3)); 968 } 969 970 971 void MacroAssembler::Usw(Register rd, const MemOperand& rs) { 972 swr(rd, rs); 973 swl(rd, MemOperand(rs.rm(), rs.offset() + 3)); 974 } 975 976 977 void MacroAssembler::li(Register dst, Handle<Object> value, LiFlags mode) { 978 AllowDeferredHandleDereference smi_check; 979 if (value->IsSmi()) { 980 li(dst, Operand(value), mode); 981 } else { 982 DCHECK(value->IsHeapObject()); 983 if (isolate()->heap()->InNewSpace(*value)) { 984 Handle<Cell> cell = isolate()->factory()->NewCell(value); 985 li(dst, Operand(cell)); 986 lw(dst, FieldMemOperand(dst, Cell::kValueOffset)); 987 } else { 988 li(dst, Operand(value)); 989 } 990 } 991 } 992 993 994 void MacroAssembler::li(Register rd, Operand j, LiFlags mode) { 995 DCHECK(!j.is_reg()); 996 BlockTrampolinePoolScope block_trampoline_pool(this); 997 if (!MustUseReg(j.rmode_) && mode == OPTIMIZE_SIZE) { 998 // Normal load of an immediate value which does not need Relocation Info. 999 if (is_int16(j.imm32_)) { 1000 addiu(rd, zero_reg, j.imm32_); 1001 } else if (!(j.imm32_ & kHiMask)) { 1002 ori(rd, zero_reg, j.imm32_); 1003 } else if (!(j.imm32_ & kImm16Mask)) { 1004 lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask); 1005 } else { 1006 lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask); 1007 ori(rd, rd, (j.imm32_ & kImm16Mask)); 1008 } 1009 } else { 1010 if (MustUseReg(j.rmode_)) { 1011 RecordRelocInfo(j.rmode_, j.imm32_); 1012 } 1013 // We always need the same number of instructions as we may need to patch 1014 // this code to load another value which may need 2 instructions to load. 1015 lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask); 1016 ori(rd, rd, (j.imm32_ & kImm16Mask)); 1017 } 1018 } 1019 1020 1021 void MacroAssembler::MultiPush(RegList regs) { 1022 int16_t num_to_push = NumberOfBitsSet(regs); 1023 int16_t stack_offset = num_to_push * kPointerSize; 1024 1025 Subu(sp, sp, Operand(stack_offset)); 1026 for (int16_t i = kNumRegisters - 1; i >= 0; i--) { 1027 if ((regs & (1 << i)) != 0) { 1028 stack_offset -= kPointerSize; 1029 sw(ToRegister(i), MemOperand(sp, stack_offset)); 1030 } 1031 } 1032 } 1033 1034 1035 void MacroAssembler::MultiPushReversed(RegList regs) { 1036 int16_t num_to_push = NumberOfBitsSet(regs); 1037 int16_t stack_offset = num_to_push * kPointerSize; 1038 1039 Subu(sp, sp, Operand(stack_offset)); 1040 for (int16_t i = 0; i < kNumRegisters; i++) { 1041 if ((regs & (1 << i)) != 0) { 1042 stack_offset -= kPointerSize; 1043 sw(ToRegister(i), MemOperand(sp, stack_offset)); 1044 } 1045 } 1046 } 1047 1048 1049 void MacroAssembler::MultiPop(RegList regs) { 1050 int16_t stack_offset = 0; 1051 1052 for (int16_t i = 0; i < kNumRegisters; i++) { 1053 if ((regs & (1 << i)) != 0) { 1054 lw(ToRegister(i), MemOperand(sp, stack_offset)); 1055 stack_offset += kPointerSize; 1056 } 1057 } 1058 addiu(sp, sp, stack_offset); 1059 } 1060 1061 1062 void MacroAssembler::MultiPopReversed(RegList regs) { 1063 int16_t stack_offset = 0; 1064 1065 for (int16_t i = kNumRegisters - 1; i >= 0; i--) { 1066 if ((regs & (1 << i)) != 0) { 1067 lw(ToRegister(i), MemOperand(sp, stack_offset)); 1068 stack_offset += kPointerSize; 1069 } 1070 } 1071 addiu(sp, sp, stack_offset); 1072 } 1073 1074 1075 void MacroAssembler::MultiPushFPU(RegList regs) { 1076 int16_t num_to_push = NumberOfBitsSet(regs); 1077 int16_t stack_offset = num_to_push * kDoubleSize; 1078 1079 Subu(sp, sp, Operand(stack_offset)); 1080 for (int16_t i = kNumRegisters - 1; i >= 0; i--) { 1081 if ((regs & (1 << i)) != 0) { 1082 stack_offset -= kDoubleSize; 1083 sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); 1084 } 1085 } 1086 } 1087 1088 1089 void MacroAssembler::MultiPushReversedFPU(RegList regs) { 1090 int16_t num_to_push = NumberOfBitsSet(regs); 1091 int16_t stack_offset = num_to_push * kDoubleSize; 1092 1093 Subu(sp, sp, Operand(stack_offset)); 1094 for (int16_t i = 0; i < kNumRegisters; i++) { 1095 if ((regs & (1 << i)) != 0) { 1096 stack_offset -= kDoubleSize; 1097 sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); 1098 } 1099 } 1100 } 1101 1102 1103 void MacroAssembler::MultiPopFPU(RegList regs) { 1104 int16_t stack_offset = 0; 1105 1106 for (int16_t i = 0; i < kNumRegisters; i++) { 1107 if ((regs & (1 << i)) != 0) { 1108 ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); 1109 stack_offset += kDoubleSize; 1110 } 1111 } 1112 addiu(sp, sp, stack_offset); 1113 } 1114 1115 1116 void MacroAssembler::MultiPopReversedFPU(RegList regs) { 1117 int16_t stack_offset = 0; 1118 1119 for (int16_t i = kNumRegisters - 1; i >= 0; i--) { 1120 if ((regs & (1 << i)) != 0) { 1121 ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); 1122 stack_offset += kDoubleSize; 1123 } 1124 } 1125 addiu(sp, sp, stack_offset); 1126 } 1127 1128 1129 void MacroAssembler::FlushICache(Register address, unsigned instructions) { 1130 RegList saved_regs = kJSCallerSaved | ra.bit(); 1131 MultiPush(saved_regs); 1132 AllowExternalCallThatCantCauseGC scope(this); 1133 1134 // Save to a0 in case address == t0. 1135 Move(a0, address); 1136 PrepareCallCFunction(2, t0); 1137 1138 li(a1, instructions * kInstrSize); 1139 CallCFunction(ExternalReference::flush_icache_function(isolate()), 2); 1140 MultiPop(saved_regs); 1141 } 1142 1143 1144 void MacroAssembler::Ext(Register rt, 1145 Register rs, 1146 uint16_t pos, 1147 uint16_t size) { 1148 DCHECK(pos < 32); 1149 DCHECK(pos + size < 33); 1150 1151 if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) { 1152 ext_(rt, rs, pos, size); 1153 } else { 1154 // Move rs to rt and shift it left then right to get the 1155 // desired bitfield on the right side and zeroes on the left. 1156 int shift_left = 32 - (pos + size); 1157 sll(rt, rs, shift_left); // Acts as a move if shift_left == 0. 1158 1159 int shift_right = 32 - size; 1160 if (shift_right > 0) { 1161 srl(rt, rt, shift_right); 1162 } 1163 } 1164 } 1165 1166 1167 void MacroAssembler::Ins(Register rt, 1168 Register rs, 1169 uint16_t pos, 1170 uint16_t size) { 1171 DCHECK(pos < 32); 1172 DCHECK(pos + size <= 32); 1173 DCHECK(size != 0); 1174 1175 if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) { 1176 ins_(rt, rs, pos, size); 1177 } else { 1178 DCHECK(!rt.is(t8) && !rs.is(t8)); 1179 Subu(at, zero_reg, Operand(1)); 1180 srl(at, at, 32 - size); 1181 and_(t8, rs, at); 1182 sll(t8, t8, pos); 1183 sll(at, at, pos); 1184 nor(at, at, zero_reg); 1185 and_(at, rt, at); 1186 or_(rt, t8, at); 1187 } 1188 } 1189 1190 1191 void MacroAssembler::Cvt_d_uw(FPURegister fd, 1192 FPURegister fs, 1193 FPURegister scratch) { 1194 // Move the data from fs to t8. 1195 mfc1(t8, fs); 1196 Cvt_d_uw(fd, t8, scratch); 1197 } 1198 1199 1200 void MacroAssembler::Cvt_d_uw(FPURegister fd, 1201 Register rs, 1202 FPURegister scratch) { 1203 // Convert rs to a FP value in fd (and fd + 1). 1204 // We do this by converting rs minus the MSB to avoid sign conversion, 1205 // then adding 2^31 to the result (if needed). 1206 1207 DCHECK(!fd.is(scratch)); 1208 DCHECK(!rs.is(t9)); 1209 DCHECK(!rs.is(at)); 1210 1211 // Save rs's MSB to t9. 1212 Ext(t9, rs, 31, 1); 1213 // Remove rs's MSB. 1214 Ext(at, rs, 0, 31); 1215 // Move the result to fd. 1216 mtc1(at, fd); 1217 1218 // Convert fd to a real FP value. 1219 cvt_d_w(fd, fd); 1220 1221 Label conversion_done; 1222 1223 // If rs's MSB was 0, it's done. 1224 // Otherwise we need to add that to the FP register. 1225 Branch(&conversion_done, eq, t9, Operand(zero_reg)); 1226 1227 // Load 2^31 into f20 as its float representation. 1228 li(at, 0x41E00000); 1229 mtc1(zero_reg, scratch); 1230 Mthc1(at, scratch); 1231 // Add it to fd. 1232 add_d(fd, fd, scratch); 1233 1234 bind(&conversion_done); 1235 } 1236 1237 1238 void MacroAssembler::Trunc_uw_d(FPURegister fd, 1239 FPURegister fs, 1240 FPURegister scratch) { 1241 Trunc_uw_d(fs, t8, scratch); 1242 mtc1(t8, fd); 1243 } 1244 1245 1246 void MacroAssembler::Trunc_w_d(FPURegister fd, FPURegister fs) { 1247 if (IsMipsArchVariant(kLoongson) && fd.is(fs)) { 1248 Mfhc1(t8, fs); 1249 trunc_w_d(fd, fs); 1250 Mthc1(t8, fs); 1251 } else { 1252 trunc_w_d(fd, fs); 1253 } 1254 } 1255 1256 1257 void MacroAssembler::Round_w_d(FPURegister fd, FPURegister fs) { 1258 if (IsMipsArchVariant(kLoongson) && fd.is(fs)) { 1259 Mfhc1(t8, fs); 1260 round_w_d(fd, fs); 1261 Mthc1(t8, fs); 1262 } else { 1263 round_w_d(fd, fs); 1264 } 1265 } 1266 1267 1268 void MacroAssembler::Floor_w_d(FPURegister fd, FPURegister fs) { 1269 if (IsMipsArchVariant(kLoongson) && fd.is(fs)) { 1270 Mfhc1(t8, fs); 1271 floor_w_d(fd, fs); 1272 Mthc1(t8, fs); 1273 } else { 1274 floor_w_d(fd, fs); 1275 } 1276 } 1277 1278 1279 void MacroAssembler::Ceil_w_d(FPURegister fd, FPURegister fs) { 1280 if (IsMipsArchVariant(kLoongson) && fd.is(fs)) { 1281 Mfhc1(t8, fs); 1282 ceil_w_d(fd, fs); 1283 Mthc1(t8, fs); 1284 } else { 1285 ceil_w_d(fd, fs); 1286 } 1287 } 1288 1289 1290 void MacroAssembler::Trunc_uw_d(FPURegister fd, 1291 Register rs, 1292 FPURegister scratch) { 1293 DCHECK(!fd.is(scratch)); 1294 DCHECK(!rs.is(at)); 1295 1296 // Load 2^31 into scratch as its float representation. 1297 li(at, 0x41E00000); 1298 mtc1(zero_reg, scratch); 1299 Mthc1(at, scratch); 1300 // Test if scratch > fd. 1301 // If fd < 2^31 we can convert it normally. 1302 Label simple_convert; 1303 BranchF(&simple_convert, NULL, lt, fd, scratch); 1304 1305 // First we subtract 2^31 from fd, then trunc it to rs 1306 // and add 2^31 to rs. 1307 sub_d(scratch, fd, scratch); 1308 trunc_w_d(scratch, scratch); 1309 mfc1(rs, scratch); 1310 Or(rs, rs, 1 << 31); 1311 1312 Label done; 1313 Branch(&done); 1314 // Simple conversion. 1315 bind(&simple_convert); 1316 trunc_w_d(scratch, fd); 1317 mfc1(rs, scratch); 1318 1319 bind(&done); 1320 } 1321 1322 1323 void MacroAssembler::Mthc1(Register rt, FPURegister fs) { 1324 if (IsFp64Mode()) { 1325 mthc1(rt, fs); 1326 } else { 1327 mtc1(rt, fs.high()); 1328 } 1329 } 1330 1331 1332 void MacroAssembler::Mfhc1(Register rt, FPURegister fs) { 1333 if (IsFp64Mode()) { 1334 mfhc1(rt, fs); 1335 } else { 1336 mfc1(rt, fs.high()); 1337 } 1338 } 1339 1340 1341 void MacroAssembler::BranchF(Label* target, 1342 Label* nan, 1343 Condition cc, 1344 FPURegister cmp1, 1345 FPURegister cmp2, 1346 BranchDelaySlot bd) { 1347 BlockTrampolinePoolScope block_trampoline_pool(this); 1348 if (cc == al) { 1349 Branch(bd, target); 1350 return; 1351 } 1352 1353 DCHECK(nan || target); 1354 // Check for unordered (NaN) cases. 1355 if (nan) { 1356 if (!IsMipsArchVariant(kMips32r6)) { 1357 c(UN, D, cmp1, cmp2); 1358 bc1t(nan); 1359 } else { 1360 // Use kDoubleCompareReg for comparison result. It has to be unavailable 1361 // to lithium register allocator. 1362 DCHECK(!cmp1.is(kDoubleCompareReg) && !cmp2.is(kDoubleCompareReg)); 1363 cmp(UN, L, kDoubleCompareReg, cmp1, cmp2); 1364 bc1nez(nan, kDoubleCompareReg); 1365 } 1366 } 1367 1368 if (!IsMipsArchVariant(kMips32r6)) { 1369 if (target) { 1370 // Here NaN cases were either handled by this function or are assumed to 1371 // have been handled by the caller. 1372 switch (cc) { 1373 case lt: 1374 c(OLT, D, cmp1, cmp2); 1375 bc1t(target); 1376 break; 1377 case gt: 1378 c(ULE, D, cmp1, cmp2); 1379 bc1f(target); 1380 break; 1381 case ge: 1382 c(ULT, D, cmp1, cmp2); 1383 bc1f(target); 1384 break; 1385 case le: 1386 c(OLE, D, cmp1, cmp2); 1387 bc1t(target); 1388 break; 1389 case eq: 1390 c(EQ, D, cmp1, cmp2); 1391 bc1t(target); 1392 break; 1393 case ueq: 1394 c(UEQ, D, cmp1, cmp2); 1395 bc1t(target); 1396 break; 1397 case ne: 1398 c(EQ, D, cmp1, cmp2); 1399 bc1f(target); 1400 break; 1401 case nue: 1402 c(UEQ, D, cmp1, cmp2); 1403 bc1f(target); 1404 break; 1405 default: 1406 CHECK(0); 1407 } 1408 } 1409 } else { 1410 if (target) { 1411 // Here NaN cases were either handled by this function or are assumed to 1412 // have been handled by the caller. 1413 // Unsigned conditions are treated as their signed counterpart. 1414 // Use kDoubleCompareReg for comparison result, it is 1415 // valid in fp64 (FR = 1) mode which is implied for mips32r6. 1416 DCHECK(!cmp1.is(kDoubleCompareReg) && !cmp2.is(kDoubleCompareReg)); 1417 switch (cc) { 1418 case lt: 1419 cmp(OLT, L, kDoubleCompareReg, cmp1, cmp2); 1420 bc1nez(target, kDoubleCompareReg); 1421 break; 1422 case gt: 1423 cmp(ULE, L, kDoubleCompareReg, cmp1, cmp2); 1424 bc1eqz(target, kDoubleCompareReg); 1425 break; 1426 case ge: 1427 cmp(ULT, L, kDoubleCompareReg, cmp1, cmp2); 1428 bc1eqz(target, kDoubleCompareReg); 1429 break; 1430 case le: 1431 cmp(OLE, L, kDoubleCompareReg, cmp1, cmp2); 1432 bc1nez(target, kDoubleCompareReg); 1433 break; 1434 case eq: 1435 cmp(EQ, L, kDoubleCompareReg, cmp1, cmp2); 1436 bc1nez(target, kDoubleCompareReg); 1437 break; 1438 case ueq: 1439 cmp(UEQ, L, kDoubleCompareReg, cmp1, cmp2); 1440 bc1nez(target, kDoubleCompareReg); 1441 break; 1442 case ne: 1443 cmp(EQ, L, kDoubleCompareReg, cmp1, cmp2); 1444 bc1eqz(target, kDoubleCompareReg); 1445 break; 1446 case nue: 1447 cmp(UEQ, L, kDoubleCompareReg, cmp1, cmp2); 1448 bc1eqz(target, kDoubleCompareReg); 1449 break; 1450 default: 1451 CHECK(0); 1452 } 1453 } 1454 } 1455 1456 if (bd == PROTECT) { 1457 nop(); 1458 } 1459 } 1460 1461 1462 void MacroAssembler::Move(FPURegister dst, double imm) { 1463 static const DoubleRepresentation minus_zero(-0.0); 1464 static const DoubleRepresentation zero(0.0); 1465 DoubleRepresentation value_rep(imm); 1466 // Handle special values first. 1467 bool force_load = dst.is(kDoubleRegZero); 1468 if (value_rep == zero && !force_load) { 1469 mov_d(dst, kDoubleRegZero); 1470 } else if (value_rep == minus_zero && !force_load) { 1471 neg_d(dst, kDoubleRegZero); 1472 } else { 1473 uint32_t lo, hi; 1474 DoubleAsTwoUInt32(imm, &lo, &hi); 1475 // Move the low part of the double into the lower of the corresponding FPU 1476 // register of FPU register pair. 1477 if (lo != 0) { 1478 li(at, Operand(lo)); 1479 mtc1(at, dst); 1480 } else { 1481 mtc1(zero_reg, dst); 1482 } 1483 // Move the high part of the double into the higher of the corresponding FPU 1484 // register of FPU register pair. 1485 if (hi != 0) { 1486 li(at, Operand(hi)); 1487 Mthc1(at, dst); 1488 } else { 1489 Mthc1(zero_reg, dst); 1490 } 1491 } 1492 } 1493 1494 1495 void MacroAssembler::Movz(Register rd, Register rs, Register rt) { 1496 if (IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r6)) { 1497 Label done; 1498 Branch(&done, ne, rt, Operand(zero_reg)); 1499 mov(rd, rs); 1500 bind(&done); 1501 } else { 1502 movz(rd, rs, rt); 1503 } 1504 } 1505 1506 1507 void MacroAssembler::Movn(Register rd, Register rs, Register rt) { 1508 if (IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r6)) { 1509 Label done; 1510 Branch(&done, eq, rt, Operand(zero_reg)); 1511 mov(rd, rs); 1512 bind(&done); 1513 } else { 1514 movn(rd, rs, rt); 1515 } 1516 } 1517 1518 1519 void MacroAssembler::Movt(Register rd, Register rs, uint16_t cc) { 1520 if (IsMipsArchVariant(kLoongson)) { 1521 // Tests an FP condition code and then conditionally move rs to rd. 1522 // We do not currently use any FPU cc bit other than bit 0. 1523 DCHECK(cc == 0); 1524 DCHECK(!(rs.is(t8) || rd.is(t8))); 1525 Label done; 1526 Register scratch = t8; 1527 // For testing purposes we need to fetch content of the FCSR register and 1528 // than test its cc (floating point condition code) bit (for cc = 0, it is 1529 // 24. bit of the FCSR). 1530 cfc1(scratch, FCSR); 1531 // For the MIPS I, II and III architectures, the contents of scratch is 1532 // UNPREDICTABLE for the instruction immediately following CFC1. 1533 nop(); 1534 srl(scratch, scratch, 16); 1535 andi(scratch, scratch, 0x0080); 1536 Branch(&done, eq, scratch, Operand(zero_reg)); 1537 mov(rd, rs); 1538 bind(&done); 1539 } else { 1540 movt(rd, rs, cc); 1541 } 1542 } 1543 1544 1545 void MacroAssembler::Movf(Register rd, Register rs, uint16_t cc) { 1546 if (IsMipsArchVariant(kLoongson)) { 1547 // Tests an FP condition code and then conditionally move rs to rd. 1548 // We do not currently use any FPU cc bit other than bit 0. 1549 DCHECK(cc == 0); 1550 DCHECK(!(rs.is(t8) || rd.is(t8))); 1551 Label done; 1552 Register scratch = t8; 1553 // For testing purposes we need to fetch content of the FCSR register and 1554 // than test its cc (floating point condition code) bit (for cc = 0, it is 1555 // 24. bit of the FCSR). 1556 cfc1(scratch, FCSR); 1557 // For the MIPS I, II and III architectures, the contents of scratch is 1558 // UNPREDICTABLE for the instruction immediately following CFC1. 1559 nop(); 1560 srl(scratch, scratch, 16); 1561 andi(scratch, scratch, 0x0080); 1562 Branch(&done, ne, scratch, Operand(zero_reg)); 1563 mov(rd, rs); 1564 bind(&done); 1565 } else { 1566 movf(rd, rs, cc); 1567 } 1568 } 1569 1570 1571 void MacroAssembler::Clz(Register rd, Register rs) { 1572 if (IsMipsArchVariant(kLoongson)) { 1573 DCHECK(!(rd.is(t8) || rd.is(t9)) && !(rs.is(t8) || rs.is(t9))); 1574 Register mask = t8; 1575 Register scratch = t9; 1576 Label loop, end; 1577 mov(at, rs); 1578 mov(rd, zero_reg); 1579 lui(mask, 0x8000); 1580 bind(&loop); 1581 and_(scratch, at, mask); 1582 Branch(&end, ne, scratch, Operand(zero_reg)); 1583 addiu(rd, rd, 1); 1584 Branch(&loop, ne, mask, Operand(zero_reg), USE_DELAY_SLOT); 1585 srl(mask, mask, 1); 1586 bind(&end); 1587 } else { 1588 clz(rd, rs); 1589 } 1590 } 1591 1592 1593 void MacroAssembler::EmitFPUTruncate(FPURoundingMode rounding_mode, 1594 Register result, 1595 DoubleRegister double_input, 1596 Register scratch, 1597 DoubleRegister double_scratch, 1598 Register except_flag, 1599 CheckForInexactConversion check_inexact) { 1600 DCHECK(!result.is(scratch)); 1601 DCHECK(!double_input.is(double_scratch)); 1602 DCHECK(!except_flag.is(scratch)); 1603 1604 Label done; 1605 1606 // Clear the except flag (0 = no exception) 1607 mov(except_flag, zero_reg); 1608 1609 // Test for values that can be exactly represented as a signed 32-bit integer. 1610 cvt_w_d(double_scratch, double_input); 1611 mfc1(result, double_scratch); 1612 cvt_d_w(double_scratch, double_scratch); 1613 BranchF(&done, NULL, eq, double_input, double_scratch); 1614 1615 int32_t except_mask = kFCSRFlagMask; // Assume interested in all exceptions. 1616 1617 if (check_inexact == kDontCheckForInexactConversion) { 1618 // Ignore inexact exceptions. 1619 except_mask &= ~kFCSRInexactFlagMask; 1620 } 1621 1622 // Save FCSR. 1623 cfc1(scratch, FCSR); 1624 // Disable FPU exceptions. 1625 ctc1(zero_reg, FCSR); 1626 1627 // Do operation based on rounding mode. 1628 switch (rounding_mode) { 1629 case kRoundToNearest: 1630 Round_w_d(double_scratch, double_input); 1631 break; 1632 case kRoundToZero: 1633 Trunc_w_d(double_scratch, double_input); 1634 break; 1635 case kRoundToPlusInf: 1636 Ceil_w_d(double_scratch, double_input); 1637 break; 1638 case kRoundToMinusInf: 1639 Floor_w_d(double_scratch, double_input); 1640 break; 1641 } // End of switch-statement. 1642 1643 // Retrieve FCSR. 1644 cfc1(except_flag, FCSR); 1645 // Restore FCSR. 1646 ctc1(scratch, FCSR); 1647 // Move the converted value into the result register. 1648 mfc1(result, double_scratch); 1649 1650 // Check for fpu exceptions. 1651 And(except_flag, except_flag, Operand(except_mask)); 1652 1653 bind(&done); 1654 } 1655 1656 1657 void MacroAssembler::TryInlineTruncateDoubleToI(Register result, 1658 DoubleRegister double_input, 1659 Label* done) { 1660 DoubleRegister single_scratch = kLithiumScratchDouble.low(); 1661 Register scratch = at; 1662 Register scratch2 = t9; 1663 1664 // Clear cumulative exception flags and save the FCSR. 1665 cfc1(scratch2, FCSR); 1666 ctc1(zero_reg, FCSR); 1667 // Try a conversion to a signed integer. 1668 trunc_w_d(single_scratch, double_input); 1669 mfc1(result, single_scratch); 1670 // Retrieve and restore the FCSR. 1671 cfc1(scratch, FCSR); 1672 ctc1(scratch2, FCSR); 1673 // Check for overflow and NaNs. 1674 And(scratch, 1675 scratch, 1676 kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask); 1677 // If we had no exceptions we are done. 1678 Branch(done, eq, scratch, Operand(zero_reg)); 1679 } 1680 1681 1682 void MacroAssembler::TruncateDoubleToI(Register result, 1683 DoubleRegister double_input) { 1684 Label done; 1685 1686 TryInlineTruncateDoubleToI(result, double_input, &done); 1687 1688 // If we fell through then inline version didn't succeed - call stub instead. 