Home | History | Annotate | Download | only in AST
      1 //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements the ASTContext interface.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/ASTContext.h"
     15 #include "CXXABI.h"
     16 #include "clang/AST/ASTMutationListener.h"
     17 #include "clang/AST/Attr.h"
     18 #include "clang/AST/CharUnits.h"
     19 #include "clang/AST/Comment.h"
     20 #include "clang/AST/CommentCommandTraits.h"
     21 #include "clang/AST/DeclCXX.h"
     22 #include "clang/AST/DeclObjC.h"
     23 #include "clang/AST/DeclTemplate.h"
     24 #include "clang/AST/Expr.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/ExternalASTSource.h"
     27 #include "clang/AST/Mangle.h"
     28 #include "clang/AST/MangleNumberingContext.h"
     29 #include "clang/AST/RecordLayout.h"
     30 #include "clang/AST/RecursiveASTVisitor.h"
     31 #include "clang/AST/TypeLoc.h"
     32 #include "clang/AST/VTableBuilder.h"
     33 #include "clang/Basic/Builtins.h"
     34 #include "clang/Basic/SourceManager.h"
     35 #include "clang/Basic/TargetInfo.h"
     36 #include "llvm/ADT/SmallString.h"
     37 #include "llvm/ADT/StringExtras.h"
     38 #include "llvm/ADT/Triple.h"
     39 #include "llvm/Support/Capacity.h"
     40 #include "llvm/Support/MathExtras.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include <map>
     43 
     44 using namespace clang;
     45 
     46 unsigned ASTContext::NumImplicitDefaultConstructors;
     47 unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
     48 unsigned ASTContext::NumImplicitCopyConstructors;
     49 unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
     50 unsigned ASTContext::NumImplicitMoveConstructors;
     51 unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
     52 unsigned ASTContext::NumImplicitCopyAssignmentOperators;
     53 unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
     54 unsigned ASTContext::NumImplicitMoveAssignmentOperators;
     55 unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
     56 unsigned ASTContext::NumImplicitDestructors;
     57 unsigned ASTContext::NumImplicitDestructorsDeclared;
     58 
     59 enum FloatingRank {
     60   HalfRank, FloatRank, DoubleRank, LongDoubleRank
     61 };
     62 
     63 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
     64   if (!CommentsLoaded && ExternalSource) {
     65     ExternalSource->ReadComments();
     66 
     67 #ifndef NDEBUG
     68     ArrayRef<RawComment *> RawComments = Comments.getComments();
     69     assert(std::is_sorted(RawComments.begin(), RawComments.end(),
     70                           BeforeThanCompare<RawComment>(SourceMgr)));
     71 #endif
     72 
     73     CommentsLoaded = true;
     74   }
     75 
     76   assert(D);
     77 
     78   // User can not attach documentation to implicit declarations.
     79   if (D->isImplicit())
     80     return nullptr;
     81 
     82   // User can not attach documentation to implicit instantiations.
     83   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
     84     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
     85       return nullptr;
     86   }
     87 
     88   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
     89     if (VD->isStaticDataMember() &&
     90         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
     91       return nullptr;
     92   }
     93 
     94   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
     95     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
     96       return nullptr;
     97   }
     98 
     99   if (const ClassTemplateSpecializationDecl *CTSD =
    100           dyn_cast<ClassTemplateSpecializationDecl>(D)) {
    101     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
    102     if (TSK == TSK_ImplicitInstantiation ||
    103         TSK == TSK_Undeclared)
    104       return nullptr;
    105   }
    106 
    107   if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
    108     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
    109       return nullptr;
    110   }
    111   if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
    112     // When tag declaration (but not definition!) is part of the
    113     // decl-specifier-seq of some other declaration, it doesn't get comment
    114     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
    115       return nullptr;
    116   }
    117   // TODO: handle comments for function parameters properly.
    118   if (isa<ParmVarDecl>(D))
    119     return nullptr;
    120 
    121   // TODO: we could look up template parameter documentation in the template
    122   // documentation.
    123   if (isa<TemplateTypeParmDecl>(D) ||
    124       isa<NonTypeTemplateParmDecl>(D) ||
    125       isa<TemplateTemplateParmDecl>(D))
    126     return nullptr;
    127 
    128   ArrayRef<RawComment *> RawComments = Comments.getComments();
    129 
    130   // If there are no comments anywhere, we won't find anything.
    131   if (RawComments.empty())
    132     return nullptr;
    133 
    134   // Find declaration location.
    135   // For Objective-C declarations we generally don't expect to have multiple
    136   // declarators, thus use declaration starting location as the "declaration
    137   // location".
    138   // For all other declarations multiple declarators are used quite frequently,
    139   // so we use the location of the identifier as the "declaration location".
    140   SourceLocation DeclLoc;
    141   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
    142       isa<ObjCPropertyDecl>(D) ||
    143       isa<RedeclarableTemplateDecl>(D) ||
    144       isa<ClassTemplateSpecializationDecl>(D))
    145     DeclLoc = D->getLocStart();
    146   else {
    147     DeclLoc = D->getLocation();
    148     if (DeclLoc.isMacroID()) {
    149       if (isa<TypedefDecl>(D)) {
    150         // If location of the typedef name is in a macro, it is because being
    151         // declared via a macro. Try using declaration's starting location as
    152         // the "declaration location".
    153         DeclLoc = D->getLocStart();
    154       } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
    155         // If location of the tag decl is inside a macro, but the spelling of
    156         // the tag name comes from a macro argument, it looks like a special
    157         // macro like NS_ENUM is being used to define the tag decl.  In that
    158         // case, adjust the source location to the expansion loc so that we can
    159         // attach the comment to the tag decl.
    160         if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
    161             TD->isCompleteDefinition())
    162           DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
    163       }
    164     }
    165   }
    166 
    167   // If the declaration doesn't map directly to a location in a file, we
    168   // can't find the comment.
    169   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
    170     return nullptr;
    171 
    172   // Find the comment that occurs just after this declaration.
    173   ArrayRef<RawComment *>::iterator Comment;
    174   {
    175     // When searching for comments during parsing, the comment we are looking
    176     // for is usually among the last two comments we parsed -- check them
    177     // first.
    178     RawComment CommentAtDeclLoc(
    179         SourceMgr, SourceRange(DeclLoc), false,
    180         LangOpts.CommentOpts.ParseAllComments);
    181     BeforeThanCompare<RawComment> Compare(SourceMgr);
    182     ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
    183     bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
    184     if (!Found && RawComments.size() >= 2) {
    185       MaybeBeforeDecl--;
    186       Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
    187     }
    188 
    189     if (Found) {
    190       Comment = MaybeBeforeDecl + 1;
    191       assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
    192                                          &CommentAtDeclLoc, Compare));
    193     } else {
    194       // Slow path.
    195       Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
    196                                  &CommentAtDeclLoc, Compare);
    197     }
    198   }
    199 
    200   // Decompose the location for the declaration and find the beginning of the
    201   // file buffer.
    202   std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
    203 
    204   // First check whether we have a trailing comment.
    205   if (Comment != RawComments.end() &&
    206       (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
    207       (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
    208        isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
    209     std::pair<FileID, unsigned> CommentBeginDecomp
    210       = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
    211     // Check that Doxygen trailing comment comes after the declaration, starts
    212     // on the same line and in the same file as the declaration.
    213     if (DeclLocDecomp.first == CommentBeginDecomp.first &&
    214         SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
    215           == SourceMgr.getLineNumber(CommentBeginDecomp.first,
    216                                      CommentBeginDecomp.second)) {
    217       return *Comment;
    218     }
    219   }
    220 
    221   // The comment just after the declaration was not a trailing comment.
    222   // Let's look at the previous comment.
    223   if (Comment == RawComments.begin())
    224     return nullptr;
    225   --Comment;
    226 
    227   // Check that we actually have a non-member Doxygen comment.
    228   if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
    229     return nullptr;
    230 
    231   // Decompose the end of the comment.
    232   std::pair<FileID, unsigned> CommentEndDecomp
    233     = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
    234 
    235   // If the comment and the declaration aren't in the same file, then they
    236   // aren't related.
    237   if (DeclLocDecomp.first != CommentEndDecomp.first)
    238     return nullptr;
    239 
    240   // Get the corresponding buffer.
    241   bool Invalid = false;
    242   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
    243                                                &Invalid).data();
    244   if (Invalid)
    245     return nullptr;
    246 
    247   // Extract text between the comment and declaration.
    248   StringRef Text(Buffer + CommentEndDecomp.second,
    249                  DeclLocDecomp.second - CommentEndDecomp.second);
    250 
    251   // There should be no other declarations or preprocessor directives between
    252   // comment and declaration.
    253   if (Text.find_first_of(";{}#@") != StringRef::npos)
    254     return nullptr;
    255 
    256   return *Comment;
    257 }
    258 
    259 namespace {
    260 /// If we have a 'templated' declaration for a template, adjust 'D' to
    261 /// refer to the actual template.
    262 /// If we have an implicit instantiation, adjust 'D' to refer to template.
    263 const Decl *adjustDeclToTemplate(const Decl *D) {
    264   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    265     // Is this function declaration part of a function template?
    266     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
    267       return FTD;
    268 
    269     // Nothing to do if function is not an implicit instantiation.
    270     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
    271       return D;
    272 
    273     // Function is an implicit instantiation of a function template?
    274     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
    275       return FTD;
    276 
    277     // Function is instantiated from a member definition of a class template?
    278     if (const FunctionDecl *MemberDecl =
    279             FD->getInstantiatedFromMemberFunction())
    280       return MemberDecl;
    281 
    282     return D;
    283   }
    284   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    285     // Static data member is instantiated from a member definition of a class
    286     // template?
    287     if (VD->isStaticDataMember())
    288       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
    289         return MemberDecl;
    290 
    291     return D;
    292   }
    293   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
    294     // Is this class declaration part of a class template?
    295     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
    296       return CTD;
    297 
    298     // Class is an implicit instantiation of a class template or partial
    299     // specialization?
    300     if (const ClassTemplateSpecializationDecl *CTSD =
    301             dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
    302       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
    303         return D;
    304       llvm::PointerUnion<ClassTemplateDecl *,
    305                          ClassTemplatePartialSpecializationDecl *>
    306           PU = CTSD->getSpecializedTemplateOrPartial();
    307       return PU.is<ClassTemplateDecl*>() ?
    308           static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
    309           static_cast<const Decl*>(
    310               PU.get<ClassTemplatePartialSpecializationDecl *>());
    311     }
    312 
    313     // Class is instantiated from a member definition of a class template?
    314     if (const MemberSpecializationInfo *Info =
    315                    CRD->getMemberSpecializationInfo())
    316       return Info->getInstantiatedFrom();
    317 
    318     return D;
    319   }
    320   if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
    321     // Enum is instantiated from a member definition of a class template?
    322     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
    323       return MemberDecl;
    324 
    325     return D;
    326   }
    327   // FIXME: Adjust alias templates?
    328   return D;
    329 }
    330 } // unnamed namespace
    331 
    332 const RawComment *ASTContext::getRawCommentForAnyRedecl(
    333                                                 const Decl *D,
    334                                                 const Decl **OriginalDecl) const {
    335   D = adjustDeclToTemplate(D);
    336 
    337   // Check whether we have cached a comment for this declaration already.
    338   {
    339     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
    340         RedeclComments.find(D);
    341     if (Pos != RedeclComments.end()) {
    342       const RawCommentAndCacheFlags &Raw = Pos->second;
    343       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
    344         if (OriginalDecl)
    345           *OriginalDecl = Raw.getOriginalDecl();
    346         return Raw.getRaw();
    347       }
    348     }
    349   }
    350 
    351   // Search for comments attached to declarations in the redeclaration chain.
    352   const RawComment *RC = nullptr;
    353   const Decl *OriginalDeclForRC = nullptr;
    354   for (auto I : D->redecls()) {
    355     llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
    356         RedeclComments.find(I);
    357     if (Pos != RedeclComments.end()) {
    358       const RawCommentAndCacheFlags &Raw = Pos->second;
    359       if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
    360         RC = Raw.getRaw();
    361         OriginalDeclForRC = Raw.getOriginalDecl();
    362         break;
    363       }
    364     } else {
    365       RC = getRawCommentForDeclNoCache(I);
    366       OriginalDeclForRC = I;
    367       RawCommentAndCacheFlags Raw;
    368       if (RC) {
    369         Raw.setRaw(RC);
    370         Raw.setKind(RawCommentAndCacheFlags::FromDecl);
    371       } else
    372         Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
    373       Raw.setOriginalDecl(I);
    374       RedeclComments[I] = Raw;
    375       if (RC)
    376         break;
    377     }
    378   }
    379 
    380   // If we found a comment, it should be a documentation comment.
    381   assert(!RC || RC->isDocumentation());
    382 
    383   if (OriginalDecl)
    384     *OriginalDecl = OriginalDeclForRC;
    385 
    386   // Update cache for every declaration in the redeclaration chain.
    387   RawCommentAndCacheFlags Raw;
    388   Raw.setRaw(RC);
    389   Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
    390   Raw.setOriginalDecl(OriginalDeclForRC);
    391 
    392   for (auto I : D->redecls()) {
    393     RawCommentAndCacheFlags &R = RedeclComments[I];
    394     if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
    395       R = Raw;
    396   }
    397 
    398   return RC;
    399 }
    400 
    401 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
    402                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
    403   const DeclContext *DC = ObjCMethod->getDeclContext();
    404   if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
    405     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
    406     if (!ID)
    407       return;
    408     // Add redeclared method here.
    409     for (const auto *Ext : ID->known_extensions()) {
    410       if (ObjCMethodDecl *RedeclaredMethod =
    411             Ext->getMethod(ObjCMethod->getSelector(),
    412                                   ObjCMethod->isInstanceMethod()))
    413         Redeclared.push_back(RedeclaredMethod);
    414     }
    415   }
    416 }
    417 
    418 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
    419                                                     const Decl *D) const {
    420   comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
    421   ThisDeclInfo->CommentDecl = D;
    422   ThisDeclInfo->IsFilled = false;
    423   ThisDeclInfo->fill();
    424   ThisDeclInfo->CommentDecl = FC->getDecl();
    425   if (!ThisDeclInfo->TemplateParameters)
    426     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
    427   comments::FullComment *CFC =
    428     new (*this) comments::FullComment(FC->getBlocks(),
    429                                       ThisDeclInfo);
    430   return CFC;
    431 
    432 }
    433 
    434 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
    435   const RawComment *RC = getRawCommentForDeclNoCache(D);
    436   return RC ? RC->parse(*this, nullptr, D) : nullptr;
    437 }
    438 
    439 comments::FullComment *ASTContext::getCommentForDecl(
    440                                               const Decl *D,
    441                                               const Preprocessor *PP) const {
    442   if (D->isInvalidDecl())
    443     return nullptr;
    444   D = adjustDeclToTemplate(D);
    445 
    446   const Decl *Canonical = D->getCanonicalDecl();
    447   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
    448       ParsedComments.find(Canonical);
    449 
    450   if (Pos != ParsedComments.end()) {
    451     if (Canonical != D) {
    452       comments::FullComment *FC = Pos->second;
    453       comments::FullComment *CFC = cloneFullComment(FC, D);
    454       return CFC;
    455     }
    456     return Pos->second;
    457   }
    458 
    459   const Decl *OriginalDecl;
    460 
    461   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
    462   if (!RC) {
    463     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
    464       SmallVector<const NamedDecl*, 8> Overridden;
    465       const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
    466       if (OMD && OMD->isPropertyAccessor())
    467         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
    468           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
    469             return cloneFullComment(FC, D);
    470       if (OMD)
    471         addRedeclaredMethods(OMD, Overridden);
    472       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
    473       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
    474         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
    475           return cloneFullComment(FC, D);
    476     }
    477     else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
    478       // Attach any tag type's documentation to its typedef if latter
    479       // does not have one of its own.
    480       QualType QT = TD->getUnderlyingType();
    481       if (const TagType *TT = QT->getAs<TagType>())
    482         if (const Decl *TD = TT->getDecl())
    483           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
    484             return cloneFullComment(FC, D);
    485     }
    486     else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
    487       while (IC->getSuperClass()) {
    488         IC = IC->getSuperClass();
    489         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
    490           return cloneFullComment(FC, D);
    491       }
    492     }
    493     else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
    494       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
    495         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
    496           return cloneFullComment(FC, D);
    497     }
    498     else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
    499       if (!(RD = RD->getDefinition()))
    500         return nullptr;
    501       // Check non-virtual bases.
    502       for (const auto &I : RD->bases()) {
    503         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
    504           continue;
    505         QualType Ty = I.getType();
    506         if (Ty.isNull())
    507           continue;
    508         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
    509           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
    510             continue;
    511 
    512           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
    513             return cloneFullComment(FC, D);
    514         }
    515       }
    516       // Check virtual bases.
    517       for (const auto &I : RD->vbases()) {
    518         if (I.getAccessSpecifier() != AS_public)
    519           continue;
    520         QualType Ty = I.getType();
    521         if (Ty.isNull())
    522           continue;
    523         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
    524           if (!(VirtualBase= VirtualBase->getDefinition()))
    525             continue;
    526           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
    527             return cloneFullComment(FC, D);
    528         }
    529       }
    530     }
    531     return nullptr;
    532   }
    533 
    534   // If the RawComment was attached to other redeclaration of this Decl, we
    535   // should parse the comment in context of that other Decl.  This is important
    536   // because comments can contain references to parameter names which can be
    537   // different across redeclarations.
    538   if (D != OriginalDecl)
    539     return getCommentForDecl(OriginalDecl, PP);
    540 
    541   comments::FullComment *FC = RC->parse(*this, PP, D);
    542   ParsedComments[Canonical] = FC;
    543   return FC;
    544 }
    545 
    546 void
    547 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
    548                                                TemplateTemplateParmDecl *Parm) {
    549   ID.AddInteger(Parm->getDepth());
    550   ID.AddInteger(Parm->getPosition());
    551   ID.AddBoolean(Parm->isParameterPack());
    552 
    553   TemplateParameterList *Params = Parm->getTemplateParameters();
    554   ID.AddInteger(Params->size());
    555   for (TemplateParameterList::const_iterator P = Params->begin(),
    556                                           PEnd = Params->end();
    557        P != PEnd; ++P) {
    558     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
    559       ID.AddInteger(0);
    560       ID.AddBoolean(TTP->isParameterPack());
    561       continue;
    562     }
    563 
    564     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
    565       ID.AddInteger(1);
    566       ID.AddBoolean(NTTP->isParameterPack());
    567       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
    568       if (NTTP->isExpandedParameterPack()) {
    569         ID.AddBoolean(true);
    570         ID.AddInteger(NTTP->getNumExpansionTypes());
    571         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
    572           QualType T = NTTP->getExpansionType(I);
    573           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
    574         }
    575       } else
    576         ID.AddBoolean(false);
    577       continue;
    578     }
    579 
    580     TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
    581     ID.AddInteger(2);
    582     Profile(ID, TTP);
    583   }
    584 }
    585 
    586 TemplateTemplateParmDecl *
    587 ASTContext::getCanonicalTemplateTemplateParmDecl(
    588                                           TemplateTemplateParmDecl *TTP) const {
    589   // Check if we already have a canonical template template parameter.
    590   llvm::FoldingSetNodeID ID;
    591   CanonicalTemplateTemplateParm::Profile(ID, TTP);
    592   void *InsertPos = nullptr;
    593   CanonicalTemplateTemplateParm *Canonical
    594     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
    595   if (Canonical)
    596     return Canonical->getParam();
    597 
    598   // Build a canonical template parameter list.
    599   TemplateParameterList *Params = TTP->getTemplateParameters();
    600   SmallVector<NamedDecl *, 4> CanonParams;
    601   CanonParams.reserve(Params->size());
    602   for (TemplateParameterList::const_iterator P = Params->begin(),
    603                                           PEnd = Params->end();
    604        P != PEnd; ++P) {
    605     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
    606       CanonParams.push_back(
    607                   TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
    608                                                SourceLocation(),
    609                                                SourceLocation(),
    610                                                TTP->getDepth(),
    611                                                TTP->getIndex(), nullptr, false,
    612                                                TTP->isParameterPack()));
    613     else if (NonTypeTemplateParmDecl *NTTP
    614              = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
    615       QualType T = getCanonicalType(NTTP->getType());
    616       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
    617       NonTypeTemplateParmDecl *Param;
    618       if (NTTP->isExpandedParameterPack()) {
    619         SmallVector<QualType, 2> ExpandedTypes;
    620         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
    621         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
    622           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
    623           ExpandedTInfos.push_back(
    624                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
    625         }
    626 
    627         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
    628                                                 SourceLocation(),
    629                                                 SourceLocation(),
    630                                                 NTTP->getDepth(),
    631                                                 NTTP->getPosition(), nullptr,
    632                                                 T,
    633                                                 TInfo,
    634                                                 ExpandedTypes.data(),
    635                                                 ExpandedTypes.size(),
    636                                                 ExpandedTInfos.data());
    637       } else {
    638         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
    639                                                 SourceLocation(),
    640                                                 SourceLocation(),
    641                                                 NTTP->getDepth(),
    642                                                 NTTP->getPosition(), nullptr,
    643                                                 T,
    644                                                 NTTP->isParameterPack(),
    645                                                 TInfo);
    646       }
    647       CanonParams.push_back(Param);
    648 
    649     } else
    650       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
    651                                            cast<TemplateTemplateParmDecl>(*P)));
    652   }
    653 
    654   TemplateTemplateParmDecl *CanonTTP
    655     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
    656                                        SourceLocation(), TTP->getDepth(),
    657                                        TTP->getPosition(),
    658                                        TTP->isParameterPack(),
    659                                        nullptr,
    660                          TemplateParameterList::Create(*this, SourceLocation(),
    661                                                        SourceLocation(),
    662                                                        CanonParams.data(),
    663                                                        CanonParams.size(),
    664                                                        SourceLocation()));
    665 
    666   // Get the new insert position for the node we care about.
    667   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
    668   assert(!Canonical && "Shouldn't be in the map!");
    669   (void)Canonical;
    670 
    671   // Create the canonical template template parameter entry.
    672   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
    673   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
    674   return CanonTTP;
    675 }
    676 
    677 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
    678   if (!LangOpts.CPlusPlus) return nullptr;
    679 
    680   switch (T.getCXXABI().getKind()) {
    681   case TargetCXXABI::GenericARM: // Same as Itanium at this level
    682   case TargetCXXABI::iOS:
    683   case TargetCXXABI::iOS64:
    684   case TargetCXXABI::GenericAArch64:
    685   case TargetCXXABI::GenericItanium:
    686     return CreateItaniumCXXABI(*this);
    687   case TargetCXXABI::Microsoft:
    688     return CreateMicrosoftCXXABI(*this);
    689   }
    690   llvm_unreachable("Invalid CXXABI type!");
    691 }
    692 
    693 static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
    694                                              const LangOptions &LOpts) {
    695   if (LOpts.FakeAddressSpaceMap) {
    696     // The fake address space map must have a distinct entry for each
    697     // language-specific address space.
    698     static const unsigned FakeAddrSpaceMap[] = {
    699       1, // opencl_global
    700       2, // opencl_local
    701       3, // opencl_constant
    702       4, // cuda_device
    703       5, // cuda_constant
    704       6  // cuda_shared
    705     };
    706     return &FakeAddrSpaceMap;
    707   } else {
    708     return &T.getAddressSpaceMap();
    709   }
    710 }
    711 
    712 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
    713                                           const LangOptions &LangOpts) {
    714   switch (LangOpts.getAddressSpaceMapMangling()) {
    715   case LangOptions::ASMM_Target:
    716     return TI.useAddressSpaceMapMangling();
    717   case LangOptions::ASMM_On:
    718     return true;
    719   case LangOptions::ASMM_Off:
    720     return false;
    721   }
    722   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
    723 }
    724 
    725 ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
    726                        IdentifierTable &idents, SelectorTable &sels,
    727                        Builtin::Context &builtins)
    728   : FunctionProtoTypes(this_()),
    729     TemplateSpecializationTypes(this_()),
    730     DependentTemplateSpecializationTypes(this_()),
    731     SubstTemplateTemplateParmPacks(this_()),
    732     GlobalNestedNameSpecifier(nullptr),
    733     Int128Decl(nullptr), UInt128Decl(nullptr), Float128StubDecl(nullptr),
    734     BuiltinVaListDecl(nullptr),
    735     ObjCIdDecl(nullptr), ObjCSelDecl(nullptr), ObjCClassDecl(nullptr),
    736     ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr),
    737     CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr),
    738     FILEDecl(nullptr),
    739     jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr), ucontext_tDecl(nullptr),
    740     BlockDescriptorType(nullptr), BlockDescriptorExtendedType(nullptr),
    741     cudaConfigureCallDecl(nullptr),
    742     NullTypeSourceInfo(QualType()),
    743     FirstLocalImport(), LastLocalImport(),
    744     SourceMgr(SM), LangOpts(LOpts),
    745     AddrSpaceMap(nullptr), Target(nullptr), PrintingPolicy(LOpts),
    746     Idents(idents), Selectors(sels),
    747     BuiltinInfo(builtins),
    748     DeclarationNames(*this),
    749     ExternalSource(nullptr), Listener(nullptr),
    750     Comments(SM), CommentsLoaded(false),
    751     CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
    752     LastSDM(nullptr, 0)
    753 {
    754   TUDecl = TranslationUnitDecl::Create(*this);
    755 }
    756 
    757 ASTContext::~ASTContext() {
    758   ReleaseParentMapEntries();
    759 
    760   // Release the DenseMaps associated with DeclContext objects.
    761   // FIXME: Is this the ideal solution?
    762   ReleaseDeclContextMaps();
    763 
    764   // Call all of the deallocation functions on all of their targets.
    765   for (DeallocationMap::const_iterator I = Deallocations.begin(),
    766            E = Deallocations.end(); I != E; ++I)
    767     for (unsigned J = 0, N = I->second.size(); J != N; ++J)
    768       (I->first)((I->second)[J]);
    769 
    770   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
    771   // because they can contain DenseMaps.
    772   for (llvm::DenseMap<const ObjCContainerDecl*,
    773        const ASTRecordLayout*>::iterator
    774        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
    775     // Increment in loop to prevent using deallocated memory.
    776     if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
    777       R->Destroy(*this);
    778 
    779   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
    780        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
    781     // Increment in loop to prevent using deallocated memory.
    782     if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
    783       R->Destroy(*this);
    784   }
    785 
    786   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
    787                                                     AEnd = DeclAttrs.end();
    788        A != AEnd; ++A)
    789     A->second->~AttrVec();
    790 
    791   llvm::DeleteContainerSeconds(MangleNumberingContexts);
    792 }
    793 
    794 void ASTContext::ReleaseParentMapEntries() {
    795   if (!AllParents) return;
    796   for (const auto &Entry : *AllParents) {
    797     if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
    798       delete Entry.second.get<ast_type_traits::DynTypedNode *>();
    799     } else {
    800       assert(Entry.second.is<ParentVector *>());
    801       delete Entry.second.get<ParentVector *>();
    802     }
    803   }
    804 }
    805 
    806 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
    807   Deallocations[Callback].push_back(Data);
    808 }
    809 
    810 void
    811 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
    812   ExternalSource = Source;
    813 }
    814 
    815 void ASTContext::PrintStats() const {
    816   llvm::errs() << "\n*** AST Context Stats:\n";
    817   llvm::errs() << "  " << Types.size() << " types total.\n";
    818 
    819   unsigned counts[] = {
    820 #define TYPE(Name, Parent) 0,
    821 #define ABSTRACT_TYPE(Name, Parent)
    822 #include "clang/AST/TypeNodes.def"
    823     0 // Extra
    824   };
    825 
    826   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
    827     Type *T = Types[i];
    828     counts[(unsigned)T->getTypeClass()]++;
    829   }
    830 
    831   unsigned Idx = 0;
    832   unsigned TotalBytes = 0;
    833 #define TYPE(Name, Parent)                                              \
    834   if (counts[Idx])                                                      \
    835     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
    836                  << " types\n";                                         \
    837   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
    838   ++Idx;
    839 #define ABSTRACT_TYPE(Name, Parent)
    840 #include "clang/AST/TypeNodes.def"
    841 
    842   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
    843 
    844   // Implicit special member functions.
    845   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
    846                << NumImplicitDefaultConstructors
    847                << " implicit default constructors created\n";
    848   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
    849                << NumImplicitCopyConstructors
    850                << " implicit copy constructors created\n";
    851   if (getLangOpts().CPlusPlus)
    852     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
    853                  << NumImplicitMoveConstructors
    854                  << " implicit move constructors created\n";
    855   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
    856                << NumImplicitCopyAssignmentOperators
    857                << " implicit copy assignment operators created\n";
    858   if (getLangOpts().CPlusPlus)
    859     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
    860                  << NumImplicitMoveAssignmentOperators
    861                  << " implicit move assignment operators created\n";
    862   llvm::errs() << NumImplicitDestructorsDeclared << "/"
    863                << NumImplicitDestructors
    864                << " implicit destructors created\n";
    865 
    866   if (ExternalSource) {
    867     llvm::errs() << "\n";
    868     ExternalSource->PrintStats();
    869   }
    870 
    871   BumpAlloc.PrintStats();
    872 }
    873 
    874 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
    875                                             RecordDecl::TagKind TK) const {
    876   SourceLocation Loc;
    877   RecordDecl *NewDecl;
    878   if (getLangOpts().CPlusPlus)
    879     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
    880                                     Loc, &Idents.get(Name));
    881   else
    882     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
    883                                  &Idents.get(Name));
    884   NewDecl->setImplicit();
    885   return NewDecl;
    886 }
    887 
    888 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
    889                                               StringRef Name) const {
    890   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
    891   TypedefDecl *NewDecl = TypedefDecl::Create(
    892       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
    893       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
    894   NewDecl->setImplicit();
    895   return NewDecl;
    896 }
    897 
    898 TypedefDecl *ASTContext::getInt128Decl() const {
    899   if (!Int128Decl)
    900     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
    901   return Int128Decl;
    902 }
    903 
    904 TypedefDecl *ASTContext::getUInt128Decl() const {
    905   if (!UInt128Decl)
    906     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
    907   return UInt128Decl;
    908 }
    909 
    910 TypeDecl *ASTContext::getFloat128StubType() const {
    911   assert(LangOpts.CPlusPlus && "should only be called for c++");
    912   if (!Float128StubDecl)
    913     Float128StubDecl = buildImplicitRecord("__float128");
    914 
    915   return Float128StubDecl;
    916 }
    917 
    918 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
    919   BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
    920   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
    921   Types.push_back(Ty);
    922 }
    923 
    924 void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
    925   assert((!this->Target || this->Target == &Target) &&
    926          "Incorrect target reinitialization");
    927   assert(VoidTy.isNull() && "Context reinitialized?");
    928 
    929   this->Target = &Target;
    930 
    931   ABI.reset(createCXXABI(Target));
    932   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
    933   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
    934 
    935   // C99 6.2.5p19.
    936   InitBuiltinType(VoidTy,              BuiltinType::Void);
    937 
    938   // C99 6.2.5p2.
    939   InitBuiltinType(BoolTy,              BuiltinType::Bool);
    940   // C99 6.2.5p3.
    941   if (LangOpts.CharIsSigned)
    942     InitBuiltinType(CharTy,            BuiltinType::Char_S);
    943   else
    944     InitBuiltinType(CharTy,            BuiltinType::Char_U);
    945   // C99 6.2.5p4.
    946   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
    947   InitBuiltinType(ShortTy,             BuiltinType::Short);
    948   InitBuiltinType(IntTy,               BuiltinType::Int);
    949   InitBuiltinType(LongTy,              BuiltinType::Long);
    950   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
    951 
    952   // C99 6.2.5p6.
    953   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
    954   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
    955   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
    956   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
    957   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
    958 
    959   // C99 6.2.5p10.
    960   InitBuiltinType(FloatTy,             BuiltinType::Float);
    961   InitBuiltinType(DoubleTy,            BuiltinType::Double);
    962   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
    963 
    964   // GNU extension, 128-bit integers.
    965   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
    966   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
    967 
    968   // C++ 3.9.1p5
    969   if (TargetInfo::isTypeSigned(Target.getWCharType()))
    970     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
    971   else  // -fshort-wchar makes wchar_t be unsigned.
    972     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
    973   if (LangOpts.CPlusPlus && LangOpts.WChar)
    974     WideCharTy = WCharTy;
    975   else {
    976     // C99 (or C++ using -fno-wchar).
    977     WideCharTy = getFromTargetType(Target.getWCharType());
    978   }
    979 
    980   WIntTy = getFromTargetType(Target.getWIntType());
    981 
    982   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
    983     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
    984   else // C99
    985     Char16Ty = getFromTargetType(Target.getChar16Type());
    986 
    987   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
    988     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
    989   else // C99
    990     Char32Ty = getFromTargetType(Target.getChar32Type());
    991 
    992   // Placeholder type for type-dependent expressions whose type is
    993   // completely unknown. No code should ever check a type against
    994   // DependentTy and users should never see it; however, it is here to
    995   // help diagnose failures to properly check for type-dependent
    996   // expressions.
    997   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
    998 
    999   // Placeholder type for functions.
   1000   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
   1001 
   1002   // Placeholder type for bound members.
   1003   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
   1004 
   1005   // Placeholder type for pseudo-objects.