1689 push(ra); 1690 Subu(sp, sp, Operand(kDoubleSize)); // Put input on stack. 1691 sdc1(double_input, MemOperand(sp, 0)); 1692 1693 DoubleToIStub stub(isolate(), sp, result, 0, true, true); 1694 CallStub(&stub); 1695 1696 Addu(sp, sp, Operand(kDoubleSize)); 1697 pop(ra); 1698 1699 bind(&done); 1700 } 1701 1702 1703 void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) { 1704 Label done; 1705 DoubleRegister double_scratch = f12; 1706 DCHECK(!result.is(object)); 1707 1708 ldc1(double_scratch, 1709 MemOperand(object, HeapNumber::kValueOffset - kHeapObjectTag)); 1710 TryInlineTruncateDoubleToI(result, double_scratch, &done); 1711 1712 // If we fell through then inline version didn't succeed - call stub instead. 1713 push(ra); 1714 DoubleToIStub stub(isolate(), 1715 object, 1716 result, 1717 HeapNumber::kValueOffset - kHeapObjectTag, 1718 true, 1719 true); 1720 CallStub(&stub); 1721 pop(ra); 1722 1723 bind(&done); 1724 } 1725 1726 1727 void MacroAssembler::TruncateNumberToI(Register object, 1728 Register result, 1729 Register heap_number_map, 1730 Register scratch, 1731 Label* not_number) { 1732 Label done; 1733 DCHECK(!result.is(object)); 1734 1735 UntagAndJumpIfSmi(result, object, &done); 1736 JumpIfNotHeapNumber(object, heap_number_map, scratch, not_number); 1737 TruncateHeapNumberToI(result, object); 1738 1739 bind(&done); 1740 } 1741 1742 1743 void MacroAssembler::GetLeastBitsFromSmi(Register dst, 1744 Register src, 1745 int num_least_bits) { 1746 Ext(dst, src, kSmiTagSize, num_least_bits); 1747 } 1748 1749 1750 void MacroAssembler::GetLeastBitsFromInt32(Register dst, 1751 Register src, 1752 int num_least_bits) { 1753 And(dst, src, Operand((1 << num_least_bits) - 1)); 1754 } 1755 1756 1757 // Emulated condtional branches do not emit a nop in the branch delay slot. 1758 // 1759 // BRANCH_ARGS_CHECK checks that conditional jump arguments are correct. 1760 #define BRANCH_ARGS_CHECK(cond, rs, rt) DCHECK( \ 1761 (cond == cc_always && rs.is(zero_reg) && rt.rm().is(zero_reg)) || \ 1762 (cond != cc_always && (!rs.is(zero_reg) || !rt.rm().is(zero_reg)))) 1763 1764 1765 void MacroAssembler::Branch(int16_t offset, BranchDelaySlot bdslot) { 1766 BranchShort(offset, bdslot); 1767 } 1768 1769 1770 void MacroAssembler::Branch(int16_t offset, Condition cond, Register rs, 1771 const Operand& rt, 1772 BranchDelaySlot bdslot) { 1773 BranchShort(offset, cond, rs, rt, bdslot); 1774 } 1775 1776 1777 void MacroAssembler::Branch(Label* L, BranchDelaySlot bdslot) { 1778 if (L->is_bound()) { 1779 if (is_near(L)) { 1780 BranchShort(L, bdslot); 1781 } else { 1782 Jr(L, bdslot); 1783 } 1784 } else { 1785 if (is_trampoline_emitted()) { 1786 Jr(L, bdslot); 1787 } else { 1788 BranchShort(L, bdslot); 1789 } 1790 } 1791 } 1792 1793 1794 void MacroAssembler::Branch(Label* L, Condition cond, Register rs, 1795 const Operand& rt, 1796 BranchDelaySlot bdslot) { 1797 if (L->is_bound()) { 1798 if (is_near(L)) { 1799 BranchShort(L, cond, rs, rt, bdslot); 1800 } else { 1801 if (cond != cc_always) { 1802 Label skip; 1803 Condition neg_cond = NegateCondition(cond); 1804 BranchShort(&skip, neg_cond, rs, rt); 1805 Jr(L, bdslot); 1806 bind(&skip); 1807 } else { 1808 Jr(L, bdslot); 1809 } 1810 } 1811 } else { 1812 if (is_trampoline_emitted()) { 1813 if (cond != cc_always) { 1814 Label skip; 1815 Condition neg_cond = NegateCondition(cond); 1816 BranchShort(&skip, neg_cond, rs, rt); 1817 Jr(L, bdslot); 1818 bind(&skip); 1819 } else { 1820 Jr(L, bdslot); 1821 } 1822 } else { 1823 BranchShort(L, cond, rs, rt, bdslot); 1824 } 1825 } 1826 } 1827 1828 1829 void MacroAssembler::Branch(Label* L, 1830 Condition cond, 1831 Register rs, 1832 Heap::RootListIndex index, 1833 BranchDelaySlot bdslot) { 1834 LoadRoot(at, index); 1835 Branch(L, cond, rs, Operand(at), bdslot); 1836 } 1837 1838 1839 void MacroAssembler::BranchShort(int16_t offset, BranchDelaySlot bdslot) { 1840 b(offset); 1841 1842 // Emit a nop in the branch delay slot if required. 1843 if (bdslot == PROTECT) 1844 nop(); 1845 } 1846 1847 1848 void MacroAssembler::BranchShort(int16_t offset, Condition cond, Register rs, 1849 const Operand& rt, 1850 BranchDelaySlot bdslot) { 1851 BRANCH_ARGS_CHECK(cond, rs, rt); 1852 DCHECK(!rs.is(zero_reg)); 1853 Register r2 = no_reg; 1854 Register scratch = at; 1855 1856 if (rt.is_reg()) { 1857 // NOTE: 'at' can be clobbered by Branch but it is legal to use it as rs or 1858 // rt. 1859 BlockTrampolinePoolScope block_trampoline_pool(this); 1860 r2 = rt.rm_; 1861 switch (cond) { 1862 case cc_always: 1863 b(offset); 1864 break; 1865 case eq: 1866 beq(rs, r2, offset); 1867 break; 1868 case ne: 1869 bne(rs, r2, offset); 1870 break; 1871 // Signed comparison. 1872 case greater: 1873 if (r2.is(zero_reg)) { 1874 bgtz(rs, offset); 1875 } else { 1876 slt(scratch, r2, rs); 1877 bne(scratch, zero_reg, offset); 1878 } 1879 break; 1880 case greater_equal: 1881 if (r2.is(zero_reg)) { 1882 bgez(rs, offset); 1883 } else { 1884 slt(scratch, rs, r2); 1885 beq(scratch, zero_reg, offset); 1886 } 1887 break; 1888 case less: 1889 if (r2.is(zero_reg)) { 1890 bltz(rs, offset); 1891 } else { 1892 slt(scratch, rs, r2); 1893 bne(scratch, zero_reg, offset); 1894 } 1895 break; 1896 case less_equal: 1897 if (r2.is(zero_reg)) { 1898 blez(rs, offset); 1899 } else { 1900 slt(scratch, r2, rs); 1901 beq(scratch, zero_reg, offset); 1902 } 1903 break; 1904 // Unsigned comparison. 1905 case Ugreater: 1906 if (r2.is(zero_reg)) { 1907 bgtz(rs, offset); 1908 } else { 1909 sltu(scratch, r2, rs); 1910 bne(scratch, zero_reg, offset); 1911 } 1912 break; 1913 case Ugreater_equal: 1914 if (r2.is(zero_reg)) { 1915 bgez(rs, offset); 1916 } else { 1917 sltu(scratch, rs, r2); 1918 beq(scratch, zero_reg, offset); 1919 } 1920 break; 1921 case Uless: 1922 if (r2.is(zero_reg)) { 1923 // No code needs to be emitted. 1924 return; 1925 } else { 1926 sltu(scratch, rs, r2); 1927 bne(scratch, zero_reg, offset); 1928 } 1929 break; 1930 case Uless_equal: 1931 if (r2.is(zero_reg)) { 1932 b(offset); 1933 } else { 1934 sltu(scratch, r2, rs); 1935 beq(scratch, zero_reg, offset); 1936 } 1937 break; 1938 default: 1939 UNREACHABLE(); 1940 } 1941 } else { 1942 // Be careful to always use shifted_branch_offset only just before the 1943 // branch instruction, as the location will be remember for patching the 1944 // target. 1945 BlockTrampolinePoolScope block_trampoline_pool(this); 1946 switch (cond) { 1947 case cc_always: 1948 b(offset); 1949 break; 1950 case eq: 1951 // We don't want any other register but scratch clobbered. 1952 DCHECK(!scratch.is(rs)); 1953 r2 = scratch; 1954 li(r2, rt); 1955 beq(rs, r2, offset); 1956 break; 1957 case ne: 1958 // We don't want any other register but scratch clobbered. 1959 DCHECK(!scratch.is(rs)); 1960 r2 = scratch; 1961 li(r2, rt); 1962 bne(rs, r2, offset); 1963 break; 1964 // Signed comparison. 1965 case greater: 1966 if (rt.imm32_ == 0) { 1967 bgtz(rs, offset); 1968 } else { 1969 r2 = scratch; 1970 li(r2, rt); 1971 slt(scratch, r2, rs); 1972 bne(scratch, zero_reg, offset); 1973 } 1974 break; 1975 case greater_equal: 1976 if (rt.imm32_ == 0) { 1977 bgez(rs, offset); 1978 } else if (is_int16(rt.imm32_)) { 1979 slti(scratch, rs, rt.imm32_); 1980 beq(scratch, zero_reg, offset); 1981 } else { 1982 r2 = scratch; 1983 li(r2, rt); 1984 slt(scratch, rs, r2); 1985 beq(scratch, zero_reg, offset); 1986 } 1987 break; 1988 case less: 1989 if (rt.imm32_ == 0) { 1990 bltz(rs, offset); 1991 } else if (is_int16(rt.imm32_)) { 1992 slti(scratch, rs, rt.imm32_); 1993 bne(scratch, zero_reg, offset); 1994 } else { 1995 r2 = scratch; 1996 li(r2, rt); 1997 slt(scratch, rs, r2); 1998 bne(scratch, zero_reg, offset); 1999 } 2000 break; 2001 case less_equal: 2002 if (rt.imm32_ == 0) { 2003 blez(rs, offset); 2004 } else { 2005 r2 = scratch; 2006 li(r2, rt); 2007 slt(scratch, r2, rs); 2008 beq(scratch, zero_reg, offset); 2009 } 2010 break; 2011 // Unsigned comparison. 2012 case Ugreater: 2013 if (rt.imm32_ == 0) { 2014 bgtz(rs, offset); 2015 } else { 2016 r2 = scratch; 2017 li(r2, rt); 2018 sltu(scratch, r2, rs); 2019 bne(scratch, zero_reg, offset); 2020 } 2021 break; 2022 case Ugreater_equal: 2023 if (rt.imm32_ == 0) { 2024 bgez(rs, offset); 2025 } else if (is_int16(rt.imm32_)) { 2026 sltiu(scratch, rs, rt.imm32_); 2027 beq(scratch, zero_reg, offset); 2028 } else { 2029 r2 = scratch; 2030 li(r2, rt); 2031 sltu(scratch, rs, r2); 2032 beq(scratch, zero_reg, offset); 2033 } 2034 break; 2035 case Uless: 2036 if (rt.imm32_ == 0) { 2037 // No code needs to be emitted. 2038 return; 2039 } else if (is_int16(rt.imm32_)) { 2040 sltiu(scratch, rs, rt.imm32_); 2041 bne(scratch, zero_reg, offset); 2042 } else { 2043 r2 = scratch; 2044 li(r2, rt); 2045 sltu(scratch, rs, r2); 2046 bne(scratch, zero_reg, offset); 2047 } 2048 break; 2049 case Uless_equal: 2050 if (rt.imm32_ == 0) { 2051 b(offset); 2052 } else { 2053 r2 = scratch; 2054 li(r2, rt); 2055 sltu(scratch, r2, rs); 2056 beq(scratch, zero_reg, offset); 2057 } 2058 break; 2059 default: 2060 UNREACHABLE(); 2061 } 2062 } 2063 // Emit a nop in the branch delay slot if required. 2064 if (bdslot == PROTECT) 2065 nop(); 2066 } 2067 2068 2069 void MacroAssembler::BranchShort(Label* L, BranchDelaySlot bdslot) { 2070 // We use branch_offset as an argument for the branch instructions to be sure 2071 // it is called just before generating the branch instruction, as needed. 2072 2073 b(shifted_branch_offset(L, false)); 2074 2075 // Emit a nop in the branch delay slot if required. 2076 if (bdslot == PROTECT) 2077 nop(); 2078 } 2079 2080 2081 void MacroAssembler::BranchShort(Label* L, Condition cond, Register rs, 2082 const Operand& rt, 2083 BranchDelaySlot bdslot) { 2084 BRANCH_ARGS_CHECK(cond, rs, rt); 2085 2086 int32_t offset = 0; 2087 Register r2 = no_reg; 2088 Register scratch = at; 2089 if (rt.is_reg()) { 2090 BlockTrampolinePoolScope block_trampoline_pool(this); 2091 r2 = rt.rm_; 2092 // Be careful to always use shifted_branch_offset only just before the 2093 // branch instruction, as the location will be remember for patching the 2094 // target. 2095 switch (cond) { 2096 case cc_always: 2097 offset = shifted_branch_offset(L, false); 2098 b(offset); 2099 break; 2100 case eq: 2101 offset = shifted_branch_offset(L, false); 2102 beq(rs, r2, offset); 2103 break; 2104 case ne: 2105 offset = shifted_branch_offset(L, false); 2106 bne(rs, r2, offset); 2107 break; 2108 // Signed comparison. 2109 case greater: 2110 if (r2.is(zero_reg)) { 2111 offset = shifted_branch_offset(L, false); 2112 bgtz(rs, offset); 2113 } else { 2114 slt(scratch, r2, rs); 2115 offset = shifted_branch_offset(L, false); 2116 bne(scratch, zero_reg, offset); 2117 } 2118 break; 2119 case greater_equal: 2120 if (r2.is(zero_reg)) { 2121 offset = shifted_branch_offset(L, false); 2122 bgez(rs, offset); 2123 } else { 2124 slt(scratch, rs, r2); 2125 offset = shifted_branch_offset(L, false); 2126 beq(scratch, zero_reg, offset); 2127 } 2128 break; 2129 case less: 2130 if (r2.is(zero_reg)) { 2131 offset = shifted_branch_offset(L, false); 2132 bltz(rs, offset); 2133 } else { 2134 slt(scratch, rs, r2); 2135 offset = shifted_branch_offset(L, false); 2136 bne(scratch, zero_reg, offset); 2137 } 2138 break; 2139 case less_equal: 2140 if (r2.is(zero_reg)) { 2141 offset = shifted_branch_offset(L, false); 2142 blez(rs, offset); 2143 } else { 2144 slt(scratch, r2, rs); 2145 offset = shifted_branch_offset(L, false); 2146 beq(scratch, zero_reg, offset); 2147 } 2148 break; 2149 // Unsigned comparison. 2150 case Ugreater: 2151 if (r2.is(zero_reg)) { 2152 offset = shifted_branch_offset(L, false); 2153 bgtz(rs, offset); 2154 } else { 2155 sltu(scratch, r2, rs); 2156 offset = shifted_branch_offset(L, false); 2157 bne(scratch, zero_reg, offset); 2158 } 2159 break; 2160 case Ugreater_equal: 2161 if (r2.is(zero_reg)) { 2162 offset = shifted_branch_offset(L, false); 2163 bgez(rs, offset); 2164 } else { 2165 sltu(scratch, rs, r2); 2166 offset = shifted_branch_offset(L, false); 2167 beq(scratch, zero_reg, offset); 2168 } 2169 break; 2170 case Uless: 2171 if (r2.is(zero_reg)) { 2172 // No code needs to be emitted. 2173 return; 2174 } else { 2175 sltu(scratch, rs, r2); 2176 offset = shifted_branch_offset(L, false); 2177 bne(scratch, zero_reg, offset); 2178 } 2179 break; 2180 case Uless_equal: 2181 if (r2.is(zero_reg)) { 2182 offset = shifted_branch_offset(L, false); 2183 b(offset); 2184 } else { 2185 sltu(scratch, r2, rs); 2186 offset = shifted_branch_offset(L, false); 2187 beq(scratch, zero_reg, offset); 2188 } 2189 break; 2190 default: 2191 UNREACHABLE(); 2192 } 2193 } else { 2194 // Be careful to always use shifted_branch_offset only just before the 2195 // branch instruction, as the location will be remember for patching the 2196 // target. 2197 BlockTrampolinePoolScope block_trampoline_pool(this); 2198 switch (cond) { 2199 case cc_always: 2200 offset = shifted_branch_offset(L, false); 2201 b(offset); 2202 break; 2203 case eq: 2204 DCHECK(!scratch.is(rs)); 2205 r2 = scratch; 2206 li(r2, rt); 2207 offset = shifted_branch_offset(L, false); 2208 beq(rs, r2, offset); 2209 break; 2210 case ne: 2211 DCHECK(!scratch.is(rs)); 2212 r2 = scratch; 2213 li(r2, rt); 2214 offset = shifted_branch_offset(L, false); 2215 bne(rs, r2, offset); 2216 break; 2217 // Signed comparison. 2218 case greater: 2219 if (rt.imm32_ == 0) { 2220 offset = shifted_branch_offset(L, false); 2221 bgtz(rs, offset); 2222 } else { 2223 DCHECK(!scratch.is(rs)); 2224 r2 = scratch; 2225 li(r2, rt); 2226 slt(scratch, r2, rs); 2227 offset = shifted_branch_offset(L, false); 2228 bne(scratch, zero_reg, offset); 2229 } 2230 break; 2231 case greater_equal: 2232 if (rt.imm32_ == 0) { 2233 offset = shifted_branch_offset(L, false); 2234 bgez(rs, offset); 2235 } else if (is_int16(rt.imm32_)) { 2236 slti(scratch, rs, rt.imm32_); 2237 offset = shifted_branch_offset(L, false); 2238 beq(scratch, zero_reg, offset); 2239 } else { 2240 DCHECK(!scratch.is(rs)); 2241 r2 = scratch; 2242 li(r2, rt); 2243 slt(scratch, rs, r2); 2244 offset = shifted_branch_offset(L, false); 2245 beq(scratch, zero_reg, offset); 2246 } 2247 break; 2248 case less: 2249 if (rt.imm32_ == 0) { 2250 offset = shifted_branch_offset(L, false); 2251 bltz(rs, offset); 2252 } else if (is_int16(rt.imm32_)) { 2253 slti(scratch, rs, rt.imm32_); 2254 offset = shifted_branch_offset(L, false); 2255 bne(scratch, zero_reg, offset); 2256 } else { 2257 DCHECK(!scratch.is(rs)); 2258 r2 = scratch; 2259 li(r2, rt); 2260 slt(scratch, rs, r2); 2261 offset = shifted_branch_offset(L, false); 2262 bne(scratch, zero_reg, offset); 2263 } 2264 break; 2265 case less_equal: 2266 if (rt.imm32_ == 0) { 2267 offset = shifted_branch_offset(L, false); 2268 blez(rs, offset); 2269 } else { 2270 DCHECK(!scratch.is(rs)); 2271 r2 = scratch; 2272 li(r2, rt); 2273 slt(scratch, r2, rs); 2274 offset = shifted_branch_offset(L, false); 2275 beq(scratch, zero_reg, offset); 2276 } 2277 break; 2278 // Unsigned comparison. 2279 case Ugreater: 2280 if (rt.imm32_ == 0) { 2281 offset = shifted_branch_offset(L, false); 2282 bne(rs, zero_reg, offset); 2283 } else { 2284 DCHECK(!scratch.is(rs)); 2285 r2 = scratch; 2286 li(r2, rt); 2287 sltu(scratch, r2, rs); 2288 offset = shifted_branch_offset(L, false); 2289 bne(scratch, zero_reg, offset); 2290 } 2291 break; 2292 case Ugreater_equal: 2293 if (rt.imm32_ == 0) { 2294 offset = shifted_branch_offset(L, false); 2295 bgez(rs, offset); 2296 } else if (is_int16(rt.imm32_)) { 2297 sltiu(scratch, rs, rt.imm32_); 2298 offset = shifted_branch_offset(L, false); 2299 beq(scratch, zero_reg, offset); 2300 } else { 2301 DCHECK(!scratch.is(rs)); 2302 r2 = scratch; 2303 li(r2, rt); 2304 sltu(scratch, rs, r2); 2305 offset = shifted_branch_offset(L, false); 2306 beq(scratch, zero_reg, offset); 2307 } 2308 break; 2309 case Uless: 2310 if (rt.imm32_ == 0) { 2311 // No code needs to be emitted. 2312 return; 2313 } else if (is_int16(rt.imm32_)) { 2314 sltiu(scratch, rs, rt.imm32_); 2315 offset = shifted_branch_offset(L, false); 2316 bne(scratch, zero_reg, offset); 2317 } else { 2318 DCHECK(!scratch.is(rs)); 2319 r2 = scratch; 2320 li(r2, rt); 2321 sltu(scratch, rs, r2); 2322 offset = shifted_branch_offset(L, false); 2323 bne(scratch, zero_reg, offset); 2324 } 2325 break; 2326 case Uless_equal: 2327 if (rt.imm32_ == 0) { 2328 offset = shifted_branch_offset(L, false); 2329 beq(rs, zero_reg, offset); 2330 } else { 2331 DCHECK(!scratch.is(rs)); 2332 r2 = scratch; 2333 li(r2, rt); 2334 sltu(scratch, r2, rs); 2335 offset = shifted_branch_offset(L, false); 2336 beq(scratch, zero_reg, offset); 2337 } 2338 break; 2339 default: 2340 UNREACHABLE(); 2341 } 2342 } 2343 // Check that offset could actually hold on an int16_t. 2344 DCHECK(is_int16(offset)); 2345 // Emit a nop in the branch delay slot if required. 2346 if (bdslot == PROTECT) 2347 nop(); 2348 } 2349 2350 2351 void MacroAssembler::BranchAndLink(int16_t offset, BranchDelaySlot bdslot) { 2352 BranchAndLinkShort(offset, bdslot); 2353 } 2354 2355 2356 void MacroAssembler::BranchAndLink(int16_t offset, Condition cond, Register rs, 2357 const Operand& rt, 2358 BranchDelaySlot bdslot) { 2359 BranchAndLinkShort(offset, cond, rs, rt, bdslot); 2360 } 2361 2362 2363 void MacroAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) { 2364 if (L->is_bound()) { 2365 if (is_near(L)) { 2366 BranchAndLinkShort(L, bdslot); 2367 } else { 2368 Jalr(L, bdslot); 2369 } 2370 } else { 2371 if (is_trampoline_emitted()) { 2372 Jalr(L, bdslot); 2373 } else { 2374 BranchAndLinkShort(L, bdslot); 2375 } 2376 } 2377 } 2378 2379 2380 void MacroAssembler::BranchAndLink(Label* L, Condition cond, Register rs, 2381 const Operand& rt, 2382 BranchDelaySlot bdslot) { 2383 if (L->is_bound()) { 2384 if (is_near(L)) { 2385 BranchAndLinkShort(L, cond, rs, rt, bdslot); 2386 } else { 2387 Label skip; 2388 Condition neg_cond = NegateCondition(cond); 2389 BranchShort(&skip, neg_cond, rs, rt); 2390 Jalr(L, bdslot); 2391 bind(&skip); 2392 } 2393 } else { 2394 if (is_trampoline_emitted()) { 2395 Label skip; 2396 Condition neg_cond = NegateCondition(cond); 2397 BranchShort(&skip, neg_cond, rs, rt); 2398 Jalr(L, bdslot); 2399 bind(&skip); 2400 } else { 2401 BranchAndLinkShort(L, cond, rs, rt, bdslot); 2402 } 2403 } 2404 } 2405 2406 2407 // We need to use a bgezal or bltzal, but they can't be used directly with the 2408 // slt instructions. We could use sub or add instead but we would miss overflow 2409 // cases, so we keep slt and add an intermediate third instruction. 2410 void MacroAssembler::BranchAndLinkShort(int16_t offset, 2411 BranchDelaySlot bdslot) { 2412 bal(offset); 2413 2414 // Emit a nop in the branch delay slot if required. 2415 if (bdslot == PROTECT) 2416 nop(); 2417 } 2418 2419 2420 void MacroAssembler::BranchAndLinkShort(int16_t offset, Condition cond, 2421 Register rs, const Operand& rt, 2422 BranchDelaySlot bdslot) { 2423 BRANCH_ARGS_CHECK(cond, rs, rt); 2424 Register r2 = no_reg; 2425 Register scratch = at; 2426 2427 if (rt.is_reg()) { 2428 r2 = rt.rm_; 2429 } else if (cond != cc_always) { 2430 r2 = scratch; 2431 li(r2, rt); 2432 } 2433 2434 if (!IsMipsArchVariant(kMips32r6)) { 2435 BlockTrampolinePoolScope block_trampoline_pool(this); 2436 switch (cond) { 2437 case cc_always: 2438 bal(offset); 2439 break; 2440 case eq: 2441 bne(rs, r2, 2); 2442 nop(); 2443 bal(offset); 2444 break; 2445 case ne: 2446 beq(rs, r2, 2); 2447 nop(); 2448 bal(offset); 2449 break; 2450 2451 // Signed comparison. 2452 case greater: 2453 slt(scratch, r2, rs); 2454 addiu(scratch, scratch, -1); 2455 bgezal(scratch, offset); 2456 break; 2457 case greater_equal: 2458 slt(scratch, rs, r2); 2459 addiu(scratch, scratch, -1); 2460 bltzal(scratch, offset); 2461 break; 2462 case less: 2463 slt(scratch, rs, r2); 2464 addiu(scratch, scratch, -1); 2465 bgezal(scratch, offset); 2466 break; 2467 case less_equal: 2468 slt(scratch, r2, rs); 2469 addiu(scratch, scratch, -1); 2470 bltzal(scratch, offset); 2471 break; 2472 2473 // Unsigned comparison. 2474 case Ugreater: 2475 sltu(scratch, r2, rs); 2476 addiu(scratch, scratch, -1); 2477 bgezal(scratch, offset); 2478 break; 2479 case Ugreater_equal: 2480 sltu(scratch, rs, r2); 2481 addiu(scratch, scratch, -1); 2482 bltzal(scratch, offset); 2483 break; 2484 case Uless: 2485 sltu(scratch, rs, r2); 2486 addiu(scratch, scratch, -1); 2487 bgezal(scratch, offset); 2488 break; 2489 case Uless_equal: 2490 sltu(scratch, r2, rs); 2491 addiu(scratch, scratch, -1); 2492 bltzal(scratch, offset); 2493 break; 2494 2495 default: 2496 UNREACHABLE(); 2497 } 2498 } else { 2499 BlockTrampolinePoolScope block_trampoline_pool(this); 2500 switch (cond) { 2501 case cc_always: 2502 bal(offset); 2503 break; 2504 case eq: 2505 bne(rs, r2, 2); 2506 nop(); 2507 bal(offset); 2508 break; 2509 case ne: 2510 beq(rs, r2, 2); 2511 nop(); 2512 bal(offset); 2513 break; 2514 2515 // Signed comparison. 2516 case greater: 2517 // rs > rt 2518 slt(scratch, r2, rs); 2519 beq(scratch, zero_reg, 2); 2520 nop(); 2521 bal(offset); 2522 break; 2523 case greater_equal: 2524 // rs >= rt 2525 slt(scratch, rs, r2); 2526 bne(scratch, zero_reg, 2); 2527 nop(); 2528 bal(offset); 2529 break; 2530 case less: 2531 // rs < r2 2532 slt(scratch, rs, r2); 2533 bne(scratch, zero_reg, 2); 2534 nop(); 2535 bal(offset); 2536 break; 2537 case less_equal: 2538 // rs <= r2 2539 slt(scratch, r2, rs); 2540 bne(scratch, zero_reg, 2); 2541 nop(); 2542 bal(offset); 2543 break; 2544 2545 2546 // Unsigned comparison. 2547 case Ugreater: 2548 // rs > rt 2549 sltu(scratch, r2, rs); 2550 beq(scratch, zero_reg, 2); 2551 nop(); 2552 bal(offset); 2553 break; 2554 case Ugreater_equal: 2555 // rs >= rt 2556 sltu(scratch, rs, r2); 2557 bne(scratch, zero_reg, 2); 2558 nop(); 2559 bal(offset); 2560 break; 2561 case Uless: 2562 // rs < r2 2563 sltu(scratch, rs, r2); 2564 bne(scratch, zero_reg, 2); 2565 nop(); 2566 bal(offset); 2567 break; 2568 case Uless_equal: 2569 // rs <= r2 2570 sltu(scratch, r2, rs); 2571 bne(scratch, zero_reg, 2); 2572 nop(); 2573 bal(offset); 2574 break; 2575 default: 2576 UNREACHABLE(); 2577 } 2578 } 2579 2580 // Emit a nop in the branch delay slot if required. 2581 if (bdslot == PROTECT) 2582 nop(); 2583 } 2584 2585 2586 void MacroAssembler::BranchAndLinkShort(Label* L, BranchDelaySlot bdslot) { 2587 bal(shifted_branch_offset(L, false)); 2588 2589 // Emit a nop in the branch delay slot if required. 2590 if (bdslot == PROTECT) 2591 nop(); 2592 } 2593 2594 2595 void MacroAssembler::BranchAndLinkShort(Label* L, Condition cond, Register rs, 2596 const Operand& rt, 2597 BranchDelaySlot bdslot) { 2598 BRANCH_ARGS_CHECK(cond, rs, rt); 2599 2600 int32_t offset = 0; 2601 Register r2 = no_reg; 2602 Register scratch = at; 2603 if (rt.is_reg()) { 2604 r2 = rt.rm_; 2605 } else if (cond != cc_always) { 2606 r2 = scratch; 2607 li(r2, rt); 2608 } 2609 2610 if (!IsMipsArchVariant(kMips32r6)) { 2611 BlockTrampolinePoolScope block_trampoline_pool(this); 2612 switch (cond) { 2613 case cc_always: 2614 offset = shifted_branch_offset(L, false); 2615 bal(offset); 2616 break; 2617 case eq: 2618 bne(rs, r2, 2); 2619 nop(); 2620 offset = shifted_branch_offset(L, false); 2621 bal(offset); 2622 break; 2623 case ne: 2624 beq(rs, r2, 2); 2625 nop(); 2626 offset = shifted_branch_offset(L, false); 2627 bal(offset); 2628 break; 2629 2630 // Signed comparison. 2631 case greater: 2632 slt(scratch, r2, rs); 2633 addiu(scratch, scratch, -1); 2634 offset = shifted_branch_offset(L, false); 2635 bgezal(scratch, offset); 2636 break; 2637 case greater_equal: 2638 slt(scratch, rs, r2); 2639 addiu(scratch, scratch, -1); 2640 offset = shifted_branch_offset(L, false); 2641 bltzal(scratch, offset); 2642 break; 2643 case less: 2644 slt(scratch, rs, r2); 2645 addiu(scratch, scratch, -1); 2646 offset = shifted_branch_offset(L, false); 2647 bgezal(scratch, offset); 2648 break; 2649 case less_equal: 2650 slt(scratch, r2, rs); 2651 addiu(scratch, scratch, -1); 2652 offset = shifted_branch_offset(L, false); 2653 bltzal(scratch, offset); 2654 break; 2655 2656 // Unsigned comparison. 2657 case Ugreater: 2658 sltu(scratch, r2, rs); 2659 addiu(scratch, scratch, -1); 2660 offset = shifted_branch_offset(L, false); 2661 bgezal(scratch, offset); 2662 break; 2663 case Ugreater_equal: 2664 sltu(scratch, rs, r2); 2665 addiu(scratch, scratch, -1); 2666 offset = shifted_branch_offset(L, false); 2667 bltzal(scratch, offset); 2668 break; 2669 case Uless: 2670 sltu(scratch, rs, r2); 2671 addiu(scratch, scratch, -1); 2672 offset = shifted_branch_offset(L, false); 2673 bgezal(scratch, offset); 2674 break; 2675 case Uless_equal: 2676 sltu(scratch, r2, rs); 2677 addiu(scratch, scratch, -1); 2678 offset = shifted_branch_offset(L, false); 2679 bltzal(scratch, offset); 2680 break; 2681 2682 default: 2683 UNREACHABLE(); 2684 } 2685 } else { 2686 BlockTrampolinePoolScope block_trampoline_pool(this); 2687 switch (cond) { 2688 case cc_always: 2689 offset = shifted_branch_offset(L, false); 2690 bal(offset); 2691 break; 2692 case eq: 2693 bne(rs, r2, 2); 2694 nop(); 2695 offset = shifted_branch_offset(L, false); 2696 bal(offset); 2697 break; 2698 case ne: 2699 beq(rs, r2, 2); 2700 nop(); 2701 offset = shifted_branch_offset(L, false); 2702 bal(offset); 2703 break; 2704 2705 // Signed comparison. 2706 case greater: 2707 // rs > rt 2708 slt(scratch, r2, rs); 2709 beq(scratch, zero_reg, 2); 2710 nop(); 2711 offset = shifted_branch_offset(L, false); 2712 bal(offset); 2713 break; 2714 case greater_equal: 2715 // rs >= rt 2716 slt(scratch, rs, r2); 2717 bne(scratch, zero_reg, 2); 2718 nop(); 2719 offset = shifted_branch_offset(L, false); 2720 bal(offset); 2721 break; 2722 case less: 2723 // rs < r2 2724 slt(scratch, rs, r2); 2725 bne(scratch, zero_reg, 2); 2726 nop(); 2727 offset = shifted_branch_offset(L, false); 2728 bal(offset); 2729 break; 2730 case less_equal: 2731 // rs <= r2 2732 slt(scratch, r2, rs); 2733 bne(scratch, zero_reg, 2); 2734 nop(); 2735 offset = shifted_branch_offset(L, false); 2736 bal(offset); 2737 break; 2738 2739 2740 // Unsigned comparison. 2741 case Ugreater: 2742 // rs > rt 2743 sltu(scratch, r2, rs); 2744 beq(scratch, zero_reg, 2); 2745 nop(); 2746 offset = shifted_branch_offset(L, false); 2747 bal(offset); 2748 break; 2749 case Ugreater_equal: 2750 // rs >= rt 2751 sltu(scratch, rs, r2); 2752 bne(scratch, zero_reg, 2); 2753 nop(); 2754 offset = shifted_branch_offset(L, false); 2755 bal(offset); 2756 break; 2757 case Uless: 2758 // rs < r2 2759 sltu(scratch, rs, r2); 2760 bne(scratch, zero_reg, 2); 2761 nop(); 2762 offset = shifted_branch_offset(L, false); 2763 bal(offset); 2764 break; 2765 case Uless_equal: 2766 // rs <= r2 2767 sltu(scratch, r2, rs); 2768 bne(scratch, zero_reg, 2); 2769 nop(); 2770 offset = shifted_branch_offset(L, false); 2771 bal(offset); 2772 break; 2773 2774 default: 2775 UNREACHABLE(); 2776 } 2777 } 2778 2779 // Check that offset could actually hold on an int16_t. 2780 DCHECK(is_int16(offset)); 2781 2782 // Emit a nop in the branch delay slot if required. 2783 if (bdslot == PROTECT) 2784 nop(); 2785 } 2786 2787 2788 void MacroAssembler::Jump(Register target, 2789 Condition cond, 2790 Register rs, 2791 const Operand& rt, 2792 BranchDelaySlot bd) { 2793 BlockTrampolinePoolScope block_trampoline_pool(this); 2794 if (cond == cc_always) { 2795 jr(target); 2796 } else { 2797 BRANCH_ARGS_CHECK(cond, rs, rt); 2798 Branch(2, NegateCondition(cond), rs, rt); 2799 jr(target); 2800 } 2801 // Emit a nop in the branch delay slot if required. 2802 if (bd == PROTECT) 2803 nop(); 2804 } 2805 2806 2807 void MacroAssembler::Jump(intptr_t target, 2808 RelocInfo::Mode rmode, 2809 Condition cond, 2810 Register rs, 2811 const Operand& rt, 2812 BranchDelaySlot bd) { 2813 Label skip; 2814 if (cond != cc_always) { 2815 Branch(USE_DELAY_SLOT, &skip, NegateCondition(cond), rs, rt); 2816 } 2817 // The first instruction of 'li' may be placed in the delay slot. 2818 // This is not an issue, t9 is expected to be clobbered anyway. 2819 li(t9, Operand(target, rmode)); 2820 Jump(t9, al, zero_reg, Operand(zero_reg), bd); 2821 bind(&skip); 2822 } 2823 2824 2825 void MacroAssembler::Jump(Address target, 2826 RelocInfo::Mode rmode, 2827 Condition cond, 2828 Register rs, 2829 const Operand& rt, 2830 BranchDelaySlot bd) { 2831 DCHECK(!RelocInfo::IsCodeTarget(rmode)); 2832 Jump(reinterpret_cast<intptr_t>(target), rmode, cond, rs, rt, bd); 2833 } 2834 2835 2836 void MacroAssembler::Jump(Handle<Code> code, 2837 RelocInfo::Mode rmode, 2838 Condition cond, 2839 Register rs, 2840 const Operand& rt, 2841 BranchDelaySlot bd) { 2842 DCHECK(RelocInfo::IsCodeTarget(rmode)); 2843 AllowDeferredHandleDereference embedding_raw_address; 2844 Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond, rs, rt, bd); 2845 } 2846 2847 2848 int MacroAssembler::CallSize(Register target, 2849 Condition cond, 2850 Register rs, 2851 const Operand& rt, 2852 BranchDelaySlot bd) { 2853 int size = 0; 2854 2855 if (cond == cc_always) { 2856 size += 1; 2857 } else { 2858 size += 3; 2859 } 2860 2861 if (bd == PROTECT) 2862 size += 1; 2863 2864 return size * kInstrSize; 2865 } 2866 2867 2868 // Note: To call gcc-compiled C code on mips, you must call thru t9. 2869 void MacroAssembler::Call(Register target, 2870 Condition cond, 2871 Register rs, 2872 const Operand& rt, 2873 BranchDelaySlot bd) { 2874 BlockTrampolinePoolScope block_trampoline_pool(this); 2875 Label start; 2876 bind(&start); 2877 if (cond == cc_always) { 2878 jalr(target); 2879 } else { 2880 BRANCH_ARGS_CHECK(cond, rs, rt); 2881 Branch(2, NegateCondition(cond), rs, rt); 2882 jalr(target); 2883 } 2884 // Emit a nop in the branch delay slot if required. 2885 if (bd == PROTECT) 2886 nop(); 2887 2888 DCHECK_EQ(CallSize(target, cond, rs, rt, bd), 2889 SizeOfCodeGeneratedSince(&start)); 2890 } 2891 2892 2893 int MacroAssembler::CallSize(Address target, 2894 RelocInfo::Mode rmode, 2895 Condition cond, 2896 Register rs, 2897 const Operand& rt, 2898 BranchDelaySlot bd) { 2899 int size = CallSize(t9, cond, rs, rt, bd); 2900 return size + 2 * kInstrSize; 2901 } 2902 2903 2904 void MacroAssembler::Call(Address target, 2905 RelocInfo::Mode rmode, 2906 Condition cond, 2907 Register rs, 2908 const Operand& rt, 2909 BranchDelaySlot bd) { 2910 BlockTrampolinePoolScope block_trampoline_pool(this); 2911 Label start; 2912 bind(&start); 2913 int32_t target_int = reinterpret_cast<int32_t>(target); 2914 // Must record previous source positions before the 2915 // li() generates a new code target. 2916 positions_recorder()->WriteRecordedPositions(); 2917 li(t9, Operand(target_int, rmode), CONSTANT_SIZE); 2918 Call(t9, cond, rs, rt, bd); 2919 DCHECK_EQ(CallSize(target, rmode, cond, rs, rt, bd), 2920 SizeOfCodeGeneratedSince(&start)); 2921 } 2922 2923 2924 int MacroAssembler::CallSize(Handle<Code> code, 2925 RelocInfo::Mode rmode, 2926 TypeFeedbackId ast_id, 2927 Condition cond, 2928 Register rs, 2929 const Operand& rt, 2930 BranchDelaySlot bd) { 2931 AllowDeferredHandleDereference using_raw_address; 2932 return CallSize(reinterpret_cast<Address>(code.location()), 2933 rmode, cond, rs, rt, bd); 2934 } 2935 2936 2937 void MacroAssembler::Call(Handle<Code> code, 2938 RelocInfo::Mode rmode, 2939 TypeFeedbackId ast_id, 2940 Condition cond, 2941 Register rs, 2942 const Operand& rt, 2943 BranchDelaySlot bd) { 2944 BlockTrampolinePoolScope block_trampoline_pool(this); 2945 Label start; 2946 bind(&start); 2947 DCHECK(RelocInfo::IsCodeTarget(rmode)); 2948 if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) { 2949 SetRecordedAstId(ast_id); 2950 rmode = RelocInfo::CODE_TARGET_WITH_ID; 2951 } 2952 AllowDeferredHandleDereference embedding_raw_address; 2953 Call(reinterpret_cast<Address>(code.location()), rmode, cond, rs, rt, bd); 2954 DCHECK_EQ(CallSize(code, rmode, ast_id, cond, rs, rt, bd), 2955 SizeOfCodeGeneratedSince(&start)); 2956 } 2957 2958 2959 void MacroAssembler::Ret(Condition cond, 2960 Register rs, 2961 const Operand& rt, 2962 BranchDelaySlot bd) { 2963 Jump(ra, cond, rs, rt, bd); 2964 } 2965 2966 2967 void MacroAssembler::J(Label* L, BranchDelaySlot bdslot) { 2968 BlockTrampolinePoolScope block_trampoline_pool(this); 2969 2970 uint32_t imm28; 2971 imm28 = jump_address(L); 2972 imm28 &= kImm28Mask; 2973 { BlockGrowBufferScope block_buf_growth(this); 2974 // Buffer growth (and relocation) must be blocked for internal references 2975 // until associated instructions are emitted and available to be patched. 2976 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); 2977 j(imm28); 2978 } 2979 // Emit a nop in the branch delay slot if required. 2980 if (bdslot == PROTECT) 2981 nop(); 2982 } 2983 2984 2985 void MacroAssembler::Jr(Label* L, BranchDelaySlot bdslot) { 2986 BlockTrampolinePoolScope block_trampoline_pool(this); 2987 2988 uint32_t imm32; 2989 imm32 = jump_address(L); 2990 { BlockGrowBufferScope block_buf_growth(this); 2991 // Buffer growth (and relocation) must be blocked for internal references 2992 // until associated instructions are emitted and available to be patched. 2993 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); 2994 lui(at, (imm32 & kHiMask) >> kLuiShift); 2995 ori(at, at, (imm32 & kImm16Mask)); 2996 } 2997 jr(at); 2998 2999 // Emit a nop in the branch delay slot if required. 3000 if (bdslot == PROTECT) 3001 nop(); 3002 } 3003 3004 3005 void MacroAssembler::Jalr(Label* L, BranchDelaySlot bdslot) { 3006 BlockTrampolinePoolScope block_trampoline_pool(this); 3007 3008 uint32_t imm32; 3009 imm32 = jump_address(L); 3010 { BlockGrowBufferScope block_buf_growth(this); 3011 // Buffer growth (and relocation) must be blocked for internal references 3012 // until associated instructions are emitted and available to be patched. 3013 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); 3014 lui(at, (imm32 & kHiMask) >> kLuiShift); 3015 ori(at, at, (imm32 & kImm16Mask)); 3016 } 3017 jalr(at); 3018 3019 // Emit a nop in the branch delay slot if required. 3020 if (bdslot == PROTECT) 3021 nop(); 3022 } 3023 3024 3025 void MacroAssembler::DropAndRet(int drop) { 3026 Ret(USE_DELAY_SLOT); 3027 addiu(sp, sp, drop * kPointerSize); 3028 } 3029 3030 void MacroAssembler::DropAndRet(int drop, 3031 Condition cond, 3032 Register r1, 3033 const Operand& r2) { 3034 // Both Drop and Ret need to be conditional. 3035 Label skip; 3036 if (cond != cc_always) { 3037 Branch(&skip, NegateCondition(cond), r1, r2); 3038 } 3039 3040 Drop(drop); 3041 Ret(); 3042 3043 if (cond != cc_always) { 3044 bind(&skip); 3045 } 3046 } 3047 3048 3049 void MacroAssembler::Drop(int count, 3050 Condition cond, 3051 Register reg, 3052 const Operand& op) { 3053 if (count <= 0) { 3054 return; 3055 } 3056 3057 Label skip; 3058 3059 if (cond != al) { 3060 Branch(&skip, NegateCondition(cond), reg, op); 3061 } 3062 3063 addiu(sp, sp, count * kPointerSize); 3064 3065 if (cond != al) { 3066 bind(&skip); 3067 } 3068 } 3069 3070 3071 3072 void MacroAssembler::Swap(Register reg1, 3073 Register reg2, 3074 Register scratch) { 3075 if (scratch.is(no_reg)) { 3076 Xor(reg1, reg1, Operand(reg2)); 3077 Xor(reg2, reg2, Operand(reg1)); 3078 Xor(reg1, reg1, Operand(reg2)); 3079 } else { 3080 mov(scratch, reg1); 3081 mov(reg1, reg2); 3082 mov(reg2, scratch); 3083 } 3084 } 3085 3086 3087 void MacroAssembler::Call(Label* target) { 3088 BranchAndLink(target); 3089 } 3090 3091 3092 void MacroAssembler::Push(Handle<Object> handle) { 3093 li(at, Operand(handle)); 3094 push(at); 3095 } 3096 3097 3098 void MacroAssembler::DebugBreak() { 3099 PrepareCEntryArgs(0); 3100 PrepareCEntryFunction(ExternalReference(Runtime::kDebugBreak, isolate())); 3101 CEntryStub ces(isolate(), 1); 3102 DCHECK(AllowThisStubCall(&ces)); 3103 Call(ces.GetCode(), RelocInfo::DEBUG_BREAK); 3104 } 3105 3106 3107 // --------------------------------------------------------------------------- 3108 // Exception handling. 3109 3110 void MacroAssembler::PushTryHandler(StackHandler::Kind kind, 3111 int handler_index) { 3112 // Adjust this code if not the case. 3113 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); 3114 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); 3115 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); 3116 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); 3117 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); 3118 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); 3119 3120 // For the JSEntry handler, we must preserve a0-a3 and s0. 3121 // t1-t3 are available. We will build up the handler from the bottom by 3122 // pushing on the stack. 3123 // Set up the code object (t1) and the state (t2) for pushing. 3124 unsigned state = 3125 StackHandler::IndexField::encode(handler_index) | 3126 StackHandler::KindField::encode(kind); 3127 li(t1, Operand(CodeObject()), CONSTANT_SIZE); 3128 li(t2, Operand(state)); 3129 3130 // Push the frame pointer, context, state, and code object. 3131 if (kind == StackHandler::JS_ENTRY) { 3132 DCHECK_EQ(Smi::FromInt(0), 0); 3133 // The second zero_reg indicates no context. 3134 // The first zero_reg is the NULL frame pointer. 3135 // The operands are reversed to match the order of MultiPush/Pop. 3136 Push(zero_reg, zero_reg, t2, t1); 3137 } else { 3138 MultiPush(t1.bit() | t2.bit() | cp.bit() | fp.bit()); 3139 } 3140 3141 // Link the current handler as the next handler. 3142 li(t2, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); 3143 lw(t1, MemOperand(t2)); 3144 push(t1); 3145 // Set this new handler as the current one. 3146 sw(sp, MemOperand(t2)); 3147 } 3148 3149 3150 void MacroAssembler::PopTryHandler() { 3151 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); 3152 pop(a1); 3153 Addu(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); 3154 li(at, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); 3155 sw(a1, MemOperand(at)); 3156 } 3157 3158 3159 void MacroAssembler::JumpToHandlerEntry() { 3160 // Compute the handler entry address and jump to it. The handler table is 3161 // a fixed array of (smi-tagged) code offsets. 3162 // v0 = exception, a1 = code object, a2 = state. 3163 lw(a3, FieldMemOperand(a1, Code::kHandlerTableOffset)); // Handler table. 3164 Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 3165 srl(a2, a2, StackHandler::kKindWidth); // Handler index. 3166 sll(a2, a2, kPointerSizeLog2); 3167 Addu(a2, a3, a2); 3168 lw(a2, MemOperand(a2)); // Smi-tagged offset. 3169 Addu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start. 3170 sra(t9, a2, kSmiTagSize); 3171 Addu(t9, t9, a1); 3172 Jump(t9); // Jump. 3173 } 3174 3175 3176 void MacroAssembler::Throw(Register value) { 3177 // Adjust this code if not the case. 3178 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); 3179 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); 3180 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); 3181 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); 3182 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); 3183 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); 3184 3185 // The exception is expected in v0. 3186 Move(v0, value); 3187 3188 // Drop the stack pointer to the top of the top handler. 3189 li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, 3190 isolate()))); 3191 lw(sp, MemOperand(a3)); 3192 3193 // Restore the next handler. 3194 pop(a2); 3195 sw(a2, MemOperand(a3)); 3196 3197 // Get the code object (a1) and state (a2). Restore the context and frame 3198 // pointer. 3199 MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit()); 3200 3201 // If the handler is a JS frame, restore the context to the frame. 