   1006   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
   1007 
   1008   // "any" type; useful for debugger-like clients.
   1009   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
   1010 
   1011   // Placeholder type for unbridged ARC casts.
   1012   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
   1013 
   1014   // Placeholder type for builtin functions.
   1015   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
   1016 
   1017   // C99 6.2.5p11.
   1018   FloatComplexTy      = getComplexType(FloatTy);
   1019   DoubleComplexTy     = getComplexType(DoubleTy);
   1020   LongDoubleComplexTy = getComplexType(LongDoubleTy);
   1021 
   1022   // Builtin types for 'id', 'Class', and 'SEL'.
   1023   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
   1024   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
   1025   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
   1026 
   1027   if (LangOpts.OpenCL) {
   1028     InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
   1029     InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
   1030     InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
   1031     InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
   1032     InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
   1033     InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
   1034 
   1035     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
   1036     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
   1037   }
   1038 
   1039   // Builtin type for __objc_yes and __objc_no
   1040   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
   1041                        SignedCharTy : BoolTy);
   1042 
   1043   ObjCConstantStringType = QualType();
   1044 
   1045   ObjCSuperType = QualType();
   1046 
   1047   // void * type
   1048   VoidPtrTy = getPointerType(VoidTy);
   1049 
   1050   // nullptr type (C++0x 2.14.7)
   1051   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
   1052 
   1053   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
   1054   InitBuiltinType(HalfTy, BuiltinType::Half);
   1055 
   1056   // Builtin type used to help define __builtin_va_list.
   1057   VaListTagTy = QualType();
   1058 }
   1059 
   1060 DiagnosticsEngine &ASTContext::getDiagnostics() const {
   1061   return SourceMgr.getDiagnostics();
   1062 }
   1063 
   1064 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
   1065   AttrVec *&Result = DeclAttrs[D];
   1066   if (!Result) {
   1067     void *Mem = Allocate(sizeof(AttrVec));
   1068     Result = new (Mem) AttrVec;
   1069   }
   1070 
   1071   return *Result;
   1072 }
   1073 
   1074 /// \brief Erase the attributes corresponding to the given declaration.
   1075 void ASTContext::eraseDeclAttrs(const Decl *D) {
   1076   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
   1077   if (Pos != DeclAttrs.end()) {
   1078     Pos->second->~AttrVec();
   1079     DeclAttrs.erase(Pos);
   1080   }
   1081 }
   1082 
   1083 // FIXME: Remove ?
   1084 MemberSpecializationInfo *
   1085 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
   1086   assert(Var->isStaticDataMember() && "Not a static data member");
   1087   return getTemplateOrSpecializationInfo(Var)
   1088       .dyn_cast<MemberSpecializationInfo *>();
   1089 }
   1090 
   1091 ASTContext::TemplateOrSpecializationInfo
   1092 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
   1093   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
   1094       TemplateOrInstantiation.find(Var);
   1095   if (Pos == TemplateOrInstantiation.end())
   1096     return TemplateOrSpecializationInfo();
   1097 
   1098   return Pos->second;
   1099 }
   1100 
   1101 void
   1102 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
   1103                                                 TemplateSpecializationKind TSK,
   1104                                           SourceLocation PointOfInstantiation) {
   1105   assert(Inst->isStaticDataMember() && "Not a static data member");
   1106   assert(Tmpl->isStaticDataMember() && "Not a static data member");
   1107   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
   1108                                             Tmpl, TSK, PointOfInstantiation));
   1109 }
   1110 
   1111 void
   1112 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
   1113                                             TemplateOrSpecializationInfo TSI) {
   1114   assert(!TemplateOrInstantiation[Inst] &&
   1115          "Already noted what the variable was instantiated from");
   1116   TemplateOrInstantiation[Inst] = TSI;
   1117 }
   1118 
   1119 FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
   1120                                                      const FunctionDecl *FD){
   1121   assert(FD && "Specialization is 0");
   1122   llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
   1123     = ClassScopeSpecializationPattern.find(FD);
   1124   if (Pos == ClassScopeSpecializationPattern.end())
   1125     return nullptr;
   1126 
   1127   return Pos->second;
   1128 }
   1129 
   1130 void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
   1131                                         FunctionDecl *Pattern) {
   1132   assert(FD && "Specialization is 0");
   1133   assert(Pattern && "Class scope specialization pattern is 0");
   1134   ClassScopeSpecializationPattern[FD] = Pattern;
   1135 }
   1136 
   1137 NamedDecl *
   1138 ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
   1139   llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
   1140     = InstantiatedFromUsingDecl.find(UUD);
   1141   if (Pos == InstantiatedFromUsingDecl.end())
   1142     return nullptr;
   1143 
   1144   return Pos->second;
   1145 }
   1146 
   1147 void
   1148 ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
   1149   assert((isa<UsingDecl>(Pattern) ||
   1150           isa<UnresolvedUsingValueDecl>(Pattern) ||
   1151           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
   1152          "pattern decl is not a using decl");
   1153   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
   1154   InstantiatedFromUsingDecl[Inst] = Pattern;
   1155 }
   1156 
   1157 UsingShadowDecl *
   1158 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
   1159   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
   1160     = InstantiatedFromUsingShadowDecl.find(Inst);
   1161   if (Pos == InstantiatedFromUsingShadowDecl.end())
   1162     return nullptr;
   1163 
   1164   return Pos->second;
   1165 }
   1166 
   1167 void
   1168 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
   1169                                                UsingShadowDecl *Pattern) {
   1170   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
   1171   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
   1172 }
   1173 
   1174 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
   1175   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
   1176     = InstantiatedFromUnnamedFieldDecl.find(Field);
   1177   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
   1178     return nullptr;
   1179 
   1180   return Pos->second;
   1181 }
   1182 
   1183 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
   1184                                                      FieldDecl *Tmpl) {
   1185   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
   1186   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
   1187   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
   1188          "Already noted what unnamed field was instantiated from");
   1189 
   1190   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
   1191 }
   1192 
   1193 ASTContext::overridden_cxx_method_iterator
   1194 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
   1195   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
   1196     = OverriddenMethods.find(Method->getCanonicalDecl());
   1197   if (Pos == OverriddenMethods.end())
   1198     return nullptr;
   1199 
   1200   return Pos->second.begin();
   1201 }
   1202 
   1203 ASTContext::overridden_cxx_method_iterator
   1204 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
   1205   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
   1206     = OverriddenMethods.find(Method->getCanonicalDecl());
   1207   if (Pos == OverriddenMethods.end())
   1208     return nullptr;
   1209 
   1210   return Pos->second.end();
   1211 }
   1212 
   1213 unsigned
   1214 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
   1215   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
   1216     = OverriddenMethods.find(Method->getCanonicalDecl());
   1217   if (Pos == OverriddenMethods.end())
   1218     return 0;
   1219 
   1220   return Pos->second.size();
   1221 }
   1222 
   1223 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
   1224                                      const CXXMethodDecl *Overridden) {
   1225   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
   1226   OverriddenMethods[Method].push_back(Overridden);
   1227 }
   1228 
   1229 void ASTContext::getOverriddenMethods(
   1230                       const NamedDecl *D,
   1231                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
   1232   assert(D);
   1233 
   1234   if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
   1235     Overridden.append(overridden_methods_begin(CXXMethod),
   1236                       overridden_methods_end(CXXMethod));
   1237     return;
   1238   }
   1239 
   1240   const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
   1241   if (!Method)
   1242     return;
   1243 
   1244   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
   1245   Method->getOverriddenMethods(OverDecls);
   1246   Overridden.append(OverDecls.begin(), OverDecls.end());
   1247 }
   1248 
   1249 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
   1250   assert(!Import->NextLocalImport && "Import declaration already in the chain");
   1251   assert(!Import->isFromASTFile() && "Non-local import declaration");
   1252   if (!FirstLocalImport) {
   1253     FirstLocalImport = Import;
   1254     LastLocalImport = Import;
   1255     return;
   1256   }
   1257 
   1258   LastLocalImport->NextLocalImport = Import;
   1259   LastLocalImport = Import;
   1260 }
   1261 
   1262 //===----------------------------------------------------------------------===//
   1263 //                         Type Sizing and Analysis
   1264 //===----------------------------------------------------------------------===//
   1265 
   1266 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
   1267 /// scalar floating point type.
   1268 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
   1269   const BuiltinType *BT = T->getAs<BuiltinType>();
   1270   assert(BT && "Not a floating point type!");
   1271   switch (BT->getKind()) {
   1272   default: llvm_unreachable("Not a floating point type!");
   1273   case BuiltinType::Half:       return Target->getHalfFormat();
   1274   case BuiltinType::Float:      return Target->getFloatFormat();
   1275   case BuiltinType::Double:     return Target->getDoubleFormat();
   1276   case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
   1277   }
   1278 }
   1279 
   1280 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
   1281   unsigned Align = Target->getCharWidth();
   1282 
   1283   bool UseAlignAttrOnly = false;
   1284   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
   1285     Align = AlignFromAttr;
   1286 
   1287     // __attribute__((aligned)) can increase or decrease alignment
   1288     // *except* on a struct or struct member, where it only increases
   1289     // alignment unless 'packed' is also specified.
   1290     //
   1291     // It is an error for alignas to decrease alignment, so we can
   1292     // ignore that possibility;  Sema should diagnose it.
   1293     if (isa<FieldDecl>(D)) {
   1294       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
   1295         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
   1296     } else {
   1297       UseAlignAttrOnly = true;
   1298     }
   1299   }
   1300   else if (isa<FieldDecl>(D))
   1301       UseAlignAttrOnly =
   1302         D->hasAttr<PackedAttr>() ||
   1303         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
   1304 
   1305   // If we're using the align attribute only, just ignore everything
   1306   // else about the declaration and its type.
   1307   if (UseAlignAttrOnly) {
   1308     // do nothing
   1309 
   1310   } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
   1311     QualType T = VD->getType();
   1312     if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
   1313       if (ForAlignof)
   1314         T = RT->getPointeeType();
   1315       else
   1316         T = getPointerType(RT->getPointeeType());
   1317     }
   1318     QualType BaseT = getBaseElementType(T);
   1319     if (!BaseT->isIncompleteType() && !T->isFunctionType()) {
   1320       // Adjust alignments of declarations with array type by the
   1321       // large-array alignment on the target.
   1322       if (const ArrayType *arrayType = getAsArrayType(T)) {
   1323         unsigned MinWidth = Target->getLargeArrayMinWidth();
   1324         if (!ForAlignof && MinWidth) {
   1325           if (isa<VariableArrayType>(arrayType))
   1326             Align = std::max(Align, Target->getLargeArrayAlign());
   1327           else if (isa<ConstantArrayType>(arrayType) &&
   1328                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
   1329             Align = std::max(Align, Target->getLargeArrayAlign());
   1330         }
   1331       }
   1332       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
   1333       if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1334         if (VD->hasGlobalStorage())
   1335           Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
   1336       }
   1337     }
   1338 
   1339     // Fields can be subject to extra alignment constraints, like if
   1340     // the field is packed, the struct is packed, or the struct has a
   1341     // a max-field-alignment constraint (#pragma pack).  So calculate
   1342     // the actual alignment of the field within the struct, and then
   1343     // (as we're expected to) constrain that by the alignment of the type.
   1344     if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
   1345       const RecordDecl *Parent = Field->getParent();
   1346       // We can only produce a sensible answer if the record is valid.
   1347       if (!Parent->isInvalidDecl()) {
   1348         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
   1349 
   1350         // Start with the record's overall alignment.
   1351         unsigned FieldAlign = toBits(Layout.getAlignment());
   1352 
   1353         // Use the GCD of that and the offset within the record.
   1354         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
   1355         if (Offset > 0) {
   1356           // Alignment is always a power of 2, so the GCD will be a power of 2,
   1357           // which means we get to do this crazy thing instead of Euclid's.
   1358           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
   1359           if (LowBitOfOffset < FieldAlign)
   1360             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
   1361         }
   1362 
   1363         Align = std::min(Align, FieldAlign);
   1364       }
   1365     }
   1366   }
   1367 
   1368   return toCharUnitsFromBits(Align);
   1369 }
   1370 
   1371 // getTypeInfoDataSizeInChars - Return the size of a type, in
   1372 // chars. If the type is a record, its data size is returned.  This is
   1373 // the size of the memcpy that's performed when assigning this type
   1374 // using a trivial copy/move assignment operator.
   1375 std::pair<CharUnits, CharUnits>
   1376 ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
   1377   std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
   1378 
   1379   // In C++, objects can sometimes be allocated into the tail padding
   1380   // of a base-class subobject.  We decide whether that's possible
   1381   // during class layout, so here we can just trust the layout results.
   1382   if (getLangOpts().CPlusPlus) {
   1383     if (const RecordType *RT = T->getAs<RecordType>()) {
   1384       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
   1385       sizeAndAlign.first = layout.getDataSize();
   1386     }
   1387   }
   1388 
   1389   return sizeAndAlign;
   1390 }
   1391 
   1392 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
   1393 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
   1394 std::pair<CharUnits, CharUnits>
   1395 static getConstantArrayInfoInChars(const ASTContext &Context,
   1396                                    const ConstantArrayType *CAT) {
   1397   std::pair<CharUnits, CharUnits> EltInfo =
   1398       Context.getTypeInfoInChars(CAT->getElementType());
   1399   uint64_t Size = CAT->getSize().getZExtValue();
   1400   assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
   1401               (uint64_t)(-1)/Size) &&
   1402          "Overflow in array type char size evaluation");
   1403   uint64_t Width = EltInfo.first.getQuantity() * Size;
   1404   unsigned Align = EltInfo.second.getQuantity();
   1405   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
   1406       Context.getTargetInfo().getPointerWidth(0) == 64)
   1407     Width = llvm::RoundUpToAlignment(Width, Align);
   1408   return std::make_pair(CharUnits::fromQuantity(Width),
   1409                         CharUnits::fromQuantity(Align));
   1410 }
   1411 
   1412 std::pair<CharUnits, CharUnits>
   1413 ASTContext::getTypeInfoInChars(const Type *T) const {
   1414   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
   1415     return getConstantArrayInfoInChars(*this, CAT);
   1416   std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
   1417   return std::make_pair(toCharUnitsFromBits(Info.first),
   1418                         toCharUnitsFromBits(Info.second));
   1419 }
   1420 
   1421 std::pair<CharUnits, CharUnits>
   1422 ASTContext::getTypeInfoInChars(QualType T) const {
   1423   return getTypeInfoInChars(T.getTypePtr());
   1424 }
   1425 
   1426 std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
   1427   TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
   1428   if (it != MemoizedTypeInfo.end())
   1429     return it->second;
   1430 
   1431   std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
   1432   MemoizedTypeInfo.insert(std::make_pair(T, Info));
   1433   return Info;
   1434 }
   1435 
   1436 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
   1437 /// method does not work on incomplete types.
   1438 ///
   1439 /// FIXME: Pointers into different addr spaces could have different sizes and
   1440 /// alignment requirements: getPointerInfo should take an AddrSpace, this
   1441 /// should take a QualType, &c.
   1442 std::pair<uint64_t, unsigned>
   1443 ASTContext::getTypeInfoImpl(const Type *T) const {
   1444   uint64_t Width=0;
   1445   unsigned Align=8;
   1446   switch (T->getTypeClass()) {
   1447 #define TYPE(Class, Base)
   1448 #define ABSTRACT_TYPE(Class, Base)
   1449 #define NON_CANONICAL_TYPE(Class, Base)
   1450 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   1451 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
   1452   case Type::Class:                                                            \
   1453   assert(!T->isDependentType() && "should not see dependent types here");      \
   1454   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
   1455 #include "clang/AST/TypeNodes.def"
   1456     llvm_unreachable("Should not see dependent types");
   1457 
   1458   case Type::FunctionNoProto:
   1459   case Type::FunctionProto:
   1460     // GCC extension: alignof(function) = 32 bits
   1461     Width = 0;
   1462     Align = 32;
   1463     break;
   1464 
   1465   case Type::IncompleteArray:
   1466   case Type::VariableArray:
   1467     Width = 0;
   1468     Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
   1469     break;
   1470 
   1471   case Type::ConstantArray: {
   1472     const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
   1473 
   1474     std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
   1475     uint64_t Size = CAT->getSize().getZExtValue();
   1476     assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
   1477            "Overflow in array type bit size evaluation");
   1478     Width = EltInfo.first*Size;
   1479     Align = EltInfo.second;
   1480     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
   1481         getTargetInfo().getPointerWidth(0) == 64)
   1482       Width = llvm::RoundUpToAlignment(Width, Align);
   1483     break;
   1484   }
   1485   case Type::ExtVector:
   1486   case Type::Vector: {
   1487     const VectorType *VT = cast<VectorType>(T);
   1488     std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
   1489     Width = EltInfo.first*VT->getNumElements();
   1490     Align = Width;
   1491     // If the alignment is not a power of 2, round up to the next power of 2.
   1492     // This happens for non-power-of-2 length vectors.
   1493     if (Align & (Align-1)) {
   1494       Align = llvm::NextPowerOf2(Align);
   1495       Width = llvm::RoundUpToAlignment(Width, Align);
   1496     }
   1497     // Adjust the alignment based on the target max.
   1498     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
   1499     if (TargetVectorAlign && TargetVectorAlign < Align)
   1500       Align = TargetVectorAlign;
   1501     break;
   1502   }
   1503 
   1504   case Type::Builtin:
   1505     switch (cast<BuiltinType>(T)->getKind()) {
   1506     default: llvm_unreachable("Unknown builtin type!");
   1507     case BuiltinType::Void:
   1508       // GCC extension: alignof(void) = 8 bits.
   1509       Width = 0;
   1510       Align = 8;
   1511       break;
   1512 
   1513     case BuiltinType::Bool:
   1514       Width = Target->getBoolWidth();
   1515       Align = Target->getBoolAlign();
   1516       break;
   1517     case BuiltinType::Char_S:
   1518     case BuiltinType::Char_U:
   1519     case BuiltinType::UChar:
   1520     case BuiltinType::SChar:
   1521       Width = Target->getCharWidth();
   1522       Align = Target->getCharAlign();
   1523       break;
   1524     case BuiltinType::WChar_S:
   1525     case BuiltinType::WChar_U:
   1526       Width = Target->getWCharWidth();
   1527       Align = Target->getWCharAlign();
   1528       break;
   1529     case BuiltinType::Char16:
   1530       Width = Target->getChar16Width();
   1531       Align = Target->getChar16Align();
   1532       break;
   1533     case BuiltinType::Char32:
   1534       Width = Target->getChar32Width();
   1535       Align = Target->getChar32Align();
   1536       break;
   1537     case BuiltinType::UShort:
   1538     case BuiltinType::Short:
   1539       Width = Target->getShortWidth();
   1540       Align = Target->getShortAlign();
   1541       break;
   1542     case BuiltinType::UInt:
   1543     case BuiltinType::Int:
   1544       Width = Target->getIntWidth();
   1545       Align = Target->getIntAlign();
   1546       break;
   1547     case BuiltinType::ULong:
   1548     case BuiltinType::Long:
   1549       Width = Target->getLongWidth();
   1550       Align = Target->getLongAlign();
   1551       break;
   1552     case BuiltinType::ULongLong:
   1553     case BuiltinType::LongLong:
   1554       Width = Target->getLongLongWidth();
   1555       Align = Target->getLongLongAlign();
   1556       break;
   1557     case BuiltinType::Int128:
   1558     case BuiltinType::UInt128:
   1559       Width = 128;
   1560       Align = 128; // int128_t is 128-bit aligned on all targets.
   1561       break;
   1562     case BuiltinType::Half:
   1563       Width = Target->getHalfWidth();
   1564       Align = Target->getHalfAlign();
   1565       break;
   1566     case BuiltinType::Float:
   1567       Width = Target->getFloatWidth();
   1568       Align = Target->getFloatAlign();
   1569       break;
   1570     case BuiltinType::Double:
   1571       Width = Target->getDoubleWidth();
   1572       Align = Target->getDoubleAlign();
   1573       break;
   1574     case BuiltinType::LongDouble:
   1575       Width = Target->getLongDoubleWidth();
   1576       Align = Target->getLongDoubleAlign();
   1577       break;
   1578     case BuiltinType::NullPtr:
   1579       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
   1580       Align = Target->getPointerAlign(0); //   == sizeof(void*)
   1581       break;
   1582     case BuiltinType::ObjCId:
   1583     case BuiltinType::ObjCClass:
   1584     case BuiltinType::ObjCSel:
   1585       Width = Target->getPointerWidth(0);
   1586       Align = Target->getPointerAlign(0);
   1587       break;
   1588     case BuiltinType::OCLSampler:
   1589       // Samplers are modeled as integers.
   1590       Width = Target->getIntWidth();
   1591       Align = Target->getIntAlign();
   1592       break;
   1593     case BuiltinType::OCLEvent:
   1594     case BuiltinType::OCLImage1d:
   1595     case BuiltinType::OCLImage1dArray:
   1596     case BuiltinType::OCLImage1dBuffer:
   1597     case BuiltinType::OCLImage2d:
   1598     case BuiltinType::OCLImage2dArray:
   1599     case BuiltinType::OCLImage3d:
   1600       // Currently these types are pointers to opaque types.
   1601       Width = Target->getPointerWidth(0);
   1602       Align = Target->getPointerAlign(0);
   1603       break;
   1604     }
   1605     break;
   1606   case Type::ObjCObjectPointer:
   1607     Width = Target->getPointerWidth(0);
   1608     Align = Target->getPointerAlign(0);
   1609     break;
   1610   case Type::BlockPointer: {
   1611     unsigned AS = getTargetAddressSpace(
   1612         cast<BlockPointerType>(T)->getPointeeType());
   1613     Width = Target->getPointerWidth(AS);
   1614     Align = Target->getPointerAlign(AS);
   1615     break;
   1616   }
   1617   case Type::LValueReference:
   1618   case Type::RValueReference: {
   1619     // alignof and sizeof should never enter this code path here, so we go
   1620     // the pointer route.
   1621     unsigned AS = getTargetAddressSpace(
   1622         cast<ReferenceType>(T)->getPointeeType());
   1623     Width = Target->getPointerWidth(AS);
   1624     Align = Target->getPointerAlign(AS);
   1625     break;
   1626   }
   1627   case Type::Pointer: {
   1628     unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
   1629     Width = Target->getPointerWidth(AS);
   1630     Align = Target->getPointerAlign(AS);
   1631     break;
   1632   }
   1633   case Type::MemberPointer: {
   1634     const MemberPointerType *MPT = cast<MemberPointerType>(T);
   1635     std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
   1636     break;
   1637   }
   1638   case Type::Complex: {
   1639     // Complex types have the same alignment as their elements, but twice the
   1640     // size.
   1641     std::pair<uint64_t, unsigned> EltInfo =
   1642       getTypeInfo(cast<ComplexType>(T)->getElementType());
   1643     Width = EltInfo.first*2;
   1644     Align = EltInfo.second;
   1645     break;
   1646   }
   1647   case Type::ObjCObject:
   1648     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
   1649   case Type::Adjusted:
   1650   case Type::Decayed:
   1651     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
   1652   case Type::ObjCInterface: {
   1653     const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
   1654     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
   1655     Width = toBits(Layout.getSize());
   1656     Align = toBits(Layout.getAlignment());
   1657     break;
   1658   }
   1659   case Type::Record:
   1660   case Type::Enum: {
   1661     const TagType *TT = cast<TagType>(T);
   1662 
   1663     if (TT->getDecl()->isInvalidDecl()) {
   1664       Width = 8;
   1665       Align = 8;
   1666       break;
   1667     }
   1668 
   1669     if (const EnumType *ET = dyn_cast<EnumType>(TT))
   1670       return getTypeInfo(ET->getDecl()->getIntegerType());
   1671 
   1672     const RecordType *RT = cast<RecordType>(TT);
   1673     const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
   1674     Width = toBits(Layout.getSize());
   1675     Align = toBits(Layout.getAlignment());
   1676     break;
   1677   }
   1678 
   1679   case Type::SubstTemplateTypeParm:
   1680     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
   1681                        getReplacementType().getTypePtr());
   1682 
   1683   case Type::Auto: {
   1684     const AutoType *A = cast<AutoType>(T);
   1685     assert(!A->getDeducedType().isNull() &&
   1686            "cannot request the size of an undeduced or dependent auto type");
   1687     return getTypeInfo(A->getDeducedType().getTypePtr());
   1688   }
   1689 
   1690   case Type::Paren:
   1691     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
   1692 
   1693   case Type::Typedef: {
   1694     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
   1695     std::pair<uint64_t, unsigned> Info
   1696       = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
   1697     // If the typedef has an aligned attribute on it, it overrides any computed
   1698     // alignment we have.  This violates the GCC documentation (which says that
   1699     // attribute(aligned) can only round up) but matches its implementation.
   1700     if (unsigned AttrAlign = Typedef->getMaxAlignment())
   1701       Align = AttrAlign;
   1702     else
   1703       Align = Info.second;
   1704     Width = Info.first;
   1705     break;
   1706   }
   1707 
   1708   case Type::Elaborated:
   1709     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
   1710 
   1711   case Type::Attributed:
   1712     return getTypeInfo(
   1713                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
   1714 
   1715   case Type::Atomic: {
   1716     // Start with the base type information.
   1717     std::pair<uint64_t, unsigned> Info
   1718       = getTypeInfo(cast<AtomicType>(T)->getValueType());
   1719     Width = Info.first;
   1720     Align = Info.second;
   1721 
   1722     // If the size of the type doesn't exceed the platform's max
   1723     // atomic promotion width, make the size and alignment more
   1724     // favorable to atomic operations:
   1725     if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
   1726       // Round the size up to a power of 2.
   1727       if (!llvm::isPowerOf2_64(Width))
   1728         Width = llvm::NextPowerOf2(Width);
   1729 
   1730       // Set the alignment equal to the size.
   1731       Align = static_cast<unsigned>(Width);
   1732     }
   1733   }
   1734 
   1735   }
   1736 
   1737   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
   1738   return std::make_pair(Width, Align);
   1739 }
   1740 
   1741 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
   1742 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
   1743   return CharUnits::fromQuantity(BitSize / getCharWidth());
   1744 }
   1745 
   1746 /// toBits - Convert a size in characters to a size in characters.
   1747 int64_t ASTContext::toBits(CharUnits CharSize) const {
   1748   return CharSize.getQuantity() * getCharWidth();
   1749 }
   1750 
   1751 /// getTypeSizeInChars - Return the size of the specified type, in characters.
   1752 /// This method does not work on incomplete types.
   1753 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
   1754   return getTypeInfoInChars(T).first;
   1755 }
   1756 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
   1757   return getTypeInfoInChars(T).first;
   1758 }
   1759 
   1760 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
   1761 /// characters. This method does not work on incomplete types.
   1762 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
   1763   return toCharUnitsFromBits(getTypeAlign(T));
   1764 }
   1765 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
   1766   return toCharUnitsFromBits(getTypeAlign(T));
   1767 }
   1768 
   1769 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
   1770 /// type for the current target in bits.  This can be different than the ABI
   1771 /// alignment in cases where it is beneficial for performance to overalign
   1772 /// a data type.
   1773 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
   1774   unsigned ABIAlign = getTypeAlign(T);
   1775 
   1776   if (Target->getTriple().getArch() == llvm::Triple::xcore)
   1777     return ABIAlign;  // Never overalign on XCore.
   1778 
   1779   const TypedefType *TT = T->getAs<TypedefType>();
   1780 
   1781   // Double and long long should be naturally aligned if possible.
   1782   T = T->getBaseElementTypeUnsafe();
   1783   if (const ComplexType *CT = T->getAs<ComplexType>())
   1784     T = CT->getElementType().getTypePtr();
   1785   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
   1786       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
   1787       T->isSpecificBuiltinType(BuiltinType::ULongLong))
   1788     // Don't increase the alignment if an alignment attribute was specified on a
   1789     // typedef declaration.
   1790     if (!TT || !TT->getDecl()->getMaxAlignment())
   1791       return std::max(ABIAlign, (unsigned)getTypeSize(T));
   1792 
   1793   return ABIAlign;
   1794 }
   1795 
   1796 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
   1797 /// to a global variable of the specified type.
   1798 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
   1799   return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
   1800 }
   1801 
   1802 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
   1803 /// should be given to a global variable of the specified type.
   1804 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
   1805   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
   1806 }
   1807 
   1808 /// DeepCollectObjCIvars -
   1809 /// This routine first collects all declared, but not synthesized, ivars in
   1810 /// super class and then collects all ivars, including those synthesized for
   1811 /// current class. This routine is used for implementation of current class
   1812 /// when all ivars, declared and synthesized are known.
   1813 ///
   1814 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
   1815                                       bool leafClass,
   1816                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
   1817   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
   1818     DeepCollectObjCIvars(SuperClass, false, Ivars);
   1819   if (!leafClass) {
   1820     for (const auto *I : OI->ivars())
   1821       Ivars.push_back(I);
   1822   } else {
   1823     ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
   1824     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
   1825          Iv= Iv->getNextIvar())
   1826       Ivars.push_back(Iv);
   1827   }
   1828 }
   1829 
   1830 /// CollectInheritedProtocols - Collect all protocols in current class and
   1831 /// those inherited by it.
   1832 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
   1833                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
   1834   if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
   1835     // We can use protocol_iterator here instead of
   1836     // all_referenced_protocol_iterator since we are walking all categories.
   1837     for (auto *Proto : OI->all_referenced_protocols()) {
   1838       Protocols.insert(Proto->getCanonicalDecl());
   1839       for (auto *P : Proto->protocols()) {
   1840         Protocols.insert(P->getCanonicalDecl());
   1841         CollectInheritedProtocols(P, Protocols);
   1842       }
   1843     }
   1844 
   1845     // Categories of this Interface.
   1846     for (const auto *Cat : OI->visible_categories())
   1847       CollectInheritedProtocols(Cat, Protocols);
   1848 
   1849     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
   1850       while (SD) {
   1851         CollectInheritedProtocols(SD, Protocols);
   1852         SD = SD->getSuperClass();
   1853       }
   1854   } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
   1855     for (auto *Proto : OC->protocols()) {
   1856       Protocols.insert(Proto->getCanonicalDecl());
   1857       for (const auto *P : Proto->protocols())
   1858         CollectInheritedProtocols(P, Protocols);
   1859     }
   1860   } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
   1861     for (auto *Proto : OP->protocols()) {
   1862       Protocols.insert(Proto->getCanonicalDecl());
   1863       for (const auto *P : Proto->protocols())
   1864         CollectInheritedProtocols(P, Protocols);
   1865     }
   1866   }
   1867 }
   1868 
   1869 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
   1870   unsigned count = 0;
   1871   // Count ivars declared in class extension.
   1872   for (const auto *Ext : OI->known_extensions())
   1873     count += Ext->ivar_size();
   1874 
   1875   // Count ivar defined in this class's implementation.  This
   1876   // includes synthesized ivars.
   1877   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
   1878     count += ImplDecl->ivar_size();
   1879 
   1880   return count;
   1881 }
   1882 
   1883 bool ASTContext::isSentinelNullExpr(const Expr *E) {
   1884   if (!E)
   1885     return false;
   1886 
   1887   // nullptr_t is always treated as null.
   1888   if (E->getType()->isNullPtrType()) return true;
   1889 
   1890   if (E->getType()->isAnyPointerType() &&
   1891       E->IgnoreParenCasts()->isNullPointerConstant(*this,
   1892                                                 Expr::NPC_ValueDependentIsNull))
   1893     return true;
   1894 
   1895   // Unfortunately, __null has type 'int'.
   1896   if (isa<GNUNullExpr>(E)) return true;
   1897 
   1898   return false;
   1899 }
   1900 
   1901 /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
   1902 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
   1903   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
   1904     I = ObjCImpls.find(D);
   1905   if (I != ObjCImpls.end())
   1906     return cast<ObjCImplementationDecl>(I->second);
   1907   return nullptr;
   1908 }
   1909 /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
   1910 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
   1911   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
   1912     I = ObjCImpls.find(D);
   1913   if (I != ObjCImpls.end())
   1914     return cast<ObjCCategoryImplDecl>(I->second);
   1915   return nullptr;
   1916 }
   1917 
   1918 /// \brief Set the implementation of ObjCInterfaceDecl.
   1919 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
   1920                            ObjCImplementationDecl *ImplD) {
   1921   assert(IFaceD && ImplD && "Passed null params");
   1922   ObjCImpls[IFaceD] = ImplD;
   1923 }
   1924 /// \brief Set the implementation of ObjCCategoryDecl.
   1925 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
   1926                            ObjCCategoryImplDecl *ImplD) {
   1927   assert(CatD && ImplD && "Passed null params");
   1928   ObjCImpls[CatD] = ImplD;
   1929 }
   1930 
   1931 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
   1932                                               const NamedDecl *ND) const {
   1933   if (const ObjCInterfaceDecl *ID =
   1934           dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
   1935     return ID;
   1936   if (const ObjCCategoryDecl *CD =
   1937           dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
   1938     return CD->getClassInterface();
   1939   if (const ObjCImplDecl *IMD =
   1940           dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
   1941     return IMD->getClassInterface();
   1942 
   1943   return nullptr;
   1944 }
   1945 
   1946 /// \brief Get the copy initialization expression of VarDecl,or NULL if
   1947 /// none exists.