3202 // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp 3203 // or cp. 3204 Label done; 3205 Branch(&done, eq, cp, Operand(zero_reg)); 3206 sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 3207 bind(&done); 3208 3209 JumpToHandlerEntry(); 3210 } 3211 3212 3213 void MacroAssembler::ThrowUncatchable(Register value) { 3214 // Adjust this code if not the case. 3215 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); 3216 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); 3217 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); 3218 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); 3219 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); 3220 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); 3221 3222 // The exception is expected in v0. 3223 if (!value.is(v0)) { 3224 mov(v0, value); 3225 } 3226 // Drop the stack pointer to the top of the top stack handler. 3227 li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); 3228 lw(sp, MemOperand(a3)); 3229 3230 // Unwind the handlers until the ENTRY handler is found. 3231 Label fetch_next, check_kind; 3232 jmp(&check_kind); 3233 bind(&fetch_next); 3234 lw(sp, MemOperand(sp, StackHandlerConstants::kNextOffset)); 3235 3236 bind(&check_kind); 3237 STATIC_ASSERT(StackHandler::JS_ENTRY == 0); 3238 lw(a2, MemOperand(sp, StackHandlerConstants::kStateOffset)); 3239 And(a2, a2, Operand(StackHandler::KindField::kMask)); 3240 Branch(&fetch_next, ne, a2, Operand(zero_reg)); 3241 3242 // Set the top handler address to next handler past the top ENTRY handler. 3243 pop(a2); 3244 sw(a2, MemOperand(a3)); 3245 3246 // Get the code object (a1) and state (a2). Clear the context and frame 3247 // pointer (0 was saved in the handler). 3248 MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit()); 3249 3250 JumpToHandlerEntry(); 3251 } 3252 3253 3254 void MacroAssembler::Allocate(int object_size, 3255 Register result, 3256 Register scratch1, 3257 Register scratch2, 3258 Label* gc_required, 3259 AllocationFlags flags) { 3260 DCHECK(object_size <= Page::kMaxRegularHeapObjectSize); 3261 if (!FLAG_inline_new) { 3262 if (emit_debug_code()) { 3263 // Trash the registers to simulate an allocation failure. 3264 li(result, 0x7091); 3265 li(scratch1, 0x7191); 3266 li(scratch2, 0x7291); 3267 } 3268 jmp(gc_required); 3269 return; 3270 } 3271 3272 DCHECK(!result.is(scratch1)); 3273 DCHECK(!result.is(scratch2)); 3274 DCHECK(!scratch1.is(scratch2)); 3275 DCHECK(!scratch1.is(t9)); 3276 DCHECK(!scratch2.is(t9)); 3277 DCHECK(!result.is(t9)); 3278 3279 // Make object size into bytes. 3280 if ((flags & SIZE_IN_WORDS) != 0) { 3281 object_size *= kPointerSize; 3282 } 3283 DCHECK_EQ(0, object_size & kObjectAlignmentMask); 3284 3285 // Check relative positions of allocation top and limit addresses. 3286 // ARM adds additional checks to make sure the ldm instruction can be 3287 // used. On MIPS we don't have ldm so we don't need additional checks either. 3288 ExternalReference allocation_top = 3289 AllocationUtils::GetAllocationTopReference(isolate(), flags); 3290 ExternalReference allocation_limit = 3291 AllocationUtils::GetAllocationLimitReference(isolate(), flags); 3292 3293 intptr_t top = 3294 reinterpret_cast<intptr_t>(allocation_top.address()); 3295 intptr_t limit = 3296 reinterpret_cast<intptr_t>(allocation_limit.address()); 3297 DCHECK((limit - top) == kPointerSize); 3298 3299 // Set up allocation top address and object size registers. 3300 Register topaddr = scratch1; 3301 li(topaddr, Operand(allocation_top)); 3302 3303 // This code stores a temporary value in t9. 3304 if ((flags & RESULT_CONTAINS_TOP) == 0) { 3305 // Load allocation top into result and allocation limit into t9. 3306 lw(result, MemOperand(topaddr)); 3307 lw(t9, MemOperand(topaddr, kPointerSize)); 3308 } else { 3309 if (emit_debug_code()) { 3310 // Assert that result actually contains top on entry. t9 is used 3311 // immediately below so this use of t9 does not cause difference with 3312 // respect to register content between debug and release mode. 3313 lw(t9, MemOperand(topaddr)); 3314 Check(eq, kUnexpectedAllocationTop, result, Operand(t9)); 3315 } 3316 // Load allocation limit into t9. Result already contains allocation top. 3317 lw(t9, MemOperand(topaddr, limit - top)); 3318 } 3319 3320 if ((flags & DOUBLE_ALIGNMENT) != 0) { 3321 // Align the next allocation. Storing the filler map without checking top is 3322 // safe in new-space because the limit of the heap is aligned there. 3323 DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0); 3324 DCHECK(kPointerAlignment * 2 == kDoubleAlignment); 3325 And(scratch2, result, Operand(kDoubleAlignmentMask)); 3326 Label aligned; 3327 Branch(&aligned, eq, scratch2, Operand(zero_reg)); 3328 if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) { 3329 Branch(gc_required, Ugreater_equal, result, Operand(t9)); 3330 } 3331 li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map())); 3332 sw(scratch2, MemOperand(result)); 3333 Addu(result, result, Operand(kDoubleSize / 2)); 3334 bind(&aligned); 3335 } 3336 3337 // Calculate new top and bail out if new space is exhausted. Use result 3338 // to calculate the new top. 3339 Addu(scratch2, result, Operand(object_size)); 3340 Branch(gc_required, Ugreater, scratch2, Operand(t9)); 3341 sw(scratch2, MemOperand(topaddr)); 3342 3343 // Tag object if requested. 3344 if ((flags & TAG_OBJECT) != 0) { 3345 Addu(result, result, Operand(kHeapObjectTag)); 3346 } 3347 } 3348 3349 3350 void MacroAssembler::Allocate(Register object_size, 3351 Register result, 3352 Register scratch1, 3353 Register scratch2, 3354 Label* gc_required, 3355 AllocationFlags flags) { 3356 if (!FLAG_inline_new) { 3357 if (emit_debug_code()) { 3358 // Trash the registers to simulate an allocation failure. 3359 li(result, 0x7091); 3360 li(scratch1, 0x7191); 3361 li(scratch2, 0x7291); 3362 } 3363 jmp(gc_required); 3364 return; 3365 } 3366 3367 DCHECK(!result.is(scratch1)); 3368 DCHECK(!result.is(scratch2)); 3369 DCHECK(!scratch1.is(scratch2)); 3370 DCHECK(!object_size.is(t9)); 3371 DCHECK(!scratch1.is(t9) && !scratch2.is(t9) && !result.is(t9)); 3372 3373 // Check relative positions of allocation top and limit addresses. 3374 // ARM adds additional checks to make sure the ldm instruction can be 3375 // used. On MIPS we don't have ldm so we don't need additional checks either. 3376 ExternalReference allocation_top = 3377 AllocationUtils::GetAllocationTopReference(isolate(), flags); 3378 ExternalReference allocation_limit = 3379 AllocationUtils::GetAllocationLimitReference(isolate(), flags); 3380 intptr_t top = 3381 reinterpret_cast<intptr_t>(allocation_top.address()); 3382 intptr_t limit = 3383 reinterpret_cast<intptr_t>(allocation_limit.address()); 3384 DCHECK((limit - top) == kPointerSize); 3385 3386 // Set up allocation top address and object size registers. 3387 Register topaddr = scratch1; 3388 li(topaddr, Operand(allocation_top)); 3389 3390 // This code stores a temporary value in t9. 3391 if ((flags & RESULT_CONTAINS_TOP) == 0) { 3392 // Load allocation top into result and allocation limit into t9. 3393 lw(result, MemOperand(topaddr)); 3394 lw(t9, MemOperand(topaddr, kPointerSize)); 3395 } else { 3396 if (emit_debug_code()) { 3397 // Assert that result actually contains top on entry. t9 is used 3398 // immediately below so this use of t9 does not cause difference with 3399 // respect to register content between debug and release mode. 3400 lw(t9, MemOperand(topaddr)); 3401 Check(eq, kUnexpectedAllocationTop, result, Operand(t9)); 3402 } 3403 // Load allocation limit into t9. Result already contains allocation top. 3404 lw(t9, MemOperand(topaddr, limit - top)); 3405 } 3406 3407 if ((flags & DOUBLE_ALIGNMENT) != 0) { 3408 // Align the next allocation. Storing the filler map without checking top is 3409 // safe in new-space because the limit of the heap is aligned there. 3410 DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0); 3411 DCHECK(kPointerAlignment * 2 == kDoubleAlignment); 3412 And(scratch2, result, Operand(kDoubleAlignmentMask)); 3413 Label aligned; 3414 Branch(&aligned, eq, scratch2, Operand(zero_reg)); 3415 if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) { 3416 Branch(gc_required, Ugreater_equal, result, Operand(t9)); 3417 } 3418 li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map())); 3419 sw(scratch2, MemOperand(result)); 3420 Addu(result, result, Operand(kDoubleSize / 2)); 3421 bind(&aligned); 3422 } 3423 3424 // Calculate new top and bail out if new space is exhausted. Use result 3425 // to calculate the new top. Object size may be in words so a shift is 3426 // required to get the number of bytes. 3427 if ((flags & SIZE_IN_WORDS) != 0) { 3428 sll(scratch2, object_size, kPointerSizeLog2); 3429 Addu(scratch2, result, scratch2); 3430 } else { 3431 Addu(scratch2, result, Operand(object_size)); 3432 } 3433 Branch(gc_required, Ugreater, scratch2, Operand(t9)); 3434 3435 // Update allocation top. result temporarily holds the new top. 3436 if (emit_debug_code()) { 3437 And(t9, scratch2, Operand(kObjectAlignmentMask)); 3438 Check(eq, kUnalignedAllocationInNewSpace, t9, Operand(zero_reg)); 3439 } 3440 sw(scratch2, MemOperand(topaddr)); 3441 3442 // Tag object if requested. 3443 if ((flags & TAG_OBJECT) != 0) { 3444 Addu(result, result, Operand(kHeapObjectTag)); 3445 } 3446 } 3447 3448 3449 void MacroAssembler::UndoAllocationInNewSpace(Register object, 3450 Register scratch) { 3451 ExternalReference new_space_allocation_top = 3452 ExternalReference::new_space_allocation_top_address(isolate()); 3453 3454 // Make sure the object has no tag before resetting top. 3455 And(object, object, Operand(~kHeapObjectTagMask)); 3456 #ifdef DEBUG 3457 // Check that the object un-allocated is below the current top. 3458 li(scratch, Operand(new_space_allocation_top)); 3459 lw(scratch, MemOperand(scratch)); 3460 Check(less, kUndoAllocationOfNonAllocatedMemory, 3461 object, Operand(scratch)); 3462 #endif 3463 // Write the address of the object to un-allocate as the current top. 3464 li(scratch, Operand(new_space_allocation_top)); 3465 sw(object, MemOperand(scratch)); 3466 } 3467 3468 3469 void MacroAssembler::AllocateTwoByteString(Register result, 3470 Register length, 3471 Register scratch1, 3472 Register scratch2, 3473 Register scratch3, 3474 Label* gc_required) { 3475 // Calculate the number of bytes needed for the characters in the string while 3476 // observing object alignment. 3477 DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); 3478 sll(scratch1, length, 1); // Length in bytes, not chars. 3479 addiu(scratch1, scratch1, 3480 kObjectAlignmentMask + SeqTwoByteString::kHeaderSize); 3481 And(scratch1, scratch1, Operand(~kObjectAlignmentMask)); 3482 3483 // Allocate two-byte string in new space. 3484 Allocate(scratch1, 3485 result, 3486 scratch2, 3487 scratch3, 3488 gc_required, 3489 TAG_OBJECT); 3490 3491 // Set the map, length and hash field. 3492 InitializeNewString(result, 3493 length, 3494 Heap::kStringMapRootIndex, 3495 scratch1, 3496 scratch2); 3497 } 3498 3499 3500 void MacroAssembler::AllocateOneByteString(Register result, Register length, 3501 Register scratch1, Register scratch2, 3502 Register scratch3, 3503 Label* gc_required) { 3504 // Calculate the number of bytes needed for the characters in the string 3505 // while observing object alignment. 3506 DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); 3507 DCHECK(kCharSize == 1); 3508 addiu(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize); 3509 And(scratch1, scratch1, Operand(~kObjectAlignmentMask)); 3510 3511 // Allocate one-byte string in new space. 3512 Allocate(scratch1, 3513 result, 3514 scratch2, 3515 scratch3, 3516 gc_required, 3517 TAG_OBJECT); 3518 3519 // Set the map, length and hash field. 3520 InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex, 3521 scratch1, scratch2); 3522 } 3523 3524 3525 void MacroAssembler::AllocateTwoByteConsString(Register result, 3526 Register length, 3527 Register scratch1, 3528 Register scratch2, 3529 Label* gc_required) { 3530 Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, 3531 TAG_OBJECT); 3532 InitializeNewString(result, 3533 length, 3534 Heap::kConsStringMapRootIndex, 3535 scratch1, 3536 scratch2); 3537 } 3538 3539 3540 void MacroAssembler::AllocateOneByteConsString(Register result, Register length, 3541 Register scratch1, 3542 Register scratch2, 3543 Label* gc_required) { 3544 Allocate(ConsString::kSize, 3545 result, 3546 scratch1, 3547 scratch2, 3548 gc_required, 3549 TAG_OBJECT); 3550 3551 InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex, 3552 scratch1, scratch2); 3553 } 3554 3555 3556 void MacroAssembler::AllocateTwoByteSlicedString(Register result, 3557 Register length, 3558 Register scratch1, 3559 Register scratch2, 3560 Label* gc_required) { 3561 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, 3562 TAG_OBJECT); 3563 3564 InitializeNewString(result, 3565 length, 3566 Heap::kSlicedStringMapRootIndex, 3567 scratch1, 3568 scratch2); 3569 } 3570 3571 3572 void MacroAssembler::AllocateOneByteSlicedString(Register result, 3573 Register length, 3574 Register scratch1, 3575 Register scratch2, 3576 Label* gc_required) { 3577 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, 3578 TAG_OBJECT); 3579 3580 InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex, 3581 scratch1, scratch2); 3582 } 3583 3584 3585 void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg, 3586 Label* not_unique_name) { 3587 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); 3588 Label succeed; 3589 And(at, reg, Operand(kIsNotStringMask | kIsNotInternalizedMask)); 3590 Branch(&succeed, eq, at, Operand(zero_reg)); 3591 Branch(not_unique_name, ne, reg, Operand(SYMBOL_TYPE)); 3592 3593 bind(&succeed); 3594 } 3595 3596 3597 // Allocates a heap number or jumps to the label if the young space is full and 3598 // a scavenge is needed. 3599 void MacroAssembler::AllocateHeapNumber(Register result, 3600 Register scratch1, 3601 Register scratch2, 3602 Register heap_number_map, 3603 Label* need_gc, 3604 TaggingMode tagging_mode, 3605 MutableMode mode) { 3606 // Allocate an object in the heap for the heap number and tag it as a heap 3607 // object. 3608 Allocate(HeapNumber::kSize, result, scratch1, scratch2, need_gc, 3609 tagging_mode == TAG_RESULT ? TAG_OBJECT : NO_ALLOCATION_FLAGS); 3610 3611 Heap::RootListIndex map_index = mode == MUTABLE 3612 ? Heap::kMutableHeapNumberMapRootIndex 3613 : Heap::kHeapNumberMapRootIndex; 3614 AssertIsRoot(heap_number_map, map_index); 3615 3616 // Store heap number map in the allocated object. 3617 if (tagging_mode == TAG_RESULT) { 3618 sw(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset)); 3619 } else { 3620 sw(heap_number_map, MemOperand(result, HeapObject::kMapOffset)); 3621 } 3622 } 3623 3624 3625 void MacroAssembler::AllocateHeapNumberWithValue(Register result, 3626 FPURegister value, 3627 Register scratch1, 3628 Register scratch2, 3629 Label* gc_required) { 3630 LoadRoot(t8, Heap::kHeapNumberMapRootIndex); 3631 AllocateHeapNumber(result, scratch1, scratch2, t8, gc_required); 3632 sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset)); 3633 } 3634 3635 3636 // Copies a fixed number of fields of heap objects from src to dst. 3637 void MacroAssembler::CopyFields(Register dst, 3638 Register src, 3639 RegList temps, 3640 int field_count) { 3641 DCHECK((temps & dst.bit()) == 0); 3642 DCHECK((temps & src.bit()) == 0); 3643 // Primitive implementation using only one temporary register. 3644 3645 Register tmp = no_reg; 3646 // Find a temp register in temps list. 3647 for (int i = 0; i < kNumRegisters; i++) { 3648 if ((temps & (1 << i)) != 0) { 3649 tmp.code_ = i; 3650 break; 3651 } 3652 } 3653 DCHECK(!tmp.is(no_reg)); 3654 3655 for (int i = 0; i < field_count; i++) { 3656 lw(tmp, FieldMemOperand(src, i * kPointerSize)); 3657 sw(tmp, FieldMemOperand(dst, i * kPointerSize)); 3658 } 3659 } 3660 3661 3662 void MacroAssembler::CopyBytes(Register src, 3663 Register dst, 3664 Register length, 3665 Register scratch) { 3666 Label align_loop_1, word_loop, byte_loop, byte_loop_1, done; 3667 3668 // Align src before copying in word size chunks. 3669 Branch(&byte_loop, le, length, Operand(kPointerSize)); 3670 bind(&align_loop_1); 3671 And(scratch, src, kPointerSize - 1); 3672 Branch(&word_loop, eq, scratch, Operand(zero_reg)); 3673 lbu(scratch, MemOperand(src)); 3674 Addu(src, src, 1); 3675 sb(scratch, MemOperand(dst)); 3676 Addu(dst, dst, 1); 3677 Subu(length, length, Operand(1)); 3678 Branch(&align_loop_1, ne, length, Operand(zero_reg)); 3679 3680 // Copy bytes in word size chunks. 3681 bind(&word_loop); 3682 if (emit_debug_code()) { 3683 And(scratch, src, kPointerSize - 1); 3684 Assert(eq, kExpectingAlignmentForCopyBytes, 3685 scratch, Operand(zero_reg)); 3686 } 3687 Branch(&byte_loop, lt, length, Operand(kPointerSize)); 3688 lw(scratch, MemOperand(src)); 3689 Addu(src, src, kPointerSize); 3690 3691 // TODO(kalmard) check if this can be optimized to use sw in most cases. 3692 // Can't use unaligned access - copy byte by byte. 3693 if (kArchEndian == kLittle) { 3694 sb(scratch, MemOperand(dst, 0)); 3695 srl(scratch, scratch, 8); 3696 sb(scratch, MemOperand(dst, 1)); 3697 srl(scratch, scratch, 8); 3698 sb(scratch, MemOperand(dst, 2)); 3699 srl(scratch, scratch, 8); 3700 sb(scratch, MemOperand(dst, 3)); 3701 } else { 3702 sb(scratch, MemOperand(dst, 3)); 3703 srl(scratch, scratch, 8); 3704 sb(scratch, MemOperand(dst, 2)); 3705 srl(scratch, scratch, 8); 3706 sb(scratch, MemOperand(dst, 1)); 3707 srl(scratch, scratch, 8); 3708 sb(scratch, MemOperand(dst, 0)); 3709 } 3710 3711 Addu(dst, dst, 4); 3712 3713 Subu(length, length, Operand(kPointerSize)); 3714 Branch(&word_loop); 3715 3716 // Copy the last bytes if any left. 3717 bind(&byte_loop); 3718 Branch(&done, eq, length, Operand(zero_reg)); 3719 bind(&byte_loop_1); 3720 lbu(scratch, MemOperand(src)); 3721 Addu(src, src, 1); 3722 sb(scratch, MemOperand(dst)); 3723 Addu(dst, dst, 1); 3724 Subu(length, length, Operand(1)); 3725 Branch(&byte_loop_1, ne, length, Operand(zero_reg)); 3726 bind(&done); 3727 } 3728 3729 3730 void MacroAssembler::InitializeFieldsWithFiller(Register start_offset, 3731 Register end_offset, 3732 Register filler) { 3733 Label loop, entry; 3734 Branch(&entry); 3735 bind(&loop); 3736 sw(filler, MemOperand(start_offset)); 3737 Addu(start_offset, start_offset, kPointerSize); 3738 bind(&entry); 3739 Branch(&loop, lt, start_offset, Operand(end_offset)); 3740 } 3741 3742 3743 void MacroAssembler::CheckFastElements(Register map, 3744 Register scratch, 3745 Label* fail) { 3746 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); 3747 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); 3748 STATIC_ASSERT(FAST_ELEMENTS == 2); 3749 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); 3750 lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); 3751 Branch(fail, hi, scratch, 3752 Operand(Map::kMaximumBitField2FastHoleyElementValue)); 3753 } 3754 3755 3756 void MacroAssembler::CheckFastObjectElements(Register map, 3757 Register scratch, 3758 Label* fail) { 3759 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); 3760 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); 3761 STATIC_ASSERT(FAST_ELEMENTS == 2); 3762 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); 3763 lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); 3764 Branch(fail, ls, scratch, 3765 Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); 3766 Branch(fail, hi, scratch, 3767 Operand(Map::kMaximumBitField2FastHoleyElementValue)); 3768 } 3769 3770 3771 void MacroAssembler::CheckFastSmiElements(Register map, 3772 Register scratch, 3773 Label* fail) { 3774 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); 3775 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); 3776 lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); 3777 Branch(fail, hi, scratch, 3778 Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); 3779 } 3780 3781 3782 void MacroAssembler::StoreNumberToDoubleElements(Register value_reg, 3783 Register key_reg, 3784 Register elements_reg, 3785 Register scratch1, 3786 Register scratch2, 3787 Register scratch3, 3788 Label* fail, 3789 int elements_offset) { 3790 Label smi_value, maybe_nan, have_double_value, is_nan, done; 3791 Register mantissa_reg = scratch2; 3792 Register exponent_reg = scratch3; 3793 3794 // Handle smi values specially. 3795 JumpIfSmi(value_reg, &smi_value); 3796 3797 // Ensure that the object is a heap number 3798 CheckMap(value_reg, 3799 scratch1, 3800 Heap::kHeapNumberMapRootIndex, 3801 fail, 3802 DONT_DO_SMI_CHECK); 3803 3804 // Check for nan: all NaN values have a value greater (signed) than 0x7ff00000 3805 // in the exponent. 3806 li(scratch1, Operand(kNaNOrInfinityLowerBoundUpper32)); 3807 lw(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset)); 3808 Branch(&maybe_nan, ge, exponent_reg, Operand(scratch1)); 3809 3810 lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset)); 3811 3812 bind(&have_double_value); 3813 sll(scratch1, key_reg, kDoubleSizeLog2 - kSmiTagSize); 3814 Addu(scratch1, scratch1, elements_reg); 3815 sw(mantissa_reg, 3816 FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize - elements_offset 3817 + kHoleNanLower32Offset)); 3818 sw(exponent_reg, 3819 FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize - elements_offset 3820 + kHoleNanUpper32Offset)); 3821 jmp(&done); 3822 3823 bind(&maybe_nan); 3824 // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise 3825 // it's an Infinity, and the non-NaN code path applies. 3826 Branch(&is_nan, gt, exponent_reg, Operand(scratch1)); 3827 lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset)); 3828 Branch(&have_double_value, eq, mantissa_reg, Operand(zero_reg)); 3829 bind(&is_nan); 3830 // Load canonical NaN for storing into the double array. 3831 LoadRoot(at, Heap::kNanValueRootIndex); 3832 lw(mantissa_reg, FieldMemOperand(at, HeapNumber::kMantissaOffset)); 3833 lw(exponent_reg, FieldMemOperand(at, HeapNumber::kExponentOffset)); 3834 jmp(&have_double_value); 3835 3836 bind(&smi_value); 3837 Addu(scratch1, elements_reg, 3838 Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag - 3839 elements_offset)); 3840 sll(scratch2, key_reg, kDoubleSizeLog2 - kSmiTagSize); 3841 Addu(scratch1, scratch1, scratch2); 3842 // scratch1 is now effective address of the double element 3843 3844 Register untagged_value = elements_reg; 3845 SmiUntag(untagged_value, value_reg); 3846 mtc1(untagged_value, f2); 3847 cvt_d_w(f0, f2); 3848 sdc1(f0, MemOperand(scratch1, 0)); 3849 bind(&done); 3850 } 3851 3852 3853 void MacroAssembler::CompareMapAndBranch(Register obj, 3854 Register scratch, 3855 Handle<Map> map, 3856 Label* early_success, 3857 Condition cond, 3858 Label* branch_to) { 3859 lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); 3860 CompareMapAndBranch(scratch, map, early_success, cond, branch_to); 3861 } 3862 3863 3864 void MacroAssembler::CompareMapAndBranch(Register obj_map, 3865 Handle<Map> map, 3866 Label* early_success, 3867 Condition cond, 3868 Label* branch_to) { 3869 Branch(branch_to, cond, obj_map, Operand(map)); 3870 } 3871 3872 3873 void MacroAssembler::CheckMap(Register obj, 3874 Register scratch, 3875 Handle<Map> map, 3876 Label* fail, 3877 SmiCheckType smi_check_type) { 3878 if (smi_check_type == DO_SMI_CHECK) { 3879 JumpIfSmi(obj, fail); 3880 } 3881 Label success; 3882 CompareMapAndBranch(obj, scratch, map, &success, ne, fail); 3883 bind(&success); 3884 } 3885 3886 3887 void MacroAssembler::DispatchMap(Register obj, 3888 Register scratch, 3889 Handle<Map> map, 3890 Handle<Code> success, 3891 SmiCheckType smi_check_type) { 3892 Label fail; 3893 if (smi_check_type == DO_SMI_CHECK) { 3894 JumpIfSmi(obj, &fail); 3895 } 3896 lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); 3897 Jump(success, RelocInfo::CODE_TARGET, eq, scratch, Operand(map)); 3898 bind(&fail); 3899 } 3900 3901 3902 void MacroAssembler::CheckMap(Register obj, 3903 Register scratch, 3904 Heap::RootListIndex index, 3905 Label* fail, 3906 SmiCheckType smi_check_type) { 3907 if (smi_check_type == DO_SMI_CHECK) { 3908 JumpIfSmi(obj, fail); 3909 } 3910 lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); 3911 LoadRoot(at, index); 3912 Branch(fail, ne, scratch, Operand(at)); 3913 } 3914 3915 3916 void MacroAssembler::MovFromFloatResult(DoubleRegister dst) { 3917 if (IsMipsSoftFloatABI) { 3918 if (kArchEndian == kLittle) { 3919 Move(dst, v0, v1); 3920 } else { 3921 Move(dst, v1, v0); 3922 } 3923 } else { 3924 Move(dst, f0); // Reg f0 is o32 ABI FP return value. 3925 } 3926 } 3927 3928 3929 void MacroAssembler::MovFromFloatParameter(DoubleRegister dst) { 3930 if (IsMipsSoftFloatABI) { 3931 if (kArchEndian == kLittle) { 3932 Move(dst, a0, a1); 3933 } else { 3934 Move(dst, a1, a0); 3935 } 3936 } else { 3937 Move(dst, f12); // Reg f12 is o32 ABI FP first argument value. 3938 } 3939 } 3940 3941 3942 void MacroAssembler::MovToFloatParameter(DoubleRegister src) { 3943 if (!IsMipsSoftFloatABI) { 3944 Move(f12, src); 3945 } else { 3946 if (kArchEndian == kLittle) { 3947 Move(a0, a1, src); 3948 } else { 3949 Move(a1, a0, src); 3950 } 3951 } 3952 } 3953 3954 3955 void MacroAssembler::MovToFloatResult(DoubleRegister src) { 3956 if (!IsMipsSoftFloatABI) { 3957 Move(f0, src); 3958 } else { 3959 if (kArchEndian == kLittle) { 3960 Move(v0, v1, src); 3961 } else { 3962 Move(v1, v0, src); 3963 } 3964 } 3965 } 3966 3967 3968 void MacroAssembler::MovToFloatParameters(DoubleRegister src1, 3969 DoubleRegister src2) { 3970 if (!IsMipsSoftFloatABI) { 3971 if (src2.is(f12)) { 3972 DCHECK(!src1.is(f14)); 3973 Move(f14, src2); 3974 Move(f12, src1); 3975 } else { 3976 Move(f12, src1); 3977 Move(f14, src2); 3978 } 3979 } else { 3980 if (kArchEndian == kLittle) { 3981 Move(a0, a1, src1); 3982 Move(a2, a3, src2); 3983 } else { 3984 Move(a1, a0, src1); 3985 Move(a3, a2, src2); 3986 } 3987 } 3988 } 3989 3990 3991 // ----------------------------------------------------------------------------- 3992 // JavaScript invokes. 3993 3994 void MacroAssembler::InvokePrologue(const ParameterCount& expected, 3995 const ParameterCount& actual, 3996 Handle<Code> code_constant, 3997 Register code_reg, 3998 Label* done, 3999 bool* definitely_mismatches, 4000 InvokeFlag flag, 4001 const CallWrapper& call_wrapper) { 4002 bool definitely_matches = false; 4003 *definitely_mismatches = false; 4004 Label regular_invoke; 4005 4006 // Check whether the expected and actual arguments count match. If not, 4007 // setup registers according to contract with ArgumentsAdaptorTrampoline: 4008 // a0: actual arguments count 4009 // a1: function (passed through to callee) 4010 // a2: expected arguments count 4011 4012 // The code below is made a lot easier because the calling code already sets 4013 // up actual and expected registers according to the contract if values are 4014 // passed in registers. 4015 DCHECK(actual.is_immediate() || actual.reg().is(a0)); 4016 DCHECK(expected.is_immediate() || expected.reg().is(a2)); 4017 DCHECK((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(a3)); 4018 4019 if (expected.is_immediate()) { 4020 DCHECK(actual.is_immediate()); 4021 if (expected.immediate() == actual.immediate()) { 4022 definitely_matches = true; 4023 } else { 4024 li(a0, Operand(actual.immediate())); 4025 const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; 4026 if (expected.immediate() == sentinel) { 4027 // Don't worry about adapting arguments for builtins that 4028 // don't want that done. Skip adaption code by making it look 4029 // like we have a match between expected and actual number of 4030 // arguments. 4031 definitely_matches = true; 4032 } else { 4033 *definitely_mismatches = true; 4034 li(a2, Operand(expected.immediate())); 4035 } 4036 } 4037 } else if (actual.is_immediate()) { 4038 Branch(®ular_invoke, eq, expected.reg(), Operand(actual.immediate())); 4039 li(a0, Operand(actual.immediate())); 4040 } else { 4041 Branch(®ular_invoke, eq, expected.reg(), Operand(actual.reg())); 4042 } 4043 4044 if (!definitely_matches) { 4045 if (!code_constant.is_null()) { 4046 li(a3, Operand(code_constant)); 4047 addiu(a3, a3, Code::kHeaderSize - kHeapObjectTag); 4048 } 4049 4050 Handle<Code> adaptor = 4051 isolate()->builtins()->ArgumentsAdaptorTrampoline(); 4052 if (flag == CALL_FUNCTION) { 4053 call_wrapper.BeforeCall(CallSize(adaptor)); 4054 Call(adaptor); 4055 call_wrapper.AfterCall(); 4056 if (!*definitely_mismatches) { 4057 Branch(done); 4058 } 4059 } else { 4060 Jump(adaptor, RelocInfo::CODE_TARGET); 4061 } 4062 bind(®ular_invoke); 4063 } 4064 } 4065 4066 4067 void MacroAssembler::InvokeCode(Register code, 4068 const ParameterCount& expected, 4069 const ParameterCount& actual, 4070 InvokeFlag flag, 4071 const CallWrapper& call_wrapper) { 4072 // You can't call a function without a valid frame. 4073 DCHECK(flag == JUMP_FUNCTION || has_frame()); 4074 4075 Label done; 4076 4077 bool definitely_mismatches = false; 4078 InvokePrologue(expected, actual, Handle<Code>::null(), code, 4079 &done, &definitely_mismatches, flag, 4080 call_wrapper); 4081 if (!definitely_mismatches) { 4082 if (flag == CALL_FUNCTION) { 4083 call_wrapper.BeforeCall(CallSize(code)); 4084 Call(code); 4085 call_wrapper.AfterCall(); 4086 } else { 4087 DCHECK(flag == JUMP_FUNCTION); 4088 Jump(code); 4089 } 4090 // Continue here if InvokePrologue does handle the invocation due to 4091 // mismatched parameter counts. 4092 bind(&done); 4093 } 4094 } 4095 4096 4097 void MacroAssembler::InvokeFunction(Register function, 4098 const ParameterCount& actual, 4099 InvokeFlag flag, 4100 const CallWrapper& call_wrapper) { 4101 // You can't call a function without a valid frame. 4102 DCHECK(flag == JUMP_FUNCTION || has_frame()); 4103 4104 // Contract with called JS functions requires that function is passed in a1. 4105 DCHECK(function.is(a1)); 4106 Register expected_reg = a2; 4107 Register code_reg = a3; 4108 4109 lw(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); 4110 lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); 4111 lw(expected_reg, 4112 FieldMemOperand(code_reg, 4113 SharedFunctionInfo::kFormalParameterCountOffset)); 4114 sra(expected_reg, expected_reg, kSmiTagSize); 4115 lw(code_reg, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); 4116 4117 ParameterCount expected(expected_reg); 4118 InvokeCode(code_reg, expected, actual, flag, call_wrapper); 4119 } 4120 4121 4122 void MacroAssembler::InvokeFunction(Register function, 4123 const ParameterCount& expected, 4124 const ParameterCount& actual, 4125 InvokeFlag flag, 4126 const CallWrapper& call_wrapper) { 4127 // You can't call a function without a valid frame. 4128 DCHECK(flag == JUMP_FUNCTION || has_frame()); 4129 4130 // Contract with called JS functions requires that function is passed in a1. 4131 DCHECK(function.is(a1)); 4132 4133 // Get the function and setup the context. 4134 lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); 4135 4136 // We call indirectly through the code field in the function to 4137 // allow recompilation to take effect without changing any of the 4138 // call sites. 4139 lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); 4140 InvokeCode(a3, expected, actual, flag, call_wrapper); 4141 } 4142 4143 4144 void MacroAssembler::InvokeFunction(Handle<JSFunction> function, 4145 const ParameterCount& expected, 4146 const ParameterCount& actual, 4147 InvokeFlag flag, 4148 const CallWrapper& call_wrapper) { 4149 li(a1, function); 4150 InvokeFunction(a1, expected, actual, flag, call_wrapper); 4151 } 4152 4153 4154 void MacroAssembler::IsObjectJSObjectType(Register heap_object, 4155 Register map, 4156 Register scratch, 4157 Label* fail) { 4158 lw(map, FieldMemOperand(heap_object, HeapObject::kMapOffset)); 4159 IsInstanceJSObjectType(map, scratch, fail); 4160 } 4161 4162 4163 void MacroAssembler::IsInstanceJSObjectType(Register map, 4164 Register scratch, 4165 Label* fail) { 4166 lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); 4167 Branch(fail, lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); 4168 Branch(fail, gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); 4169 } 4170 4171 4172 void MacroAssembler::IsObjectJSStringType(Register object, 4173 Register scratch, 4174 Label* fail) { 4175 DCHECK(kNotStringTag != 0); 4176 4177 lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); 4178 lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 4179 And(scratch, scratch, Operand(kIsNotStringMask)); 4180 Branch(fail, ne, scratch, Operand(zero_reg)); 4181 } 4182 4183 4184 void MacroAssembler::IsObjectNameType(Register object, 4185 Register scratch, 4186 Label* fail) { 4187 lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); 4188 lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 4189 Branch(fail, hi, scratch, Operand(LAST_NAME_TYPE)); 4190 } 4191 4192 4193 // --------------------------------------------------------------------------- 4194 // Support functions. 4195 4196 4197 void MacroAssembler::TryGetFunctionPrototype(Register function, 4198 Register result, 4199 Register scratch, 4200 Label* miss, 4201 bool miss_on_bound_function) { 4202 Label non_instance; 4203 if (miss_on_bound_function) { 4204 // Check that the receiver isn't a smi. 4205 JumpIfSmi(function, miss); 4206 4207 // Check that the function really is a function. Load map into result reg. 4208 GetObjectType(function, result, scratch); 4209 Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE)); 4210 4211 lw(scratch, 4212 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); 4213 lw(scratch, 4214 FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); 4215 And(scratch, scratch, 4216 Operand(Smi::FromInt(1 << SharedFunctionInfo::kBoundFunction))); 4217 Branch(miss, ne, scratch, Operand(zero_reg)); 4218 4219 // Make sure that the function has an instance prototype. 4220 lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); 4221 And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype)); 4222 Branch(&non_instance, ne, scratch, Operand(zero_reg)); 4223 } 4224 4225 // Get the prototype or initial map from the function. 4226 lw(result, 4227 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); 4228 4229 // If the prototype or initial map is the hole, don't return it and 4230 // simply miss the cache instead. This will allow us to allocate a 4231 // prototype object on-demand in the runtime system. 4232 LoadRoot(t8, Heap::kTheHoleValueRootIndex); 4233 Branch(miss, eq, result, Operand(t8)); 4234 4235 // If the function does not have an initial map, we're done. 4236 Label done; 4237 GetObjectType(result, scratch, scratch); 4238 Branch(&done, ne, scratch, Operand(MAP_TYPE)); 4239 4240 // Get the prototype from the initial map. 4241 lw(result, FieldMemOperand(result, Map::kPrototypeOffset)); 4242 4243 if (miss_on_bound_function) { 4244 jmp(&done); 4245 4246 // Non-instance prototype: Fetch prototype from constructor field 4247 // in initial map. 4248 bind(&non_instance); 4249 lw(result, FieldMemOperand(result, Map::kConstructorOffset)); 4250 } 4251 4252 // All done. 4253 bind(&done); 4254 } 4255 4256 4257 void MacroAssembler::GetObjectType(Register object, 4258 Register map, 4259 Register type_reg) { 4260 lw(map, FieldMemOperand(object, HeapObject::kMapOffset)); 4261 lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); 4262 } 4263 4264 4265 // ----------------------------------------------------------------------------- 4266 // Runtime calls. 4267 4268 void MacroAssembler::CallStub(CodeStub* stub, 4269 TypeFeedbackId ast_id, 4270 Condition cond, 4271 Register r1, 4272 const Operand& r2, 4273 BranchDelaySlot bd) { 4274 DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. 4275 Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, 4276 cond, r1, r2, bd); 4277 } 4278 4279 4280 void MacroAssembler::TailCallStub(CodeStub* stub, 4281 Condition cond, 4282 Register r1, 4283 const Operand& r2, 4284 BranchDelaySlot bd) { 4285 Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2, bd); 4286 } 4287 4288 4289 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { 4290 return ref0.address() - ref1.address(); 4291 } 4292 4293 4294 void MacroAssembler::CallApiFunctionAndReturn( 4295 Register function_address, 4296 ExternalReference thunk_ref, 4297 int stack_space, 4298 MemOperand return_value_operand, 4299 MemOperand* context_restore_operand) { 4300 ExternalReference next_address = 4301 ExternalReference::handle_scope_next_address(isolate()); 4302 const int kNextOffset = 0; 4303 const int kLimitOffset = AddressOffset( 4304 ExternalReference::handle_scope_limit_address(isolate()), 4305 next_address); 4306 const int kLevelOffset = AddressOffset( 4307 ExternalReference::handle_scope_level_address(isolate()), 4308 next_address); 4309 4310 DCHECK(function_address.is(a1) || function_address.is(a2)); 4311 4312 Label profiler_disabled; 4313 Label end_profiler_check; 4314 li(t9, Operand(ExternalReference::is_profiling_address(isolate()))); 4315 lb(t9, MemOperand(t9, 0)); 4316 Branch(&profiler_disabled, eq, t9, Operand(zero_reg)); 4317 4318 // Additional parameter is the address of the actual callback. 4319 li(t9, Operand(thunk_ref)); 4320 jmp(&end_profiler_check); 4321 4322 bind(&profiler_disabled); 4323 mov(t9, function_address); 4324 bind(&end_profiler_check); 4325 4326 // Allocate HandleScope in callee-save registers. 4327 li(s3, Operand(next_address)); 4328 lw(s0, MemOperand(s3, kNextOffset)); 4329 lw(s1, MemOperand(s3, kLimitOffset)); 4330 lw(s2, MemOperand(s3, kLevelOffset)); 4331 Addu(s2, s2, Operand(1)); 4332 sw(s2, MemOperand(s3, kLevelOffset)); 4333 4334 if (FLAG_log_timer_events) { 4335 FrameScope frame(this, StackFrame::MANUAL); 4336 PushSafepointRegisters(); 4337 PrepareCallCFunction(1, a0); 4338 li(a0, Operand(ExternalReference::isolate_address(isolate()))); 4339 CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1); 4340 PopSafepointRegisters(); 4341 } 4342 4343 // Native call returns to the DirectCEntry stub which redirects to the 4344 // return address pushed on stack (could have moved after GC). 4345 // DirectCEntry stub itself is generated early and never moves. 4346 DirectCEntryStub stub(isolate()); 4347 stub.GenerateCall(this, t9); 4348 4349 if (FLAG_log_timer_events) { 4350 FrameScope frame(this, StackFrame::MANUAL); 4351 PushSafepointRegisters(); 4352 PrepareCallCFunction(1, a0); 4353 li(a0, Operand(ExternalReference::isolate_address(isolate()))); 4354 CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1); 4355 PopSafepointRegisters(); 4356 } 4357 4358 Label promote_scheduled_exception; 4359 Label exception_handled; 4360 Label delete_allocated_handles; 4361 Label leave_exit_frame; 4362 Label return_value_loaded; 4363 4364 // Load value from ReturnValue. 4365 lw(v0, return_value_operand); 4366 bind(&return_value_loaded); 4367 4368 // No more valid handles (the result handle was the last one). Restore 4369 // previous handle scope. 4370 sw(s0, MemOperand(s3, kNextOffset)); 4371 if (emit_debug_code()) { 4372 lw(a1, MemOperand(s3, kLevelOffset)); 4373 Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2)); 4374 } 4375 Subu(s2, s2, Operand(1)); 4376 sw(s2, MemOperand(s3, kLevelOffset)); 4377 lw(at, MemOperand(s3, kLimitOffset)); 4378 Branch(&delete_allocated_handles, ne, s1, Operand(at)); 4379 4380 // Check if the function scheduled an exception. 4381 bind(&leave_exit_frame); 4382 LoadRoot(t0, Heap::kTheHoleValueRootIndex); 4383 li(at, Operand(ExternalReference::scheduled_exception_address(isolate()))); 4384 lw(t1, MemOperand(at)); 4385 Branch(&promote_scheduled_exception, ne, t0, Operand(t1)); 4386 bind(&exception_handled); 4387 4388 bool restore_context = context_restore_operand != NULL; 4389 if (restore_context) { 4390 lw(cp, *context_restore_operand); 4391 } 4392 li(s0, Operand(stack_space)); 4393 LeaveExitFrame(false, s0, !restore_context, EMIT_RETURN); 4394 4395 bind(&promote_scheduled_exception); 4396 { 4397 FrameScope frame(this, StackFrame::INTERNAL); 4398 CallExternalReference( 4399 ExternalReference(Runtime::kPromoteScheduledException, isolate()), 4400 0); 4401 } 4402 jmp(&exception_handled); 4403 4404 // HandleScope limit has changed. Delete allocated extensions. 