   1948 Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
   1949   assert(VD && "Passed null params");
   1950   assert(VD->hasAttr<BlocksAttr>() &&
   1951          "getBlockVarCopyInits - not __block var");
   1952   llvm::DenseMap<const VarDecl*, Expr*>::iterator
   1953     I = BlockVarCopyInits.find(VD);
   1954   return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr;
   1955 }
   1956 
   1957 /// \brief Set the copy inialization expression of a block var decl.
   1958 void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
   1959   assert(VD && Init && "Passed null params");
   1960   assert(VD->hasAttr<BlocksAttr>() &&
   1961          "setBlockVarCopyInits - not __block var");
   1962   BlockVarCopyInits[VD] = Init;
   1963 }
   1964 
   1965 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
   1966                                                  unsigned DataSize) const {
   1967   if (!DataSize)
   1968     DataSize = TypeLoc::getFullDataSizeForType(T);
   1969   else
   1970     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
   1971            "incorrect data size provided to CreateTypeSourceInfo!");
   1972 
   1973   TypeSourceInfo *TInfo =
   1974     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
   1975   new (TInfo) TypeSourceInfo(T);
   1976   return TInfo;
   1977 }
   1978 
   1979 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
   1980                                                      SourceLocation L) const {
   1981   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
   1982   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
   1983   return DI;
   1984 }
   1985 
   1986 const ASTRecordLayout &
   1987 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
   1988   return getObjCLayout(D, nullptr);
   1989 }
   1990 
   1991 const ASTRecordLayout &
   1992 ASTContext::getASTObjCImplementationLayout(
   1993                                         const ObjCImplementationDecl *D) const {
   1994   return getObjCLayout(D->getClassInterface(), D);
   1995 }
   1996 
   1997 //===----------------------------------------------------------------------===//
   1998 //                   Type creation/memoization methods
   1999 //===----------------------------------------------------------------------===//
   2000 
   2001 QualType
   2002 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
   2003   unsigned fastQuals = quals.getFastQualifiers();
   2004   quals.removeFastQualifiers();
   2005 
   2006   // Check if we've already instantiated this type.
   2007   llvm::FoldingSetNodeID ID;
   2008   ExtQuals::Profile(ID, baseType, quals);
   2009   void *insertPos = nullptr;
   2010   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
   2011     assert(eq->getQualifiers() == quals);
   2012     return QualType(eq, fastQuals);
   2013   }
   2014 
   2015   // If the base type is not canonical, make the appropriate canonical type.
   2016   QualType canon;
   2017   if (!baseType->isCanonicalUnqualified()) {
   2018     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
   2019     canonSplit.Quals.addConsistentQualifiers(quals);
   2020     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
   2021 
   2022     // Re-find the insert position.
   2023     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
   2024   }
   2025 
   2026   ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
   2027   ExtQualNodes.InsertNode(eq, insertPos);
   2028   return QualType(eq, fastQuals);
   2029 }
   2030 
   2031 QualType
   2032 ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
   2033   QualType CanT = getCanonicalType(T);
   2034   if (CanT.getAddressSpace() == AddressSpace)
   2035     return T;
   2036 
   2037   // If we are composing extended qualifiers together, merge together
   2038   // into one ExtQuals node.
   2039   QualifierCollector Quals;
   2040   const Type *TypeNode = Quals.strip(T);
   2041 
   2042   // If this type already has an address space specified, it cannot get
   2043   // another one.
   2044   assert(!Quals.hasAddressSpace() &&
   2045          "Type cannot be in multiple addr spaces!");
   2046   Quals.addAddressSpace(AddressSpace);
   2047 
   2048   return getExtQualType(TypeNode, Quals);
   2049 }
   2050 
   2051 QualType ASTContext::getObjCGCQualType(QualType T,
   2052                                        Qualifiers::GC GCAttr) const {
   2053   QualType CanT = getCanonicalType(T);
   2054   if (CanT.getObjCGCAttr() == GCAttr)
   2055     return T;
   2056 
   2057   if (const PointerType *ptr = T->getAs<PointerType>()) {
   2058     QualType Pointee = ptr->getPointeeType();
   2059     if (Pointee->isAnyPointerType()) {
   2060       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
   2061       return getPointerType(ResultType);
   2062     }
   2063   }
   2064 
   2065   // If we are composing extended qualifiers together, merge together
   2066   // into one ExtQuals node.
   2067   QualifierCollector Quals;
   2068   const Type *TypeNode = Quals.strip(T);
   2069 
   2070   // If this type already has an ObjCGC specified, it cannot get
   2071   // another one.
   2072   assert(!Quals.hasObjCGCAttr() &&
   2073          "Type cannot have multiple ObjCGCs!");
   2074   Quals.addObjCGCAttr(GCAttr);
   2075 
   2076   return getExtQualType(TypeNode, Quals);
   2077 }
   2078 
   2079 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
   2080                                                    FunctionType::ExtInfo Info) {
   2081   if (T->getExtInfo() == Info)
   2082     return T;
   2083 
   2084   QualType Result;
   2085   if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
   2086     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
   2087   } else {
   2088     const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
   2089     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   2090     EPI.ExtInfo = Info;
   2091     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
   2092   }
   2093 
   2094   return cast<FunctionType>(Result.getTypePtr());
   2095 }
   2096 
   2097 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
   2098                                                  QualType ResultType) {
   2099   FD = FD->getMostRecentDecl();
   2100   while (true) {
   2101     const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
   2102     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   2103     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
   2104     if (FunctionDecl *Next = FD->getPreviousDecl())
   2105       FD = Next;
   2106     else
   2107       break;
   2108   }
   2109   if (ASTMutationListener *L = getASTMutationListener())
   2110     L->DeducedReturnType(FD, ResultType);
   2111 }
   2112 
   2113 /// getComplexType - Return the uniqued reference to the type for a complex
   2114 /// number with the specified element type.
   2115 QualType ASTContext::getComplexType(QualType T) const {
   2116   // Unique pointers, to guarantee there is only one pointer of a particular
   2117   // structure.
   2118   llvm::FoldingSetNodeID ID;
   2119   ComplexType::Profile(ID, T);
   2120 
   2121   void *InsertPos = nullptr;
   2122   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
   2123     return QualType(CT, 0);
   2124 
   2125   // If the pointee type isn't canonical, this won't be a canonical type either,
   2126   // so fill in the canonical type field.
   2127   QualType Canonical;
   2128   if (!T.isCanonical()) {
   2129     Canonical = getComplexType(getCanonicalType(T));
   2130 
   2131     // Get the new insert position for the node we care about.
   2132     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
   2133     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2134   }
   2135   ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
   2136   Types.push_back(New);
   2137   ComplexTypes.InsertNode(New, InsertPos);
   2138   return QualType(New, 0);
   2139 }
   2140 
   2141 /// getPointerType - Return the uniqued reference to the type for a pointer to
   2142 /// the specified type.
   2143 QualType ASTContext::getPointerType(QualType T) const {
   2144   // Unique pointers, to guarantee there is only one pointer of a particular
   2145   // structure.
   2146   llvm::FoldingSetNodeID ID;
   2147   PointerType::Profile(ID, T);
   2148 
   2149   void *InsertPos = nullptr;
   2150   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   2151     return QualType(PT, 0);
   2152 
   2153   // If the pointee type isn't canonical, this won't be a canonical type either,
   2154   // so fill in the canonical type field.
   2155   QualType Canonical;
   2156   if (!T.isCanonical()) {
   2157     Canonical = getPointerType(getCanonicalType(T));
   2158 
   2159     // Get the new insert position for the node we care about.
   2160     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   2161     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2162   }
   2163   PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
   2164   Types.push_back(New);
   2165   PointerTypes.InsertNode(New, InsertPos);
   2166   return QualType(New, 0);
   2167 }
   2168 
   2169 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
   2170   llvm::FoldingSetNodeID ID;
   2171   AdjustedType::Profile(ID, Orig, New);
   2172   void *InsertPos = nullptr;
   2173   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
   2174   if (AT)
   2175     return QualType(AT, 0);
   2176 
   2177   QualType Canonical = getCanonicalType(New);
   2178 
   2179   // Get the new insert position for the node we care about.
   2180   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
   2181   assert(!AT && "Shouldn't be in the map!");
   2182 
   2183   AT = new (*this, TypeAlignment)
   2184       AdjustedType(Type::Adjusted, Orig, New, Canonical);
   2185   Types.push_back(AT);
   2186   AdjustedTypes.InsertNode(AT, InsertPos);
   2187   return QualType(AT, 0);
   2188 }
   2189 
   2190 QualType ASTContext::getDecayedType(QualType T) const {
   2191   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
   2192 
   2193   QualType Decayed;
   2194 
   2195   // C99 6.7.5.3p7:
   2196   //   A declaration of a parameter as "array of type" shall be
   2197   //   adjusted to "qualified pointer to type", where the type
   2198   //   qualifiers (if any) are those specified within the [ and ] of
   2199   //   the array type derivation.
   2200   if (T->isArrayType())
   2201     Decayed = getArrayDecayedType(T);
   2202 
   2203   // C99 6.7.5.3p8:
   2204   //   A declaration of a parameter as "function returning type"
   2205   //   shall be adjusted to "pointer to function returning type", as
   2206   //   in 6.3.2.1.
   2207   if (T->isFunctionType())
   2208     Decayed = getPointerType(T);
   2209 
   2210   llvm::FoldingSetNodeID ID;
   2211   AdjustedType::Profile(ID, T, Decayed);
   2212   void *InsertPos = nullptr;
   2213   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
   2214   if (AT)
   2215     return QualType(AT, 0);
   2216 
   2217   QualType Canonical = getCanonicalType(Decayed);
   2218 
   2219   // Get the new insert position for the node we care about.
   2220   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
   2221   assert(!AT && "Shouldn't be in the map!");
   2222 
   2223   AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
   2224   Types.push_back(AT);
   2225   AdjustedTypes.InsertNode(AT, InsertPos);
   2226   return QualType(AT, 0);
   2227 }
   2228 
   2229 /// getBlockPointerType - Return the uniqued reference to the type for
   2230 /// a pointer to the specified block.
   2231 QualType ASTContext::getBlockPointerType(QualType T) const {
   2232   assert(T->isFunctionType() && "block of function types only");
   2233   // Unique pointers, to guarantee there is only one block of a particular
   2234   // structure.
   2235   llvm::FoldingSetNodeID ID;
   2236   BlockPointerType::Profile(ID, T);
   2237 
   2238   void *InsertPos = nullptr;
   2239   if (BlockPointerType *PT =
   2240         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   2241     return QualType(PT, 0);
   2242 
   2243   // If the block pointee type isn't canonical, this won't be a canonical
   2244   // type either so fill in the canonical type field.
   2245   QualType Canonical;
   2246   if (!T.isCanonical()) {
   2247     Canonical = getBlockPointerType(getCanonicalType(T));
   2248 
   2249     // Get the new insert position for the node we care about.
   2250     BlockPointerType *NewIP =
   2251       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   2252     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2253   }
   2254   BlockPointerType *New
   2255     = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
   2256   Types.push_back(New);
   2257   BlockPointerTypes.InsertNode(New, InsertPos);
   2258   return QualType(New, 0);
   2259 }
   2260 
   2261 /// getLValueReferenceType - Return the uniqued reference to the type for an
   2262 /// lvalue reference to the specified type.
   2263 QualType
   2264 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
   2265   assert(getCanonicalType(T) != OverloadTy &&
   2266          "Unresolved overloaded function type");
   2267 
   2268   // Unique pointers, to guarantee there is only one pointer of a particular
   2269   // structure.
   2270   llvm::FoldingSetNodeID ID;
   2271   ReferenceType::Profile(ID, T, SpelledAsLValue);
   2272 
   2273   void *InsertPos = nullptr;
   2274   if (LValueReferenceType *RT =
   2275         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
   2276     return QualType(RT, 0);
   2277 
   2278   const ReferenceType *InnerRef = T->getAs<ReferenceType>();
   2279 
   2280   // If the referencee type isn't canonical, this won't be a canonical type
   2281   // either, so fill in the canonical type field.
   2282   QualType Canonical;
   2283   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
   2284     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
   2285     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
   2286 
   2287     // Get the new insert position for the node we care about.
   2288     LValueReferenceType *NewIP =
   2289       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
   2290     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2291   }
   2292 
   2293   LValueReferenceType *New
   2294     = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
   2295                                                      SpelledAsLValue);
   2296   Types.push_back(New);
   2297   LValueReferenceTypes.InsertNode(New, InsertPos);
   2298 
   2299   return QualType(New, 0);
   2300 }
   2301 
   2302 /// getRValueReferenceType - Return the uniqued reference to the type for an
   2303 /// rvalue reference to the specified type.
   2304 QualType ASTContext::getRValueReferenceType(QualType T) const {
   2305   // Unique pointers, to guarantee there is only one pointer of a particular
   2306   // structure.
   2307   llvm::FoldingSetNodeID ID;
   2308   ReferenceType::Profile(ID, T, false);
   2309 
   2310   void *InsertPos = nullptr;
   2311   if (RValueReferenceType *RT =
   2312         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
   2313     return QualType(RT, 0);
   2314 
   2315   const ReferenceType *InnerRef = T->getAs<ReferenceType>();
   2316 
   2317   // If the referencee type isn't canonical, this won't be a canonical type
   2318   // either, so fill in the canonical type field.
   2319   QualType Canonical;
   2320   if (InnerRef || !T.isCanonical()) {
   2321     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
   2322     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
   2323 
   2324     // Get the new insert position for the node we care about.
   2325     RValueReferenceType *NewIP =
   2326       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
   2327     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2328   }
   2329 
   2330   RValueReferenceType *New
   2331     = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
   2332   Types.push_back(New);
   2333   RValueReferenceTypes.InsertNode(New, InsertPos);
   2334   return QualType(New, 0);
   2335 }
   2336 
   2337 /// getMemberPointerType - Return the uniqued reference to the type for a
   2338 /// member pointer to the specified type, in the specified class.
   2339 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
   2340   // Unique pointers, to guarantee there is only one pointer of a particular
   2341   // structure.
   2342   llvm::FoldingSetNodeID ID;
   2343   MemberPointerType::Profile(ID, T, Cls);
   2344 
   2345   void *InsertPos = nullptr;
   2346   if (MemberPointerType *PT =
   2347       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   2348     return QualType(PT, 0);
   2349 
   2350   // If the pointee or class type isn't canonical, this won't be a canonical
   2351   // type either, so fill in the canonical type field.
   2352   QualType Canonical;
   2353   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
   2354     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
   2355 
   2356     // Get the new insert position for the node we care about.
   2357     MemberPointerType *NewIP =
   2358       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   2359     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2360   }
   2361   MemberPointerType *New
   2362     = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
   2363   Types.push_back(New);
   2364   MemberPointerTypes.InsertNode(New, InsertPos);
   2365   return QualType(New, 0);
   2366 }
   2367 
   2368 /// getConstantArrayType - Return the unique reference to the type for an
   2369 /// array of the specified element type.
   2370 QualType ASTContext::getConstantArrayType(QualType EltTy,
   2371                                           const llvm::APInt &ArySizeIn,
   2372                                           ArrayType::ArraySizeModifier ASM,
   2373                                           unsigned IndexTypeQuals) const {
   2374   assert((EltTy->isDependentType() ||
   2375           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
   2376          "Constant array of VLAs is illegal!");
   2377 
   2378   // Convert the array size into a canonical width matching the pointer size for
   2379   // the target.
   2380   llvm::APInt ArySize(ArySizeIn);
   2381   ArySize =
   2382     ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
   2383 
   2384   llvm::FoldingSetNodeID ID;
   2385   ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
   2386 
   2387   void *InsertPos = nullptr;
   2388   if (ConstantArrayType *ATP =
   2389       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
   2390     return QualType(ATP, 0);
   2391 
   2392   // If the element type isn't canonical or has qualifiers, this won't
   2393   // be a canonical type either, so fill in the canonical type field.
   2394   QualType Canon;
   2395   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
   2396     SplitQualType canonSplit = getCanonicalType(EltTy).split();
   2397     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
   2398                                  ASM, IndexTypeQuals);
   2399     Canon = getQualifiedType(Canon, canonSplit.Quals);
   2400 
   2401     // Get the new insert position for the node we care about.
   2402     ConstantArrayType *NewIP =
   2403       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
   2404     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2405   }
   2406 
   2407   ConstantArrayType *New = new(*this,TypeAlignment)
   2408     ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
   2409   ConstantArrayTypes.InsertNode(New, InsertPos);
   2410   Types.push_back(New);
   2411   return QualType(New, 0);
   2412 }
   2413 
   2414 /// getVariableArrayDecayedType - Turns the given type, which may be
   2415 /// variably-modified, into the corresponding type with all the known
   2416 /// sizes replaced with [*].
   2417 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
   2418   // Vastly most common case.
   2419   if (!type->isVariablyModifiedType()) return type;
   2420 
   2421   QualType result;
   2422 
   2423   SplitQualType split = type.getSplitDesugaredType();
   2424   const Type *ty = split.Ty;
   2425   switch (ty->getTypeClass()) {
   2426 #define TYPE(Class, Base)
   2427 #define ABSTRACT_TYPE(Class, Base)
   2428 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   2429 #include "clang/AST/TypeNodes.def"
   2430     llvm_unreachable("didn't desugar past all non-canonical types?");
   2431 
   2432   // These types should never be variably-modified.
   2433   case Type::Builtin:
   2434   case Type::Complex:
   2435   case Type::Vector:
   2436   case Type::ExtVector:
   2437   case Type::DependentSizedExtVector:
   2438   case Type::ObjCObject:
   2439   case Type::ObjCInterface:
   2440   case Type::ObjCObjectPointer:
   2441   case Type::Record:
   2442   case Type::Enum:
   2443   case Type::UnresolvedUsing:
   2444   case Type::TypeOfExpr:
   2445   case Type::TypeOf:
   2446   case Type::Decltype:
   2447   case Type::UnaryTransform:
   2448   case Type::DependentName:
   2449   case Type::InjectedClassName:
   2450   case Type::TemplateSpecialization:
   2451   case Type::DependentTemplateSpecialization:
   2452   case Type::TemplateTypeParm:
   2453   case Type::SubstTemplateTypeParmPack:
   2454   case Type::Auto:
   2455   case Type::PackExpansion:
   2456     llvm_unreachable("type should never be variably-modified");
   2457 
   2458   // These types can be variably-modified but should never need to
   2459   // further decay.
   2460   case Type::FunctionNoProto:
   2461   case Type::FunctionProto:
   2462   case Type::BlockPointer:
   2463   case Type::MemberPointer:
   2464     return type;
   2465 
   2466   // These types can be variably-modified.  All these modifications
   2467   // preserve structure except as noted by comments.
   2468   // TODO: if we ever care about optimizing VLAs, there are no-op
   2469   // optimizations available here.
   2470   case Type::Pointer:
   2471     result = getPointerType(getVariableArrayDecayedType(
   2472                               cast<PointerType>(ty)->getPointeeType()));
   2473     break;
   2474 
   2475   case Type::LValueReference: {
   2476     const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
   2477     result = getLValueReferenceType(
   2478                  getVariableArrayDecayedType(lv->getPointeeType()),
   2479                                     lv->isSpelledAsLValue());
   2480     break;
   2481   }
   2482 
   2483   case Type::RValueReference: {
   2484     const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
   2485     result = getRValueReferenceType(
   2486                  getVariableArrayDecayedType(lv->getPointeeType()));
   2487     break;
   2488   }
   2489 
   2490   case Type::Atomic: {
   2491     const AtomicType *at = cast<AtomicType>(ty);
   2492     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
   2493     break;
   2494   }
   2495 
   2496   case Type::ConstantArray: {
   2497     const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
   2498     result = getConstantArrayType(
   2499                  getVariableArrayDecayedType(cat->getElementType()),
   2500                                   cat->getSize(),
   2501                                   cat->getSizeModifier(),
   2502                                   cat->getIndexTypeCVRQualifiers());
   2503     break;
   2504   }
   2505 
   2506   case Type::DependentSizedArray: {
   2507     const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
   2508     result = getDependentSizedArrayType(
   2509                  getVariableArrayDecayedType(dat->getElementType()),
   2510                                         dat->getSizeExpr(),
   2511                                         dat->getSizeModifier(),
   2512                                         dat->getIndexTypeCVRQualifiers(),
   2513                                         dat->getBracketsRange());
   2514     break;
   2515   }
   2516 
   2517   // Turn incomplete types into [*] types.
   2518   case Type::IncompleteArray: {
   2519     const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
   2520     result = getVariableArrayType(
   2521                  getVariableArrayDecayedType(iat->getElementType()),
   2522                                   /*size*/ nullptr,
   2523                                   ArrayType::Normal,
   2524                                   iat->getIndexTypeCVRQualifiers(),
   2525                                   SourceRange());
   2526     break;
   2527   }
   2528 
   2529   // Turn VLA types into [*] types.
   2530   case Type::VariableArray: {
   2531     const VariableArrayType *vat = cast<VariableArrayType>(ty);
   2532     result = getVariableArrayType(
   2533                  getVariableArrayDecayedType(vat->getElementType()),
   2534                                   /*size*/ nullptr,
   2535                                   ArrayType::Star,
   2536                                   vat->getIndexTypeCVRQualifiers(),
   2537                                   vat->getBracketsRange());
   2538     break;
   2539   }
   2540   }
   2541 
   2542   // Apply the top-level qualifiers from the original.
   2543   return getQualifiedType(result, split.Quals);
   2544 }
   2545 
   2546 /// getVariableArrayType - Returns a non-unique reference to the type for a
   2547 /// variable array of the specified element type.
   2548 QualType ASTContext::getVariableArrayType(QualType EltTy,
   2549                                           Expr *NumElts,
   2550                                           ArrayType::ArraySizeModifier ASM,
   2551                                           unsigned IndexTypeQuals,
   2552                                           SourceRange Brackets) const {
   2553   // Since we don't unique expressions, it isn't possible to unique VLA's
   2554   // that have an expression provided for their size.
   2555   QualType Canon;
   2556 
   2557   // Be sure to pull qualifiers off the element type.
   2558   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
   2559     SplitQualType canonSplit = getCanonicalType(EltTy).split();
   2560     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
   2561                                  IndexTypeQuals, Brackets);
   2562     Canon = getQualifiedType(Canon, canonSplit.Quals);
   2563   }
   2564 
   2565   VariableArrayType *New = new(*this, TypeAlignment)
   2566     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
   2567 
   2568   VariableArrayTypes.push_back(New);
   2569   Types.push_back(New);
   2570   return QualType(New, 0);
   2571 }
   2572 
   2573 /// getDependentSizedArrayType - Returns a non-unique reference to
   2574 /// the type for a dependently-sized array of the specified element
   2575 /// type.
   2576 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
   2577                                                 Expr *numElements,
   2578                                                 ArrayType::ArraySizeModifier ASM,
   2579                                                 unsigned elementTypeQuals,
   2580                                                 SourceRange brackets) const {
   2581   assert((!numElements || numElements->isTypeDependent() ||
   2582           numElements->isValueDependent()) &&
   2583          "Size must be type- or value-dependent!");
   2584 
   2585   // Dependently-sized array types that do not have a specified number
   2586   // of elements will have their sizes deduced from a dependent
   2587   // initializer.  We do no canonicalization here at all, which is okay
   2588   // because they can't be used in most locations.
   2589   if (!numElements) {
   2590     DependentSizedArrayType *newType
   2591       = new (*this, TypeAlignment)
   2592           DependentSizedArrayType(*this, elementType, QualType(),
   2593                                   numElements, ASM, elementTypeQuals,
   2594                                   brackets);
   2595     Types.push_back(newType);
   2596     return QualType(newType, 0);
   2597   }
   2598 
   2599   // Otherwise, we actually build a new type every time, but we
   2600   // also build a canonical type.
   2601 
   2602   SplitQualType canonElementType = getCanonicalType(elementType).split();
   2603 
   2604   void *insertPos = nullptr;
   2605   llvm::FoldingSetNodeID ID;
   2606   DependentSizedArrayType::Profile(ID, *this,
   2607                                    QualType(canonElementType.Ty, 0),
   2608                                    ASM, elementTypeQuals, numElements);
   2609 
   2610   // Look for an existing type with these properties.
   2611   DependentSizedArrayType *canonTy =
   2612     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
   2613 
   2614   // If we don't have one, build one.
   2615   if (!canonTy) {
   2616     canonTy = new (*this, TypeAlignment)
   2617       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
   2618                               QualType(), numElements, ASM, elementTypeQuals,
   2619                               brackets);
   2620     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
   2621     Types.push_back(canonTy);
   2622   }
   2623 
   2624   // Apply qualifiers from the element type to the array.
   2625   QualType canon = getQualifiedType(QualType(canonTy,0),
   2626                                     canonElementType.Quals);
   2627 
   2628   // If we didn't need extra canonicalization for the element type,
   2629   // then just use that as our result.
   2630   if (QualType(canonElementType.Ty, 0) == elementType)
   2631     return canon;
   2632 
   2633   // Otherwise, we need to build a type which follows the spelling
   2634   // of the element type.
   2635   DependentSizedArrayType *sugaredType
   2636     = new (*this, TypeAlignment)
   2637         DependentSizedArrayType(*this, elementType, canon, numElements,
   2638                                 ASM, elementTypeQuals, brackets);
   2639   Types.push_back(sugaredType);
   2640   return QualType(sugaredType, 0);
   2641 }
   2642 
   2643 QualType ASTContext::getIncompleteArrayType(QualType elementType,
   2644                                             ArrayType::ArraySizeModifier ASM,
   2645                                             unsigned elementTypeQuals) const {
   2646   llvm::FoldingSetNodeID ID;
   2647   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
   2648 
   2649   void *insertPos = nullptr;
   2650   if (IncompleteArrayType *iat =
   2651        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
   2652     return QualType(iat, 0);
   2653 
   2654   // If the element type isn't canonical, this won't be a canonical type
   2655   // either, so fill in the canonical type field.  We also have to pull
   2656   // qualifiers off the element type.
   2657   QualType canon;
   2658 
   2659   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
   2660     SplitQualType canonSplit = getCanonicalType(elementType).split();
   2661     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
   2662                                    ASM, elementTypeQuals);
   2663     canon = getQualifiedType(canon, canonSplit.Quals);
   2664 
   2665     // Get the new insert position for the node we care about.
   2666     IncompleteArrayType *existing =
   2667       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
   2668     assert(!existing && "Shouldn't be in the map!"); (void) existing;
   2669   }
   2670 
   2671   IncompleteArrayType *newType = new (*this, TypeAlignment)
   2672     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
   2673 
   2674   IncompleteArrayTypes.InsertNode(newType, insertPos);
   2675   Types.push_back(newType);
   2676   return QualType(newType, 0);
   2677 }
   2678 
   2679 /// getVectorType - Return the unique reference to a vector type of
   2680 /// the specified element type and size. VectorType must be a built-in type.
   2681 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
   2682                                    VectorType::VectorKind VecKind) const {
   2683   assert(vecType->isBuiltinType());
   2684 
   2685   // Check if we've already instantiated a vector of this type.
   2686   llvm::FoldingSetNodeID ID;
   2687   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
   2688 
   2689   void *InsertPos = nullptr;
   2690   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
   2691     return QualType(VTP, 0);
   2692 
   2693   // If the element type isn't canonical, this won't be a canonical type either,
   2694   // so fill in the canonical type field.
   2695   QualType Canonical;
   2696   if (!vecType.isCanonical()) {
   2697     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
   2698 
   2699     // Get the new insert position for the node we care about.
   2700     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2701     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2702   }
   2703   VectorType *New = new (*this, TypeAlignment)
   2704     VectorType(vecType, NumElts, Canonical, VecKind);
   2705   VectorTypes.InsertNode(New, InsertPos);
   2706   Types.push_back(New);
   2707   return QualType(New, 0);
   2708 }
   2709 
   2710 /// getExtVectorType - Return the unique reference to an extended vector type of
   2711 /// the specified element type and size. VectorType must be a built-in type.
   2712 QualType
   2713 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
   2714   assert(vecType->isBuiltinType() || vecType->isDependentType());
   2715 
   2716   // Check if we've already instantiated a vector of this type.
   2717   llvm::FoldingSetNodeID ID;
   2718   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
   2719                       VectorType::GenericVector);
   2720   void *InsertPos = nullptr;
   2721   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
   2722     return QualType(VTP, 0);
   2723 
   2724   // If the element type isn't canonical, this won't be a canonical type either,
   2725   // so fill in the canonical type field.
   2726   QualType Canonical;
   2727   if (!vecType.isCanonical()) {
   2728     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
   2729 
   2730     // Get the new insert position for the node we care about.
   2731     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2732     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2733   }
   2734   ExtVectorType *New = new (*this, TypeAlignment)
   2735     ExtVectorType(vecType, NumElts, Canonical);
   2736   VectorTypes.InsertNode(New, InsertPos);
   2737   Types.push_back(New);
   2738   return QualType(New, 0);
   2739 }
   2740 
   2741 QualType
   2742 ASTContext::getDependentSizedExtVectorType(QualType vecType,
   2743                                            Expr *SizeExpr,
   2744                                            SourceLocation AttrLoc) const {
   2745   llvm::FoldingSetNodeID ID;
   2746   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
   2747                                        SizeExpr);
   2748 
   2749   void *InsertPos = nullptr;
   2750   DependentSizedExtVectorType *Canon
   2751     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2752   DependentSizedExtVectorType *New;
   2753   if (Canon) {
   2754     // We already have a canonical version of this array type; use it as
   2755     // the canonical type for a newly-built type.
   2756     New = new (*this, TypeAlignment)
   2757       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
   2758                                   SizeExpr, AttrLoc);
   2759   } else {
   2760     QualType CanonVecTy = getCanonicalType(vecType);
   2761     if (CanonVecTy == vecType) {
   2762       New = new (*this, TypeAlignment)
   2763         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
   2764                                     AttrLoc);
   2765 
   2766       DependentSizedExtVectorType *CanonCheck
   2767         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
   2768       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
   2769       (void)CanonCheck;
   2770       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
   2771     } else {
   2772       QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
   2773                                                       SourceLocation());
   2774       New = new (*this, TypeAlignment)
   2775         DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
   2776     }
   2777   }
   2778 
   2779   Types.push_back(New);
   2780   return QualType(New, 0);
   2781 }
   2782 
   2783 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
   2784 ///
   2785 QualType
   2786 ASTContext::getFunctionNoProtoType(QualType ResultTy,
   2787                                    const FunctionType::ExtInfo &Info) const {
   2788   const CallingConv CallConv = Info.getCC();
   2789 
   2790   // Unique functions, to guarantee there is only one function of a particular
   2791   // structure.
   2792   llvm::FoldingSetNodeID ID;
   2793   FunctionNoProtoType::Profile(ID, ResultTy, Info);
   2794 
   2795   void *InsertPos = nullptr;
   2796   if (FunctionNoProtoType *FT =
   2797         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
   2798     return QualType(FT, 0);
   2799 
   2800   QualType Canonical;
   2801   if (!ResultTy.isCanonical()) {
   2802     Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info);
   2803 
   2804     // Get the new insert position for the node we care about.
   2805     FunctionNoProtoType *NewIP =
   2806       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
   2807     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2808   }
   2809 
   2810   FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
   2811   FunctionNoProtoType *New = new (*this, TypeAlignment)
   2812     FunctionNoProtoType(ResultTy, Canonical, newInfo);
   2813   Types.push_back(New);
   2814   FunctionNoProtoTypes.InsertNode(New, InsertPos);
   2815   return QualType(New, 0);
   2816 }
   2817 
   2818 /// \brief Determine whether \p T is canonical as the result type of a function.
   2819 static bool isCanonicalResultType(QualType T) {
   2820   return T.isCanonical() &&
   2821          (T.getObjCLifetime() == Qualifiers::OCL_None ||
   2822           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
   2823 }
   2824 
   2825 QualType
   2826 ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
   2827                             const FunctionProtoType::ExtProtoInfo &EPI) const {
   2828   size_t NumArgs = ArgArray.size();
   2829 
   2830   // Unique functions, to guarantee there is only one function of a particular
   2831   // structure.
   2832   llvm::FoldingSetNodeID ID;
   2833   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
   2834                              *this);
   2835 
   2836   void *InsertPos = nullptr;
   2837   if (FunctionProtoType *FTP =
   2838         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
   2839     return QualType(FTP, 0);
   2840 
   2841   // Determine whether the type being created is already canonical or not.
   2842   bool isCanonical =
   2843     EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
   2844     !EPI.HasTrailingReturn;
   2845   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
   2846     if (!ArgArray[i].isCanonicalAsParam())
   2847       isCanonical = false;
   2848 
   2849   // If this type isn't canonical, get the canonical version of it.
   2850   // The exception spec is not part of the canonical type.
   2851   QualType Canonical;
   2852   if (!isCanonical) {
   2853     SmallVector<QualType, 16> CanonicalArgs;
   2854     CanonicalArgs.reserve(NumArgs);
   2855     for (unsigned i = 0; i != NumArgs; ++i)
   2856       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
   2857 
   2858     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
   2859     CanonicalEPI.HasTrailingReturn = false;
   2860     CanonicalEPI.ExceptionSpecType = EST_None;
   2861     CanonicalEPI.NumExceptions = 0;
   2862 
   2863     // Result types do not have ARC lifetime qualifiers.