4405 bind(&delete_allocated_handles); 4406 sw(s1, MemOperand(s3, kLimitOffset)); 4407 mov(s0, v0); 4408 mov(a0, v0); 4409 PrepareCallCFunction(1, s1); 4410 li(a0, Operand(ExternalReference::isolate_address(isolate()))); 4411 CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate()), 4412 1); 4413 mov(v0, s0); 4414 jmp(&leave_exit_frame); 4415 } 4416 4417 4418 bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { 4419 return has_frame_ || !stub->SometimesSetsUpAFrame(); 4420 } 4421 4422 4423 void MacroAssembler::IndexFromHash(Register hash, Register index) { 4424 // If the hash field contains an array index pick it out. The assert checks 4425 // that the constants for the maximum number of digits for an array index 4426 // cached in the hash field and the number of bits reserved for it does not 4427 // conflict. 4428 DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) < 4429 (1 << String::kArrayIndexValueBits)); 4430 DecodeFieldToSmi<String::ArrayIndexValueBits>(index, hash); 4431 } 4432 4433 4434 void MacroAssembler::ObjectToDoubleFPURegister(Register object, 4435 FPURegister result, 4436 Register scratch1, 4437 Register scratch2, 4438 Register heap_number_map, 4439 Label* not_number, 4440 ObjectToDoubleFlags flags) { 4441 Label done; 4442 if ((flags & OBJECT_NOT_SMI) == 0) { 4443 Label not_smi; 4444 JumpIfNotSmi(object, ¬_smi); 4445 // Remove smi tag and convert to double. 4446 sra(scratch1, object, kSmiTagSize); 4447 mtc1(scratch1, result); 4448 cvt_d_w(result, result); 4449 Branch(&done); 4450 bind(¬_smi); 4451 } 4452 // Check for heap number and load double value from it. 4453 lw(scratch1, FieldMemOperand(object, HeapObject::kMapOffset)); 4454 Branch(not_number, ne, scratch1, Operand(heap_number_map)); 4455 4456 if ((flags & AVOID_NANS_AND_INFINITIES) != 0) { 4457 // If exponent is all ones the number is either a NaN or +/-Infinity. 4458 Register exponent = scratch1; 4459 Register mask_reg = scratch2; 4460 lw(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset)); 4461 li(mask_reg, HeapNumber::kExponentMask); 4462 4463 And(exponent, exponent, mask_reg); 4464 Branch(not_number, eq, exponent, Operand(mask_reg)); 4465 } 4466 ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset)); 4467 bind(&done); 4468 } 4469 4470 4471 void MacroAssembler::SmiToDoubleFPURegister(Register smi, 4472 FPURegister value, 4473 Register scratch1) { 4474 sra(scratch1, smi, kSmiTagSize); 4475 mtc1(scratch1, value); 4476 cvt_d_w(value, value); 4477 } 4478 4479 4480 void MacroAssembler::AdduAndCheckForOverflow(Register dst, 4481 Register left, 4482 Register right, 4483 Register overflow_dst, 4484 Register scratch) { 4485 DCHECK(!dst.is(overflow_dst)); 4486 DCHECK(!dst.is(scratch)); 4487 DCHECK(!overflow_dst.is(scratch)); 4488 DCHECK(!overflow_dst.is(left)); 4489 DCHECK(!overflow_dst.is(right)); 4490 4491 if (left.is(right) && dst.is(left)) { 4492 DCHECK(!dst.is(t9)); 4493 DCHECK(!scratch.is(t9)); 4494 DCHECK(!left.is(t9)); 4495 DCHECK(!right.is(t9)); 4496 DCHECK(!overflow_dst.is(t9)); 4497 mov(t9, right); 4498 right = t9; 4499 } 4500 4501 if (dst.is(left)) { 4502 mov(scratch, left); // Preserve left. 4503 addu(dst, left, right); // Left is overwritten. 4504 xor_(scratch, dst, scratch); // Original left. 4505 xor_(overflow_dst, dst, right); 4506 and_(overflow_dst, overflow_dst, scratch); 4507 } else if (dst.is(right)) { 4508 mov(scratch, right); // Preserve right. 4509 addu(dst, left, right); // Right is overwritten. 4510 xor_(scratch, dst, scratch); // Original right. 4511 xor_(overflow_dst, dst, left); 4512 and_(overflow_dst, overflow_dst, scratch); 4513 } else { 4514 addu(dst, left, right); 4515 xor_(overflow_dst, dst, left); 4516 xor_(scratch, dst, right); 4517 and_(overflow_dst, scratch, overflow_dst); 4518 } 4519 } 4520 4521 4522 void MacroAssembler::SubuAndCheckForOverflow(Register dst, 4523 Register left, 4524 Register right, 4525 Register overflow_dst, 4526 Register scratch) { 4527 DCHECK(!dst.is(overflow_dst)); 4528 DCHECK(!dst.is(scratch)); 4529 DCHECK(!overflow_dst.is(scratch)); 4530 DCHECK(!overflow_dst.is(left)); 4531 DCHECK(!overflow_dst.is(right)); 4532 DCHECK(!scratch.is(left)); 4533 DCHECK(!scratch.is(right)); 4534 4535 // This happens with some crankshaft code. Since Subu works fine if 4536 // left == right, let's not make that restriction here. 4537 if (left.is(right)) { 4538 mov(dst, zero_reg); 4539 mov(overflow_dst, zero_reg); 4540 return; 4541 } 4542 4543 if (dst.is(left)) { 4544 mov(scratch, left); // Preserve left. 4545 subu(dst, left, right); // Left is overwritten. 4546 xor_(overflow_dst, dst, scratch); // scratch is original left. 4547 xor_(scratch, scratch, right); // scratch is original left. 4548 and_(overflow_dst, scratch, overflow_dst); 4549 } else if (dst.is(right)) { 4550 mov(scratch, right); // Preserve right. 4551 subu(dst, left, right); // Right is overwritten. 4552 xor_(overflow_dst, dst, left); 4553 xor_(scratch, left, scratch); // Original right. 4554 and_(overflow_dst, scratch, overflow_dst); 4555 } else { 4556 subu(dst, left, right); 4557 xor_(overflow_dst, dst, left); 4558 xor_(scratch, left, right); 4559 and_(overflow_dst, scratch, overflow_dst); 4560 } 4561 } 4562 4563 4564 void MacroAssembler::CallRuntime(const Runtime::Function* f, 4565 int num_arguments, 4566 SaveFPRegsMode save_doubles) { 4567 // All parameters are on the stack. v0 has the return value after call. 4568 4569 // If the expected number of arguments of the runtime function is 4570 // constant, we check that the actual number of arguments match the 4571 // expectation. 4572 CHECK(f->nargs < 0 || f->nargs == num_arguments); 4573 4574 // TODO(1236192): Most runtime routines don't need the number of 4575 // arguments passed in because it is constant. At some point we 4576 // should remove this need and make the runtime routine entry code 4577 // smarter. 4578 PrepareCEntryArgs(num_arguments); 4579 PrepareCEntryFunction(ExternalReference(f, isolate())); 4580 CEntryStub stub(isolate(), 1, save_doubles); 4581 CallStub(&stub); 4582 } 4583 4584 4585 void MacroAssembler::CallExternalReference(const ExternalReference& ext, 4586 int num_arguments, 4587 BranchDelaySlot bd) { 4588 PrepareCEntryArgs(num_arguments); 4589 PrepareCEntryFunction(ext); 4590 4591 CEntryStub stub(isolate(), 1); 4592 CallStub(&stub, TypeFeedbackId::None(), al, zero_reg, Operand(zero_reg), bd); 4593 } 4594 4595 4596 void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, 4597 int num_arguments, 4598 int result_size) { 4599 // TODO(1236192): Most runtime routines don't need the number of 4600 // arguments passed in because it is constant. At some point we 4601 // should remove this need and make the runtime routine entry code 4602 // smarter. 4603 PrepareCEntryArgs(num_arguments); 4604 JumpToExternalReference(ext); 4605 } 4606 4607 4608 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, 4609 int num_arguments, 4610 int result_size) { 4611 TailCallExternalReference(ExternalReference(fid, isolate()), 4612 num_arguments, 4613 result_size); 4614 } 4615 4616 4617 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, 4618 BranchDelaySlot bd) { 4619 PrepareCEntryFunction(builtin); 4620 CEntryStub stub(isolate(), 1); 4621 Jump(stub.GetCode(), 4622 RelocInfo::CODE_TARGET, 4623 al, 4624 zero_reg, 4625 Operand(zero_reg), 4626 bd); 4627 } 4628 4629 4630 void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, 4631 InvokeFlag flag, 4632 const CallWrapper& call_wrapper) { 4633 // You can't call a builtin without a valid frame. 4634 DCHECK(flag == JUMP_FUNCTION || has_frame()); 4635 4636 GetBuiltinEntry(t9, id); 4637 if (flag == CALL_FUNCTION) { 4638 call_wrapper.BeforeCall(CallSize(t9)); 4639 Call(t9); 4640 call_wrapper.AfterCall(); 4641 } else { 4642 DCHECK(flag == JUMP_FUNCTION); 4643 Jump(t9); 4644 } 4645 } 4646 4647 4648 void MacroAssembler::GetBuiltinFunction(Register target, 4649 Builtins::JavaScript id) { 4650 // Load the builtins object into target register. 4651 lw(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); 4652 lw(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset)); 4653 // Load the JavaScript builtin function from the builtins object. 4654 lw(target, FieldMemOperand(target, 4655 JSBuiltinsObject::OffsetOfFunctionWithId(id))); 4656 } 4657 4658 4659 void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { 4660 DCHECK(!target.is(a1)); 4661 GetBuiltinFunction(a1, id); 4662 // Load the code entry point from the builtins object. 4663 lw(target, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); 4664 } 4665 4666 4667 void MacroAssembler::SetCounter(StatsCounter* counter, int value, 4668 Register scratch1, Register scratch2) { 4669 if (FLAG_native_code_counters && counter->Enabled()) { 4670 li(scratch1, Operand(value)); 4671 li(scratch2, Operand(ExternalReference(counter))); 4672 sw(scratch1, MemOperand(scratch2)); 4673 } 4674 } 4675 4676 4677 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, 4678 Register scratch1, Register scratch2) { 4679 DCHECK(value > 0); 4680 if (FLAG_native_code_counters && counter->Enabled()) { 4681 li(scratch2, Operand(ExternalReference(counter))); 4682 lw(scratch1, MemOperand(scratch2)); 4683 Addu(scratch1, scratch1, Operand(value)); 4684 sw(scratch1, MemOperand(scratch2)); 4685 } 4686 } 4687 4688 4689 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, 4690 Register scratch1, Register scratch2) { 4691 DCHECK(value > 0); 4692 if (FLAG_native_code_counters && counter->Enabled()) { 4693 li(scratch2, Operand(ExternalReference(counter))); 4694 lw(scratch1, MemOperand(scratch2)); 4695 Subu(scratch1, scratch1, Operand(value)); 4696 sw(scratch1, MemOperand(scratch2)); 4697 } 4698 } 4699 4700 4701 // ----------------------------------------------------------------------------- 4702 // Debugging. 4703 4704 void MacroAssembler::Assert(Condition cc, BailoutReason reason, 4705 Register rs, Operand rt) { 4706 if (emit_debug_code()) 4707 Check(cc, reason, rs, rt); 4708 } 4709 4710 4711 void MacroAssembler::AssertFastElements(Register elements) { 4712 if (emit_debug_code()) { 4713 DCHECK(!elements.is(at)); 4714 Label ok; 4715 push(elements); 4716 lw(elements, FieldMemOperand(elements, HeapObject::kMapOffset)); 4717 LoadRoot(at, Heap::kFixedArrayMapRootIndex); 4718 Branch(&ok, eq, elements, Operand(at)); 4719 LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex); 4720 Branch(&ok, eq, elements, Operand(at)); 4721 LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex); 4722 Branch(&ok, eq, elements, Operand(at)); 4723 Abort(kJSObjectWithFastElementsMapHasSlowElements); 4724 bind(&ok); 4725 pop(elements); 4726 } 4727 } 4728 4729 4730 void MacroAssembler::Check(Condition cc, BailoutReason reason, 4731 Register rs, Operand rt) { 4732 Label L; 4733 Branch(&L, cc, rs, rt); 4734 Abort(reason); 4735 // Will not return here. 4736 bind(&L); 4737 } 4738 4739 4740 void MacroAssembler::Abort(BailoutReason reason) { 4741 Label abort_start; 4742 bind(&abort_start); 4743 #ifdef DEBUG 4744 const char* msg = GetBailoutReason(reason); 4745 if (msg != NULL) { 4746 RecordComment("Abort message: "); 4747 RecordComment(msg); 4748 } 4749 4750 if (FLAG_trap_on_abort) { 4751 stop(msg); 4752 return; 4753 } 4754 #endif 4755 4756 li(a0, Operand(Smi::FromInt(reason))); 4757 push(a0); 4758 // Disable stub call restrictions to always allow calls to abort. 4759 if (!has_frame_) { 4760 // We don't actually want to generate a pile of code for this, so just 4761 // claim there is a stack frame, without generating one. 4762 FrameScope scope(this, StackFrame::NONE); 4763 CallRuntime(Runtime::kAbort, 1); 4764 } else { 4765 CallRuntime(Runtime::kAbort, 1); 4766 } 4767 // Will not return here. 4768 if (is_trampoline_pool_blocked()) { 4769 // If the calling code cares about the exact number of 4770 // instructions generated, we insert padding here to keep the size 4771 // of the Abort macro constant. 4772 // Currently in debug mode with debug_code enabled the number of 4773 // generated instructions is 10, so we use this as a maximum value. 4774 static const int kExpectedAbortInstructions = 10; 4775 int abort_instructions = InstructionsGeneratedSince(&abort_start); 4776 DCHECK(abort_instructions <= kExpectedAbortInstructions); 4777 while (abort_instructions++ < kExpectedAbortInstructions) { 4778 nop(); 4779 } 4780 } 4781 } 4782 4783 4784 void MacroAssembler::LoadContext(Register dst, int context_chain_length) { 4785 if (context_chain_length > 0) { 4786 // Move up the chain of contexts to the context containing the slot. 4787 lw(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX))); 4788 for (int i = 1; i < context_chain_length; i++) { 4789 lw(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); 4790 } 4791 } else { 4792 // Slot is in the current function context. Move it into the 4793 // destination register in case we store into it (the write barrier 4794 // cannot be allowed to destroy the context in esi). 4795 Move(dst, cp); 4796 } 4797 } 4798 4799 4800 void MacroAssembler::LoadTransitionedArrayMapConditional( 4801 ElementsKind expected_kind, 4802 ElementsKind transitioned_kind, 4803 Register map_in_out, 4804 Register scratch, 4805 Label* no_map_match) { 4806 // Load the global or builtins object from the current context. 4807 lw(scratch, 4808 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); 4809 lw(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset)); 4810 4811 // Check that the function's map is the same as the expected cached map. 4812 lw(scratch, 4813 MemOperand(scratch, 4814 Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX))); 4815 size_t offset = expected_kind * kPointerSize + 4816 FixedArrayBase::kHeaderSize; 4817 lw(at, FieldMemOperand(scratch, offset)); 4818 Branch(no_map_match, ne, map_in_out, Operand(at)); 4819 4820 // Use the transitioned cached map. 4821 offset = transitioned_kind * kPointerSize + 4822 FixedArrayBase::kHeaderSize; 4823 lw(map_in_out, FieldMemOperand(scratch, offset)); 4824 } 4825 4826 4827 void MacroAssembler::LoadGlobalFunction(int index, Register function) { 4828 // Load the global or builtins object from the current context. 4829 lw(function, 4830 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); 4831 // Load the native context from the global or builtins object. 4832 lw(function, FieldMemOperand(function, 4833 GlobalObject::kNativeContextOffset)); 4834 // Load the function from the native context. 4835 lw(function, MemOperand(function, Context::SlotOffset(index))); 4836 } 4837 4838 4839 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, 4840 Register map, 4841 Register scratch) { 4842 // Load the initial map. The global functions all have initial maps. 4843 lw(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); 4844 if (emit_debug_code()) { 4845 Label ok, fail; 4846 CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK); 4847 Branch(&ok); 4848 bind(&fail); 4849 Abort(kGlobalFunctionsMustHaveInitialMap); 4850 bind(&ok); 4851 } 4852 } 4853 4854 4855 void MacroAssembler::StubPrologue() { 4856 Push(ra, fp, cp); 4857 Push(Smi::FromInt(StackFrame::STUB)); 4858 // Adjust FP to point to saved FP. 4859 Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); 4860 } 4861 4862 4863 void MacroAssembler::Prologue(bool code_pre_aging) { 4864 PredictableCodeSizeScope predictible_code_size_scope( 4865 this, kNoCodeAgeSequenceLength); 4866 // The following three instructions must remain together and unmodified 4867 // for code aging to work properly. 4868 if (code_pre_aging) { 4869 // Pre-age the code. 4870 Code* stub = Code::GetPreAgedCodeAgeStub(isolate()); 4871 nop(Assembler::CODE_AGE_MARKER_NOP); 4872 // Load the stub address to t9 and call it, 4873 // GetCodeAgeAndParity() extracts the stub address from this instruction. 4874 li(t9, 4875 Operand(reinterpret_cast<uint32_t>(stub->instruction_start())), 4876 CONSTANT_SIZE); 4877 nop(); // Prevent jalr to jal optimization. 4878 jalr(t9, a0); 4879 nop(); // Branch delay slot nop. 4880 nop(); // Pad the empty space. 4881 } else { 4882 Push(ra, fp, cp, a1); 4883 nop(Assembler::CODE_AGE_SEQUENCE_NOP); 4884 // Adjust fp to point to caller's fp. 4885 Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); 4886 } 4887 } 4888 4889 4890 void MacroAssembler::EnterFrame(StackFrame::Type type) { 4891 addiu(sp, sp, -5 * kPointerSize); 4892 li(t8, Operand(Smi::FromInt(type))); 4893 li(t9, Operand(CodeObject()), CONSTANT_SIZE); 4894 sw(ra, MemOperand(sp, 4 * kPointerSize)); 4895 sw(fp, MemOperand(sp, 3 * kPointerSize)); 4896 sw(cp, MemOperand(sp, 2 * kPointerSize)); 4897 sw(t8, MemOperand(sp, 1 * kPointerSize)); 4898 sw(t9, MemOperand(sp, 0 * kPointerSize)); 4899 // Adjust FP to point to saved FP. 4900 Addu(fp, sp, 4901 Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize)); 4902 } 4903 4904 4905 void MacroAssembler::LeaveFrame(StackFrame::Type type) { 4906 mov(sp, fp); 4907 lw(fp, MemOperand(sp, 0 * kPointerSize)); 4908 lw(ra, MemOperand(sp, 1 * kPointerSize)); 4909 addiu(sp, sp, 2 * kPointerSize); 4910 } 4911 4912 4913 void MacroAssembler::EnterExitFrame(bool save_doubles, 4914 int stack_space) { 4915 // Set up the frame structure on the stack. 4916 STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement); 4917 STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset); 4918 STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset); 4919 4920 // This is how the stack will look: 4921 // fp + 2 (==kCallerSPDisplacement) - old stack's end 4922 // [fp + 1 (==kCallerPCOffset)] - saved old ra 4923 // [fp + 0 (==kCallerFPOffset)] - saved old fp 4924 // [fp - 1 (==kSPOffset)] - sp of the called function 4925 // [fp - 2 (==kCodeOffset)] - CodeObject 4926 // fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the 4927 // new stack (will contain saved ra) 4928 4929 // Save registers. 4930 addiu(sp, sp, -4 * kPointerSize); 4931 sw(ra, MemOperand(sp, 3 * kPointerSize)); 4932 sw(fp, MemOperand(sp, 2 * kPointerSize)); 4933 addiu(fp, sp, 2 * kPointerSize); // Set up new frame pointer. 4934 4935 if (emit_debug_code()) { 4936 sw(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset)); 4937 } 4938 4939 // Accessed from ExitFrame::code_slot. 4940 li(t8, Operand(CodeObject()), CONSTANT_SIZE); 4941 sw(t8, MemOperand(fp, ExitFrameConstants::kCodeOffset)); 4942 4943 // Save the frame pointer and the context in top. 4944 li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); 4945 sw(fp, MemOperand(t8)); 4946 li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); 4947 sw(cp, MemOperand(t8)); 4948 4949 const int frame_alignment = MacroAssembler::ActivationFrameAlignment(); 4950 if (save_doubles) { 4951 // The stack must be allign to 0 modulo 8 for stores with sdc1. 4952 DCHECK(kDoubleSize == frame_alignment); 4953 if (frame_alignment > 0) { 4954 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); 4955 And(sp, sp, Operand(-frame_alignment)); // Align stack. 4956 } 4957 int space = FPURegister::kMaxNumRegisters * kDoubleSize; 4958 Subu(sp, sp, Operand(space)); 4959 // Remember: we only need to save every 2nd double FPU value. 4960 for (int i = 0; i < FPURegister::kMaxNumRegisters; i+=2) { 4961 FPURegister reg = FPURegister::from_code(i); 4962 sdc1(reg, MemOperand(sp, i * kDoubleSize)); 4963 } 4964 } 4965 4966 // Reserve place for the return address, stack space and an optional slot 4967 // (used by the DirectCEntryStub to hold the return value if a struct is 4968 // returned) and align the frame preparing for calling the runtime function. 4969 DCHECK(stack_space >= 0); 4970 Subu(sp, sp, Operand((stack_space + 2) * kPointerSize)); 4971 if (frame_alignment > 0) { 4972 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); 4973 And(sp, sp, Operand(-frame_alignment)); // Align stack. 4974 } 4975 4976 // Set the exit frame sp value to point just before the return address 4977 // location. 4978 addiu(at, sp, kPointerSize); 4979 sw(at, MemOperand(fp, ExitFrameConstants::kSPOffset)); 4980 } 4981 4982 4983 void MacroAssembler::LeaveExitFrame(bool save_doubles, 4984 Register argument_count, 4985 bool restore_context, 4986 bool do_return) { 4987 // Optionally restore all double registers. 4988 if (save_doubles) { 4989 // Remember: we only need to restore every 2nd double FPU value. 4990 lw(t8, MemOperand(fp, ExitFrameConstants::kSPOffset)); 4991 for (int i = 0; i < FPURegister::kMaxNumRegisters; i+=2) { 4992 FPURegister reg = FPURegister::from_code(i); 4993 ldc1(reg, MemOperand(t8, i * kDoubleSize + kPointerSize)); 4994 } 4995 } 4996 4997 // Clear top frame. 4998 li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); 4999 sw(zero_reg, MemOperand(t8)); 5000 5001 // Restore current context from top and clear it in debug mode. 5002 if (restore_context) { 5003 li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); 5004 lw(cp, MemOperand(t8)); 5005 } 5006 #ifdef DEBUG 5007 li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); 5008 sw(a3, MemOperand(t8)); 5009 #endif 5010 5011 // Pop the arguments, restore registers, and return. 5012 mov(sp, fp); // Respect ABI stack constraint. 5013 lw(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset)); 5014 lw(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset)); 5015 5016 if (argument_count.is_valid()) { 5017 sll(t8, argument_count, kPointerSizeLog2); 5018 addu(sp, sp, t8); 5019 } 5020 5021 if (do_return) { 5022 Ret(USE_DELAY_SLOT); 5023 // If returning, the instruction in the delay slot will be the addiu below. 5024 } 5025 addiu(sp, sp, 8); 5026 } 5027 5028 5029 void MacroAssembler::InitializeNewString(Register string, 5030 Register length, 5031 Heap::RootListIndex map_index, 5032 Register scratch1, 5033 Register scratch2) { 5034 sll(scratch1, length, kSmiTagSize); 5035 LoadRoot(scratch2, map_index); 5036 sw(scratch1, FieldMemOperand(string, String::kLengthOffset)); 5037 li(scratch1, Operand(String::kEmptyHashField)); 5038 sw(scratch2, FieldMemOperand(string, HeapObject::kMapOffset)); 5039 sw(scratch1, FieldMemOperand(string, String::kHashFieldOffset)); 5040 } 5041 5042 5043 int MacroAssembler::ActivationFrameAlignment() { 5044 #if V8_HOST_ARCH_MIPS 5045 // Running on the real platform. Use the alignment as mandated by the local 5046 // environment. 5047 // Note: This will break if we ever start generating snapshots on one Mips 5048 // platform for another Mips platform with a different alignment. 5049 return base::OS::ActivationFrameAlignment(); 5050 #else // V8_HOST_ARCH_MIPS 5051 // If we are using the simulator then we should always align to the expected 5052 // alignment. As the simulator is used to generate snapshots we do not know 5053 // if the target platform will need alignment, so this is controlled from a 5054 // flag. 5055 return FLAG_sim_stack_alignment; 5056 #endif // V8_HOST_ARCH_MIPS 5057 } 5058 5059 5060 void MacroAssembler::AssertStackIsAligned() { 5061 if (emit_debug_code()) { 5062 const int frame_alignment = ActivationFrameAlignment(); 5063 const int frame_alignment_mask = frame_alignment - 1; 5064 5065 if (frame_alignment > kPointerSize) { 5066 Label alignment_as_expected; 5067 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); 5068 andi(at, sp, frame_alignment_mask); 5069 Branch(&alignment_as_expected, eq, at, Operand(zero_reg)); 5070 // Don't use Check here, as it will call Runtime_Abort re-entering here. 5071 stop("Unexpected stack alignment"); 5072 bind(&alignment_as_expected); 5073 } 5074 } 5075 } 5076 5077 5078 void MacroAssembler::JumpIfNotPowerOfTwoOrZero( 5079 Register reg, 5080 Register scratch, 5081 Label* not_power_of_two_or_zero) { 5082 Subu(scratch, reg, Operand(1)); 5083 Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt, 5084 scratch, Operand(zero_reg)); 5085 and_(at, scratch, reg); // In the delay slot. 5086 Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg)); 5087 } 5088 5089 5090 void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) { 5091 DCHECK(!reg.is(overflow)); 5092 mov(overflow, reg); // Save original value. 5093 SmiTag(reg); 5094 xor_(overflow, overflow, reg); // Overflow if (value ^ 2 * value) < 0. 5095 } 5096 5097 5098 void MacroAssembler::SmiTagCheckOverflow(Register dst, 5099 Register src, 5100 Register overflow) { 5101 if (dst.is(src)) { 5102 // Fall back to slower case. 5103 SmiTagCheckOverflow(dst, overflow); 5104 } else { 5105 DCHECK(!dst.is(src)); 5106 DCHECK(!dst.is(overflow)); 5107 DCHECK(!src.is(overflow)); 5108 SmiTag(dst, src); 5109 xor_(overflow, dst, src); // Overflow if (value ^ 2 * value) < 0. 5110 } 5111 } 5112 5113 5114 void MacroAssembler::UntagAndJumpIfSmi(Register dst, 5115 Register src, 5116 Label* smi_case) { 5117 JumpIfSmi(src, smi_case, at, USE_DELAY_SLOT); 5118 SmiUntag(dst, src); 5119 } 5120 5121 5122 void MacroAssembler::UntagAndJumpIfNotSmi(Register dst, 5123 Register src, 5124 Label* non_smi_case) { 5125 JumpIfNotSmi(src, non_smi_case, at, USE_DELAY_SLOT); 5126 SmiUntag(dst, src); 5127 } 5128 5129 void MacroAssembler::JumpIfSmi(Register value, 5130 Label* smi_label, 5131 Register scratch, 5132 BranchDelaySlot bd) { 5133 DCHECK_EQ(0, kSmiTag); 5134 andi(scratch, value, kSmiTagMask); 5135 Branch(bd, smi_label, eq, scratch, Operand(zero_reg)); 5136 } 5137 5138 void MacroAssembler::JumpIfNotSmi(Register value, 5139 Label* not_smi_label, 5140 Register scratch, 5141 BranchDelaySlot bd) { 5142 DCHECK_EQ(0, kSmiTag); 5143 andi(scratch, value, kSmiTagMask); 5144 Branch(bd, not_smi_label, ne, scratch, Operand(zero_reg)); 5145 } 5146 5147 5148 void MacroAssembler::JumpIfNotBothSmi(Register reg1, 5149 Register reg2, 5150 Label* on_not_both_smi) { 5151 STATIC_ASSERT(kSmiTag == 0); 5152 DCHECK_EQ(1, kSmiTagMask); 5153 or_(at, reg1, reg2); 5154 JumpIfNotSmi(at, on_not_both_smi); 5155 } 5156 5157 5158 void MacroAssembler::JumpIfEitherSmi(Register reg1, 5159 Register reg2, 5160 Label* on_either_smi) { 5161 STATIC_ASSERT(kSmiTag == 0); 5162 DCHECK_EQ(1, kSmiTagMask); 5163 // Both Smi tags must be 1 (not Smi). 5164 and_(at, reg1, reg2); 5165 JumpIfSmi(at, on_either_smi); 5166 } 5167 5168 5169 void MacroAssembler::AssertNotSmi(Register object) { 5170 if (emit_debug_code()) { 5171 STATIC_ASSERT(kSmiTag == 0); 5172 andi(at, object, kSmiTagMask); 5173 Check(ne, kOperandIsASmi, at, Operand(zero_reg)); 5174 } 5175 } 5176 5177 5178 void MacroAssembler::AssertSmi(Register object) { 5179 if (emit_debug_code()) { 5180 STATIC_ASSERT(kSmiTag == 0); 5181 andi(at, object, kSmiTagMask); 5182 Check(eq, kOperandIsASmi, at, Operand(zero_reg)); 5183 } 5184 } 5185 5186 5187 void MacroAssembler::AssertString(Register object) { 5188 if (emit_debug_code()) { 5189 STATIC_ASSERT(kSmiTag == 0); 5190 SmiTst(object, t0); 5191 Check(ne, kOperandIsASmiAndNotAString, t0, Operand(zero_reg)); 5192 push(object); 5193 lw(object, FieldMemOperand(object, HeapObject::kMapOffset)); 5194 lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset)); 5195 Check(lo, kOperandIsNotAString, object, Operand(FIRST_NONSTRING_TYPE)); 5196 pop(object); 5197 } 5198 } 5199 5200 5201 void MacroAssembler::AssertName(Register object) { 5202 if (emit_debug_code()) { 5203 STATIC_ASSERT(kSmiTag == 0); 5204 SmiTst(object, t0); 5205 Check(ne, kOperandIsASmiAndNotAName, t0, Operand(zero_reg)); 5206 push(object); 5207 lw(object, FieldMemOperand(object, HeapObject::kMapOffset)); 5208 lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset)); 5209 Check(le, kOperandIsNotAName, object, Operand(LAST_NAME_TYPE)); 5210 pop(object); 5211 } 5212 } 5213 5214 5215 void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, 5216 Register scratch) { 5217 if (emit_debug_code()) { 5218 Label done_checking; 5219 AssertNotSmi(object); 5220 LoadRoot(scratch, Heap::kUndefinedValueRootIndex); 5221 Branch(&done_checking, eq, object, Operand(scratch)); 5222 push(object); 5223 lw(object, FieldMemOperand(object, HeapObject::kMapOffset)); 5224 LoadRoot(scratch, Heap::kAllocationSiteMapRootIndex); 5225 Assert(eq, kExpectedUndefinedOrCell, object, Operand(scratch)); 5226 pop(object); 5227 bind(&done_checking); 5228 } 5229 } 5230 5231 5232 void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) { 5233 if (emit_debug_code()) { 5234 DCHECK(!reg.is(at)); 5235 LoadRoot(at, index); 5236 Check(eq, kHeapNumberMapRegisterClobbered, reg, Operand(at)); 5237 } 5238 } 5239 5240 5241 void MacroAssembler::JumpIfNotHeapNumber(Register object, 5242 Register heap_number_map, 5243 Register scratch, 5244 Label* on_not_heap_number) { 5245 lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); 5246 AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); 5247 Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map)); 5248 } 5249 5250 5251 void MacroAssembler::LookupNumberStringCache(Register object, 5252 Register result, 5253 Register scratch1, 5254 Register scratch2, 5255 Register scratch3, 5256 Label* not_found) { 5257 // Use of registers. Register result is used as a temporary. 5258 Register number_string_cache = result; 5259 Register mask = scratch3; 5260 5261 // Load the number string cache. 5262 LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); 5263 5264 // Make the hash mask from the length of the number string cache. It 5265 // contains two elements (number and string) for each cache entry. 5266 lw(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset)); 5267 // Divide length by two (length is a smi). 5268 sra(mask, mask, kSmiTagSize + 1); 5269 Addu(mask, mask, -1); // Make mask. 5270 5271 // Calculate the entry in the number string cache. The hash value in the 5272 // number string cache for smis is just the smi value, and the hash for 5273 // doubles is the xor of the upper and lower words. See 5274 // Heap::GetNumberStringCache. 5275 Label is_smi; 5276 Label load_result_from_cache; 5277 JumpIfSmi(object, &is_smi); 5278 CheckMap(object, 5279 scratch1, 5280 Heap::kHeapNumberMapRootIndex, 5281 not_found, 5282 DONT_DO_SMI_CHECK); 5283 5284 STATIC_ASSERT(8 == kDoubleSize); 5285 Addu(scratch1, 5286 object, 5287 Operand(HeapNumber::kValueOffset - kHeapObjectTag)); 5288 lw(scratch2, MemOperand(scratch1, kPointerSize)); 5289 lw(scratch1, MemOperand(scratch1, 0)); 5290 Xor(scratch1, scratch1, Operand(scratch2)); 5291 And(scratch1, scratch1, Operand(mask)); 5292 5293 // Calculate address of entry in string cache: each entry consists 5294 // of two pointer sized fields. 5295 sll(scratch1, scratch1, kPointerSizeLog2 + 1); 5296 Addu(scratch1, number_string_cache, scratch1); 5297 5298 Register probe = mask; 5299 lw(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); 5300 JumpIfSmi(probe, not_found); 5301 ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset)); 5302 ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset)); 5303 BranchF(&load_result_from_cache, NULL, eq, f12, f14); 5304 Branch(not_found); 5305 5306 bind(&is_smi); 5307 Register scratch = scratch1; 5308 sra(scratch, object, 1); // Shift away the tag. 5309 And(scratch, mask, Operand(scratch)); 5310 5311 // Calculate address of entry in string cache: each entry consists 5312 // of two pointer sized fields. 5313 sll(scratch, scratch, kPointerSizeLog2 + 1); 5314 Addu(scratch, number_string_cache, scratch); 5315 5316 // Check if the entry is the smi we are looking for. 5317 lw(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); 5318 Branch(not_found, ne, object, Operand(probe)); 5319 5320 // Get the result from the cache. 5321 bind(&load_result_from_cache); 5322 lw(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); 5323 5324 IncrementCounter(isolate()->counters()->number_to_string_native(), 5325 1, 5326 scratch1, 5327 scratch2); 5328 } 5329 5330 5331 void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings( 5332 Register first, Register second, Register scratch1, Register scratch2, 5333 Label* failure) { 5334 // Test that both first and second are sequential one-byte strings. 5335 // Assume that they are non-smis. 5336 lw(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); 5337 lw(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); 5338 lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); 5339 lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); 5340 5341 JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1, 5342 scratch2, failure); 5343 } 5344 5345 5346 void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first, 5347 Register second, 5348 Register scratch1, 5349 Register scratch2, 5350 Label* failure) { 5351 // Check that neither is a smi. 5352 STATIC_ASSERT(kSmiTag == 0); 5353 And(scratch1, first, Operand(second)); 5354 JumpIfSmi(scratch1, failure); 5355 JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1, 5356 scratch2, failure); 5357 } 5358 5359 5360 void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte( 5361 Register first, Register second, Register scratch1, Register scratch2, 5362 Label* failure) { 5363 const int kFlatOneByteStringMask = 5364 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; 5365 const int kFlatOneByteStringTag = 5366 kStringTag | kOneByteStringTag | kSeqStringTag; 5367 DCHECK(kFlatOneByteStringTag <= 0xffff); // Ensure this fits 16-bit immed. 5368 andi(scratch1, first, kFlatOneByteStringMask); 5369 Branch(failure, ne, scratch1, Operand(kFlatOneByteStringTag)); 5370 andi(scratch2, second, kFlatOneByteStringMask); 5371 Branch(failure, ne, scratch2, Operand(kFlatOneByteStringTag)); 5372 } 5373 5374 5375 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type, 5376 Register scratch, 5377 Label* failure) { 5378 const int kFlatOneByteStringMask = 5379 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; 5380 const int kFlatOneByteStringTag = 5381 kStringTag | kOneByteStringTag | kSeqStringTag; 5382 And(scratch, type, Operand(kFlatOneByteStringMask)); 5383 Branch(failure, ne, scratch, Operand(kFlatOneByteStringTag)); 5384 } 5385 5386 5387 static const int kRegisterPassedArguments = 4; 5388 5389 int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments, 5390 int num_double_arguments) { 5391 int stack_passed_words = 0; 5392 num_reg_arguments += 2 * num_double_arguments; 5393 5394 // Up to four simple arguments are passed in registers a0..a3. 5395 if (num_reg_arguments > kRegisterPassedArguments) { 5396 stack_passed_words += num_reg_arguments - kRegisterPassedArguments; 5397 } 5398 stack_passed_words += kCArgSlotCount; 5399 return stack_passed_words; 5400 } 5401 5402 5403 void MacroAssembler::EmitSeqStringSetCharCheck(Register string, 5404 Register index, 5405 Register value, 5406 Register scratch, 5407 uint32_t encoding_mask) { 5408 Label is_object; 5409 SmiTst(string, at); 5410 Check(ne, kNonObject, at, Operand(zero_reg)); 5411 5412 lw(at, FieldMemOperand(string, HeapObject::kMapOffset)); 5413 lbu(at, FieldMemOperand(at, Map::kInstanceTypeOffset)); 5414 5415 andi(at, at, kStringRepresentationMask | kStringEncodingMask); 5416 li(scratch, Operand(encoding_mask)); 5417 Check(eq, kUnexpectedStringType, at, Operand(scratch)); 5418 5419 // The index is assumed to be untagged coming in, tag it to compare with the 5420 // string length without using a temp register, it is restored at the end of 5421 // this function. 5422 Label index_tag_ok, index_tag_bad; 5423 TrySmiTag(index, scratch, &index_tag_bad); 5424 Branch(&index_tag_ok); 5425 bind(&index_tag_bad); 5426 Abort(kIndexIsTooLarge); 5427 bind(&index_tag_ok); 5428 5429 lw(at, FieldMemOperand(string, String::kLengthOffset)); 5430 Check(lt, kIndexIsTooLarge, index, Operand(at)); 5431 5432 DCHECK(Smi::FromInt(0) == 0); 5433 Check(ge, kIndexIsNegative, index, Operand(zero_reg)); 5434 5435 SmiUntag(index, index); 5436 } 5437 5438 5439 void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, 5440 int num_double_arguments, 5441 Register scratch) { 5442 int frame_alignment = ActivationFrameAlignment(); 5443 5444 // Up to four simple arguments are passed in registers a0..a3. 5445 // Those four arguments must have reserved argument slots on the stack for 5446 // mips, even though those argument slots are not normally used. 5447 // Remaining arguments are pushed on the stack, above (higher address than) 5448 // the argument slots. 5449 int stack_passed_arguments = CalculateStackPassedWords( 5450 num_reg_arguments, num_double_arguments); 5451 if (frame_alignment > kPointerSize) { 5452 // Make stack end at alignment and make room for num_arguments - 4 words 5453 // and the original value of sp. 5454 mov(scratch, sp); 5455 Subu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize)); 5456 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); 5457 And(sp, sp, Operand(-frame_alignment)); 5458 sw(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); 5459 } else { 5460 Subu(sp, sp, Operand(stack_passed_arguments * kPointerSize)); 5461 } 5462 } 5463 5464 5465 void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, 5466 Register scratch) { 5467 PrepareCallCFunction(num_reg_arguments, 0, scratch); 5468 } 5469 5470 5471 void MacroAssembler::CallCFunction(ExternalReference function, 5472 int num_reg_arguments, 5473 int num_double_arguments) { 5474 li(t8, Operand(function)); 5475 CallCFunctionHelper(t8, num_reg_arguments, num_double_arguments); 5476 } 5477 5478 5479 void MacroAssembler::CallCFunction(Register function, 5480 int num_reg_arguments, 5481 int num_double_arguments) { 5482 CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); 5483 } 5484 5485 5486 void MacroAssembler::CallCFunction(ExternalReference function, 5487 int num_arguments) { 5488 CallCFunction(function, num_arguments, 0); 5489 } 5490 5491 5492 void MacroAssembler::CallCFunction(Register function, 5493 int num_arguments) { 5494 CallCFunction(function, num_arguments, 0); 5495 } 5496 5497 5498 void MacroAssembler::CallCFunctionHelper(Register function, 5499 int num_reg_arguments, 5500 int num_double_arguments) { 5501 DCHECK(has_frame()); 5502 // Make sure that the stack is aligned before calling a C function unless 5503 // running in the simulator. The simulator has its own alignment check which 5504 // provides more information. 5505 // The argument stots are presumed to have been set up by 5506 // PrepareCallCFunction. The C function must be called via t9, for mips ABI. 5507 5508 #if V8_HOST_ARCH_MIPS 5509 if (emit_debug_code()) { 5510 int frame_alignment = base::OS::ActivationFrameAlignment(); 5511 int frame_alignment_mask = frame_alignment - 1; 5512 if (frame_alignment > kPointerSize) { 5513 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); 5514 Label alignment_as_expected; 5515 And(at, sp, Operand(frame_alignment_mask)); 5516 Branch(&alignment_as_expected, eq, at, Operand(zero_reg)); 5517 // Don't use Check here, as it will call Runtime_Abort possibly 5518 // re-entering here. 5519 stop("Unexpected alignment in CallCFunction"); 5520 bind(&alignment_as_expected); 5521 } 5522 } 5523 #endif // V8_HOST_ARCH_MIPS 5524 5525 // Just call directly. The function called cannot cause a GC, or 5526 // allow preemption, so the return address in the link register 5527 // stays correct. 5528 5529 if (!function.is(t9)) { 5530 mov(t9, function); 5531 function = t9; 5532 } 5533 5534 Call(function); 5535 5536 int stack_passed_arguments = CalculateStackPassedWords( 5537 num_reg_arguments, num_double_arguments); 5538 5539 if (base::OS::ActivationFrameAlignment() > kPointerSize) { 5540 lw(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); 5541 } else { 5542 Addu(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize))); 5543 } 5544 } 5545 5546 5547 #undef BRANCH_ARGS_CHECK 5548 5549 5550 void MacroAssembler::PatchRelocatedValue(Register li_location, 5551 Register scratch, 5552 Register new_value) { 5553 lw(scratch, MemOperand(li_location)); 5554 // At this point scratch is a lui(at, ...) instruction. 