   2864     QualType CanResultTy = getCanonicalType(ResultTy);
   2865     if (ResultTy.getQualifiers().hasObjCLifetime()) {
   2866       Qualifiers Qs = CanResultTy.getQualifiers();
   2867       Qs.removeObjCLifetime();
   2868       CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
   2869     }
   2870 
   2871     Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
   2872 
   2873     // Get the new insert position for the node we care about.
   2874     FunctionProtoType *NewIP =
   2875       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
   2876     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   2877   }
   2878 
   2879   // FunctionProtoType objects are allocated with extra bytes after
   2880   // them for three variable size arrays at the end:
   2881   //  - parameter types
   2882   //  - exception types
   2883   //  - consumed-arguments flags
   2884   // Instead of the exception types, there could be a noexcept
   2885   // expression, or information used to resolve the exception
   2886   // specification.
   2887   size_t Size = sizeof(FunctionProtoType) +
   2888                 NumArgs * sizeof(QualType);
   2889   if (EPI.ExceptionSpecType == EST_Dynamic) {
   2890     Size += EPI.NumExceptions * sizeof(QualType);
   2891   } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
   2892     Size += sizeof(Expr*);
   2893   } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
   2894     Size += 2 * sizeof(FunctionDecl*);
   2895   } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
   2896     Size += sizeof(FunctionDecl*);
   2897   }
   2898   if (EPI.ConsumedParameters)
   2899     Size += NumArgs * sizeof(bool);
   2900 
   2901   FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
   2902   FunctionProtoType::ExtProtoInfo newEPI = EPI;
   2903   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
   2904   Types.push_back(FTP);
   2905   FunctionProtoTypes.InsertNode(FTP, InsertPos);
   2906   return QualType(FTP, 0);
   2907 }
   2908 
   2909 #ifndef NDEBUG
   2910 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
   2911   if (!isa<CXXRecordDecl>(D)) return false;
   2912   const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
   2913   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
   2914     return true;
   2915   if (RD->getDescribedClassTemplate() &&
   2916       !isa<ClassTemplateSpecializationDecl>(RD))
   2917     return true;
   2918   return false;
   2919 }
   2920 #endif
   2921 
   2922 /// getInjectedClassNameType - Return the unique reference to the
   2923 /// injected class name type for the specified templated declaration.
   2924 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
   2925                                               QualType TST) const {
   2926   assert(NeedsInjectedClassNameType(Decl));
   2927   if (Decl->TypeForDecl) {
   2928     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
   2929   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
   2930     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
   2931     Decl->TypeForDecl = PrevDecl->TypeForDecl;
   2932     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
   2933   } else {
   2934     Type *newType =
   2935       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
   2936     Decl->TypeForDecl = newType;
   2937     Types.push_back(newType);
   2938   }
   2939   return QualType(Decl->TypeForDecl, 0);
   2940 }
   2941 
   2942 /// getTypeDeclType - Return the unique reference to the type for the
   2943 /// specified type declaration.
   2944 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
   2945   assert(Decl && "Passed null for Decl param");
   2946   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
   2947 
   2948   if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
   2949     return getTypedefType(Typedef);
   2950 
   2951   assert(!isa<TemplateTypeParmDecl>(Decl) &&
   2952          "Template type parameter types are always available.");
   2953 
   2954   if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
   2955     assert(Record->isFirstDecl() && "struct/union has previous declaration");
   2956     assert(!NeedsInjectedClassNameType(Record));
   2957     return getRecordType(Record);
   2958   } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
   2959     assert(Enum->isFirstDecl() && "enum has previous declaration");
   2960     return getEnumType(Enum);
   2961   } else if (const UnresolvedUsingTypenameDecl *Using =
   2962                dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
   2963     Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
   2964     Decl->TypeForDecl = newType;
   2965     Types.push_back(newType);
   2966   } else
   2967     llvm_unreachable("TypeDecl without a type?");
   2968 
   2969   return QualType(Decl->TypeForDecl, 0);
   2970 }
   2971 
   2972 /// getTypedefType - Return the unique reference to the type for the
   2973 /// specified typedef name decl.
   2974 QualType
   2975 ASTContext::getTypedefType(const TypedefNameDecl *Decl,
   2976                            QualType Canonical) const {
   2977   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
   2978 
   2979   if (Canonical.isNull())
   2980     Canonical = getCanonicalType(Decl->getUnderlyingType());
   2981   TypedefType *newType = new(*this, TypeAlignment)
   2982     TypedefType(Type::Typedef, Decl, Canonical);
   2983   Decl->TypeForDecl = newType;
   2984   Types.push_back(newType);
   2985   return QualType(newType, 0);
   2986 }
   2987 
   2988 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
   2989   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
   2990 
   2991   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
   2992     if (PrevDecl->TypeForDecl)
   2993       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
   2994 
   2995   RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
   2996   Decl->TypeForDecl = newType;
   2997   Types.push_back(newType);
   2998   return QualType(newType, 0);
   2999 }
   3000 
   3001 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
   3002   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
   3003 
   3004   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
   3005     if (PrevDecl->TypeForDecl)
   3006       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
   3007 
   3008   EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
   3009   Decl->TypeForDecl = newType;
   3010   Types.push_back(newType);
   3011   return QualType(newType, 0);
   3012 }
   3013 
   3014 QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
   3015                                        QualType modifiedType,
   3016                                        QualType equivalentType) {
   3017   llvm::FoldingSetNodeID id;
   3018   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
   3019 
   3020   void *insertPos = nullptr;
   3021   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
   3022   if (type) return QualType(type, 0);
   3023 
   3024   QualType canon = getCanonicalType(equivalentType);
   3025   type = new (*this, TypeAlignment)
   3026            AttributedType(canon, attrKind, modifiedType, equivalentType);
   3027 
   3028   Types.push_back(type);
   3029   AttributedTypes.InsertNode(type, insertPos);
   3030 
   3031   return QualType(type, 0);
   3032 }
   3033 
   3034 
   3035 /// \brief Retrieve a substitution-result type.
   3036 QualType
   3037 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
   3038                                          QualType Replacement) const {
   3039   assert(Replacement.isCanonical()
   3040          && "replacement types must always be canonical");
   3041 
   3042   llvm::FoldingSetNodeID ID;
   3043   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
   3044   void *InsertPos = nullptr;
   3045   SubstTemplateTypeParmType *SubstParm
   3046     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
   3047 
   3048   if (!SubstParm) {
   3049     SubstParm = new (*this, TypeAlignment)
   3050       SubstTemplateTypeParmType(Parm, Replacement);
   3051     Types.push_back(SubstParm);
   3052     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
   3053   }
   3054 
   3055   return QualType(SubstParm, 0);
   3056 }
   3057 
   3058 /// \brief Retrieve a
   3059 QualType ASTContext::getSubstTemplateTypeParmPackType(
   3060                                           const TemplateTypeParmType *Parm,
   3061                                               const TemplateArgument &ArgPack) {
   3062 #ifndef NDEBUG
   3063   for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
   3064                                     PEnd = ArgPack.pack_end();
   3065        P != PEnd; ++P) {
   3066     assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
   3067     assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
   3068   }
   3069 #endif
   3070 
   3071   llvm::FoldingSetNodeID ID;
   3072   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
   3073   void *InsertPos = nullptr;
   3074   if (SubstTemplateTypeParmPackType *SubstParm
   3075         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
   3076     return QualType(SubstParm, 0);
   3077 
   3078   QualType Canon;
   3079   if (!Parm->isCanonicalUnqualified()) {
   3080     Canon = getCanonicalType(QualType(Parm, 0));
   3081     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
   3082                                              ArgPack);
   3083     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
   3084   }
   3085 
   3086   SubstTemplateTypeParmPackType *SubstParm
   3087     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
   3088                                                                ArgPack);
   3089   Types.push_back(SubstParm);
   3090   SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
   3091   return QualType(SubstParm, 0);
   3092 }
   3093 
   3094 /// \brief Retrieve the template type parameter type for a template
   3095 /// parameter or parameter pack with the given depth, index, and (optionally)
   3096 /// name.
   3097 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
   3098                                              bool ParameterPack,
   3099                                              TemplateTypeParmDecl *TTPDecl) const {
   3100   llvm::FoldingSetNodeID ID;
   3101   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
   3102   void *InsertPos = nullptr;
   3103   TemplateTypeParmType *TypeParm
   3104     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
   3105 
   3106   if (TypeParm)
   3107     return QualType(TypeParm, 0);
   3108 
   3109   if (TTPDecl) {
   3110     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
   3111     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
   3112 
   3113     TemplateTypeParmType *TypeCheck
   3114       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
   3115     assert(!TypeCheck && "Template type parameter canonical type broken");
   3116     (void)TypeCheck;
   3117   } else
   3118     TypeParm = new (*this, TypeAlignment)
   3119       TemplateTypeParmType(Depth, Index, ParameterPack);
   3120 
   3121   Types.push_back(TypeParm);
   3122   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
   3123 
   3124   return QualType(TypeParm, 0);
   3125 }
   3126 
   3127 TypeSourceInfo *
   3128 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
   3129                                               SourceLocation NameLoc,
   3130                                         const TemplateArgumentListInfo &Args,
   3131                                               QualType Underlying) const {
   3132   assert(!Name.getAsDependentTemplateName() &&
   3133          "No dependent template names here!");
   3134   QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
   3135 
   3136   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
   3137   TemplateSpecializationTypeLoc TL =
   3138       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
   3139   TL.setTemplateKeywordLoc(SourceLocation());
   3140   TL.setTemplateNameLoc(NameLoc);
   3141   TL.setLAngleLoc(Args.getLAngleLoc());
   3142   TL.setRAngleLoc(Args.getRAngleLoc());
   3143   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
   3144     TL.setArgLocInfo(i, Args[i].getLocInfo());
   3145   return DI;
   3146 }
   3147 
   3148 QualType
   3149 ASTContext::getTemplateSpecializationType(TemplateName Template,
   3150                                           const TemplateArgumentListInfo &Args,
   3151                                           QualType Underlying) const {
   3152   assert(!Template.getAsDependentTemplateName() &&
   3153          "No dependent template names here!");
   3154 
   3155   unsigned NumArgs = Args.size();
   3156 
   3157   SmallVector<TemplateArgument, 4> ArgVec;
   3158   ArgVec.reserve(NumArgs);
   3159   for (unsigned i = 0; i != NumArgs; ++i)
   3160     ArgVec.push_back(Args[i].getArgument());
   3161 
   3162   return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
   3163                                        Underlying);
   3164 }
   3165 
   3166 #ifndef NDEBUG
   3167 static bool hasAnyPackExpansions(const TemplateArgument *Args,
   3168                                  unsigned NumArgs) {
   3169   for (unsigned I = 0; I != NumArgs; ++I)
   3170     if (Args[I].isPackExpansion())
   3171       return true;
   3172 
   3173   return true;
   3174 }
   3175 #endif
   3176 
   3177 QualType
   3178 ASTContext::getTemplateSpecializationType(TemplateName Template,
   3179                                           const TemplateArgument *Args,
   3180                                           unsigned NumArgs,
   3181                                           QualType Underlying) const {
   3182   assert(!Template.getAsDependentTemplateName() &&
   3183          "No dependent template names here!");
   3184   // Look through qualified template names.
   3185   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
   3186     Template = TemplateName(QTN->getTemplateDecl());
   3187 
   3188   bool IsTypeAlias =
   3189     Template.getAsTemplateDecl() &&
   3190     isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
   3191   QualType CanonType;
   3192   if (!Underlying.isNull())
   3193     CanonType = getCanonicalType(Underlying);
   3194   else {
   3195     // We can get here with an alias template when the specialization contains
   3196     // a pack expansion that does not match up with a parameter pack.
   3197     assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
   3198            "Caller must compute aliased type");
   3199     IsTypeAlias = false;
   3200     CanonType = getCanonicalTemplateSpecializationType(Template, Args,
   3201                                                        NumArgs);
   3202   }
   3203 
   3204   // Allocate the (non-canonical) template specialization type, but don't
   3205   // try to unique it: these types typically have location information that
   3206   // we don't unique and don't want to lose.
   3207   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
   3208                        sizeof(TemplateArgument) * NumArgs +
   3209                        (IsTypeAlias? sizeof(QualType) : 0),
   3210                        TypeAlignment);
   3211   TemplateSpecializationType *Spec
   3212     = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
   3213                                          IsTypeAlias ? Underlying : QualType());
   3214 
   3215   Types.push_back(Spec);
   3216   return QualType(Spec, 0);
   3217 }
   3218 
   3219 QualType
   3220 ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
   3221                                                    const TemplateArgument *Args,
   3222                                                    unsigned NumArgs) const {
   3223   assert(!Template.getAsDependentTemplateName() &&
   3224          "No dependent template names here!");
   3225 
   3226   // Look through qualified template names.
   3227   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
   3228     Template = TemplateName(QTN->getTemplateDecl());
   3229 
   3230   // Build the canonical template specialization type.
   3231   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
   3232   SmallVector<TemplateArgument, 4> CanonArgs;
   3233   CanonArgs.reserve(NumArgs);
   3234   for (unsigned I = 0; I != NumArgs; ++I)
   3235     CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
   3236 
   3237   // Determine whether this canonical template specialization type already
   3238   // exists.
   3239   llvm::FoldingSetNodeID ID;
   3240   TemplateSpecializationType::Profile(ID, CanonTemplate,
   3241                                       CanonArgs.data(), NumArgs, *this);
   3242 
   3243   void *InsertPos = nullptr;
   3244   TemplateSpecializationType *Spec
   3245     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
   3246 
   3247   if (!Spec) {
   3248     // Allocate a new canonical template specialization type.
   3249     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
   3250                           sizeof(TemplateArgument) * NumArgs),
   3251                          TypeAlignment);
   3252     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
   3253                                                 CanonArgs.data(), NumArgs,
   3254                                                 QualType(), QualType());
   3255     Types.push_back(Spec);
   3256     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
   3257   }
   3258 
   3259   assert(Spec->isDependentType() &&
   3260          "Non-dependent template-id type must have a canonical type");
   3261   return QualType(Spec, 0);
   3262 }
   3263 
   3264 QualType
   3265 ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
   3266                               NestedNameSpecifier *NNS,
   3267                               QualType NamedType) const {
   3268   llvm::FoldingSetNodeID ID;
   3269   ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
   3270 
   3271   void *InsertPos = nullptr;
   3272   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
   3273   if (T)
   3274     return QualType(T, 0);
   3275 
   3276   QualType Canon = NamedType;
   3277   if (!Canon.isCanonical()) {
   3278     Canon = getCanonicalType(NamedType);
   3279     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
   3280     assert(!CheckT && "Elaborated canonical type broken");
   3281     (void)CheckT;
   3282   }
   3283 
   3284   T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
   3285   Types.push_back(T);
   3286   ElaboratedTypes.InsertNode(T, InsertPos);
   3287   return QualType(T, 0);
   3288 }
   3289 
   3290 QualType
   3291 ASTContext::getParenType(QualType InnerType) const {
   3292   llvm::FoldingSetNodeID ID;
   3293   ParenType::Profile(ID, InnerType);
   3294 
   3295   void *InsertPos = nullptr;
   3296   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
   3297   if (T)
   3298     return QualType(T, 0);
   3299 
   3300   QualType Canon = InnerType;
   3301   if (!Canon.isCanonical()) {
   3302     Canon = getCanonicalType(InnerType);
   3303     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
   3304     assert(!CheckT && "Paren canonical type broken");
   3305     (void)CheckT;
   3306   }
   3307 
   3308   T = new (*this) ParenType(InnerType, Canon);
   3309   Types.push_back(T);
   3310   ParenTypes.InsertNode(T, InsertPos);
   3311   return QualType(T, 0);
   3312 }
   3313 
   3314 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
   3315                                           NestedNameSpecifier *NNS,
   3316                                           const IdentifierInfo *Name,
   3317                                           QualType Canon) const {
   3318   if (Canon.isNull()) {
   3319     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
   3320     ElaboratedTypeKeyword CanonKeyword = Keyword;
   3321     if (Keyword == ETK_None)
   3322       CanonKeyword = ETK_Typename;
   3323 
   3324     if (CanonNNS != NNS || CanonKeyword != Keyword)
   3325       Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
   3326   }
   3327 
   3328   llvm::FoldingSetNodeID ID;
   3329   DependentNameType::Profile(ID, Keyword, NNS, Name);
   3330 
   3331   void *InsertPos = nullptr;
   3332   DependentNameType *T
   3333     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
   3334   if (T)
   3335     return QualType(T, 0);
   3336 
   3337   T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
   3338   Types.push_back(T);
   3339   DependentNameTypes.InsertNode(T, InsertPos);
   3340   return QualType(T, 0);
   3341 }
   3342 
   3343 QualType
   3344 ASTContext::getDependentTemplateSpecializationType(
   3345                                  ElaboratedTypeKeyword Keyword,
   3346                                  NestedNameSpecifier *NNS,
   3347                                  const IdentifierInfo *Name,
   3348                                  const TemplateArgumentListInfo &Args) const {
   3349   // TODO: avoid this copy
   3350   SmallVector<TemplateArgument, 16> ArgCopy;
   3351   for (unsigned I = 0, E = Args.size(); I != E; ++I)
   3352     ArgCopy.push_back(Args[I].getArgument());
   3353   return getDependentTemplateSpecializationType(Keyword, NNS, Name,
   3354                                                 ArgCopy.size(),
   3355                                                 ArgCopy.data());
   3356 }
   3357 
   3358 QualType
   3359 ASTContext::getDependentTemplateSpecializationType(
   3360                                  ElaboratedTypeKeyword Keyword,
   3361                                  NestedNameSpecifier *NNS,
   3362                                  const IdentifierInfo *Name,
   3363                                  unsigned NumArgs,
   3364                                  const TemplateArgument *Args) const {
   3365   assert((!NNS || NNS->isDependent()) &&
   3366          "nested-name-specifier must be dependent");
   3367 
   3368   llvm::FoldingSetNodeID ID;
   3369   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
   3370                                                Name, NumArgs, Args);
   3371 
   3372   void *InsertPos = nullptr;
   3373   DependentTemplateSpecializationType *T
   3374     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
   3375   if (T)
   3376     return QualType(T, 0);
   3377 
   3378   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
   3379 
   3380   ElaboratedTypeKeyword CanonKeyword = Keyword;
   3381   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
   3382 
   3383   bool AnyNonCanonArgs = false;
   3384   SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
   3385   for (unsigned I = 0; I != NumArgs; ++I) {
   3386     CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
   3387     if (!CanonArgs[I].structurallyEquals(Args[I]))
   3388       AnyNonCanonArgs = true;
   3389   }
   3390 
   3391   QualType Canon;
   3392   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
   3393     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
   3394                                                    Name, NumArgs,
   3395                                                    CanonArgs.data());
   3396 
   3397     // Find the insert position again.
   3398     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
   3399   }
   3400 
   3401   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
   3402                         sizeof(TemplateArgument) * NumArgs),
   3403                        TypeAlignment);
   3404   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
   3405                                                     Name, NumArgs, Args, Canon);
   3406   Types.push_back(T);
   3407   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
   3408   return QualType(T, 0);
   3409 }
   3410 
   3411 QualType ASTContext::getPackExpansionType(QualType Pattern,
   3412                                           Optional<unsigned> NumExpansions) {
   3413   llvm::FoldingSetNodeID ID;
   3414   PackExpansionType::Profile(ID, Pattern, NumExpansions);
   3415 
   3416   assert(Pattern->containsUnexpandedParameterPack() &&
   3417          "Pack expansions must expand one or more parameter packs");
   3418   void *InsertPos = nullptr;
   3419   PackExpansionType *T
   3420     = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
   3421   if (T)
   3422     return QualType(T, 0);
   3423 
   3424   QualType Canon;
   3425   if (!Pattern.isCanonical()) {
   3426     Canon = getCanonicalType(Pattern);
   3427     // The canonical type might not contain an unexpanded parameter pack, if it
   3428     // contains an alias template specialization which ignores one of its
   3429     // parameters.
   3430     if (Canon->containsUnexpandedParameterPack()) {
   3431       Canon = getPackExpansionType(Canon, NumExpansions);
   3432 
   3433       // Find the insert position again, in case we inserted an element into
   3434       // PackExpansionTypes and invalidated our insert position.
   3435       PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
   3436     }
   3437   }
   3438 
   3439   T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
   3440   Types.push_back(T);
   3441   PackExpansionTypes.InsertNode(T, InsertPos);
   3442   return QualType(T, 0);
   3443 }
   3444 
   3445 /// CmpProtocolNames - Comparison predicate for sorting protocols
   3446 /// alphabetically.
   3447 static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
   3448                             const ObjCProtocolDecl *RHS) {
   3449   return LHS->getDeclName() < RHS->getDeclName();
   3450 }
   3451 
   3452 static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
   3453                                 unsigned NumProtocols) {
   3454   if (NumProtocols == 0) return true;
   3455 
   3456   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
   3457     return false;
   3458 
   3459   for (unsigned i = 1; i != NumProtocols; ++i)
   3460     if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
   3461         Protocols[i]->getCanonicalDecl() != Protocols[i])
   3462       return false;
   3463   return true;
   3464 }
   3465 
   3466 static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
   3467                                    unsigned &NumProtocols) {
   3468   ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
   3469 
   3470   // Sort protocols, keyed by name.
   3471   std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
   3472 
   3473   // Canonicalize.
   3474   for (unsigned I = 0, N = NumProtocols; I != N; ++I)
   3475     Protocols[I] = Protocols[I]->getCanonicalDecl();
   3476 
   3477   // Remove duplicates.
   3478   ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
   3479   NumProtocols = ProtocolsEnd-Protocols;
   3480 }
   3481 
   3482 QualType ASTContext::getObjCObjectType(QualType BaseType,
   3483                                        ObjCProtocolDecl * const *Protocols,
   3484                                        unsigned NumProtocols) const {
   3485   // If the base type is an interface and there aren't any protocols
   3486   // to add, then the interface type will do just fine.
   3487   if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
   3488     return BaseType;
   3489 
   3490   // Look in the folding set for an existing type.
   3491   llvm::FoldingSetNodeID ID;
   3492   ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
   3493   void *InsertPos = nullptr;
   3494   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
   3495     return QualType(QT, 0);
   3496 
   3497   // Build the canonical type, which has the canonical base type and
   3498   // a sorted-and-uniqued list of protocols.
   3499   QualType Canonical;
   3500   bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
   3501   if (!ProtocolsSorted || !BaseType.isCanonical()) {
   3502     if (!ProtocolsSorted) {
   3503       SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
   3504                                                      Protocols + NumProtocols);
   3505       unsigned UniqueCount = NumProtocols;
   3506 
   3507       SortAndUniqueProtocols(&Sorted[0], UniqueCount);
   3508       Canonical = getObjCObjectType(getCanonicalType(BaseType),
   3509                                     &Sorted[0], UniqueCount);
   3510     } else {
   3511       Canonical = getObjCObjectType(getCanonicalType(BaseType),
   3512                                     Protocols, NumProtocols);
   3513     }
   3514 
   3515     // Regenerate InsertPos.
   3516     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
   3517   }
   3518 
   3519   unsigned Size = sizeof(ObjCObjectTypeImpl);
   3520   Size += NumProtocols * sizeof(ObjCProtocolDecl *);
   3521   void *Mem = Allocate(Size, TypeAlignment);
   3522   ObjCObjectTypeImpl *T =
   3523     new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
   3524 
   3525   Types.push_back(T);
   3526   ObjCObjectTypes.InsertNode(T, InsertPos);
   3527   return QualType(T, 0);
   3528 }
   3529 
   3530 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
   3531 /// protocol list adopt all protocols in QT's qualified-id protocol
   3532 /// list.
   3533 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
   3534                                                 ObjCInterfaceDecl *IC) {
   3535   if (!QT->isObjCQualifiedIdType())
   3536     return false;
   3537 
   3538   if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) {
   3539     // If both the right and left sides have qualifiers.
   3540     for (auto *Proto : OPT->quals()) {
   3541       if (!IC->ClassImplementsProtocol(Proto, false))
   3542         return false;
   3543     }
   3544     return true;
   3545   }
   3546   return false;
   3547 }
   3548 
   3549 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
   3550 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
   3551 /// of protocols.
   3552 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
   3553                                                 ObjCInterfaceDecl *IDecl) {
   3554   if (!QT->isObjCQualifiedIdType())
   3555     return false;
   3556   const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
   3557   if (!OPT)
   3558     return false;
   3559   if (!IDecl->hasDefinition())
   3560     return false;
   3561   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
   3562   CollectInheritedProtocols(IDecl, InheritedProtocols);
   3563   if (InheritedProtocols.empty())
   3564     return false;
   3565   // Check that if every protocol in list of id<plist> conforms to a protcol
   3566   // of IDecl's, then bridge casting is ok.
   3567   bool Conforms = false;
   3568   for (auto *Proto : OPT->quals()) {
   3569     Conforms = false;
   3570     for (auto *PI : InheritedProtocols) {
   3571       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
   3572         Conforms = true;
   3573         break;
   3574       }
   3575     }
   3576     if (!Conforms)
   3577       break;
   3578   }
   3579   if (Conforms)
   3580     return true;
   3581 
   3582   for (auto *PI : InheritedProtocols) {
   3583     // If both the right and left sides have qualifiers.
   3584     bool Adopts = false;
   3585     for (auto *Proto : OPT->quals()) {
   3586       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
   3587       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
   3588         break;
   3589     }
   3590     if (!Adopts)
   3591       return false;
   3592   }
   3593   return true;
   3594 }
   3595 
   3596 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
   3597 /// the given object type.
   3598 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
   3599   llvm::FoldingSetNodeID ID;
   3600   ObjCObjectPointerType::Profile(ID, ObjectT);
   3601 
   3602   void *InsertPos = nullptr;
   3603   if (ObjCObjectPointerType *QT =
   3604               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
   3605     return QualType(QT, 0);
   3606 
   3607   // Find the canonical object type.
   3608   QualType Canonical;
   3609   if (!ObjectT.isCanonical()) {
   3610     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
   3611 
   3612     // Regenerate InsertPos.
   3613     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
   3614   }
   3615 
   3616   // No match.
   3617   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
   3618   ObjCObjectPointerType *QType =
   3619     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
   3620 
   3621   Types.push_back(QType);
   3622   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
   3623   return QualType(QType, 0);
   3624 }
   3625 
   3626 /// getObjCInterfaceType - Return the unique reference to the type for the
   3627 /// specified ObjC interface decl. The list of protocols is optional.
   3628 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
   3629                                           ObjCInterfaceDecl *PrevDecl) const {
   3630   if (Decl->TypeForDecl)
   3631     return QualType(Decl->TypeForDecl, 0);
   3632 
   3633   if (PrevDecl) {
   3634     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
   3635     Decl->TypeForDecl = PrevDecl->TypeForDecl;
   3636     return QualType(PrevDecl->TypeForDecl, 0);
   3637   }
   3638 
   3639   // Prefer the definition, if there is one.
   3640   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
   3641     Decl = Def;
   3642 
   3643   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
   3644   ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
   3645   Decl->TypeForDecl = T;
   3646   Types.push_back(T);
   3647   return QualType(T, 0);
   3648 }
   3649 
   3650 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
   3651 /// TypeOfExprType AST's (since expression's are never shared). For example,
   3652 /// multiple declarations that refer to "typeof(x)" all contain different
   3653 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
   3654 /// on canonical type's (which are always unique).
   3655 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
   3656   TypeOfExprType *toe;
   3657   if (tofExpr->isTypeDependent()) {
   3658     llvm::FoldingSetNodeID ID;
   3659     DependentTypeOfExprType::Profile(ID, *this, tofExpr);
   3660 
   3661     void *InsertPos = nullptr;
   3662     DependentTypeOfExprType *Canon
   3663       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
   3664     if (Canon) {
   3665       // We already have a "canonical" version of an identical, dependent
   3666       // typeof(expr) type. Use that as our canonical type.
   3667       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
   3668                                           QualType((TypeOfExprType*)Canon, 0));
   3669     } else {
   3670       // Build a new, canonical typeof(expr) type.
   3671       Canon
   3672         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
   3673       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
   3674       toe = Canon;
   3675     }
   3676   } else {
   3677     QualType Canonical = getCanonicalType(tofExpr->getType());
   3678     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
   3679   }
   3680   Types.push_back(toe);
   3681   return QualType(toe, 0);
   3682 }
   3683 
   3684 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
   3685 /// TypeOfType nodes. The only motivation to unique these nodes would be
   3686 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
   3687 /// an issue. This doesn't affect the type checker, since it operates
   3688 /// on canonical types (which are always unique).
   3689 QualType ASTContext::getTypeOfType(QualType tofType) const {
   3690   QualType Canonical = getCanonicalType(tofType);
   3691   TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
   3692   Types.push_back(tot);
   3693   return QualType(tot, 0);
   3694 }
   3695 
   3696 
   3697 /// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType
   3698 /// nodes. This would never be helpful, since each such type has its own
   3699 /// expression, and would not give a significant memory saving, since there
   3700 /// is an Expr tree under each such type.
   3701 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
   3702   DecltypeType *dt;
   3703 
   3704   // C++11 [temp.type]p2:
   3705   //   If an expression e involves a template parameter, decltype(e) denotes a
   3706   //   unique dependent type. Two such decltype-specifiers refer to the same
   3707   //   type only if their expressions are equivalent (14.5.6.1).
   3708   if (e->isInstantiationDependent()) {
   3709     llvm::FoldingSetNodeID ID;
   3710     DependentDecltypeType::Profile(ID, *this, e);
   3711 
   3712     void *InsertPos = nullptr;
   3713     DependentDecltypeType *Canon
   3714       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
   3715     if (!Canon) {
   3716       // Build a new, canonical typeof(expr) type.
   3717       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
   3718       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
   3719     }
   3720     dt = new (*this, TypeAlignment)
   3721         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
   3722   } else {
   3723     dt = new (*this, TypeAlignment)
   3724         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
   3725   }
   3726   Types.push_back(dt);
   3727   return QualType(dt, 0);
   3728 }
   3729 
   3730 /// getUnaryTransformationType - We don't unique these, since the memory
   3731 /// savings are minimal and these are rare.
   3732 QualType ASTContext::getUnaryTransformType(QualType BaseType,
   3733                                            QualType UnderlyingType,
   3734                                            UnaryTransformType::UTTKind Kind)
   3735     const {
   3736   UnaryTransformType *Ty =
   3737     new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
   3738                                                    Kind,
   3739                                  UnderlyingType->isDependentType() ?
   3740                                  QualType() : getCanonicalType(UnderlyingType));
   3741   Types.push_back(Ty);
   3742   return QualType(Ty, 0);
   3743 }
   3744 
   3745 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
   3746 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
   3747 /// canonical deduced-but-dependent 'auto' type.
   3748 QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
   3749                                  bool IsDependent) const {
   3750   if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
   3751     return getAutoDeductType();
   3752 
   3753   // Look in the folding set for an existing type.
   3754   void *InsertPos = nullptr;
   3755   llvm::FoldingSetNodeID ID;
   3756   AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
   3757   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
   3758     return QualType(AT, 0);
   3759 
   3760   AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
   3761                                                      IsDecltypeAuto,
   3762                                                      IsDependent);
   3763   Types.push_back(AT);
   3764   if (InsertPos)
   3765     AutoTypes.InsertNode(AT, InsertPos);
   3766   return QualType(AT, 0);
   3767 }
   3768 
   3769 /// getAtomicType - Return the uniqued reference to the atomic type for
   3770 /// the given value type.
   3771 QualType ASTContext::getAtomicType(QualType T) const {
   3772   // Unique pointers, to guarantee there is only one pointer of a particular
   3773   // structure.
   3774   llvm::FoldingSetNodeID ID;
   3775   AtomicType::Profile(ID, T);
   3776 
   3777   void *InsertPos = nullptr;
   3778   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
   3779     return QualType(AT, 0);
   3780 
   3781   // If the atomic value type isn't canonical, this won't be a canonical type
   3782   // either, so fill in the canonical type field.
   3783   QualType Canonical;
   3784   if (!T.isCanonical()) {
   3785     Canonical = getAtomicType(getCanonicalType(T));
   3786 
   3787     // Get the new insert position for the node we care about.
   3788     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
   3789     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
   3790   }
   3791   AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
   3792   Types.push_back(New);
   3793   AtomicTypes.InsertNode(New, InsertPos);
   3794   return QualType(New, 0);
   3795 }
   3796 
   3797 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
   3798 QualType ASTContext::getAutoDeductType() const {
   3799   if (AutoDeductTy.isNull())
   3800     AutoDeductTy = QualType(
   3801       new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
   3802                                           /*dependent*/false),
   3803       0);
   3804   return AutoDeductTy;
   3805 }
   3806 
   3807 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
   3808 QualType ASTContext::getAutoRRefDeductType() const {
   3809   if (AutoRRefDeductTy.isNull())
   3810     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
   3811   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
   3812   return AutoRRefDeductTy;
   3813 }
   3814 
   3815 /// getTagDeclType - Return the unique reference to the type for the
   3816 /// specified TagDecl (struct/union/class/enum) decl.
   3817 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
   3818   assert (Decl);
   3819   // FIXME: What is the design on getTagDeclType when it requires casting
   3820   // away const?  mutable?
   3821   return getTypeDeclType(const_cast<TagDecl*>(Decl));
   3822 }
   3823 
   3824 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
   3825 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
   3826 /// needs to agree with the definition in <stddef.h>.
   3827 CanQualType ASTContext::getSizeType() const {
   3828   return getFromTargetType(Target->getSizeType());
   3829 }
   3830 
   3831 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
   3832 CanQualType ASTContext::getIntMaxType() const {
   3833   return getFromTargetType(Target->getIntMaxType());
   3834 }
   3835 
   3836 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
   3837 CanQualType ASTContext::getUIntMaxType() const {
   3838   return getFromTargetType(Target->getUIntMaxType());
   3839 }
   3840 
   3841 /// getSignedWCharType - Return the type of "signed wchar_t".
   3842 /// Used when in C++, as a GCC extension.
   3843 QualType ASTContext::getSignedWCharType() const {
   3844   // FIXME: derive from "Target" ?
   3845   return WCharTy;
   3846 }
   3847 
   3848 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
   3849 /// Used when in C++, as a GCC extension.
   3850 QualType ASTContext::getUnsignedWCharType() const {
   3851   // FIXME: derive from "Target" ?
   3852   return UnsignedIntTy;
   3853 }
   3854 
   3855 QualType ASTContext::getIntPtrType() const {
   3856   return getFromTargetType(Target->getIntPtrType());
   3857 }
   3858 
   3859 QualType ASTContext::getUIntPtrType() const {
   3860   return getCorrespondingUnsignedType(getIntPtrType());
   3861 }
   3862 
   3863 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
   3864 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
   3865 QualType ASTContext::getPointerDiffType() const {
   3866   return getFromTargetType(Target->getPtrDiffType(0));
   3867 }
   3868 
   3869 /// \brief Return the unique type for "pid_t" defined in
   3870 /// <sys/types.h>. We need this to compute the correct type for vfork().
   3871 QualType ASTContext::getProcessIDType() const {
   3872   return getFromTargetType(Target->getProcessIDType());
   3873 }
   3874 
   3875 //===----------------------------------------------------------------------===//
   3876 //                              Type Operators
   3877 //===----------------------------------------------------------------------===//
   3878 
   3879 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
   3880   // Push qualifiers into arrays, and then discard any remaining
   3881   // qualifiers.
   3882   T = getCanonicalType(T);
   3883   T = getVariableArrayDecayedType(T);
   3884   const Type *Ty = T.getTypePtr();
   3885   QualType Result;
   3886   if (isa<ArrayType>(Ty)) {
   3887     Result = getArrayDecayedType(QualType(Ty,0));
   3888   } else if (isa<FunctionType>(Ty)) {
   3889     Result = getPointerType(QualType(Ty, 0));
   3890   } else {
   3891     Result = QualType(Ty, 0);
   3892   }
   3893 
   3894   return CanQualType::CreateUnsafe(Result);
   3895 }
   3896 
   3897 QualType ASTContext::getUnqualifiedArrayType(QualType type,
   3898                                              Qualifiers &quals) {
   3899   SplitQualType splitType = type.getSplitUnqualifiedType();
   3900 
   3901   // FIXME: getSplitUnqualifiedType() actually walks all the way to
   3902   // the unqualified desugared type and then drops it on the floor.
   3903   // We then have to strip that sugar back off with
   3904   // getUnqualifiedDesugaredType(), which is silly.
   3905   const ArrayType *AT =
   3906     dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
   3907 
   3908   // If we don't have an array, just use the results in splitType.
   3909   if (!AT) {
   3910     quals = splitType.Quals;
   3911     return QualType(splitType.Ty, 0);
   3912   }
   3913 
   3914   // Otherwise, recurse on the array's element type.
   3915   QualType elementType = AT->getElementType();
   3916   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
   3917 
   3918   // If that didn't change the element type, AT has no qualifiers, so we
   3919   // can just use the results in splitType.
   3920   if (elementType == unqualElementType) {
   3921     assert(quals.empty()); // from the recursive call
   3922     quals = splitType.Quals;
   3923     return QualType(splitType.Ty, 0);
   3924   }
   3925 
   3926   // Otherwise, add in the qualifiers from the outermost type, then
   3927   // build the type back up.
   3928   quals.addConsistentQualifiers(splitType.Quals);
   3929 
   3930   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
   3931     return getConstantArrayType(unqualElementType, CAT->getSize(),
   3932                                 CAT->getSizeModifier(), 0);
   3933   }
   3934 
   3935   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
   3936     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
   3937   }
   3938 
   3939   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
   3940     return getVariableArrayType(unqualElementType,
   3941                                 VAT->getSizeExpr(),
   3942                                 VAT->getSizeModifier(),
   3943                                 VAT->getIndexTypeCVRQualifiers(),
   3944                                 VAT->getBracketsRange());
   3945   }
   3946 
   3947   const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
   3948   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
   3949                                     DSAT->getSizeModifier(), 0,
   3950                                     SourceRange());
   3951 }
   3952 
   3953 /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
   3954 /// may be similar (C++ 4.4), replaces T1 and T2 with the type that
   3955 /// they point to and return true. If T1 and T2 aren't pointer types
   3956 /// or pointer-to-member types, or if they are not similar at this
   3957 /// level, returns false and leaves T1 and T2 unchanged. Top-level
   3958 /// qualifiers on T1 and T2 are ignored. This function will typically
   3959 /// be called in a loop that successively "unwraps" pointer and
   3960 /// pointer-to-member types to compare them at each level.
   3961 bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
   3962   const PointerType *T1PtrType = T1->getAs<PointerType>(),
   3963                     *T2PtrType = T2->getAs<PointerType>();
   3964   if (T1PtrType && T2PtrType) {
   3965     T1 = T1PtrType->getPointeeType();
   3966     T2 = T2PtrType->getPointeeType();
   3967     return true;
   3968   }
   3969 
   3970   const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
   3971                           *T2MPType = T2->getAs<MemberPointerType>();
   3972   if (T1MPType && T2MPType &&
   3973       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
   3974                              QualType(T2MPType->getClass(), 0))) {
   3975     T1 = T1MPType->getPointeeType();
   3976     T2 = T2MPType->getPointeeType();
   3977     return true;
   3978   }
   3979 
   3980   if (getLangOpts().ObjC1) {
   3981     const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
   3982                                 *T2OPType = T2->getAs<ObjCObjectPointerType>();
   3983     if (T1OPType && T2OPType) {
   3984       T1 = T1OPType->getPointeeType();
   3985       T2 = T2OPType->getPointeeType();
   3986       return true;
   3987     }
   3988   }
   3989 
   3990   // FIXME: Block pointers, too?
   3991 
   3992   return false;
   3993 }
   3994 
   3995 DeclarationNameInfo
   3996 ASTContext::getNameForTemplate(TemplateName Name,
   3997                                SourceLocation NameLoc) const {
   3998   switch (Name.getKind()) {
   3999   case TemplateName::QualifiedTemplate:
   4000   case TemplateName::Template:
   4001     // DNInfo work in progress: CHECKME: what about DNLoc?
   4002     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
   4003                                NameLoc);
   4004 
   4005   case TemplateName::OverloadedTemplate: {
   4006     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
   4007     // DNInfo work in progress: CHECKME: what about DNLoc?
   4008     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
   4009   }
   4010 
   4011   case TemplateName::DependentTemplate: {
   4012     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
   4013     DeclarationName DName;
   4014     if (DTN->isIdentifier()) {
   4015       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
   4016       return DeclarationNameInfo(DName, NameLoc);
   4017     } else {
   4018       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
   4019       // DNInfo work in progress: FIXME: source locations?
   4020       DeclarationNameLoc DNLoc;
   4021       DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
   4022       DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
   4023       return DeclarationNameInfo(DName, NameLoc, DNLoc);
   4024     }
   4025   }
   4026 
   4027   case TemplateName::SubstTemplateTemplateParm: {
   4028     SubstTemplateTemplateParmStorage *subst
   4029       = Name.getAsSubstTemplateTemplateParm();
   4030     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
   4031                                NameLoc);
   4032   }
   4033 
   4034   case TemplateName::SubstTemplateTemplateParmPack: {
   4035     SubstTemplateTemplateParmPackStorage *subst
   4036       = Name.getAsSubstTemplateTemplateParmPack();
   4037     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
   4038                                NameLoc);
   4039   }
   4040   }
   4041 
   4042   llvm_unreachable("bad template name kind!");
   4043 }
   4044 
   4045 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
   4046   switch (Name.getKind()) {
   4047   case TemplateName::QualifiedTemplate:
   4048   case TemplateName::Template: {
   4049     TemplateDecl *Template = Name.getAsTemplateDecl();
   4050     if (TemplateTemplateParmDecl *TTP
   4051           = dyn_cast<TemplateTemplateParmDecl>(Template))
   4052       Template = getCanonicalTemplateTemplateParmDecl(TTP);
   4053 
   4054     // The canonical template name is the canonical template declaration.
   4055     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
   4056   }
   4057 
   4058   case TemplateName::OverloadedTemplate:
   4059     llvm_unreachable("cannot canonicalize overloaded template");
   4060 
   4061   case TemplateName::DependentTemplate: {
   4062     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
   4063     assert(DTN && "Non-dependent template names must refer to template decls.");
   4064     return DTN->CanonicalTemplateName;
   4065   }
   4066 
   4067   case TemplateName::SubstTemplateTemplateParm: {
   4068     SubstTemplateTemplateParmStorage *subst
   4069       = Name.getAsSubstTemplateTemplateParm();
   4070     return getCanonicalTemplateName(subst->getReplacement());
   4071   }
   4072 
   4073   case TemplateName::SubstTemplateTemplateParmPack: {
   4074     SubstTemplateTemplateParmPackStorage *subst
   4075                                   = Name.getAsSubstTemplateTemplateParmPack();
   4076     TemplateTemplateParmDecl *canonParameter
   4077       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
   4078     TemplateArgument canonArgPack
   4079       = getCanonicalTemplateArgument(subst->getArgumentPack());
   4080     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
   4081   }
   4082   }
   4083 
   4084   llvm_unreachable("bad template name!");
   4085 }
   4086 
   4087 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
   4088   X = getCanonicalTemplateName(X);
   4089   Y = getCanonicalTemplateName(Y);
   4090   return X.getAsVoidPointer() == Y.getAsVoidPointer();
   4091 }
   4092 
   4093 TemplateArgument
   4094 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
   4095   switch (Arg.getKind()) {
   4096     case TemplateArgument::Null:
   4097       return Arg;
   4098 
   4099     case TemplateArgument::Expression:
   4100       return Arg;
   4101 
   4102     case TemplateArgument::Declaration: {
   4103       ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
   4104       return TemplateArgument(D, Arg.isDeclForReferenceParam());
   4105     }
   4106 
   4107     case TemplateArgument::NullPtr:
   4108       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
   4109                               /*isNullPtr*/true);
   4110 
   4111     case TemplateArgument::Template:
   4112       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
   4113 
   4114     case TemplateArgument::TemplateExpansion:
   4115       return TemplateArgument(getCanonicalTemplateName(
   4116                                          Arg.getAsTemplateOrTemplatePattern()),
   4117                               Arg.getNumTemplateExpansions());
   4118 
   4119     case TemplateArgument::Integral:
   4120       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
   4121 
   4122     case TemplateArgument::Type:
   4123       return TemplateArgument(getCanonicalType(Arg.getAsType()));
   4124 
   4125     case TemplateArgument::Pack: {
   4126       if (Arg.pack_size() == 0)
   4127         return Arg;
   4128 
   4129       TemplateArgument *CanonArgs
   4130         = new (*this) TemplateArgument[Arg.pack_size()];
   4131       unsigned Idx = 0;
   4132       for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
   4133                                         AEnd = Arg.pack_end();
   4134            A != AEnd; (void)++A, ++Idx)
   4135         CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
   4136 
   4137       return TemplateArgument(CanonArgs, Arg.pack_size());
   4138     }
   4139   }
   4140 
   4141   // Silence GCC warning
   4142   llvm_unreachable("Unhandled template argument kind");
   4143 }
   4144 
   4145 NestedNameSpecifier *
   4146 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
   4147   if (!NNS)
   4148     return nullptr;
   4149 
   4150   switch (NNS->getKind()) {
   4151   case NestedNameSpecifier::Identifier:
   4152     // Canonicalize the prefix but keep the identifier the same.
   4153     return NestedNameSpecifier::Create(*this,
   4154                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
   4155                                        NNS->getAsIdentifier());
   4156 
   4157   case NestedNameSpecifier::Namespace:
   4158     // A namespace is canonical; build a nested-name-specifier with
   4159     // this namespace and no prefix.
   4160     return NestedNameSpecifier::Create(*this, nullptr,
   4161                                  NNS->getAsNamespace()->getOriginalNamespace());
   4162 
   4163   case NestedNameSpecifier::NamespaceAlias:
   4164     // A namespace is canonical; build a nested-name-specifier with
   4165     // this namespace and no prefix.
   4166     return NestedNameSpecifier::Create(*this, nullptr,
   4167                                     NNS->getAsNamespaceAlias()->getNamespace()
   4168                                                       ->getOriginalNamespace());
   4169 
   4170   case NestedNameSpecifier::TypeSpec:
   4171   case NestedNameSpecifier::TypeSpecWithTemplate: {
   4172     QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
   4173 
   4174     // If we have some kind of dependent-named type (e.g., "typename T::type"),
   4175     // break it apart into its prefix and identifier, then reconsititute those
   4176     // as the canonical nested-name-specifier. This is required to canonicalize
   4177     // a dependent nested-name-specifier involving typedefs of dependent-name
   4178     // types, e.g.,
   4179     //   typedef typename T::type T1;
   4180     //   typedef typename T1::type T2;
   4181     if (const DependentNameType *DNT = T->getAs<DependentNameType>())
   4182       return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
   4183                            const_cast<IdentifierInfo *>(DNT->getIdentifier()));
   4184 
   4185     // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
   4186     // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
   4187     // first place?
   4188     return NestedNameSpecifier::Create(*this, nullptr, false,
   4189                                        const_cast<Type *>(T.getTypePtr()));
   4190   }
   4191 
   4192   case NestedNameSpecifier::Global:
   4193     // The global specifier is canonical and unique.
   4194     return NNS;
   4195   }
   4196 
   4197   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
   4198 }
   4199 
   4200 
   4201 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
   4202   // Handle the non-qualified case efficiently.
   4203   if (!T.hasLocalQualifiers()) {
   4204     // Handle the common positive case fast.
   4205     if (const ArrayType *AT = dyn_cast<ArrayType>(T))
   4206       return AT;
   4207   }
   4208 
   4209   // Handle the common negative case fast.
   4210   if (!isa<ArrayType>(T.getCanonicalType()))
   4211     return nullptr;
   4212 
   4213   // Apply any qualifiers from the array type to the element type.  This
   4214   // implements C99 6.7.3p8: "If the specification of an array type includes
   4215   // any type qualifiers, the element type is so qualified, not the array type."
   4216 
   4217   // If we get here, we either have type qualifiers on the type, or we have
   4218   // sugar such as a typedef in the way.  If we have type qualifiers on the type
   4219   // we must propagate them down into the element type.
   4220 
   4221   SplitQualType split = T.getSplitDesugaredType();
   4222   Qualifiers qs = split.Quals;
   4223 
   4224   // If we have a simple case, just return now.
   4225   const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
   4226   if (!ATy || qs.empty())
   4227     return ATy;
   4228 
   4229   // Otherwise, we have an array and we have qualifiers on it.  Push the
   4230   // qualifiers into the array element type and return a new array type.
   4231   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
   4232 
   4233   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
   4234     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
   4235                                                 CAT->getSizeModifier(),
   4236                                            CAT->getIndexTypeCVRQualifiers()));
   4237   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
   4238     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
   4239                                                   IAT->getSizeModifier(),
   4240                                            IAT->getIndexTypeCVRQualifiers()));
   4241 
   4242   if (const DependentSizedArrayType *DSAT
   4243         = dyn_cast<DependentSizedArrayType>(ATy))
   4244     return cast<ArrayType>(
   4245                      getDependentSizedArrayType(NewEltTy,
   4246                                                 DSAT->getSizeExpr(),
   4247                                                 DSAT->getSizeModifier(),
   4248                                               DSAT->getIndexTypeCVRQualifiers(),
   4249                                                 DSAT->getBracketsRange()));
   4250 
   4251   const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
   4252   return cast<ArrayType>(getVariableArrayType(NewEltTy,
   4253                                               VAT->getSizeExpr(),
   4254                                               VAT->getSizeModifier(),
   4255                                               VAT->getIndexTypeCVRQualifiers(),
   4256                                               VAT->getBracketsRange()));
   4257 }
   4258 
   4259 QualType ASTContext::getAdjustedParameterType(QualType T) const {
   4260   if (T->isArrayType() || T->isFunctionType())
   4261     return getDecayedType(T);
   4262   return T;
   4263 }
   4264 
   4265 QualType ASTContext::getSignatureParameterType(QualType T) const {
   4266   T = getVariableArrayDecayedType(T);
   4267   T = getAdjustedParameterType(T);
   4268   return T.getUnqualifiedType();
   4269 }
   4270 
   4271 /// getArrayDecayedType - Return the properly qualified result of decaying the
   4272 /// specified array type to a pointer.  This operation is non-trivial when
   4273 /// handling typedefs etc.  The canonical type of "T" must be an array type,
   4274 /// this returns a pointer to a properly qualified element of the array.
   4275 ///
   4276 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
   4277 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
   4278   // Get the element type with 'getAsArrayType' so that we don't lose any
   4279   // typedefs in the element type of the array.  This also handles propagation
   4280   // of type qualifiers from the array type into the element type if present
   4281   // (C99 6.7.3p8).
   4282   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
   4283   assert(PrettyArrayType && "Not an array type!");
   4284 
   4285   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
   4286 
   4287   // int x[restrict 4] ->  int *restrict
   4288   return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
   4289 }
   4290 
   4291 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
   4292   return getBaseElementType(array->getElementType());
   4293 }
   4294 
   4295 QualType ASTContext::getBaseElementType(QualType type) const {
   4296   Qualifiers qs;
   4297   while (true) {
   4298     SplitQualType split = type.getSplitDesugaredType();
   4299     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
   4300     if (!array) break;
   4301 
   4302     type = array->getElementType();
   4303     qs.addConsistentQualifiers(split.Quals);
   4304   }
   4305 
   4306   return getQualifiedType(type, qs);
   4307 }
   4308 
   4309 /// getConstantArrayElementCount - Returns number of constant array elements.
   4310 uint64_t
   4311 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
   4312   uint64_t ElementCount = 1;
   4313   do {
   4314     ElementCount *= CA->getSize().getZExtValue();
   4315     CA = dyn_cast_or_null<ConstantArrayType>(
   4316       CA->getElementType()->getAsArrayTypeUnsafe());
   4317   } while (CA);
   4318   return ElementCount;
   4319 }
   4320 
   4321 /// getFloatingRank - Return a relative rank for floating point types.
   4322 /// This routine will assert if passed a built-in type that isn't a float.
   4323 static FloatingRank getFloatingRank(QualType T) {
   4324   if (const ComplexType *CT = T->getAs<ComplexType>())
   4325     return getFloatingRank(CT->getElementType());
   4326 
   4327   assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
   4328   switch (T->getAs<BuiltinType>()->getKind()) {
   4329   default: llvm_unreachable("getFloatingRank(): not a floating type");
   4330   case BuiltinType::Half:       return HalfRank;
   4331   case BuiltinType::Float:      return FloatRank;
   4332   case BuiltinType::Double:     return DoubleRank;
   4333   case BuiltinType::LongDouble: return LongDoubleRank;
   4334   }
   4335 }
   4336 
   4337 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
   4338 /// point or a complex type (based on typeDomain/typeSize).
   4339 /// 'typeDomain' is a real floating point or complex type.
   4340 /// 'typeSize' is a real floating point or complex type.
   4341 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
   4342                                                        QualType Domain) const {
   4343   FloatingRank EltRank = getFloatingRank(Size);
   4344   if (Domain->isComplexType()) {
   4345     switch (EltRank) {
   4346     case HalfRank: llvm_unreachable("Complex half is not supported");
   4347     case FloatRank:      return FloatComplexTy;
   4348     case DoubleRank:     return DoubleComplexTy;
   4349     case LongDoubleRank: return LongDoubleComplexTy;
   4350     }
   4351   }
   4352 
   4353   assert(Domain->isRealFloatingType() && "Unknown domain!");
   4354   switch (EltRank) {
   4355   case HalfRank:       return HalfTy;
   4356   case FloatRank:      return FloatTy;
   4357   case DoubleRank:     return DoubleTy;
   4358   case LongDoubleRank: return LongDoubleTy;
   4359   }
   4360   llvm_unreachable("getFloatingRank(): illegal value for rank");
   4361 }
   4362 
   4363 /// getFloatingTypeOrder - Compare the rank of the two specified floating
   4364 /// point types, ignoring the domain of the type (i.e. 'double' ==
   4365 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
   4366 /// LHS < RHS, return -1.
   4367 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
   4368   FloatingRank LHSR = getFloatingRank(LHS);
   4369   FloatingRank RHSR = getFloatingRank(RHS);
   4370 
   4371   if (LHSR == RHSR)
   4372     return 0;
   4373   if (LHSR > RHSR)
   4374     return 1;
   4375   return -1;
   4376 }
   4377 
   4378 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
   4379 /// routine will assert if passed a built-in type that isn't an integer or enum,
   4380 /// or if it is not canonicalized.
   4381 unsigned ASTContext::getIntegerRank(const Type *T) const {
   4382   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
   4383 
   4384   switch (cast<BuiltinType>(T)->getKind()) {
   4385   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
   4386   case BuiltinType::Bool:
   4387     return 1 + (getIntWidth(BoolTy) << 3);
   4388   case BuiltinType::Char_S:
   4389   case BuiltinType::Char_U:
   4390   case BuiltinType::SChar:
   4391   case BuiltinType::UChar:
   4392     return 2 + (getIntWidth(CharTy) << 3);
   4393   case BuiltinType::Short:
   4394   case BuiltinType::UShort:
   4395     return 3 + (getIntWidth(ShortTy) << 3);
   4396   case BuiltinType::Int:
   4397   case BuiltinType::UInt:
   4398     return 4 + (getIntWidth(IntTy) << 3);
   4399   case BuiltinType::Long:
   4400   case BuiltinType::ULong:
   4401     return 5 + (getIntWidth(LongTy) << 3);
   4402   case BuiltinType::LongLong:
   4403   case BuiltinType::ULongLong:
   4404     return 6 + (getIntWidth(LongLongTy) << 3);
   4405   case BuiltinType::Int128:
   4406   case BuiltinType::UInt128:
   4407     return 7 + (getIntWidth(Int128Ty) << 3);
   4408   }
   4409 }
   4410 
   4411 /// \brief Whether this is a promotable bitfield reference according
   4412 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
   4413 ///
   4414 /// \returns the type this bit-field will promote to, or NULL if no
   4415 /// promotion occurs.
   4416 QualType ASTContext::isPromotableBitField(Expr *E) const {
   4417   if (E->isTypeDependent() || E->isValueDependent())
   4418     return QualType();
   4419 
   4420   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
   4421   if (!Field)
   4422     return QualType();
   4423 
   4424   QualType FT = Field->getType();
   4425 
   4426   uint64_t BitWidth = Field->getBitWidthValue(*this);
   4427   uint64_t IntSize = getTypeSize(IntTy);
   4428   // GCC extension compatibility: if the bit-field size is less than or equal
   4429   // to the size of int, it gets promoted no matter what its type is.
   4430   // For instance, unsigned long bf : 4 gets promoted to signed int.
   4431   if (BitWidth < IntSize)
   4432     return IntTy;
   4433 
   4434   if (BitWidth == IntSize)
   4435     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
   4436 
   4437   // Types bigger than int are not subject to promotions, and therefore act
   4438   // like the base type.
   4439   // FIXME: This doesn't quite match what gcc does, but what gcc does here
   4440   // is ridiculous.
   4441   return QualType();
   4442 }
   4443 
   4444 /// getPromotedIntegerType - Returns the type that Promotable will
   4445 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
   4446 /// integer type.
   4447 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
   4448   assert(!Promotable.isNull());
   4449   assert(Promotable->isPromotableIntegerType());
   4450   if (const EnumType *ET = Promotable->getAs<EnumType>())
   4451     return ET->getDecl()->getPromotionType();
   4452 
   4453   if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
   4454     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
   4455     // (3.9.1) can be converted to a prvalue of the first of the following
   4456     // types that can represent all the values of its underlying type:
   4457     // int, unsigned int, long int, unsigned long int, long long int, or
   4458     // unsigned long long int [...]
   4459     // FIXME: Is there some better way to compute this?
   4460     if (BT->getKind() == BuiltinType::WChar_S ||
   4461         BT->getKind() == BuiltinType::WChar_U ||
   4462         BT->getKind() == BuiltinType::Char16 ||
   4463         BT->getKind() == BuiltinType::Char32) {
   4464       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
   4465       uint64_t FromSize = getTypeSize(BT);
   4466       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
   4467                                   LongLongTy, UnsignedLongLongTy };
   4468       for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
   4469         uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
   4470         if (FromSize < ToSize ||
   4471             (FromSize == ToSize &&
   4472              FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
   4473           return PromoteTypes[Idx];
   4474       }
   4475       llvm_unreachable("char type should fit into long long");
   4476     }
   4477   }
   4478 
   4479   // At this point, we should have a signed or unsigned integer type.
   4480   if (Promotable->isSignedIntegerType())
   4481     return IntTy;
   4482   uint64_t PromotableSize = getIntWidth(Promotable);
   4483   uint64_t IntSize = getIntWidth(IntTy);
   4484   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
   4485   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
   4486 }
   4487 
   4488 /// \brief Recurses in pointer/array types until it finds an objc retainable
   4489 /// type and returns its ownership.
   4490 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
   4491   while (!T.isNull()) {
   4492     if (T.getObjCLifetime() != Qualifiers::OCL_None)
   4493       return T.getObjCLifetime();
   4494     if (T->isArrayType())
   4495       T = getBaseElementType(T);
   4496     else if (const PointerType *PT = T->getAs<PointerType>())
   4497       T = PT->getPointeeType();
   4498     else if (const ReferenceType *RT = T->getAs<ReferenceType>())
   4499       T = RT->getPointeeType();
   4500     else
   4501       break;
   4502   }
   4503 
   4504   return Qualifiers::OCL_None;
   4505 }
   4506 
   4507 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
   4508   // Incomplete enum types are not treated as integer types.
   4509   // FIXME: In C++, enum types are never integer types.
   4510   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
   4511     return ET->getDecl()->getIntegerType().getTypePtr();
   4512   return nullptr;
   4513 }
   4514 
   4515 /// getIntegerTypeOrder - Returns the highest ranked integer type:
   4516 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
   4517 /// LHS < RHS, return -1.
   4518 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
   4519   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
   4520   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
   4521 
   4522   // Unwrap enums to their underlying type.
   4523   if (const EnumType *ET = dyn_cast<EnumType>(LHSC))
   4524     LHSC = getIntegerTypeForEnum(ET);
   4525   if (const EnumType *ET = dyn_cast<EnumType>(RHSC))
   4526     RHSC = getIntegerTypeForEnum(ET);
   4527 
   4528   if (LHSC == RHSC) return 0;
   4529 
   4530   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
   4531   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
   4532 
   4533   unsigned LHSRank = getIntegerRank(LHSC);
   4534   unsigned RHSRank = getIntegerRank(RHSC);
   4535 
   4536   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
   4537     if (LHSRank == RHSRank) return 0;
   4538     return LHSRank > RHSRank ? 1 : -1;
   4539   }
   4540 
   4541   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
   4542   if (LHSUnsigned) {
   4543     // If the unsigned [LHS] type is larger, return it.
   4544     if (LHSRank >= RHSRank)
   4545       return 1;
   4546 
   4547     // If the signed type can represent all values of the unsigned type, it
   4548     // wins.  Because we are dealing with 2's complement and types that are
   4549     // powers of two larger than each other, this is always safe.
   4550     return -1;
   4551   }
   4552 
   4553   // If the unsigned [RHS] type is larger, return it.
   4554   if (RHSRank >= LHSRank)
   4555     return -1;
   4556 
   4557   // If the signed type can represent all values of the unsigned type, it
   4558   // wins.  Because we are dealing with 2's complement and types that are
   4559   // powers of two larger than each other, this is always safe.
   4560   return 1;
   4561 }
   4562 
   4563 // getCFConstantStringType - Return the type used for constant CFStrings.
   4564 QualType ASTContext::getCFConstantStringType() const {
   4565   if (!CFConstantStringTypeDecl) {
   4566     CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString");
   4567     CFConstantStringTypeDecl->startDefinition();
   4568 
   4569     QualType FieldTypes[4];
   4570 
   4571     // const int *isa;
   4572     FieldTypes[0] = getPointerType(IntTy.withConst());
   4573     // int flags;
   4574     FieldTypes[1] = IntTy;
   4575     // const char *str;
   4576     FieldTypes[2] = getPointerType(CharTy.withConst());
   4577     // long length;
   4578     FieldTypes[3] = LongTy;
   4579 
   4580     // Create fields
   4581     for (unsigned i = 0; i < 4; ++i) {
   4582       FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
   4583                                            SourceLocation(),
   4584                                            SourceLocation(), nullptr,
   4585                                            FieldTypes[i], /*TInfo=*/nullptr,
   4586                                            /*BitWidth=*/nullptr,
   4587                                            /*Mutable=*/false,
   4588                                            ICIS_NoInit);
   4589       Field->setAccess(AS_public);
   4590       CFConstantStringTypeDecl->addDecl(Field);
   4591     }
   4592 
   4593     CFConstantStringTypeDecl->completeDefinition();
   4594   }
   4595 
   4596   return getTagDeclType(CFConstantStringTypeDecl);
   4597 }
   4598 
   4599 QualType ASTContext::getObjCSuperType() const {
   4600   if (ObjCSuperType.isNull()) {
   4601     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
   4602     TUDecl->addDecl(ObjCSuperTypeDecl);
   4603     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
   4604   }
   4605   return ObjCSuperType;
   4606 }
   4607 
   4608 void ASTContext::setCFConstantStringType(QualType T) {
   4609   const RecordType *Rec = T->getAs<RecordType>();
   4610   assert(Rec && "Invalid CFConstantStringType");
   4611   CFConstantStringTypeDecl = Rec->getDecl();
   4612 }
   4613 
   4614 QualType ASTContext::getBlockDescriptorType() const {
   4615   if (BlockDescriptorType)
   4616     return getTagDeclType(BlockDescriptorType);
   4617 
   4618   RecordDecl *RD;
   4619   // FIXME: Needs the FlagAppleBlock bit.
   4620   RD = buildImplicitRecord("__block_descriptor");
   4621   RD->startDefinition();
   4622 
   4623   QualType FieldTypes[] = {
   4624     UnsignedLongTy,
   4625     UnsignedLongTy,
   4626   };
   4627 
   4628   static const char *const FieldNames[] = {
   4629     "reserved",
   4630     "Size"
   4631   };
   4632 
   4633   for (size_t i = 0; i < 2; ++i) {
   4634     FieldDecl *Field = FieldDecl::Create(
   4635         *this, RD, SourceLocation(), SourceLocation(),
   4636         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
   4637         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
   4638     Field->setAccess(AS_public);
   4639     RD->addDecl(Field);
   4640   }
   4641 
   4642   RD->completeDefinition();
   4643 
   4644   BlockDescriptorType = RD;
   4645 
   4646   return getTagDeclType(BlockDescriptorType);
   4647 }
   4648 
   4649 QualType ASTContext::getBlockDescriptorExtendedType() const {
   4650   if (BlockDescriptorExtendedType)
   4651     return getTagDeclType(BlockDescriptorExtendedType);
   4652 
   4653   RecordDecl *RD;
   4654   // FIXME: Needs the FlagAppleBlock bit.
   4655   RD = buildImplicitRecord("__block_descriptor_withcopydispose");
   4656   RD->startDefinition();
   4657 
   4658   QualType FieldTypes[] = {
   4659     UnsignedLongTy,
   4660     UnsignedLongTy,
   4661     getPointerType(VoidPtrTy),
   4662     getPointerType(VoidPtrTy)
   4663   };
   4664 
   4665   static const char *const FieldNames[] = {
   4666     "reserved",
   4667     "Size",
   4668     "CopyFuncPtr",
   4669     "DestroyFuncPtr"
   4670   };
   4671 
   4672   for (size_t i = 0; i < 4; ++i) {
   4673     FieldDecl *Field = FieldDecl::Create(
   4674         *this, RD, SourceLocation(), SourceLocation(),
   4675         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
   4676         /*BitWidth=*/nullptr,
   4677         /*Mutable=*/false, ICIS_NoInit);
   4678     Field->setAccess(AS_public);
   4679     RD->addDecl(Field);
   4680   }
   4681 
   4682   RD->completeDefinition();
   4683 
   4684   BlockDescriptorExtendedType = RD;
   4685   return getTagDeclType(BlockDescriptorExtendedType);
   4686 }
   4687 
   4688 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
   4689 /// requires copy/dispose. Note that this must match the logic
   4690 /// in buildByrefHelpers.