5555 if (emit_debug_code()) { 5556 And(scratch, scratch, kOpcodeMask); 5557 Check(eq, kTheInstructionToPatchShouldBeALui, 5558 scratch, Operand(LUI)); 5559 lw(scratch, MemOperand(li_location)); 5560 } 5561 srl(t9, new_value, kImm16Bits); 5562 Ins(scratch, t9, 0, kImm16Bits); 5563 sw(scratch, MemOperand(li_location)); 5564 5565 lw(scratch, MemOperand(li_location, kInstrSize)); 5566 // scratch is now ori(at, ...). 5567 if (emit_debug_code()) { 5568 And(scratch, scratch, kOpcodeMask); 5569 Check(eq, kTheInstructionToPatchShouldBeAnOri, 5570 scratch, Operand(ORI)); 5571 lw(scratch, MemOperand(li_location, kInstrSize)); 5572 } 5573 Ins(scratch, new_value, 0, kImm16Bits); 5574 sw(scratch, MemOperand(li_location, kInstrSize)); 5575 5576 // Update the I-cache so the new lui and ori can be executed. 5577 FlushICache(li_location, 2); 5578 } 5579 5580 void MacroAssembler::GetRelocatedValue(Register li_location, 5581 Register value, 5582 Register scratch) { 5583 lw(value, MemOperand(li_location)); 5584 if (emit_debug_code()) { 5585 And(value, value, kOpcodeMask); 5586 Check(eq, kTheInstructionShouldBeALui, 5587 value, Operand(LUI)); 5588 lw(value, MemOperand(li_location)); 5589 } 5590 5591 // value now holds a lui instruction. Extract the immediate. 5592 sll(value, value, kImm16Bits); 5593 5594 lw(scratch, MemOperand(li_location, kInstrSize)); 5595 if (emit_debug_code()) { 5596 And(scratch, scratch, kOpcodeMask); 5597 Check(eq, kTheInstructionShouldBeAnOri, 5598 scratch, Operand(ORI)); 5599 lw(scratch, MemOperand(li_location, kInstrSize)); 5600 } 5601 // "scratch" now holds an ori instruction. Extract the immediate. 5602 andi(scratch, scratch, kImm16Mask); 5603 5604 // Merge the results. 5605 or_(value, value, scratch); 5606 } 5607 5608 5609 void MacroAssembler::CheckPageFlag( 5610 Register object, 5611 Register scratch, 5612 int mask, 5613 Condition cc, 5614 Label* condition_met) { 5615 And(scratch, object, Operand(~Page::kPageAlignmentMask)); 5616 lw(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); 5617 And(scratch, scratch, Operand(mask)); 5618 Branch(condition_met, cc, scratch, Operand(zero_reg)); 5619 } 5620 5621 5622 void MacroAssembler::CheckMapDeprecated(Handle<Map> map, 5623 Register scratch, 5624 Label* if_deprecated) { 5625 if (map->CanBeDeprecated()) { 5626 li(scratch, Operand(map)); 5627 lw(scratch, FieldMemOperand(scratch, Map::kBitField3Offset)); 5628 And(scratch, scratch, Operand(Map::Deprecated::kMask)); 5629 Branch(if_deprecated, ne, scratch, Operand(zero_reg)); 5630 } 5631 } 5632 5633 5634 void MacroAssembler::JumpIfBlack(Register object, 5635 Register scratch0, 5636 Register scratch1, 5637 Label* on_black) { 5638 HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern. 5639 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0); 5640 } 5641 5642 5643 void MacroAssembler::HasColor(Register object, 5644 Register bitmap_scratch, 5645 Register mask_scratch, 5646 Label* has_color, 5647 int first_bit, 5648 int second_bit) { 5649 DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, t8)); 5650 DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, t9)); 5651 5652 GetMarkBits(object, bitmap_scratch, mask_scratch); 5653 5654 Label other_color, word_boundary; 5655 lw(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); 5656 And(t8, t9, Operand(mask_scratch)); 5657 Branch(&other_color, first_bit == 1 ? eq : ne, t8, Operand(zero_reg)); 5658 // Shift left 1 by adding. 5659 Addu(mask_scratch, mask_scratch, Operand(mask_scratch)); 5660 Branch(&word_boundary, eq, mask_scratch, Operand(zero_reg)); 5661 And(t8, t9, Operand(mask_scratch)); 5662 Branch(has_color, second_bit == 1 ? ne : eq, t8, Operand(zero_reg)); 5663 jmp(&other_color); 5664 5665 bind(&word_boundary); 5666 lw(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize)); 5667 And(t9, t9, Operand(1)); 5668 Branch(has_color, second_bit == 1 ? ne : eq, t9, Operand(zero_reg)); 5669 bind(&other_color); 5670 } 5671 5672 5673 // Detect some, but not all, common pointer-free objects. This is used by the 5674 // incremental write barrier which doesn't care about oddballs (they are always 5675 // marked black immediately so this code is not hit). 5676 void MacroAssembler::JumpIfDataObject(Register value, 5677 Register scratch, 5678 Label* not_data_object) { 5679 DCHECK(!AreAliased(value, scratch, t8, no_reg)); 5680 Label is_data_object; 5681 lw(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); 5682 LoadRoot(t8, Heap::kHeapNumberMapRootIndex); 5683 Branch(&is_data_object, eq, t8, Operand(scratch)); 5684 DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); 5685 DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); 5686 // If it's a string and it's not a cons string then it's an object containing 5687 // no GC pointers. 5688 lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 5689 And(t8, scratch, Operand(kIsIndirectStringMask | kIsNotStringMask)); 5690 Branch(not_data_object, ne, t8, Operand(zero_reg)); 5691 bind(&is_data_object); 5692 } 5693 5694 5695 void MacroAssembler::GetMarkBits(Register addr_reg, 5696 Register bitmap_reg, 5697 Register mask_reg) { 5698 DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg)); 5699 And(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask)); 5700 Ext(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2); 5701 const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2; 5702 Ext(t8, addr_reg, kLowBits, kPageSizeBits - kLowBits); 5703 sll(t8, t8, kPointerSizeLog2); 5704 Addu(bitmap_reg, bitmap_reg, t8); 5705 li(t8, Operand(1)); 5706 sllv(mask_reg, t8, mask_reg); 5707 } 5708 5709 5710 void MacroAssembler::EnsureNotWhite( 5711 Register value, 5712 Register bitmap_scratch, 5713 Register mask_scratch, 5714 Register load_scratch, 5715 Label* value_is_white_and_not_data) { 5716 DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, t8)); 5717 GetMarkBits(value, bitmap_scratch, mask_scratch); 5718 5719 // If the value is black or grey we don't need to do anything. 5720 DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0); 5721 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0); 5722 DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0); 5723 DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0); 5724 5725 Label done; 5726 5727 // Since both black and grey have a 1 in the first position and white does 5728 // not have a 1 there we only need to check one bit. 5729 lw(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); 5730 And(t8, mask_scratch, load_scratch); 5731 Branch(&done, ne, t8, Operand(zero_reg)); 5732 5733 if (emit_debug_code()) { 5734 // Check for impossible bit pattern. 5735 Label ok; 5736 // sll may overflow, making the check conservative. 5737 sll(t8, mask_scratch, 1); 5738 And(t8, load_scratch, t8); 5739 Branch(&ok, eq, t8, Operand(zero_reg)); 5740 stop("Impossible marking bit pattern"); 5741 bind(&ok); 5742 } 5743 5744 // Value is white. We check whether it is data that doesn't need scanning. 5745 // Currently only checks for HeapNumber and non-cons strings. 5746 Register map = load_scratch; // Holds map while checking type. 5747 Register length = load_scratch; // Holds length of object after testing type. 5748 Label is_data_object; 5749 5750 // Check for heap-number 5751 lw(map, FieldMemOperand(value, HeapObject::kMapOffset)); 5752 LoadRoot(t8, Heap::kHeapNumberMapRootIndex); 5753 { 5754 Label skip; 5755 Branch(&skip, ne, t8, Operand(map)); 5756 li(length, HeapNumber::kSize); 5757 Branch(&is_data_object); 5758 bind(&skip); 5759 } 5760 5761 // Check for strings. 5762 DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); 5763 DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); 5764 // If it's a string and it's not a cons string then it's an object containing 5765 // no GC pointers. 5766 Register instance_type = load_scratch; 5767 lbu(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset)); 5768 And(t8, instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask)); 5769 Branch(value_is_white_and_not_data, ne, t8, Operand(zero_reg)); 5770 // It's a non-indirect (non-cons and non-slice) string. 5771 // If it's external, the length is just ExternalString::kSize. 5772 // Otherwise it's String::kHeaderSize + string->length() * (1 or 2). 5773 // External strings are the only ones with the kExternalStringTag bit 5774 // set. 5775 DCHECK_EQ(0, kSeqStringTag & kExternalStringTag); 5776 DCHECK_EQ(0, kConsStringTag & kExternalStringTag); 5777 And(t8, instance_type, Operand(kExternalStringTag)); 5778 { 5779 Label skip; 5780 Branch(&skip, eq, t8, Operand(zero_reg)); 5781 li(length, ExternalString::kSize); 5782 Branch(&is_data_object); 5783 bind(&skip); 5784 } 5785 5786 // Sequential string, either Latin1 or UC16. 5787 // For Latin1 (char-size of 1) we shift the smi tag away to get the length. 5788 // For UC16 (char-size of 2) we just leave the smi tag in place, thereby 5789 // getting the length multiplied by 2. 5790 DCHECK(kOneByteStringTag == 4 && kStringEncodingMask == 4); 5791 DCHECK(kSmiTag == 0 && kSmiTagSize == 1); 5792 lw(t9, FieldMemOperand(value, String::kLengthOffset)); 5793 And(t8, instance_type, Operand(kStringEncodingMask)); 5794 { 5795 Label skip; 5796 Branch(&skip, eq, t8, Operand(zero_reg)); 5797 srl(t9, t9, 1); 5798 bind(&skip); 5799 } 5800 Addu(length, t9, Operand(SeqString::kHeaderSize + kObjectAlignmentMask)); 5801 And(length, length, Operand(~kObjectAlignmentMask)); 5802 5803 bind(&is_data_object); 5804 // Value is a data object, and it is white. Mark it black. Since we know 5805 // that the object is white we can make it black by flipping one bit. 5806 lw(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); 5807 Or(t8, t8, Operand(mask_scratch)); 5808 sw(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); 5809 5810 And(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask)); 5811 lw(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); 5812 Addu(t8, t8, Operand(length)); 5813 sw(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); 5814 5815 bind(&done); 5816 } 5817 5818 5819 void MacroAssembler::LoadInstanceDescriptors(Register map, 5820 Register descriptors) { 5821 lw(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset)); 5822 } 5823 5824 5825 void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) { 5826 lw(dst, FieldMemOperand(map, Map::kBitField3Offset)); 5827 DecodeField<Map::NumberOfOwnDescriptorsBits>(dst); 5828 } 5829 5830 5831 void MacroAssembler::EnumLength(Register dst, Register map) { 5832 STATIC_ASSERT(Map::EnumLengthBits::kShift == 0); 5833 lw(dst, FieldMemOperand(map, Map::kBitField3Offset)); 5834 And(dst, dst, Operand(Map::EnumLengthBits::kMask)); 5835 SmiTag(dst); 5836 } 5837 5838 5839 void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) { 5840 Register empty_fixed_array_value = t2; 5841 LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex); 5842 Label next, start; 5843 mov(a2, a0); 5844 5845 // Check if the enum length field is properly initialized, indicating that 5846 // there is an enum cache. 5847 lw(a1, FieldMemOperand(a2, HeapObject::kMapOffset)); 5848 5849 EnumLength(a3, a1); 5850 Branch( 5851 call_runtime, eq, a3, Operand(Smi::FromInt(kInvalidEnumCacheSentinel))); 5852 5853 jmp(&start); 5854 5855 bind(&next); 5856 lw(a1, FieldMemOperand(a2, HeapObject::kMapOffset)); 5857 5858 // For all objects but the receiver, check that the cache is empty. 5859 EnumLength(a3, a1); 5860 Branch(call_runtime, ne, a3, Operand(Smi::FromInt(0))); 5861 5862 bind(&start); 5863 5864 // Check that there are no elements. Register a2 contains the current JS 5865 // object we've reached through the prototype chain. 5866 Label no_elements; 5867 lw(a2, FieldMemOperand(a2, JSObject::kElementsOffset)); 5868 Branch(&no_elements, eq, a2, Operand(empty_fixed_array_value)); 5869 5870 // Second chance, the object may be using the empty slow element dictionary. 5871 LoadRoot(at, Heap::kEmptySlowElementDictionaryRootIndex); 5872 Branch(call_runtime, ne, a2, Operand(at)); 5873 5874 bind(&no_elements); 5875 lw(a2, FieldMemOperand(a1, Map::kPrototypeOffset)); 5876 Branch(&next, ne, a2, Operand(null_value)); 5877 } 5878 5879 5880 void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) { 5881 DCHECK(!output_reg.is(input_reg)); 5882 Label done; 5883 li(output_reg, Operand(255)); 5884 // Normal branch: nop in delay slot. 5885 Branch(&done, gt, input_reg, Operand(output_reg)); 5886 // Use delay slot in this branch. 5887 Branch(USE_DELAY_SLOT, &done, lt, input_reg, Operand(zero_reg)); 5888 mov(output_reg, zero_reg); // In delay slot. 5889 mov(output_reg, input_reg); // Value is in range 0..255. 5890 bind(&done); 5891 } 5892 5893 5894 void MacroAssembler::ClampDoubleToUint8(Register result_reg, 5895 DoubleRegister input_reg, 5896 DoubleRegister temp_double_reg) { 5897 Label above_zero; 5898 Label done; 5899 Label in_bounds; 5900 5901 Move(temp_double_reg, 0.0); 5902 BranchF(&above_zero, NULL, gt, input_reg, temp_double_reg); 5903 5904 // Double value is less than zero, NaN or Inf, return 0. 5905 mov(result_reg, zero_reg); 5906 Branch(&done); 5907 5908 // Double value is >= 255, return 255. 5909 bind(&above_zero); 5910 Move(temp_double_reg, 255.0); 5911 BranchF(&in_bounds, NULL, le, input_reg, temp_double_reg); 5912 li(result_reg, Operand(255)); 5913 Branch(&done); 5914 5915 // In 0-255 range, round and truncate. 5916 bind(&in_bounds); 5917 cvt_w_d(temp_double_reg, input_reg); 5918 mfc1(result_reg, temp_double_reg); 5919 bind(&done); 5920 } 5921 5922 5923 void MacroAssembler::TestJSArrayForAllocationMemento( 5924 Register receiver_reg, 5925 Register scratch_reg, 5926 Label* no_memento_found, 5927 Condition cond, 5928 Label* allocation_memento_present) { 5929 ExternalReference new_space_start = 5930 ExternalReference::new_space_start(isolate()); 5931 ExternalReference new_space_allocation_top = 5932 ExternalReference::new_space_allocation_top_address(isolate()); 5933 Addu(scratch_reg, receiver_reg, 5934 Operand(JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag)); 5935 Branch(no_memento_found, lt, scratch_reg, Operand(new_space_start)); 5936 li(at, Operand(new_space_allocation_top)); 5937 lw(at, MemOperand(at)); 5938 Branch(no_memento_found, gt, scratch_reg, Operand(at)); 5939 lw(scratch_reg, MemOperand(scratch_reg, -AllocationMemento::kSize)); 5940 if (allocation_memento_present) { 5941 Branch(allocation_memento_present, cond, scratch_reg, 5942 Operand(isolate()->factory()->allocation_memento_map())); 5943 } 5944 } 5945 5946 5947 Register GetRegisterThatIsNotOneOf(Register reg1, 5948 Register reg2, 5949 Register reg3, 5950 Register reg4, 5951 Register reg5, 5952 Register reg6) { 5953 RegList regs = 0; 5954 if (reg1.is_valid()) regs |= reg1.bit(); 5955 if (reg2.is_valid()) regs |= reg2.bit(); 5956 if (reg3.is_valid()) regs |= reg3.bit(); 5957 if (reg4.is_valid()) regs |= reg4.bit(); 5958 if (reg5.is_valid()) regs |= reg5.bit(); 5959 if (reg6.is_valid()) regs |= reg6.bit(); 5960 5961 for (int i = 0; i < Register::NumAllocatableRegisters(); i++) { 5962 Register candidate = Register::FromAllocationIndex(i); 5963 if (regs & candidate.bit()) continue; 5964 return candidate; 5965 } 5966 UNREACHABLE(); 5967 return no_reg; 5968 } 5969 5970 5971 void MacroAssembler::JumpIfDictionaryInPrototypeChain( 5972 Register object, 5973 Register scratch0, 5974 Register scratch1, 5975 Label* found) { 5976 DCHECK(!scratch1.is(scratch0)); 5977 Factory* factory = isolate()->factory(); 5978 Register current = scratch0; 5979 Label loop_again; 5980 5981 // Scratch contained elements pointer. 5982 Move(current, object); 5983 5984 // Loop based on the map going up the prototype chain. 5985 bind(&loop_again); 5986 lw(current, FieldMemOperand(current, HeapObject::kMapOffset)); 5987 lb(scratch1, FieldMemOperand(current, Map::kBitField2Offset)); 5988 DecodeField<Map::ElementsKindBits>(scratch1); 5989 Branch(found, eq, scratch1, Operand(DICTIONARY_ELEMENTS)); 5990 lw(current, FieldMemOperand(current, Map::kPrototypeOffset)); 5991 Branch(&loop_again, ne, current, Operand(factory->null_value())); 5992 } 5993 5994 5995 bool AreAliased(Register reg1, 5996 Register reg2, 5997 Register reg3, 5998 Register reg4, 5999 Register reg5, 6000 Register reg6, 6001 Register reg7, 6002 Register reg8) { 6003 int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + 6004 reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() + 6005 reg7.is_valid() + reg8.is_valid(); 6006 6007 RegList regs = 0; 6008 if (reg1.is_valid()) regs |= reg1.bit(); 6009 if (reg2.is_valid()) regs |= reg2.bit(); 6010 if (reg3.is_valid()) regs |= reg3.bit(); 6011 if (reg4.is_valid()) regs |= reg4.bit(); 6012 if (reg5.is_valid()) regs |= reg5.bit(); 6013 if (reg6.is_valid()) regs |= reg6.bit(); 6014 if (reg7.is_valid()) regs |= reg7.bit(); 6015 if (reg8.is_valid()) regs |= reg8.bit(); 6016 int n_of_non_aliasing_regs = NumRegs(regs); 6017 6018 return n_of_valid_regs != n_of_non_aliasing_regs; 6019 } 6020 6021 6022 CodePatcher::CodePatcher(byte* address, 6023 int instructions, 6024 FlushICache flush_cache) 6025 : address_(address), 6026 size_(instructions * Assembler::kInstrSize), 6027 masm_(NULL, address, size_ + Assembler::kGap), 6028 flush_cache_(flush_cache) { 6029 // Create a new macro assembler pointing to the address of the code to patch. 6030 // The size is adjusted with kGap on order for the assembler to generate size 6031 // bytes of instructions without failing with buffer size constraints. 6032 DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); 6033 } 6034 6035 6036 CodePatcher::~CodePatcher() { 6037 // Indicate that code has changed. 6038 if (flush_cache_ == FLUSH) { 6039 CpuFeatures::FlushICache(address_, size_); 6040 } 6041 6042 // Check that the code was patched as expected. 6043 DCHECK(masm_.pc_ == address_ + size_); 6044 DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); 6045 } 6046 6047 6048 void CodePatcher::Emit(Instr instr) { 6049 masm()->emit(instr); 6050 } 6051 6052 6053 void CodePatcher::Emit(Address addr) { 6054 masm()->emit(reinterpret_cast<Instr>(addr)); 6055 } 6056 6057 6058 void CodePatcher::ChangeBranchCondition(Condition cond) { 6059 Instr instr = Assembler::instr_at(masm_.pc_); 6060 DCHECK(Assembler::IsBranch(instr)); 6061 uint32_t opcode = Assembler::GetOpcodeField(instr); 6062 // Currently only the 'eq' and 'ne' cond values are supported and the simple 6063 // branch instructions (with opcode being the branch type). 6064 // There are some special cases (see Assembler::IsBranch()) so extending this 6065 // would be tricky. 6066 DCHECK(opcode == BEQ || 6067 opcode == BNE || 6068 opcode == BLEZ || 6069 opcode == BGTZ || 6070 opcode == BEQL || 6071 opcode == BNEL || 6072 opcode == BLEZL || 6073 opcode == BGTZL); 6074 opcode = (cond == eq) ? BEQ : BNE; 6075 instr = (instr & ~kOpcodeMask) | opcode; 6076 masm_.emit(instr); 6077 } 6078 6079 6080 void MacroAssembler::TruncatingDiv(Register result, 6081 Register dividend, 6082 int32_t divisor) { 6083 DCHECK(!dividend.is(result)); 6084 DCHECK(!dividend.is(at)); 6085 DCHECK(!result.is(at)); 6086 base::MagicNumbersForDivision<uint32_t> mag = 6087 base::SignedDivisionByConstant(static_cast<uint32_t>(divisor)); 6088 li(at, Operand(mag.multiplier)); 6089 Mulh(result, dividend, Operand(at)); 6090 bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0; 6091 if (divisor > 0 && neg) { 6092 Addu(result, result, Operand(dividend)); 6093 } 6094 if (divisor < 0 && !neg && mag.multiplier > 0) { 6095 Subu(result, result, Operand(dividend)); 6096 } 6097 if (mag.shift > 0) sra(result, result, mag.shift); 6098 srl(at, dividend, 31); 6099 Addu(result, result, Operand(at)); 6100 } 6101 6102 6103 } } // namespace v8::internal 6104 6105 #endif // V8_TARGET_ARCH_MIPS 6106