   4691 bool ASTContext::BlockRequiresCopying(QualType Ty,
   4692                                       const VarDecl *D) {
   4693   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
   4694     const Expr *copyExpr = getBlockVarCopyInits(D);
   4695     if (!copyExpr && record->hasTrivialDestructor()) return false;
   4696 
   4697     return true;
   4698   }
   4699 
   4700   if (!Ty->isObjCRetainableType()) return false;
   4701 
   4702   Qualifiers qs = Ty.getQualifiers();
   4703 
   4704   // If we have lifetime, that dominates.
   4705   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
   4706     assert(getLangOpts().ObjCAutoRefCount);
   4707 
   4708     switch (lifetime) {
   4709       case Qualifiers::OCL_None: llvm_unreachable("impossible");
   4710 
   4711       // These are just bits as far as the runtime is concerned.
   4712       case Qualifiers::OCL_ExplicitNone:
   4713       case Qualifiers::OCL_Autoreleasing:
   4714         return false;
   4715 
   4716       // Tell the runtime that this is ARC __weak, called by the
   4717       // byref routines.
   4718       case Qualifiers::OCL_Weak:
   4719       // ARC __strong __block variables need to be retained.
   4720       case Qualifiers::OCL_Strong:
   4721         return true;
   4722     }
   4723     llvm_unreachable("fell out of lifetime switch!");
   4724   }
   4725   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
   4726           Ty->isObjCObjectPointerType());
   4727 }
   4728 
   4729 bool ASTContext::getByrefLifetime(QualType Ty,
   4730                               Qualifiers::ObjCLifetime &LifeTime,
   4731                               bool &HasByrefExtendedLayout) const {
   4732 
   4733   if (!getLangOpts().ObjC1 ||
   4734       getLangOpts().getGC() != LangOptions::NonGC)
   4735     return false;
   4736 
   4737   HasByrefExtendedLayout = false;
   4738   if (Ty->isRecordType()) {
   4739     HasByrefExtendedLayout = true;
   4740     LifeTime = Qualifiers::OCL_None;
   4741   }
   4742   else if (getLangOpts().ObjCAutoRefCount)
   4743     LifeTime = Ty.getObjCLifetime();
   4744   // MRR.
   4745   else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
   4746     LifeTime = Qualifiers::OCL_ExplicitNone;
   4747   else
   4748     LifeTime = Qualifiers::OCL_None;
   4749   return true;
   4750 }
   4751 
   4752 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
   4753   if (!ObjCInstanceTypeDecl)
   4754     ObjCInstanceTypeDecl =
   4755         buildImplicitTypedef(getObjCIdType(), "instancetype");
   4756   return ObjCInstanceTypeDecl;
   4757 }
   4758 
   4759 // This returns true if a type has been typedefed to BOOL:
   4760 // typedef <type> BOOL;
   4761 static bool isTypeTypedefedAsBOOL(QualType T) {
   4762   if (const TypedefType *TT = dyn_cast<TypedefType>(T))
   4763     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
   4764       return II->isStr("BOOL");
   4765 
   4766   return false;
   4767 }
   4768 
   4769 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
   4770 /// purpose.
   4771 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
   4772   if (!type->isIncompleteArrayType() && type->isIncompleteType())
   4773     return CharUnits::Zero();
   4774 
   4775   CharUnits sz = getTypeSizeInChars(type);
   4776 
   4777   // Make all integer and enum types at least as large as an int
   4778   if (sz.isPositive() && type->isIntegralOrEnumerationType())
   4779     sz = std::max(sz, getTypeSizeInChars(IntTy));
   4780   // Treat arrays as pointers, since that's how they're passed in.
   4781   else if (type->isArrayType())
   4782     sz = getTypeSizeInChars(VoidPtrTy);
   4783   return sz;
   4784 }
   4785 
   4786 static inline
   4787 std::string charUnitsToString(const CharUnits &CU) {
   4788   return llvm::itostr(CU.getQuantity());
   4789 }
   4790 
   4791 /// getObjCEncodingForBlock - Return the encoded type for this block
   4792 /// declaration.
   4793 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
   4794   std::string S;
   4795 
   4796   const BlockDecl *Decl = Expr->getBlockDecl();
   4797   QualType BlockTy =
   4798       Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
   4799   // Encode result type.
   4800   if (getLangOpts().EncodeExtendedBlockSig)
   4801     getObjCEncodingForMethodParameter(
   4802         Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S,
   4803         true /*Extended*/);
   4804   else
   4805     getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S);
   4806   // Compute size of all parameters.
   4807   // Start with computing size of a pointer in number of bytes.
   4808   // FIXME: There might(should) be a better way of doing this computation!
   4809   SourceLocation Loc;
   4810   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
   4811   CharUnits ParmOffset = PtrSize;
   4812   for (auto PI : Decl->params()) {
   4813     QualType PType = PI->getType();
   4814     CharUnits sz = getObjCEncodingTypeSize(PType);
   4815     if (sz.isZero())
   4816       continue;
   4817     assert (sz.isPositive() && "BlockExpr - Incomplete param type");
   4818     ParmOffset += sz;
   4819   }
   4820   // Size of the argument frame
   4821   S += charUnitsToString(ParmOffset);
   4822   // Block pointer and offset.
   4823   S += "@?0";
   4824 
   4825   // Argument types.
   4826   ParmOffset = PtrSize;
   4827   for (auto PVDecl : Decl->params()) {
   4828     QualType PType = PVDecl->getOriginalType();
   4829     if (const ArrayType *AT =
   4830           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
   4831       // Use array's original type only if it has known number of
   4832       // elements.
   4833       if (!isa<ConstantArrayType>(AT))
   4834         PType = PVDecl->getType();
   4835     } else if (PType->isFunctionType())
   4836       PType = PVDecl->getType();
   4837     if (getLangOpts().EncodeExtendedBlockSig)
   4838       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
   4839                                       S, true /*Extended*/);
   4840     else
   4841       getObjCEncodingForType(PType, S);
   4842     S += charUnitsToString(ParmOffset);
   4843     ParmOffset += getObjCEncodingTypeSize(PType);
   4844   }
   4845 
   4846   return S;
   4847 }
   4848 
   4849 bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
   4850                                                 std::string& S) {
   4851   // Encode result type.
   4852   getObjCEncodingForType(Decl->getReturnType(), S);
   4853   CharUnits ParmOffset;
   4854   // Compute size of all parameters.
   4855   for (auto PI : Decl->params()) {
   4856     QualType PType = PI->getType();
   4857     CharUnits sz = getObjCEncodingTypeSize(PType);
   4858     if (sz.isZero())
   4859       continue;
   4860 
   4861     assert (sz.isPositive() &&
   4862         "getObjCEncodingForFunctionDecl - Incomplete param type");
   4863     ParmOffset += sz;
   4864   }
   4865   S += charUnitsToString(ParmOffset);
   4866   ParmOffset = CharUnits::Zero();
   4867 
   4868   // Argument types.
   4869   for (auto PVDecl : Decl->params()) {
   4870     QualType PType = PVDecl->getOriginalType();
   4871     if (const ArrayType *AT =
   4872           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
   4873       // Use array's original type only if it has known number of
   4874       // elements.
   4875       if (!isa<ConstantArrayType>(AT))
   4876         PType = PVDecl->getType();
   4877     } else if (PType->isFunctionType())
   4878       PType = PVDecl->getType();
   4879     getObjCEncodingForType(PType, S);
   4880     S += charUnitsToString(ParmOffset);
   4881     ParmOffset += getObjCEncodingTypeSize(PType);
   4882   }
   4883 
   4884   return false;
   4885 }
   4886 
   4887 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
   4888 /// method parameter or return type. If Extended, include class names and
   4889 /// block object types.
   4890 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
   4891                                                    QualType T, std::string& S,
   4892                                                    bool Extended) const {
   4893   // Encode type qualifer, 'in', 'inout', etc. for the parameter.
   4894   getObjCEncodingForTypeQualifier(QT, S);
   4895   // Encode parameter type.
   4896   getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
   4897                              true     /*OutermostType*/,
   4898                              false    /*EncodingProperty*/,
   4899                              false    /*StructField*/,
   4900                              Extended /*EncodeBlockParameters*/,
   4901                              Extended /*EncodeClassNames*/);
   4902 }
   4903 
   4904 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
   4905 /// declaration.
   4906 bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
   4907                                               std::string& S,
   4908                                               bool Extended) const {
   4909   // FIXME: This is not very efficient.
   4910   // Encode return type.
   4911   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
   4912                                     Decl->getReturnType(), S, Extended);
   4913   // Compute size of all parameters.
   4914   // Start with computing size of a pointer in number of bytes.
   4915   // FIXME: There might(should) be a better way of doing this computation!
   4916   SourceLocation Loc;
   4917   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
   4918   // The first two arguments (self and _cmd) are pointers; account for
   4919   // their size.
   4920   CharUnits ParmOffset = 2 * PtrSize;
   4921   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
   4922        E = Decl->sel_param_end(); PI != E; ++PI) {
   4923     QualType PType = (*PI)->getType();
   4924     CharUnits sz = getObjCEncodingTypeSize(PType);
   4925     if (sz.isZero())
   4926       continue;
   4927 
   4928     assert (sz.isPositive() &&
   4929         "getObjCEncodingForMethodDecl - Incomplete param type");
   4930     ParmOffset += sz;
   4931   }
   4932   S += charUnitsToString(ParmOffset);
   4933   S += "@0:";
   4934   S += charUnitsToString(PtrSize);
   4935 
   4936   // Argument types.
   4937   ParmOffset = 2 * PtrSize;
   4938   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
   4939        E = Decl->sel_param_end(); PI != E; ++PI) {
   4940     const ParmVarDecl *PVDecl = *PI;
   4941     QualType PType = PVDecl->getOriginalType();
   4942     if (const ArrayType *AT =
   4943           dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
   4944       // Use array's original type only if it has known number of
   4945       // elements.
   4946       if (!isa<ConstantArrayType>(AT))
   4947         PType = PVDecl->getType();
   4948     } else if (PType->isFunctionType())
   4949       PType = PVDecl->getType();
   4950     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
   4951                                       PType, S, Extended);
   4952     S += charUnitsToString(ParmOffset);
   4953     ParmOffset += getObjCEncodingTypeSize(PType);
   4954   }
   4955 
   4956   return false;
   4957 }
   4958 
   4959 ObjCPropertyImplDecl *
   4960 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
   4961                                       const ObjCPropertyDecl *PD,
   4962                                       const Decl *Container) const {
   4963   if (!Container)
   4964     return nullptr;
   4965   if (const ObjCCategoryImplDecl *CID =
   4966       dyn_cast<ObjCCategoryImplDecl>(Container)) {
   4967     for (auto *PID : CID->property_impls())
   4968       if (PID->getPropertyDecl() == PD)
   4969         return PID;
   4970   } else {
   4971     const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
   4972     for (auto *PID : OID->property_impls())
   4973       if (PID->getPropertyDecl() == PD)
   4974         return PID;
   4975   }
   4976   return nullptr;
   4977 }
   4978 
   4979 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
   4980 /// property declaration. If non-NULL, Container must be either an
   4981 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
   4982 /// NULL when getting encodings for protocol properties.
   4983 /// Property attributes are stored as a comma-delimited C string. The simple
   4984 /// attributes readonly and bycopy are encoded as single characters. The
   4985 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
   4986 /// encoded as single characters, followed by an identifier. Property types
   4987 /// are also encoded as a parametrized attribute. The characters used to encode
   4988 /// these attributes are defined by the following enumeration:
   4989 /// @code
   4990 /// enum PropertyAttributes {
   4991 /// kPropertyReadOnly = 'R',   // property is read-only.
   4992 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
   4993 /// kPropertyByref = '&',  // property is a reference to the value last assigned
   4994 /// kPropertyDynamic = 'D',    // property is dynamic
   4995 /// kPropertyGetter = 'G',     // followed by getter selector name
   4996 /// kPropertySetter = 'S',     // followed by setter selector name
   4997 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
   4998 /// kPropertyType = 'T'              // followed by old-style type encoding.
   4999 /// kPropertyWeak = 'W'              // 'weak' property
   5000 /// kPropertyStrong = 'P'            // property GC'able
   5001 /// kPropertyNonAtomic = 'N'         // property non-atomic
   5002 /// };
   5003 /// @endcode
   5004 void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
   5005                                                 const Decl *Container,
   5006                                                 std::string& S) const {
   5007   // Collect information from the property implementation decl(s).
   5008   bool Dynamic = false;
   5009   ObjCPropertyImplDecl *SynthesizePID = nullptr;
   5010 
   5011   if (ObjCPropertyImplDecl *PropertyImpDecl =
   5012       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
   5013     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
   5014       Dynamic = true;
   5015     else
   5016       SynthesizePID = PropertyImpDecl;
   5017   }
   5018 
   5019   // FIXME: This is not very efficient.
   5020   S = "T";
   5021 
   5022   // Encode result type.
   5023   // GCC has some special rules regarding encoding of properties which
   5024   // closely resembles encoding of ivars.
   5025   getObjCEncodingForPropertyType(PD->getType(), S);
   5026 
   5027   if (PD->isReadOnly()) {
   5028     S += ",R";
   5029     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
   5030       S += ",C";
   5031     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
   5032       S += ",&";
   5033     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
   5034       S += ",W";
   5035   } else {
   5036     switch (PD->getSetterKind()) {
   5037     case ObjCPropertyDecl::Assign: break;
   5038     case ObjCPropertyDecl::Copy:   S += ",C"; break;
   5039     case ObjCPropertyDecl::Retain: S += ",&"; break;
   5040     case ObjCPropertyDecl::Weak:   S += ",W"; break;
   5041     }
   5042   }
   5043 
   5044   // It really isn't clear at all what this means, since properties
   5045   // are "dynamic by default".
   5046   if (Dynamic)
   5047     S += ",D";
   5048 
   5049   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
   5050     S += ",N";
   5051 
   5052   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
   5053     S += ",G";
   5054     S += PD->getGetterName().getAsString();
   5055   }
   5056 
   5057   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
   5058     S += ",S";
   5059     S += PD->getSetterName().getAsString();
   5060   }
   5061 
   5062   if (SynthesizePID) {
   5063     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
   5064     S += ",V";
   5065     S += OID->getNameAsString();
   5066   }
   5067 
   5068   // FIXME: OBJCGC: weak & strong
   5069 }
   5070 
   5071 /// getLegacyIntegralTypeEncoding -
   5072 /// Another legacy compatibility encoding: 32-bit longs are encoded as
   5073 /// 'l' or 'L' , but not always.  For typedefs, we need to use
   5074 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
   5075 ///
   5076 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
   5077   if (isa<TypedefType>(PointeeTy.getTypePtr())) {
   5078     if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
   5079       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
   5080         PointeeTy = UnsignedIntTy;
   5081       else
   5082         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
   5083           PointeeTy = IntTy;
   5084     }
   5085   }
   5086 }
   5087 
   5088 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
   5089                                         const FieldDecl *Field) const {
   5090   // We follow the behavior of gcc, expanding structures which are
   5091   // directly pointed to, and expanding embedded structures. Note that
   5092   // these rules are sufficient to prevent recursive encoding of the
   5093   // same type.
   5094   getObjCEncodingForTypeImpl(T, S, true, true, Field,
   5095                              true /* outermost type */);
   5096 }
   5097 
   5098 void ASTContext::getObjCEncodingForPropertyType(QualType T,
   5099                                                 std::string& S) const {
   5100   // Encode result type.
   5101   // GCC has some special rules regarding encoding of properties which
   5102   // closely resembles encoding of ivars.
   5103   getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
   5104                              true /* outermost type */,
   5105                              true /* encoding property */);
   5106 }
   5107 
   5108 static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
   5109                                             BuiltinType::Kind kind) {
   5110     switch (kind) {
   5111     case BuiltinType::Void:       return 'v';
   5112     case BuiltinType::Bool:       return 'B';
   5113     case BuiltinType::Char_U:
   5114     case BuiltinType::UChar:      return 'C';
   5115     case BuiltinType::Char16:
   5116     case BuiltinType::UShort:     return 'S';
   5117     case BuiltinType::Char32:
   5118     case BuiltinType::UInt:       return 'I';
   5119     case BuiltinType::ULong:
   5120         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
   5121     case BuiltinType::UInt128:    return 'T';
   5122     case BuiltinType::ULongLong:  return 'Q';
   5123     case BuiltinType::Char_S:
   5124     case BuiltinType::SChar:      return 'c';
   5125     case BuiltinType::Short:      return 's';
   5126     case BuiltinType::WChar_S:
   5127     case BuiltinType::WChar_U:
   5128     case BuiltinType::Int:        return 'i';
   5129     case BuiltinType::Long:
   5130       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
   5131     case BuiltinType::LongLong:   return 'q';
   5132     case BuiltinType::Int128:     return 't';
   5133     case BuiltinType::Float:      return 'f';
   5134     case BuiltinType::Double:     return 'd';
   5135     case BuiltinType::LongDouble: return 'D';
   5136     case BuiltinType::NullPtr:    return '*'; // like char*
   5137 
   5138     case BuiltinType::Half:
   5139       // FIXME: potentially need @encodes for these!
   5140       return ' ';
   5141 
   5142     case BuiltinType::ObjCId:
   5143     case BuiltinType::ObjCClass:
   5144     case BuiltinType::ObjCSel:
   5145       llvm_unreachable("@encoding ObjC primitive type");
   5146 
   5147     // OpenCL and placeholder types don't need @encodings.
   5148     case BuiltinType::OCLImage1d:
   5149     case BuiltinType::OCLImage1dArray:
   5150     case BuiltinType::OCLImage1dBuffer:
   5151     case BuiltinType::OCLImage2d:
   5152     case BuiltinType::OCLImage2dArray:
   5153     case BuiltinType::OCLImage3d:
   5154     case BuiltinType::OCLEvent:
   5155     case BuiltinType::OCLSampler:
   5156     case BuiltinType::Dependent:
   5157 #define BUILTIN_TYPE(KIND, ID)
   5158 #define PLACEHOLDER_TYPE(KIND, ID) \
   5159     case BuiltinType::KIND:
   5160 #include "clang/AST/BuiltinTypes.def"
   5161       llvm_unreachable("invalid builtin type for @encode");
   5162     }
   5163     llvm_unreachable("invalid BuiltinType::Kind value");
   5164 }
   5165 
   5166 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
   5167   EnumDecl *Enum = ET->getDecl();
   5168 
   5169   // The encoding of an non-fixed enum type is always 'i', regardless of size.
   5170   if (!Enum->isFixed())
   5171     return 'i';
   5172 
   5173   // The encoding of a fixed enum type matches its fixed underlying type.
   5174   const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
   5175   return getObjCEncodingForPrimitiveKind(C, BT->getKind());
   5176 }
   5177 
   5178 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
   5179                            QualType T, const FieldDecl *FD) {
   5180   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
   5181   S += 'b';
   5182   // The NeXT runtime encodes bit fields as b followed by the number of bits.
   5183   // The GNU runtime requires more information; bitfields are encoded as b,
   5184   // then the offset (in bits) of the first element, then the type of the
   5185   // bitfield, then the size in bits.  For example, in this structure:
   5186   //
   5187   // struct
   5188   // {
   5189   //    int integer;
   5190   //    int flags:2;
   5191   // };
   5192   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
   5193   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
   5194   // information is not especially sensible, but we're stuck with it for
   5195   // compatibility with GCC, although providing it breaks anything that
   5196   // actually uses runtime introspection and wants to work on both runtimes...
   5197   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
   5198     const RecordDecl *RD = FD->getParent();
   5199     const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
   5200     S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
   5201     if (const EnumType *ET = T->getAs<EnumType>())
   5202       S += ObjCEncodingForEnumType(Ctx, ET);
   5203     else {
   5204       const BuiltinType *BT = T->castAs<BuiltinType>();
   5205       S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
   5206     }
   5207   }
   5208   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
   5209 }
   5210 
   5211 // FIXME: Use SmallString for accumulating string.
   5212 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
   5213                                             bool ExpandPointedToStructures,
   5214                                             bool ExpandStructures,
   5215                                             const FieldDecl *FD,
   5216                                             bool OutermostType,
   5217                                             bool EncodingProperty,
   5218                                             bool StructField,
   5219                                             bool EncodeBlockParameters,
   5220                                             bool EncodeClassNames,
   5221                                             bool EncodePointerToObjCTypedef) const {
   5222   CanQualType CT = getCanonicalType(T);
   5223   switch (CT->getTypeClass()) {
   5224   case Type::Builtin:
   5225   case Type::Enum:
   5226     if (FD && FD->isBitField())
   5227       return EncodeBitField(this, S, T, FD);
   5228     if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
   5229       S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
   5230     else
   5231       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
   5232     return;
   5233 
   5234   case Type::Complex: {
   5235     const ComplexType *CT = T->castAs<ComplexType>();
   5236     S += 'j';
   5237     getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr,
   5238                                false, false);
   5239     return;
   5240   }
   5241 
   5242   case Type::Atomic: {
   5243     const AtomicType *AT = T->castAs<AtomicType>();
   5244     S += 'A';
   5245     getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr,
   5246                                false, false);
   5247     return;
   5248   }
   5249 
   5250   // encoding for pointer or reference types.
   5251   case Type::Pointer:
   5252   case Type::LValueReference:
   5253   case Type::RValueReference: {
   5254     QualType PointeeTy;
   5255     if (isa<PointerType>(CT)) {
   5256       const PointerType *PT = T->castAs<PointerType>();
   5257       if (PT->isObjCSelType()) {
   5258         S += ':';
   5259         return;
   5260       }
   5261       PointeeTy = PT->getPointeeType();
   5262     } else {
   5263       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
   5264     }
   5265 
   5266     bool isReadOnly = false;
   5267     // For historical/compatibility reasons, the read-only qualifier of the
   5268     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
   5269     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
   5270     // Also, do not emit the 'r' for anything but the outermost type!
   5271     if (isa<TypedefType>(T.getTypePtr())) {
   5272       if (OutermostType && T.isConstQualified()) {
   5273         isReadOnly = true;
   5274         S += 'r';
   5275       }
   5276     } else if (OutermostType) {
   5277       QualType P = PointeeTy;
   5278       while (P->getAs<PointerType>())
   5279         P = P->getAs<PointerType>()->getPointeeType();
   5280       if (P.isConstQualified()) {
   5281         isReadOnly = true;
   5282         S += 'r';
   5283       }
   5284     }
   5285     if (isReadOnly) {
   5286       // Another legacy compatibility encoding. Some ObjC qualifier and type
   5287       // combinations need to be rearranged.
   5288       // Rewrite "in const" from "nr" to "rn"
   5289       if (StringRef(S).endswith("nr"))
   5290         S.replace(S.end()-2, S.end(), "rn");
   5291     }
   5292 
   5293     if (PointeeTy->isCharType()) {
   5294       // char pointer types should be encoded as '*' unless it is a
   5295       // type that has been typedef'd to 'BOOL'.
   5296       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
   5297         S += '*';
   5298         return;
   5299       }
   5300     } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
   5301       // GCC binary compat: Need to convert "struct objc_class *" to "#".
   5302       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
   5303         S += '#';
   5304         return;
   5305       }
   5306       // GCC binary compat: Need to convert "struct objc_object *" to "@".
   5307       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
   5308         S += '@';
   5309         return;
   5310       }
   5311       // fall through...
   5312     }
   5313     S += '^';
   5314     getLegacyIntegralTypeEncoding(PointeeTy);
   5315 
   5316     getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
   5317                                nullptr);
   5318     return;
   5319   }
   5320 
   5321   case Type::ConstantArray:
   5322   case Type::IncompleteArray:
   5323   case Type::VariableArray: {
   5324     const ArrayType *AT = cast<ArrayType>(CT);
   5325 
   5326     if (isa<IncompleteArrayType>(AT) && !StructField) {
   5327       // Incomplete arrays are encoded as a pointer to the array element.
   5328       S += '^';
   5329 
   5330       getObjCEncodingForTypeImpl(AT->getElementType(), S,
   5331                                  false, ExpandStructures, FD);
   5332     } else {
   5333       S += '[';
   5334 
   5335       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
   5336         S += llvm::utostr(CAT->getSize().getZExtValue());
   5337       else {
   5338         //Variable length arrays are encoded as a regular array with 0 elements.
   5339         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
   5340                "Unknown array type!");
   5341         S += '0';
   5342       }
   5343 
   5344       getObjCEncodingForTypeImpl(AT->getElementType(), S,
   5345                                  false, ExpandStructures, FD);
   5346       S += ']';
   5347     }
   5348     return;
   5349   }
   5350 
   5351   case Type::FunctionNoProto:
   5352   case Type::FunctionProto:
   5353     S += '?';
   5354     return;
   5355 
   5356   case Type::Record: {
   5357     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
   5358     S += RDecl->isUnion() ? '(' : '{';
   5359     // Anonymous structures print as '?'
   5360     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
   5361       S += II->getName();
   5362       if (ClassTemplateSpecializationDecl *Spec
   5363           = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
   5364         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
   5365         llvm::raw_string_ostream OS(S);
   5366         TemplateSpecializationType::PrintTemplateArgumentList(OS,
   5367                                             TemplateArgs.data(),
   5368                                             TemplateArgs.size(),
   5369                                             (*this).getPrintingPolicy());
   5370       }
   5371     } else {
   5372       S += '?';
   5373     }
   5374     if (ExpandStructures) {
   5375       S += '=';
   5376       if (!RDecl->isUnion()) {
   5377         getObjCEncodingForStructureImpl(RDecl, S, FD);
   5378       } else {
   5379         for (const auto *Field : RDecl->fields()) {
   5380           if (FD) {
   5381             S += '"';
   5382             S += Field->getNameAsString();
   5383             S += '"';
   5384           }
   5385 
   5386           // Special case bit-fields.
   5387           if (Field->isBitField()) {
   5388             getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
   5389                                        Field);
   5390           } else {
   5391             QualType qt = Field->getType();
   5392             getLegacyIntegralTypeEncoding(qt);
   5393             getObjCEncodingForTypeImpl(qt, S, false, true,
   5394                                        FD, /*OutermostType*/false,
   5395                                        /*EncodingProperty*/false,
   5396                                        /*StructField*/true);
   5397           }
   5398         }
   5399       }
   5400     }
   5401     S += RDecl->isUnion() ? ')' : '}';
   5402     return;
   5403   }
   5404 
   5405   case Type::BlockPointer: {
   5406     const BlockPointerType *BT = T->castAs<BlockPointerType>();
   5407     S += "@?"; // Unlike a pointer-to-function, which is "^?".
   5408     if (EncodeBlockParameters) {
   5409       const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
   5410 
   5411       S += '<';
   5412       // Block return type
   5413       getObjCEncodingForTypeImpl(
   5414           FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures,
   5415           FD, false /* OutermostType */, EncodingProperty,
   5416           false /* StructField */, EncodeBlockParameters, EncodeClassNames);
   5417       // Block self
   5418       S += "@?";
   5419       // Block parameters
   5420       if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
   5421         for (const auto &I : FPT->param_types())
   5422           getObjCEncodingForTypeImpl(
   5423               I, S, ExpandPointedToStructures, ExpandStructures, FD,
   5424               false /* OutermostType */, EncodingProperty,
   5425               false /* StructField */, EncodeBlockParameters, EncodeClassNames);
   5426       }
   5427       S += '>';
   5428     }
   5429     return;
   5430   }
   5431 
   5432   case Type::ObjCObject: {
   5433     // hack to match legacy encoding of *id and *Class
   5434     QualType Ty = getObjCObjectPointerType(CT);
   5435     if (Ty->isObjCIdType()) {
   5436       S += "{objc_object=}";
   5437       return;
   5438     }
   5439     else if (Ty->isObjCClassType()) {
   5440       S += "{objc_class=}";
   5441       return;
   5442     }
   5443   }
   5444 
   5445   case Type::ObjCInterface: {
   5446     // Ignore protocol qualifiers when mangling at this level.
   5447     T = T->castAs<ObjCObjectType>()->getBaseType();
   5448 
   5449     // The assumption seems to be that this assert will succeed
   5450     // because nested levels will have filtered out 'id' and 'Class'.
   5451     const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
   5452     // @encode(class_name)
   5453     ObjCInterfaceDecl *OI = OIT->getDecl();
   5454     S += '{';
   5455     const IdentifierInfo *II = OI->getIdentifier();
   5456     S += II->getName();
   5457     S += '=';
   5458     SmallVector<const ObjCIvarDecl*, 32> Ivars;
   5459     DeepCollectObjCIvars(OI, true, Ivars);
   5460     for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
   5461       const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
   5462       if (Field->isBitField())
   5463         getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
   5464       else
   5465         getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
   5466                                    false, false, false, false, false,
   5467                                    EncodePointerToObjCTypedef);
   5468     }
   5469     S += '}';
   5470     return;
   5471   }
   5472 
   5473   case Type::ObjCObjectPointer: {
   5474     const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
   5475     if (OPT->isObjCIdType()) {
   5476       S += '@';
   5477       return;
   5478     }
   5479 
   5480     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
   5481       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
   5482       // Since this is a binary compatibility issue, need to consult with runtime
   5483       // folks. Fortunately, this is a *very* obsure construct.
   5484       S += '#';
   5485       return;
   5486     }
   5487 
   5488     if (OPT->isObjCQualifiedIdType()) {
   5489       getObjCEncodingForTypeImpl(getObjCIdType(), S,
   5490                                  ExpandPointedToStructures,
   5491                                  ExpandStructures, FD);
   5492       if (FD || EncodingProperty || EncodeClassNames) {
   5493         // Note that we do extended encoding of protocol qualifer list
   5494         // Only when doing ivar or property encoding.
   5495         S += '"';
   5496         for (const auto *I : OPT->quals()) {
   5497           S += '<';
   5498           S += I->getNameAsString();
   5499           S += '>';
   5500         }
   5501         S += '"';
   5502       }
   5503       return;
   5504     }
   5505 
   5506     QualType PointeeTy = OPT->getPointeeType();
   5507     if (!EncodingProperty &&
   5508         isa<TypedefType>(PointeeTy.getTypePtr()) &&
   5509         !EncodePointerToObjCTypedef) {
   5510       // Another historical/compatibility reason.
   5511       // We encode the underlying type which comes out as
   5512       // {...};
   5513       S += '^';
   5514       if (FD && OPT->getInterfaceDecl()) {
   5515         // Prevent recursive encoding of fields in some rare cases.
   5516         ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
   5517         SmallVector<const ObjCIvarDecl*, 32> Ivars;
   5518         DeepCollectObjCIvars(OI, true, Ivars);
   5519         for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
   5520           if (cast<FieldDecl>(Ivars[i]) == FD) {
   5521             S += '{';
   5522             S += OI->getIdentifier()->getName();
   5523             S += '}';
   5524             return;
   5525           }
   5526         }
   5527       }
   5528       getObjCEncodingForTypeImpl(PointeeTy, S,
   5529                                  false, ExpandPointedToStructures,
   5530                                  nullptr,
   5531                                  false, false, false, false, false,
   5532                                  /*EncodePointerToObjCTypedef*/true);
   5533       return;
   5534     }
   5535 
   5536     S += '@';
   5537     if (OPT->getInterfaceDecl() &&
   5538         (FD || EncodingProperty || EncodeClassNames)) {
   5539       S += '"';
   5540       S += OPT->getInterfaceDecl()->getIdentifier()->getName();
   5541       for (const auto *I : OPT->quals()) {
   5542         S += '<';
   5543         S += I->getNameAsString();
   5544         S += '>';
   5545       }
   5546       S += '"';
   5547     }
   5548     return;
   5549   }
   5550 
   5551   // gcc just blithely ignores member pointers.
   5552   // FIXME: we shoul do better than that.  'M' is available.
   5553   case Type::MemberPointer:
   5554     return;
   5555 
   5556   case Type::Vector:
   5557   case Type::ExtVector:
   5558     // This matches gcc's encoding, even though technically it is
   5559     // insufficient.
   5560     // FIXME. We should do a better job than gcc.
   5561     return;
   5562 
   5563   case Type::Auto:
   5564     // We could see an undeduced auto type here during error recovery.
   5565     // Just ignore it.
   5566     return;
   5567 
   5568 #define ABSTRACT_TYPE(KIND, BASE)
   5569 #define TYPE(KIND, BASE)
   5570 #define DEPENDENT_TYPE(KIND, BASE) \
   5571   case Type::KIND:
   5572 #define NON_CANONICAL_TYPE(KIND, BASE) \
   5573   case Type::KIND:
   5574 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
   5575   case Type::KIND:
   5576 #include "clang/AST/TypeNodes.def"
   5577     llvm_unreachable("@encode for dependent type!");
   5578   }
   5579   llvm_unreachable("bad type kind!");
   5580 }
   5581 
   5582 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
   5583                                                  std::string &S,
   5584                                                  const FieldDecl *FD,
   5585                                                  bool includeVBases) const {
   5586   assert(RDecl && "Expected non-null RecordDecl");
   5587   assert(!RDecl->isUnion() && "Should not be called for unions");
   5588   if (!RDecl->getDefinition())
   5589     return;
   5590 
   5591   CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
   5592   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
   5593   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
   5594 
   5595   if (CXXRec) {
   5596     for (const auto &BI : CXXRec->bases()) {
   5597       if (!BI.isVirtual()) {
   5598         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
   5599         if (base->isEmpty())
   5600           continue;
   5601         uint64_t offs = toBits(layout.getBaseClassOffset(base));
   5602         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
   5603                                   std::make_pair(offs, base));
   5604       }
   5605     }
   5606   }
   5607 
   5608   unsigned i = 0;
   5609   for (RecordDecl::field_iterator Field = RDecl->field_begin(),
   5610                                FieldEnd = RDecl->field_end();
   5611        Field != FieldEnd; ++Field, ++i) {
   5612     uint64_t offs = layout.getFieldOffset(i);
   5613     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
   5614                               std::make_pair(offs, *Field));
   5615   }
   5616 
   5617   if (CXXRec && includeVBases) {
   5618     for (const auto &BI : CXXRec->vbases()) {
   5619       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
   5620       if (base->isEmpty())
   5621         continue;
   5622       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
   5623       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
   5624           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
   5625         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
   5626                                   std::make_pair(offs, base));
   5627     }
   5628   }
   5629 
   5630   CharUnits size;
   5631   if (CXXRec) {
   5632     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
   5633   } else {
   5634     size = layout.getSize();
   5635   }
   5636 
   5637 #ifndef NDEBUG
   5638   uint64_t CurOffs = 0;
   5639 #endif
   5640   std::multimap<uint64_t, NamedDecl *>::iterator
   5641     CurLayObj = FieldOrBaseOffsets.begin();
   5642 
   5643   if (CXXRec && CXXRec->isDynamicClass() &&
   5644       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
   5645     if (FD) {
   5646       S += "\"_vptr$";
   5647       std::string recname = CXXRec->getNameAsString();
   5648       if (recname.empty()) recname = "?";
   5649       S += recname;
   5650       S += '"';
   5651     }
   5652     S += "^^?";
   5653 #ifndef NDEBUG
   5654     CurOffs += getTypeSize(VoidPtrTy);
   5655 #endif
   5656   }
   5657 
   5658   if (!RDecl->hasFlexibleArrayMember()) {
   5659     // Mark the end of the structure.
   5660     uint64_t offs = toBits(size);
   5661     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
   5662                               std::make_pair(offs, nullptr));
   5663   }
   5664 
   5665   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
   5666 #ifndef NDEBUG
   5667     assert(CurOffs <= CurLayObj->first);
   5668     if (CurOffs < CurLayObj->first) {
   5669       uint64_t padding = CurLayObj->first - CurOffs;
   5670       // FIXME: There doesn't seem to be a way to indicate in the encoding that
   5671       // packing/alignment of members is different that normal, in which case
   5672       // the encoding will be out-of-sync with the real layout.
   5673       // If the runtime switches to just consider the size of types without
   5674       // taking into account alignment, we could make padding explicit in the
   5675       // encoding (e.g. using arrays of chars). The encoding strings would be
   5676       // longer then though.
   5677       CurOffs += padding;
   5678     }
   5679 #endif
   5680 
   5681     NamedDecl *dcl = CurLayObj->second;
   5682     if (!dcl)
   5683       break; // reached end of structure.
   5684 
   5685     if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
   5686       // We expand the bases without their virtual bases since those are going
   5687       // in the initial structure. Note that this differs from gcc which
   5688       // expands virtual bases each time one is encountered in the hierarchy,
   5689       // making the encoding type bigger than it really is.
   5690       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
   5691       assert(!base->isEmpty());
   5692 #ifndef NDEBUG
   5693       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
   5694 #endif
   5695     } else {
   5696       FieldDecl *field = cast<FieldDecl>(dcl);
   5697       if (FD) {
   5698         S += '"';
   5699         S += field->getNameAsString();
   5700         S += '"';
   5701       }
   5702 
   5703       if (field->isBitField()) {
   5704         EncodeBitField(this, S, field->getType(), field);
   5705 #ifndef NDEBUG
   5706         CurOffs += field->getBitWidthValue(*this);
   5707 #endif
   5708       } else {
   5709         QualType qt = field->getType();
   5710         getLegacyIntegralTypeEncoding(qt);
   5711         getObjCEncodingForTypeImpl(qt, S, false, true, FD,
   5712                                    /*OutermostType*/false,
   5713                                    /*EncodingProperty*/false,
   5714                                    /*StructField*/true);
   5715 #ifndef NDEBUG
   5716         CurOffs += getTypeSize(field->getType());
   5717 #endif
   5718       }
   5719     }
   5720   }
   5721 }
   5722 
   5723 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
   5724                                                  std::string& S) const {
   5725   if (QT & Decl::OBJC_TQ_In)
   5726     S += 'n';
   5727   if (QT & Decl::OBJC_TQ_Inout)
   5728     S += 'N';
   5729   if (QT & Decl::OBJC_TQ_Out)
   5730     S += 'o';
   5731   if (QT & Decl::OBJC_TQ_Bycopy)
   5732     S += 'O';
   5733   if (QT & Decl::OBJC_TQ_Byref)
   5734     S += 'R';
   5735   if (QT & Decl::OBJC_TQ_Oneway)
   5736     S += 'V';
   5737 }
   5738 
   5739 TypedefDecl *ASTContext::getObjCIdDecl() const {
   5740   if (!ObjCIdDecl) {
   5741     QualType T = getObjCObjectType(ObjCBuiltinIdTy, nullptr, 0);
   5742     T = getObjCObjectPointerType(T);
   5743     ObjCIdDecl = buildImplicitTypedef(T, "id");
   5744   }
   5745   return ObjCIdDecl;
   5746 }
   5747 
   5748 TypedefDecl *ASTContext::getObjCSelDecl() const {
   5749   if (!ObjCSelDecl) {
   5750     QualType T = getPointerType(ObjCBuiltinSelTy);
   5751     ObjCSelDecl = buildImplicitTypedef(T, "SEL");
   5752   }
   5753   return ObjCSelDecl;
   5754 }
   5755 
   5756 TypedefDecl *ASTContext::getObjCClassDecl() const {
   5757   if (!ObjCClassDecl) {
   5758     QualType T = getObjCObjectType(ObjCBuiltinClassTy, nullptr, 0);
   5759     T = getObjCObjectPointerType(T);
   5760     ObjCClassDecl = buildImplicitTypedef(T, "Class");
   5761   }
   5762   return ObjCClassDecl;
   5763 }
   5764 
   5765 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
   5766   if (!ObjCProtocolClassDecl) {
   5767     ObjCProtocolClassDecl
   5768       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
   5769                                   SourceLocation(),
   5770                                   &Idents.get("Protocol"),
   5771                                   /*PrevDecl=*/nullptr,
   5772                                   SourceLocation(), true);
   5773   }
   5774 
   5775   return ObjCProtocolClassDecl;
   5776 }
   5777 
   5778 //===----------------------------------------------------------------------===//
   5779 // __builtin_va_list Construction Functions
   5780 //===----------------------------------------------------------------------===//
   5781 
   5782 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
   5783   // typedef char* __builtin_va_list;
   5784   QualType T = Context->getPointerType(Context->CharTy);
   5785   return Context->buildImplicitTypedef(T, "__builtin_va_list");
   5786 }
   5787 
   5788 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
   5789   // typedef void* __builtin_va_list;
   5790   QualType T = Context->getPointerType(Context->VoidTy);
   5791   return Context->buildImplicitTypedef(T, "__builtin_va_list");
   5792 }
   5793 
   5794 static TypedefDecl *
   5795 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
   5796   // struct __va_list
   5797   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
   5798   if (Context->getLangOpts().CPlusPlus) {
   5799     // namespace std { struct __va_list {
   5800     NamespaceDecl *NS;
   5801     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
   5802                                Context->getTranslationUnitDecl(),
   5803                                /*Inline*/ false, SourceLocation(),
   5804                                SourceLocation(), &Context->Idents.get("std"),
   5805                                /*PrevDecl*/ nullptr);
   5806     NS->setImplicit();
   5807     VaListTagDecl->setDeclContext(NS);
   5808   }
   5809 
   5810   VaListTagDecl->startDefinition();
   5811 
   5812   const size_t NumFields = 5;
   5813   QualType FieldTypes[NumFields];
   5814   const char *FieldNames[NumFields];
   5815 
   5816   // void *__stack;
   5817   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
   5818   FieldNames[0] = "__stack";
   5819 
   5820   // void *__gr_top;
   5821   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
   5822   FieldNames[1] = "__gr_top";
   5823 
   5824   // void *__vr_top;
   5825   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
   5826   FieldNames[2] = "__vr_top";
   5827 
   5828   // int __gr_offs;
   5829   FieldTypes[3] = Context->IntTy;
   5830   FieldNames[3] = "__gr_offs";
   5831 
   5832   // int __vr_offs;
   5833   FieldTypes[4] = Context->IntTy;
   5834   FieldNames[4] = "__vr_offs";
   5835 
   5836   // Create fields
   5837   for (unsigned i = 0; i < NumFields; ++i) {
   5838     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
   5839                                          VaListTagDecl,
   5840                                          SourceLocation(),
   5841                                          SourceLocation(),
   5842                                          &Context->Idents.get(FieldNames[i]),
   5843                                          FieldTypes[i], /*TInfo=*/nullptr,
   5844                                          /*BitWidth=*/nullptr,
   5845                                          /*Mutable=*/false,
   5846                                          ICIS_NoInit);
   5847     Field->setAccess(AS_public);
   5848     VaListTagDecl->addDecl(Field);
   5849   }
   5850   VaListTagDecl->completeDefinition();
   5851   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
   5852   Context->VaListTagTy = VaListTagType;
   5853 
   5854   // } __builtin_va_list;
   5855   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
   5856 }
   5857 
   5858 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
   5859   // typedef struct __va_list_tag {
   5860   RecordDecl *VaListTagDecl;
   5861 
   5862   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
   5863   VaListTagDecl->startDefinition();
   5864 
   5865   const size_t NumFields = 5;
   5866   QualType FieldTypes[NumFields];
   5867   const char *FieldNames[NumFields];
   5868 
   5869   //   unsigned char gpr;
   5870   FieldTypes[0] = Context->UnsignedCharTy;
   5871   FieldNames[0] = "gpr";
   5872 
   5873   //   unsigned char fpr;
   5874   FieldTypes[1] = Context->UnsignedCharTy;
   5875   FieldNames[1] = "fpr";
   5876 
   5877   //   unsigned short reserved;
   5878   FieldTypes[2] = Context->UnsignedShortTy;
   5879   FieldNames[2] = "reserved";
   5880 
   5881   //   void* overflow_arg_area;
   5882   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
   5883   FieldNames[3] = "overflow_arg_area";
   5884 
   5885   //   void* reg_save_area;
   5886   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
   5887   FieldNames[4] = "reg_save_area";
   5888 
   5889   // Create fields
   5890   for (unsigned i = 0; i < NumFields; ++i) {
   5891     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
   5892                                          SourceLocation(),
   5893                                          SourceLocation(),
   5894                                          &Context->Idents.get(FieldNames[i]),
   5895                                          FieldTypes[i], /*TInfo=*/nullptr,
   5896                                          /*BitWidth=*/nullptr,
   5897                                          /*Mutable=*/false,
   5898                                          ICIS_NoInit);
   5899     Field->setAccess(AS_public);
   5900     VaListTagDecl->addDecl(Field);
   5901   }
   5902   VaListTagDecl->completeDefinition();
   5903   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
   5904   Context->VaListTagTy = VaListTagType;
   5905 
   5906   // } __va_list_tag;
   5907   TypedefDecl *VaListTagTypedefDecl =
   5908       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
   5909 
   5910   QualType VaListTagTypedefType =
   5911     Context->getTypedefType(VaListTagTypedefDecl);
   5912 
   5913   // typedef __va_list_tag __builtin_va_list[1];
   5914   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
   5915   QualType VaListTagArrayType
   5916     = Context->getConstantArrayType(VaListTagTypedefType,
   5917                                     Size, ArrayType::Normal, 0);
   5918   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
   5919 }
   5920 
   5921 static TypedefDecl *
   5922 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
   5923   // typedef struct __va_list_tag {
   5924   RecordDecl *VaListTagDecl;
   5925   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
   5926   VaListTagDecl->startDefinition();
   5927 
   5928   const size_t NumFields = 4;
   5929   QualType FieldTypes[NumFields];
   5930   const char *FieldNames[NumFields];
   5931 
   5932   //   unsigned gp_offset;
   5933   FieldTypes[0] = Context->UnsignedIntTy;
   5934   FieldNames[0] = "gp_offset";
   5935 
   5936   //   unsigned fp_offset;
   5937   FieldTypes[1] = Context->UnsignedIntTy;
   5938   FieldNames[1] = "fp_offset";
   5939 
   5940   //   void* overflow_arg_area;
   5941   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
   5942   FieldNames[2] = "overflow_arg_area";
   5943 
   5944   //   void* reg_save_area;
   5945   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
   5946   FieldNames[3] = "reg_save_area";
   5947 
   5948   // Create fields
   5949   for (unsigned i = 0; i < NumFields; ++i) {
   5950     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
   5951                                          VaListTagDecl,
   5952                                          SourceLocation(),
   5953                                          SourceLocation(),
   5954                                          &Context->Idents.get(FieldNames[i]),
   5955                                          FieldTypes[i], /*TInfo=*/nullptr,
   5956                                          /*BitWidth=*/nullptr,
   5957                                          /*Mutable=*/false,
   5958                                          ICIS_NoInit);
   5959     Field->setAccess(AS_public);
   5960     VaListTagDecl->addDecl(Field);
   5961   }
   5962   VaListTagDecl->completeDefinition();
   5963   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
   5964   Context->VaListTagTy = VaListTagType;
   5965 
   5966   // } __va_list_tag;
   5967   TypedefDecl *VaListTagTypedefDecl =
   5968       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
   5969 
   5970   QualType VaListTagTypedefType =
   5971     Context->getTypedefType(VaListTagTypedefDecl);
   5972 
   5973   // typedef __va_list_tag __builtin_va_list[1];
   5974   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
   5975   QualType VaListTagArrayType
   5976     = Context->getConstantArrayType(VaListTagTypedefType,
   5977                                       Size, ArrayType::Normal,0);
   5978   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
   5979 }
   5980 
   5981 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
   5982   // typedef int __builtin_va_list[4];
   5983   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
   5984   QualType IntArrayType
   5985     = Context->getConstantArrayType(Context->IntTy,
   5986 				    Size, ArrayType::Normal, 0);
   5987   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
   5988 }
   5989 
   5990 static TypedefDecl *
   5991 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
   5992   // struct __va_list
   5993   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
   5994   if (Context->getLangOpts().CPlusPlus) {
   5995     // namespace std { struct __va_list {
   5996     NamespaceDecl *NS;
   5997     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
   5998                                Context->getTranslationUnitDecl(),
   5999                                /*Inline*/false, SourceLocation(),
   6000                                SourceLocation(), &Context->Idents.get("std"),
   6001                                /*PrevDecl*/ nullptr);
   6002     NS->setImplicit();
   6003     VaListDecl->setDeclContext(NS);
   6004   }
   6005 
   6006   VaListDecl->startDefinition();
   6007 
   6008   // void * __ap;
   6009   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
   6010                                        VaListDecl,
   6011                                        SourceLocation(),
   6012                                        SourceLocation(),
   6013                                        &Context->Idents.get("__ap"),
   6014                                        Context->getPointerType(Context->VoidTy),
   6015                                        /*TInfo=*/nullptr,
   6016                                        /*BitWidth=*/nullptr,
   6017                                        /*Mutable=*/false,
   6018                                        ICIS_NoInit);
   6019   Field->setAccess(AS_public);
   6020   VaListDecl->addDecl(Field);
   6021 
   6022   // };
   6023   VaListDecl->completeDefinition();
   6024 
   6025   // typedef struct __va_list __builtin_va_list;
   6026   QualType T = Context->getRecordType(VaListDecl);
   6027   return Context->buildImplicitTypedef(T, "__builtin_va_list");
   6028 }
   6029 
   6030 static TypedefDecl *
   6031 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
   6032   // typedef struct __va_list_tag {
   6033   RecordDecl *VaListTagDecl;
   6034   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
   6035   VaListTagDecl->startDefinition();
   6036 
   6037   const size_t NumFields = 4;
   6038   QualType FieldTypes[NumFields];
   6039   const char *FieldNames[NumFields];
   6040 
   6041   //   long __gpr;
   6042   FieldTypes[0] = Context->LongTy;
   6043   FieldNames[0] = "__gpr";
   6044 
   6045   //   long __fpr;
   6046   FieldTypes[1] = Context->LongTy;
   6047   FieldNames[1] = "__fpr";
   6048 
   6049   //   void *__overflow_arg_area;
   6050   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
   6051   FieldNames[2] = "__overflow_arg_area";
   6052 
   6053   //   void *__reg_save_area;
   6054   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
   6055   FieldNames[3] = "__reg_save_area";
   6056 
   6057   // Create fields
   6058   for (unsigned i = 0; i < NumFields; ++i) {
   6059     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
   6060                                          VaListTagDecl,
   6061                                          SourceLocation(),
   6062                                          SourceLocation(),
   6063                                          &Context->Idents.get(FieldNames[i]),
   6064                                          FieldTypes[i], /*TInfo=*/nullptr,
   6065                                          /*BitWidth=*/nullptr,
   6066                                          /*Mutable=*/false,
   6067                                          ICIS_NoInit);
   6068     Field->setAccess(AS_public);
   6069     VaListTagDecl->addDecl(Field);
   6070   }
   6071   VaListTagDecl->completeDefinition();
   6072   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
   6073   Context->VaListTagTy = VaListTagType;
   6074 
   6075   // } __va_list_tag;
   6076   TypedefDecl *VaListTagTypedefDecl =
   6077       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
   6078   QualType VaListTagTypedefType =
   6079     Context->getTypedefType(VaListTagTypedefDecl);
   6080 
   6081   // typedef __va_list_tag __builtin_va_list[1];
   6082   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
   6083   QualType VaListTagArrayType
   6084     = Context->getConstantArrayType(VaListTagTypedefType,
   6085                                       Size, ArrayType::Normal,0);
   6086 
   6087   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
   6088 }
   6089 
   6090 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
   6091                                      TargetInfo::BuiltinVaListKind Kind) {
   6092   switch (Kind) {
   6093   case TargetInfo::CharPtrBuiltinVaList:
   6094     return CreateCharPtrBuiltinVaListDecl(Context);
   6095   case TargetInfo::VoidPtrBuiltinVaList:
   6096     return CreateVoidPtrBuiltinVaListDecl(Context);
   6097   case TargetInfo::AArch64ABIBuiltinVaList:
   6098     return CreateAArch64ABIBuiltinVaListDecl(Context);
   6099   case TargetInfo::PowerABIBuiltinVaList:
   6100     return CreatePowerABIBuiltinVaListDecl(Context);
   6101   case TargetInfo::X86_64ABIBuiltinVaList:
   6102     return CreateX86_64ABIBuiltinVaListDecl(Context);
   6103   case TargetInfo::PNaClABIBuiltinVaList:
   6104     return CreatePNaClABIBuiltinVaListDecl(Context);
   6105   case TargetInfo::AAPCSABIBuiltinVaList:
   6106     return CreateAAPCSABIBuiltinVaListDecl(Context);
   6107   case TargetInfo::SystemZBuiltinVaList:
   6108     return CreateSystemZBuiltinVaListDecl(Context);
   6109   }
   6110 
   6111   llvm_unreachable("Unhandled __builtin_va_list type kind");
   6112 }
   6113 
   6114 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
   6115   if (!BuiltinVaListDecl) {
   6116     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
   6117     assert(BuiltinVaListDecl->isImplicit());
   6118   }
   6119 
   6120   return BuiltinVaListDecl;
   6121 }
   6122 
   6123 QualType ASTContext::getVaListTagType() const {
   6124   // Force the creation of VaListTagTy by building the __builtin_va_list
   6125   // declaration.
   6126   if (VaListTagTy.isNull())
   6127     (void) getBuiltinVaListDecl();
   6128 
   6129   return VaListTagTy;
   6130 }
   6131 
   6132 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
   6133   assert(ObjCConstantStringType.isNull() &&
   6134          "'NSConstantString' type already set!");
   6135 
   6136   ObjCConstantStringType = getObjCInterfaceType(Decl);
   6137 }
   6138 
   6139 /// \brief Retrieve the template name that corresponds to a non-empty
   6140 /// lookup.
   6141 TemplateName
   6142 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
   6143                                       UnresolvedSetIterator End) const {
   6144   unsigned size = End - Begin;
   6145   assert(size > 1 && "set is not overloaded!");
   6146 
   6147   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
   6148                           size * sizeof(FunctionTemplateDecl*));
   6149   OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
   6150 
   6151   NamedDecl **Storage = OT->getStorage();
   6152   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
   6153     NamedDecl *D = *I;
   6154     assert(isa<FunctionTemplateDecl>(D) ||
   6155            (isa<UsingShadowDecl>(D) &&
   6156             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
   6157     *Storage++ = D;
   6158   }
   6159 
   6160   return TemplateName(OT);
   6161 }
   6162 
   6163 /// \brief Retrieve the template name that represents a qualified
   6164 /// template name such as \c std::vector.
   6165 TemplateName
   6166 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
   6167                                      bool TemplateKeyword,
   6168                                      TemplateDecl *Template) const {
   6169   assert(NNS && "Missing nested-name-specifier in qualified template name");
   6170 
   6171   // FIXME: Canonicalization?
   6172   llvm::FoldingSetNodeID ID;
   6173   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
   6174 
   6175   void *InsertPos = nullptr;
   6176   QualifiedTemplateName *QTN =
   6177     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   6178   if (!QTN) {
   6179     QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
   6180         QualifiedTemplateName(NNS, TemplateKeyword, Template);
   6181     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
   6182   }
   6183 
   6184   return TemplateName(QTN);
   6185 }
   6186 
   6187 /// \brief Retrieve the template name that represents a dependent
   6188 /// template name such as \c MetaFun::template apply.
   6189 TemplateName
   6190 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
   6191                                      const IdentifierInfo *Name) const {
   6192   assert((!NNS || NNS->isDependent()) &&
   6193          "Nested name specifier must be dependent");
   6194 
   6195   llvm::FoldingSetNodeID ID;
   6196   DependentTemplateName::Profile(ID, NNS, Name);
   6197 
   6198   void *InsertPos = nullptr;
   6199   DependentTemplateName *QTN =
   6200     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   6201 
   6202   if (QTN)
   6203     return TemplateName(QTN);
   6204 
   6205   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
   6206   if (CanonNNS == NNS) {
   6207     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
   6208         DependentTemplateName(NNS, Name);
   6209   } else {
   6210     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
   6211     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
   6212         DependentTemplateName(NNS, Name, Canon);
   6213     DependentTemplateName *CheckQTN =
   6214       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   6215     assert(!CheckQTN && "Dependent type name canonicalization broken");
   6216     (void)CheckQTN;
   6217   }
   6218 
   6219   DependentTemplateNames.InsertNode(QTN, InsertPos);
   6220   return TemplateName(QTN);
   6221 }
   6222 
   6223 /// \brief Retrieve the template name that represents a dependent
   6224 /// template name such as \c MetaFun::template operator+.
   6225 TemplateName
   6226 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
   6227                                      OverloadedOperatorKind Operator) const {
   6228   assert((!NNS || NNS->isDependent()) &&
   6229          "Nested name specifier must be dependent");
   6230 
   6231   llvm::FoldingSetNodeID ID;
   6232   DependentTemplateName::Profile(ID, NNS, Operator);
   6233 
   6234   void *InsertPos = nullptr;
   6235   DependentTemplateName *QTN
   6236     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   6237 
   6238   if (QTN)
   6239     return TemplateName(QTN);
   6240 
   6241   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
   6242   if (CanonNNS == NNS) {
   6243     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
   6244         DependentTemplateName(NNS, Operator);
   6245   } else {
   6246     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
   6247     QTN = new (*this, llvm::alignOf<DependentTemplateName>())
   6248         DependentTemplateName(NNS, Operator, Canon);
   6249 
   6250     DependentTemplateName *CheckQTN
   6251       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
   6252     assert(!CheckQTN && "Dependent template name canonicalization broken");
   6253     (void)CheckQTN;
   6254   }
   6255 
   6256   DependentTemplateNames.InsertNode(QTN, InsertPos);
   6257   return TemplateName(QTN);
   6258 }
   6259 
   6260 TemplateName
   6261 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
   6262                                          TemplateName replacement) const {
   6263   llvm::FoldingSetNodeID ID;
   6264   SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
   6265 
   6266   void *insertPos = nullptr;
   6267   SubstTemplateTemplateParmStorage *subst
   6268     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
   6269 
   6270   if (!subst) {
   6271     subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
   6272     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
   6273   }
   6274 
   6275   return TemplateName(subst);
   6276 }
   6277 
   6278 TemplateName
   6279 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
   6280                                        const TemplateArgument &ArgPack) const {
   6281   ASTContext &Self = const_cast<ASTContext &>(*this);
   6282   llvm::FoldingSetNodeID ID;
   6283   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
   6284 
   6285   void *InsertPos = nullptr;
   6286   SubstTemplateTemplateParmPackStorage *Subst
   6287     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
   6288 
   6289   if (!Subst) {
   6290     Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
   6291                                                            ArgPack.pack_size(),
   6292                                                          ArgPack.pack_begin());
   6293     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
   6294   }
   6295 
   6296   return TemplateName(Subst);
   6297 }
   6298 
   6299 /// getFromTargetType - Given one of the integer types provided by
   6300 /// TargetInfo, produce the corresponding type. The unsigned @p Type
   6301 /// is actually a value of type @c TargetInfo::IntType.
   6302 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
   6303   switch (Type) {
   6304   case TargetInfo::NoInt: return CanQualType();
   6305   case TargetInfo::SignedChar: return SignedCharTy;
   6306   case TargetInfo::UnsignedChar: return UnsignedCharTy;
   6307   case TargetInfo::SignedShort: return ShortTy;
   6308   case TargetInfo::UnsignedShort: return UnsignedShortTy;
   6309   case TargetInfo::SignedInt: return IntTy;
   6310   case TargetInfo::UnsignedInt: return UnsignedIntTy;
   6311   case TargetInfo::SignedLong: return LongTy;
   6312   case TargetInfo::UnsignedLong: return UnsignedLongTy;
   6313   case TargetInfo::SignedLongLong: return LongLongTy;
   6314   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
   6315   }
   6316 
   6317   llvm_unreachable("Unhandled TargetInfo::IntType value");
   6318 }
   6319 
   6320 //===----------------------------------------------------------------------===//
   6321 //                        Type Predicates.
   6322 //===----------------------------------------------------------------------===//
   6323 
   6324 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
   6325 /// garbage collection attribute.
   6326 ///
   6327 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
   6328   if (getLangOpts().getGC() == LangOptions::NonGC)
   6329     return Qualifiers::GCNone;
   6330 
   6331   assert(getLangOpts().ObjC1);
   6332   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
   6333 
   6334   // Default behaviour under objective-C's gc is for ObjC pointers
   6335   // (or pointers to them) be treated as though they were declared
   6336   // as __strong.
   6337   if (GCAttrs == Qualifiers::GCNone) {
   6338     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
   6339       return Qualifiers::Strong;
   6340     else if (Ty->isPointerType())
   6341       return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
   6342   } else {
   6343     // It's not valid to set GC attributes on anything that isn't a
   6344     // pointer.
   6345 #ifndef NDEBUG
   6346     QualType CT = Ty->getCanonicalTypeInternal();
   6347     while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
   6348       CT = AT->getElementType();
   6349     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
   6350 #endif
   6351   }
   6352   return GCAttrs;
   6353 }
   6354 
   6355 //===----------------------------------------------------------------------===//
   6356 //                        Type Compatibility Testing
   6357 //===----------------------------------------------------------------------===//
   6358 
   6359 /// areCompatVectorTypes - Return true if the two specified vector types are
   6360 /// compatible.
   6361 static bool areCompatVectorTypes(const VectorType *LHS,
   6362                                  const VectorType *RHS) {
   6363   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
   6364   return LHS->getElementType() == RHS->getElementType() &&
   6365          LHS->getNumElements() == RHS->getNumElements();
   6366 }
   6367 
   6368 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
   6369                                           QualType SecondVec) {
   6370   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
   6371   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
   6372 
   6373   if (hasSameUnqualifiedType(FirstVec, SecondVec))
   6374     return true;
   6375 
   6376   // Treat Neon vector types and most AltiVec vector types as if they are the
   6377   // equivalent GCC vector types.
   6378   const VectorType *First = FirstVec->getAs<VectorType>();
   6379   const VectorType *Second = SecondVec->getAs<VectorType>();
   6380   if (First->getNumElements() == Second->getNumElements() &&
   6381       hasSameType(First->getElementType(), Second->getElementType()) &&
   6382       First->getVectorKind() != VectorType::AltiVecPixel &&
   6383       First->getVectorKind() != VectorType::AltiVecBool &&
   6384       Second->getVectorKind() != VectorType::AltiVecPixel &&
   6385       Second->getVectorKind() != VectorType::AltiVecBool)
   6386     return true;
   6387 
   6388   return false;
   6389 }
   6390 
   6391 //===----------------------------------------------------------------------===//
   6392 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
   6393 //===----------------------------------------------------------------------===//
   6394 
   6395 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
   6396 /// inheritance hierarchy of 'rProto'.
   6397 bool
   6398 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
   6399                                            ObjCProtocolDecl *rProto) const {
   6400   if (declaresSameEntity(lProto, rProto))
   6401     return true;
   6402   for (auto *PI : rProto->protocols())
   6403     if (ProtocolCompatibleWithProtocol(lProto, PI))
   6404       return true;
   6405   return false;
   6406 }
   6407 
   6408 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
   6409 /// Class<pr1, ...>.
   6410 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
   6411                                                       QualType rhs) {
   6412   const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
   6413   const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
   6414   assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
   6415 
   6416   for (auto *lhsProto : lhsQID->quals()) {
   6417     bool match = false;
   6418     for (auto *rhsProto : rhsOPT->quals()) {
   6419       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
   6420         match = true;
   6421         break;
   6422       }
   6423     }
   6424     if (!match)
   6425       return false;
   6426   }
   6427   return true;
   6428 }
   6429 
   6430 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
   6431 /// ObjCQualifiedIDType.
   6432 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
   6433                                                    bool compare) {
   6434   // Allow id<P..> and an 'id' or void* type in all cases.
   6435   if (lhs->isVoidPointerType() ||
   6436       lhs->isObjCIdType() || lhs->isObjCClassType())
   6437     return true;
   6438   else if (rhs->isVoidPointerType() ||
   6439            rhs->isObjCIdType() || rhs->isObjCClassType())
   6440     return true;
   6441 
   6442   if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
   6443     const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
   6444 
   6445     if (!rhsOPT) return false;
   6446 
   6447     if (rhsOPT->qual_empty()) {
   6448       // If the RHS is a unqualified interface pointer "NSString*",
   6449       // make sure we check the class hierarchy.
   6450       if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
   6451         for (auto *I : lhsQID->quals()) {
   6452           // when comparing an id<P> on lhs with a static type on rhs,
   6453           // see if static class implements all of id's protocols, directly or
   6454           // through its super class and categories.
   6455           if (!rhsID->ClassImplementsProtocol(I, true))
   6456             return false;
   6457         }
   6458       }
   6459       // If there are no qualifiers and no interface, we have an 'id'.
   6460       return true;
   6461     }
   6462     // Both the right and left sides have qualifiers.
   6463     for (auto *lhsProto : lhsQID->quals()) {
   6464       bool match = false;
   6465 
   6466       // when comparing an id<P> on lhs with a static type on rhs,
   6467       // see if static class implements all of id's protocols, directly or
   6468       // through its super class and categories.
   6469       for (auto *rhsProto : rhsOPT->quals()) {
   6470         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
   6471             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
   6472           match = true;
   6473           break;
   6474         }
   6475       }
   6476       // If the RHS is a qualified interface pointer "NSString<P>*",
   6477       // make sure we check the class hierarchy.
   6478       if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
   6479         for (auto *I : lhsQID->quals()) {
   6480           // when comparing an id<P> on lhs with a static type on rhs,
   6481           // see if static class implements all of id's protocols, directly or
   6482           // through its super class and categories.
   6483           if (rhsID->ClassImplementsProtocol(I, true)) {
   6484             match = true;
   6485             break;
   6486           }
   6487         }
   6488       }
   6489       if (!match)
   6490         return false;
   6491     }
   6492 
   6493     return true;
   6494   }
   6495 
   6496   const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
   6497   assert(rhsQID && "One of the LHS/RHS should be id<x>");
   6498 
   6499   if (const ObjCObjectPointerType *lhsOPT =
   6500         lhs->getAsObjCInterfacePointerType()) {
   6501     // If both the right and left sides have qualifiers.
   6502     for (auto *lhsProto : lhsOPT->quals()) {
   6503       bool match = false;
   6504 
   6505       // when comparing an id<P> on rhs with a static type on lhs,
   6506       // see if static class implements all of id's protocols, directly or
   6507       // through its super class and categories.
   6508       // First, lhs protocols in the qualifier list must be found, direct
   6509       // or indirect in rhs's qualifier list or it is a mismatch.
   6510       for (auto *rhsProto : rhsQID->quals()) {
   6511         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
   6512             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
   6513           match = true;
   6514           break;
   6515         }
   6516       }
   6517       if (!match)
   6518         return false;
   6519     }
   6520 
   6521     // Static class's protocols, or its super class or category protocols
   6522     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
   6523     if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
   6524       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
   6525       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
   6526       // This is rather dubious but matches gcc's behavior. If lhs has
   6527       // no type qualifier and its class has no static protocol(s)
   6528       // assume that it is mismatch.
   6529       if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
   6530         return false;
   6531       for (auto *lhsProto : LHSInheritedProtocols) {
   6532         bool match = false;
   6533         for (auto *rhsProto : rhsQID->quals()) {
   6534           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
   6535               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
   6536             match = true;
   6537             break;
   6538           }
   6539         }
   6540         if (!match)
   6541           return false;
   6542       }
   6543     }
   6544     return true;
   6545   }
   6546   return false;
   6547 }
   6548 
   6549 /// canAssignObjCInterfaces - Return true if the two interface types are
   6550 /// compatible for assignment from RHS to LHS.  This handles validation of any
   6551 /// protocol qualifiers on the LHS or RHS.
   6552 ///
   6553 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
   6554                                          const ObjCObjectPointerType *RHSOPT) {
   6555   const ObjCObjectType* LHS = LHSOPT->getObjectType();
   6556   const ObjCObjectType* RHS = RHSOPT->getObjectType();
   6557 
   6558   // If either type represents the built-in 'id' or 'Class' types, return true.
   6559   if (LHS->isObjCUnqualifiedIdOrClass() ||
   6560       RHS->isObjCUnqualifiedIdOrClass())
   6561     return true;
   6562 
   6563   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
   6564     return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
   6565                                              QualType(RHSOPT,0),
   6566                                              false);
   6567 
   6568   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
   6569     return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
   6570                                                 QualType(RHSOPT,0));
   6571 
   6572   // If we have 2 user-defined types, fall into that path.
   6573   if (LHS->getInterface() && RHS->getInterface())
   6574     return canAssignObjCInterfaces(LHS, RHS);
   6575 
   6576   return false;
   6577 }
   6578 
   6579 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
   6580 /// for providing type-safety for objective-c pointers used to pass/return
   6581 /// arguments in block literals. When passed as arguments, passing 'A*' where
   6582 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
   6583 /// not OK. For the return type, the opposite is not OK.
   6584 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
   6585                                          const ObjCObjectPointerType *LHSOPT,
   6586                                          const ObjCObjectPointerType *RHSOPT,
   6587                                          bool BlockReturnType) {
   6588   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
   6589     return true;
   6590 
   6591   if (LHSOPT->isObjCBuiltinType()) {
   6592     return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
   6593   }
   6594 
   6595   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
   6596     return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
   6597                                              QualType(RHSOPT,0),
   6598                                              false);
   6599 
   6600   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
   6601   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
   6602   if (LHS && RHS)  { // We have 2 user-defined types.
   6603     if (LHS != RHS) {
   6604       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
   6605         return BlockReturnType;
   6606       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
   6607         return !BlockReturnType;
   6608     }
   6609     else
   6610       return true;
   6611   }
   6612   return false;
   6613 }
   6614 
   6615 /// getIntersectionOfProtocols - This routine finds the intersection of set
   6616 /// of protocols inherited from two distinct objective-c pointer objects.
   6617 /// It is used to build composite qualifier list of the composite type of
   6618 /// the conditional expression involving two objective-c pointer objects.
   6619 static
   6620 void getIntersectionOfProtocols(ASTContext &Context,
   6621                                 const ObjCObjectPointerType *LHSOPT,
   6622                                 const ObjCObjectPointerType *RHSOPT,
   6623       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
   6624 
   6625   const ObjCObjectType* LHS = LHSOPT->getObjectType();
   6626   const ObjCObjectType* RHS = RHSOPT->getObjectType();
   6627   assert(LHS->getInterface() && "LHS must have an interface base");
   6628   assert(RHS->getInterface() && "RHS must have an interface base");
   6629 
   6630   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
   6631   unsigned LHSNumProtocols = LHS->getNumProtocols();
   6632   if (LHSNumProtocols > 0)
   6633     InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
   6634   else {
   6635     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
   6636     Context.CollectInheritedProtocols(LHS->getInterface(),
   6637                                       LHSInheritedProtocols);
   6638     InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
   6639                                 LHSInheritedProtocols.end());
   6640   }
   6641 
   6642   unsigned RHSNumProtocols = RHS->getNumProtocols();
   6643   if (RHSNumProtocols > 0) {
   6644     ObjCProtocolDecl **RHSProtocols =
   6645       const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
   6646     for (unsigned i = 0; i < RHSNumProtocols; ++i)
   6647       if (InheritedProtocolSet.count(RHSProtocols[i]))
   6648         IntersectionOfProtocols.push_back(RHSProtocols[i]);
   6649   } else {
   6650     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
   6651     Context.CollectInheritedProtocols(RHS->getInterface(),
   6652                                       RHSInheritedProtocols);
   6653     for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
   6654          RHSInheritedProtocols.begin(),
   6655          E = RHSInheritedProtocols.end(); I != E; ++I)
   6656       if (InheritedProtocolSet.count((*I)))
   6657         IntersectionOfProtocols.push_back((*I));
   6658   }
   6659 }
   6660 
   6661 /// areCommonBaseCompatible - Returns common base class of the two classes if
   6662 /// one found. Note that this is O'2 algorithm. But it will be called as the
   6663 /// last type comparison in a ?-exp of ObjC pointer types before a
   6664 /// warning is issued. So, its invokation is extremely rare.
   6665 QualType ASTContext::areCommonBaseCompatible(
   6666                                           const ObjCObjectPointerType *Lptr,
   6667                                           const ObjCObjectPointerType *Rptr) {
   6668   const ObjCObjectType *LHS = Lptr->getObjectType();
   6669   const ObjCObjectType *RHS = Rptr->getObjectType();
   6670   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
   6671   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
   6672   if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
   6673     return QualType();
   6674 
   6675   do {
   6676     LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
   6677     if (canAssignObjCInterfaces(LHS, RHS)) {
   6678       SmallVector<ObjCProtocolDecl *, 8> Protocols;
   6679       getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
   6680 
   6681       QualType Result = QualType(LHS, 0);
   6682       if (!Protocols.empty())
   6683         Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
   6684       Result = getObjCObjectPointerType(Result);
   6685       return Result;
   6686     }
   6687   } while ((LDecl = LDecl->getSuperClass()));
   6688 
   6689   return QualType();
   6690 }
   6691 
   6692 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
   6693                                          const ObjCObjectType *RHS) {
   6694   assert(LHS->getInterface() && "LHS is not an interface type");
   6695   assert(RHS->getInterface() && "RHS is not an interface type");
   6696 
   6697   // Verify that the base decls are compatible: the RHS must be a subclass of
   6698   // the LHS.
   6699   if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
   6700     return false;
   6701 
   6702   // RHS must have a superset of the protocols in the LHS.  If the LHS is not
   6703   // protocol qualified at all, then we are good.
   6704   if (LHS->getNumProtocols() == 0)
   6705     return true;
   6706 
   6707   // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
   6708   // more detailed analysis is required.
   6709   if (RHS->getNumProtocols() == 0) {
   6710     // OK, if LHS is a superclass of RHS *and*
   6711     // this superclass is assignment compatible with LHS.
   6712     // false otherwise.
   6713     bool IsSuperClass =
   6714       LHS->getInterface()->isSuperClassOf(RHS->getInterface());
   6715     if (IsSuperClass) {
   6716       // OK if conversion of LHS to SuperClass results in narrowing of types
   6717       // ; i.e., SuperClass may implement at least one of the protocols
   6718       // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
   6719       // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
   6720       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
   6721       CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
   6722       // If super class has no protocols, it is not a match.
   6723       if (SuperClassInheritedProtocols.empty())
   6724         return false;
   6725 
   6726       for (const auto *LHSProto : LHS->quals()) {
   6727         bool SuperImplementsProtocol = false;
   6728         for (auto *SuperClassProto : SuperClassInheritedProtocols) {
   6729           if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
   6730             SuperImplementsProtocol = true;
   6731             break;
   6732           }
   6733         }
   6734         if (!SuperImplementsProtocol)
   6735           return false;
   6736       }
   6737       return true;
   6738     }
   6739     return false;
   6740   }
   6741 
   6742   for (const auto *LHSPI : LHS->quals()) {
   6743     bool RHSImplementsProtocol = false;
   6744 
   6745     // If the RHS doesn't implement the protocol on the left, the types
   6746     // are incompatible.
   6747     for (auto *RHSPI : RHS->quals()) {
   6748       if (RHSPI->lookupProtocolNamed(LHSPI->getIdentifier())) {
   6749         RHSImplementsProtocol = true;
   6750         break;
   6751       }
   6752     }
   6753     // FIXME: For better diagnostics, consider passing back the protocol name.
   6754     if (!RHSImplementsProtocol)
   6755       return false;
   6756   }
   6757   // The RHS implements all protocols listed on the LHS.
   6758   return true;
   6759 }
   6760 
   6761 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
   6762   // get the "pointed to" types
   6763   const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
   6764   const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
   6765 
   6766   if (!LHSOPT || !RHSOPT)
   6767     return false;
   6768 
   6769   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
   6770          canAssignObjCInterfaces(RHSOPT, LHSOPT);
   6771 }
   6772 
   6773 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
   6774   return canAssignObjCInterfaces(
   6775                 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
   6776                 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
   6777 }
   6778 
   6779 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
   6780 /// both shall have the identically qualified version of a compatible type.
   6781 /// C99 6.2.7p1: Two types have compatible types if their types are the
   6782 /// same. See 6.7.[2,3,5] for additional rules.
   6783 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
   6784                                     bool CompareUnqualified) {
   6785   if (getLangOpts().CPlusPlus)
   6786     return hasSameType(LHS, RHS);
   6787 
   6788   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
   6789 }
   6790 
   6791 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
   6792   return typesAreCompatible(LHS, RHS);
   6793 }
   6794 
   6795 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
   6796   return !mergeTypes(LHS, RHS, true).isNull();
   6797 }
   6798 
   6799 /// mergeTransparentUnionType - if T is a transparent union type and a member
   6800 /// of T is compatible with SubType, return the merged type, else return
   6801 /// QualType()
   6802 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
   6803                                                bool OfBlockPointer,
   6804                                                bool Unqualified) {
   6805   if (const RecordType *UT = T->getAsUnionType()) {
   6806     RecordDecl *UD = UT->getDecl();
   6807     if (UD->hasAttr<TransparentUnionAttr>()) {
   6808       for (const auto *I : UD->fields()) {
   6809         QualType ET = I->getType().getUnqualifiedType();
   6810         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
   6811         if (!MT.isNull())
   6812           return MT;
   6813       }
   6814     }
   6815   }
   6816 
   6817   return QualType();
   6818 }
   6819 
   6820 /// mergeFunctionParameterTypes - merge two types which appear as function
   6821 /// parameter types
   6822 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
   6823                                                  bool OfBlockPointer,
   6824                                                  bool Unqualified) {
   6825   // GNU extension: two types are compatible if they appear as a function
   6826   // argument, one of the types is a transparent union type and the other
   6827   // type is compatible with a union member
   6828   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
   6829                                               Unqualified);
   6830   if (!lmerge.isNull())
   6831     return lmerge;
   6832 
   6833   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
   6834                                               Unqualified);
   6835   if (!rmerge.isNull())
   6836     return rmerge;
   6837 
   6838   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
   6839 }
   6840 
   6841 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
   6842                                         bool OfBlockPointer,
   6843                                         bool Unqualified) {
   6844   const FunctionType *lbase = lhs->getAs<FunctionType>();
   6845   const FunctionType *rbase = rhs->getAs<FunctionType>();
   6846   const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
   6847   const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
   6848   bool allLTypes = true;
   6849   bool allRTypes = true;
   6850 
   6851   // Check return type
   6852   QualType retType;
   6853   if (OfBlockPointer) {
   6854     QualType RHS = rbase->getReturnType();
   6855     QualType LHS = lbase->getReturnType();
   6856     bool UnqualifiedResult = Unqualified;
   6857     if (!UnqualifiedResult)
   6858       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
   6859     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
   6860   }
   6861   else
   6862     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
   6863                          Unqualified);
   6864   if (retType.isNull()) return QualType();
   6865 
   6866   if (Unqualified)
   6867     retType = retType.getUnqualifiedType();
   6868 
   6869   CanQualType LRetType = getCanonicalType(lbase->getReturnType());
   6870   CanQualType RRetType = getCanonicalType(rbase->getReturnType());
   6871   if (Unqualified) {
   6872     LRetType = LRetType.getUnqualifiedType();
   6873     RRetType = RRetType.getUnqualifiedType();
   6874   }
   6875 
   6876   if (getCanonicalType(retType) != LRetType)
   6877     allLTypes = false;
   6878   if (getCanonicalType(retType) != RRetType)
   6879     allRTypes = false;
   6880 
   6881   // FIXME: double check this
   6882   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
   6883   //                           rbase->getRegParmAttr() != 0 &&
   6884   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
   6885   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
   6886   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
   6887 
   6888   // Compatible functions must have compatible calling conventions
   6889   if (lbaseInfo.getCC() != rbaseInfo.getCC())
   6890     return QualType();
   6891 
   6892   // Regparm is part of the calling convention.
   6893   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
   6894     return QualType();
   6895   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
   6896     return QualType();
   6897 
   6898   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
   6899     return QualType();
   6900 
   6901   // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
   6902   bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
   6903 
   6904   if (lbaseInfo.getNoReturn() != NoReturn)
   6905     allLTypes = false;
   6906   if (rbaseInfo.getNoReturn() != NoReturn)
   6907     allRTypes = false;
   6908 
   6909   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
   6910 
   6911   if (lproto && rproto) { // two C99 style function prototypes
   6912     assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
   6913            "C++ shouldn't be here");
   6914     // Compatible functions must have the same number of parameters
   6915     if (lproto->getNumParams() != rproto->getNumParams())
   6916       return QualType();
   6917 
   6918     // Variadic and non-variadic functions aren't compatible
   6919     if (lproto->isVariadic() != rproto->isVariadic())
   6920       return QualType();
   6921 
   6922     if (lproto->getTypeQuals() != rproto->getTypeQuals())
   6923       return QualType();
   6924 
   6925     if (LangOpts.ObjCAutoRefCount &&
   6926         !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
   6927       return QualType();
   6928 
   6929     // Check parameter type compatibility
   6930     SmallVector<QualType, 10> types;
   6931     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
   6932       QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
   6933       QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
   6934       QualType paramType = mergeFunctionParameterTypes(
   6935           lParamType, rParamType, OfBlockPointer, Unqualified);
   6936       if (paramType.isNull())
   6937         return QualType();
   6938 
   6939       if (Unqualified)
   6940         paramType = paramType.getUnqualifiedType();
   6941 
   6942       types.push_back(paramType);
   6943       if (Unqualified) {
   6944         lParamType = lParamType.getUnqualifiedType();
   6945         rParamType = rParamType.getUnqualifiedType();
   6946       }
   6947 
   6948       if (getCanonicalType(paramType) != getCanonicalType(lParamType))
   6949         allLTypes = false;
   6950       if (getCanonicalType(paramType) != getCanonicalType(rParamType))
   6951         allRTypes = false;
   6952     }
   6953 
   6954     if (allLTypes) return lhs;
   6955     if (allRTypes) return rhs;
   6956 
   6957     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
   6958     EPI.ExtInfo = einfo;
   6959     return getFunctionType(retType, types, EPI);
   6960   }
   6961 
   6962   if (lproto) allRTypes = false;
   6963   if (rproto) allLTypes = false;
   6964 
   6965   const FunctionProtoType *proto = lproto ? lproto : rproto;
   6966   if (proto) {
   6967     assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
   6968     if (proto->isVariadic()) return QualType();
   6969     // Check that the types are compatible with the types that
   6970     // would result from default argument promotions (C99 6.7.5.3p15).
   6971     // The only types actually affected are promotable integer
   6972     // types and floats, which would be passed as a different
   6973     // type depending on whether the prototype is visible.
   6974     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
   6975       QualType paramTy = proto->getParamType(i);
   6976 
   6977       // Look at the converted type of enum types, since that is the type used
   6978       // to pass enum values.
   6979       if (const EnumType *Enum = paramTy->getAs<EnumType>()) {
   6980         paramTy = Enum->getDecl()->getIntegerType();
   6981         if (paramTy.isNull())
   6982           return QualType();
   6983       }
   6984 
   6985       if (paramTy->isPromotableIntegerType() ||
   6986           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
   6987         return QualType();
   6988     }
   6989 
   6990     if (allLTypes) return lhs;
   6991     if (allRTypes) return rhs;
   6992 
   6993     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
   6994     EPI.ExtInfo = einfo;
   6995     return getFunctionType(retType, proto->getParamTypes(), EPI);
   6996   }
   6997 
   6998   if (allLTypes) return lhs;
   6999   if (allRTypes) return rhs;
   7000   return getFunctionNoProtoType(retType, einfo);
   7001 }
   7002 
   7003 /// Given that we have an enum type and a non-enum type, try to merge them.
   7004 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
   7005                                      QualType other, bool isBlockReturnType) {
   7006   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
   7007   // a signed integer type, or an unsigned integer type.
   7008   // Compatibility is based on the underlying type, not the promotion
   7009   // type.
   7010   QualType underlyingType = ET->getDecl()->getIntegerType();
   7011   if (underlyingType.isNull()) return QualType();
   7012   if (Context.hasSameType(underlyingType, other))
   7013     return other;
   7014 
   7015   // In block return types, we're more permissive and accept any
   7016   // integral type of the same size.
   7017   if (isBlockReturnType && other->isIntegerType() &&
   7018       Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
   7019     return other;
   7020 
   7021   return QualType();
   7022 }
   7023 
   7024 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
   7025                                 bool OfBlockPointer,
   7026                                 bool Unqualified, bool BlockReturnType) {
   7027   // C++ [expr]: If an expression initially has the type "reference to T", the
   7028   // type is adjusted to "T" prior to any further analysis, the expression
   7029   // designates the object or function denoted by the reference, and the
   7030   // expression is an lvalue unless the reference is an rvalue reference and
   7031   // the expression is a function call (possibly inside parentheses).
   7032   assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
   7033   assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
   7034 
   7035   if (Unqualified) {
   7036     LHS = LHS.getUnqualifiedType();
   7037     RHS = RHS.getUnqualifiedType();
   7038   }
   7039 
   7040   QualType LHSCan = getCanonicalType(LHS),
   7041            RHSCan = getCanonicalType(RHS);
   7042 
   7043   // If two types are identical, they are compatible.
   7044   if (LHSCan == RHSCan)
   7045     return LHS;
   7046 
   7047   // If the qualifiers are different, the types aren't compatible... mostly.
   7048   Qualifiers LQuals = LHSCan.getLocalQualifiers();
   7049   Qualifiers RQuals = RHSCan.getLocalQualifiers();
   7050   if (LQuals != RQuals) {
   7051     // If any of these qualifiers are different, we have a type
   7052     // mismatch.
   7053     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
   7054         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
   7055         LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
   7056       return QualType();
   7057 
   7058     // Exactly one GC qualifier difference is allowed: __strong is
   7059     // okay if the other type has no GC qualifier but is an Objective
   7060     // C object pointer (i.e. implicitly strong by default).  We fix
   7061     // this by pretending that the unqualified type was actually
   7062     // qualified __strong.
   7063     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
   7064     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
   7065     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
   7066 
   7067     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
   7068       return QualType();
   7069 
   7070     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
   7071       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
   7072     }
   7073     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
   7074       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
   7075     }
   7076     return QualType();
   7077   }
   7078 
   7079   // Okay, qualifiers are equal.
   7080 
   7081   Type::TypeClass LHSClass = LHSCan->getTypeClass();
   7082   Type::TypeClass RHSClass = RHSCan->getTypeClass();
   7083 
   7084   // We want to consider the two function types to be the same for these
   7085   // comparisons, just force one to the other.
   7086   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
   7087   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
   7088 
   7089   // Same as above for arrays
   7090   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
   7091     LHSClass = Type::ConstantArray;
   7092   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
   7093     RHSClass = Type::ConstantArray;
   7094 
   7095   // ObjCInterfaces are just specialized ObjCObjects.
   7096   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
   7097   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
   7098 
   7099   // Canonicalize ExtVector -> Vector.
   7100   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
   7101   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
   7102 
   7103   // If the canonical type classes don't match.
   7104   if (LHSClass != RHSClass) {
   7105     // Note that we only have special rules for turning block enum
   7106     // returns into block int returns, not vice-versa.
   7107     if (const EnumType* ETy = LHS->getAs<EnumType>()) {
   7108       return mergeEnumWithInteger(*this, ETy, RHS, false);
   7109     }
   7110     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
   7111       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
   7112     }
   7113     // allow block pointer type to match an 'id' type.
   7114     if (OfBlockPointer && !BlockReturnType) {
   7115        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
   7116          return LHS;
   7117       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
   7118         return RHS;
   7119     }
   7120 
   7121     return QualType();
   7122   }
   7123 
   7124   // The canonical type classes match.
   7125   switch (LHSClass) {
   7126 #define TYPE(Class, Base)
   7127 #define ABSTRACT_TYPE(Class, Base)
   7128 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
   7129 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   7130 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   7131 #include "clang/AST/TypeNodes.def"
   7132     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
   7133 
   7134   case Type::Auto:
   7135   case Type::LValueReference:
   7136   case Type::RValueReference:
   7137   case Type::MemberPointer:
   7138     llvm_unreachable("C++ should never be in mergeTypes");
   7139 
   7140   case Type::ObjCInterface:
   7141   case Type::IncompleteArray:
   7142   case Type::VariableArray:
   7143   case Type::FunctionProto:
   7144   case Type::ExtVector:
   7145     llvm_unreachable("Types are eliminated above");
   7146 
   7147   case Type::Pointer:
   7148   {
   7149     // Merge two pointer types, while trying to preserve typedef info
   7150     QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
   7151     QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
   7152     if (Unqualified) {
   7153       LHSPointee = LHSPointee.getUnqualifiedType();
   7154       RHSPointee = RHSPointee.getUnqualifiedType();
   7155     }
   7156     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
   7157                                      Unqualified);
   7158     if (ResultType.isNull()) return QualType();
   7159     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
   7160       return LHS;
   7161     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
   7162       return RHS;
   7163     return getPointerType(ResultType);
   7164   }
   7165   case Type::BlockPointer:
   7166   {
   7167     // Merge two block pointer types, while trying to preserve typedef info
   7168     QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
   7169     QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
   7170     if (Unqualified) {
   7171       LHSPointee = LHSPointee.getUnqualifiedType();
   7172       RHSPointee = RHSPointee.getUnqualifiedType();
   7173     }
   7174     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
   7175                                      Unqualified);
   7176     if (ResultType.isNull()) return QualType();
   7177     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
   7178       return LHS;
   7179     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
   7180       return RHS;
   7181     return getBlockPointerType(ResultType);
   7182   }
   7183   case Type::Atomic:
   7184   {
   7185     // Merge two pointer types, while trying to preserve typedef info
   7186     QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
   7187     QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
   7188     if (Unqualified) {
   7189       LHSValue = LHSValue.getUnqualifiedType();
   7190       RHSValue = RHSValue.getUnqualifiedType();
   7191     }
   7192     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
   7193                                      Unqualified);
   7194     if (ResultType.isNull()) return QualType();
   7195     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
   7196       return LHS;
   7197     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
   7198       return RHS;
   7199     return getAtomicType(ResultType);
   7200   }
   7201   case Type::ConstantArray:
   7202   {
   7203     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
   7204     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
   7205     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
   7206       return QualType();
   7207 
   7208     QualType LHSElem = getAsArrayType(LHS)->getElementType();
   7209     QualType RHSElem = getAsArrayType(RHS)->getElementType();
   7210     if (Unqualified) {
   7211       LHSElem = LHSElem.getUnqualifiedType();
   7212       RHSElem = RHSElem.getUnqualifiedType();
   7213     }
   7214 
   7215     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
   7216     if (ResultType.isNull()) return QualType();
   7217     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
   7218       return LHS;
   7219     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
   7220       return RHS;
   7221     if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
   7222                                           ArrayType::ArraySizeModifier(), 0);
   7223     if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
   7224                                           ArrayType::ArraySizeModifier(), 0);
   7225     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
   7226     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
   7227     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
   7228       return LHS;
   7229     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
   7230       return RHS;
   7231     if (LVAT) {
   7232       // FIXME: This isn't correct! But tricky to implement because
   7233       // the array's size has to be the size of LHS, but the type
   7234       // has to be different.
   7235       return LHS;
   7236     }
   7237     if (RVAT) {
   7238       // FIXME: This isn't correct! But tricky to implement because
   7239       // the array's size has to be the size of RHS, but the type
   7240       // has to be different.
   7241       return RHS;
   7242     }
   7243     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
   7244     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
   7245     return getIncompleteArrayType(ResultType,
   7246                                   ArrayType::ArraySizeModifier(), 0);
   7247   }
   7248   case Type::FunctionNoProto:
   7249     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
   7250   case Type::Record:
   7251   case Type::Enum:
   7252     return QualType();
   7253   case Type::Builtin:
   7254     // Only exactly equal builtin types are compatible, which is tested above.
   7255     return QualType();
   7256   case Type::Complex:
   7257     // Distinct complex types are incompatible.
   7258     return QualType();
   7259   case Type::Vector:
   7260     // FIXME: The merged type should be an ExtVector!
   7261     if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
   7262                              RHSCan->getAs<VectorType>()))
   7263       return LHS;
   7264     return QualType();
   7265   case Type::ObjCObject: {
   7266     // Check if the types are assignment compatible.
   7267     // FIXME: This should be type compatibility, e.g. whether
   7268     // "LHS x; RHS x;" at global scope is legal.
   7269     const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
   7270     const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
   7271     if (canAssignObjCInterfaces(LHSIface, RHSIface))
   7272       return LHS;
   7273 
   7274     return QualType();
   7275   }
   7276   case Type::ObjCObjectPointer: {
   7277     if (OfBlockPointer) {
   7278       if (canAssignObjCInterfacesInBlockPointer(
   7279                                           LHS->getAs<ObjCObjectPointerType>(),
   7280                                           RHS->getAs<ObjCObjectPointerType>(),
   7281                                           BlockReturnType))
   7282         return LHS;
   7283       return QualType();
   7284     }
   7285     if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
   7286                                 RHS->getAs<ObjCObjectPointerType>()))
   7287       return LHS;
   7288 
   7289     return QualType();
   7290   }
   7291   }
   7292 
   7293   llvm_unreachable("Invalid Type::Class!");
   7294 }
   7295 
   7296 bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
   7297                    const FunctionProtoType *FromFunctionType,
   7298                    const FunctionProtoType *ToFunctionType) {
   7299   if (FromFunctionType->hasAnyConsumedParams() !=
   7300       ToFunctionType->hasAnyConsumedParams())
   7301     return false;
   7302   FunctionProtoType::ExtProtoInfo FromEPI =
   7303     FromFunctionType->getExtProtoInfo();
   7304   FunctionProtoType::ExtProtoInfo ToEPI =
   7305     ToFunctionType->getExtProtoInfo();
   7306   if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters)
   7307     for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) {
   7308       if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i])
   7309         return false;
   7310     }
   7311   return true;
   7312 }
   7313 
   7314 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
   7315 /// 'RHS' attributes and returns the merged version; including for function
   7316 /// return types.
   7317 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
   7318   QualType LHSCan = getCanonicalType(LHS),
   7319   RHSCan = getCanonicalType(RHS);
   7320   // If two types are identical, they are compatible.
   7321   if (LHSCan == RHSCan)
   7322     return LHS;
   7323   if (RHSCan->isFunctionType()) {
   7324     if (!LHSCan->isFunctionType())
   7325       return QualType();
   7326     QualType OldReturnType =
   7327         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
   7328     QualType NewReturnType =
   7329         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
   7330     QualType ResReturnType =
   7331       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
   7332     if (ResReturnType.isNull())
   7333       return QualType();
   7334     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
   7335       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
   7336       // In either case, use OldReturnType to build the new function type.
   7337       const FunctionType *F = LHS->getAs<FunctionType>();
   7338       if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
   7339         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   7340         EPI.ExtInfo = getFunctionExtInfo(LHS);
   7341         QualType ResultType =
   7342             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
   7343         return ResultType;
   7344       }
   7345     }
   7346     return QualType();
   7347   }
   7348 
   7349   // If the qualifiers are different, the types can still be merged.
   7350   Qualifiers LQuals = LHSCan.getLocalQualifiers();
   7351   Qualifiers RQuals = RHSCan.getLocalQualifiers();
   7352   if (LQuals != RQuals) {
   7353     // If any of these qualifiers are different, we have a type mismatch.
   7354     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
   7355         LQuals.getAddressSpace() != RQuals.getAddressSpace())
   7356       return QualType();
   7357 
   7358     // Exactly one GC qualifier difference is allowed: __strong is
   7359     // okay if the other type has no GC qualifier but is an Objective
   7360     // C object pointer (i.e. implicitly strong by default).  We fix
   7361     // this by pretending that the unqualified type was actually
   7362     // qualified __strong.
   7363     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
   7364     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
   7365     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
   7366 
   7367     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
   7368       return QualType();
   7369 
   7370     if (GC_L == Qualifiers::Strong)
   7371       return LHS;
   7372     if (GC_R == Qualifiers::Strong)
   7373       return RHS;
   7374     return QualType();
   7375   }
   7376 
   7377   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
   7378     QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
   7379     QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
   7380     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
   7381     if (ResQT == LHSBaseQT)
   7382       return LHS;
   7383     if (ResQT == RHSBaseQT)
   7384       return RHS;
   7385   }
   7386   return QualType();
   7387 }
   7388 
   7389 //===----------------------------------------------------------------------===//
   7390 //                         Integer Predicates
   7391 //===----------------------------------------------------------------------===//
   7392 
   7393 unsigned ASTContext::getIntWidth(QualType T) const {
   7394   if (const EnumType *ET = T->getAs<EnumType>())
   7395     T = ET->getDecl()->getIntegerType();
   7396   if (T->isBooleanType())
   7397     return 1;
   7398   // For builtin types, just use the standard type sizing method
   7399   return (unsigned)getTypeSize(T);
   7400 }
   7401 
   7402 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
   7403   assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
   7404 
   7405   // Turn <4 x signed int> -> <4 x unsigned int>
   7406   if (const VectorType *VTy = T->getAs<VectorType>())
   7407     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
   7408                          VTy->getNumElements(), VTy->getVectorKind());
   7409 
   7410   // For enums, we return the unsigned version of the base type.
   7411   if (const EnumType *ETy = T->getAs<EnumType>())
   7412     T = ETy->getDecl()->getIntegerType();
   7413 
   7414   const BuiltinType *BTy = T->getAs<BuiltinType>();
   7415   assert(BTy && "Unexpected signed integer type");
   7416   switch (BTy->getKind()) {
   7417   case BuiltinType::Char_S:
   7418   case BuiltinType::SChar:
   7419     return UnsignedCharTy;
   7420   case BuiltinType::Short:
   7421     return UnsignedShortTy;
   7422   case BuiltinType::Int:
   7423     return UnsignedIntTy;
   7424   case BuiltinType::Long:
   7425     return UnsignedLongTy;
   7426   case BuiltinType::LongLong:
   7427     return UnsignedLongLongTy;
   7428   case BuiltinType::Int128:
   7429     return UnsignedInt128Ty;
   7430   default:
   7431     llvm_unreachable("Unexpected signed integer type");
   7432   }
   7433 }
   7434 
   7435 ASTMutationListener::~ASTMutationListener() { }
   7436 
   7437 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
   7438                                             QualType ReturnType) {}
   7439 
   7440 //===----------------------------------------------------------------------===//
   7441 //                          Builtin Type Computation
   7442 //===----------------------------------------------------------------------===//
   7443 
   7444 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
   7445 /// pointer over the consumed characters.  This returns the resultant type.  If
   7446 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
   7447 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
   7448 /// a vector of "i*".
   7449 ///
   7450 /// RequiresICE is filled in on return to indicate whether the value is required
   7451 /// to be an Integer Constant Expression.
   7452 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
   7453                                   ASTContext::GetBuiltinTypeError &Error,
   7454                                   bool &RequiresICE,
   7455                                   bool AllowTypeModifiers) {
   7456   // Modifiers.
   7457   int HowLong = 0;
   7458   bool Signed = false, Unsigned = false;
   7459   RequiresICE = false;
   7460 
   7461   // Read the prefixed modifiers first.
   7462   bool Done = false;
   7463   while (!Done) {
   7464     switch (*Str++) {
   7465     default: Done = true; --Str; break;
   7466     case 'I':
   7467       RequiresICE = true;
   7468       break;
   7469     case 'S':
   7470       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
   7471       assert(!Signed && "Can't use 'S' modifier multiple times!");
   7472       Signed = true;
   7473       break;
   7474     case 'U':
   7475       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
   7476       assert(!Unsigned && "Can't use 'S' modifier multiple times!");
   7477       Unsigned = true;
   7478       break;
   7479     case 'L':
   7480       assert(HowLong <= 2 && "Can't have LLLL modifier");
   7481       ++HowLong;
   7482       break;
   7483     case 'W':
   7484       // This modifier represents int64 type.
   7485       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
   7486       switch (Context.getTargetInfo().getInt64Type()) {
   7487       default:
   7488         llvm_unreachable("Unexpected integer type");
   7489       case TargetInfo::SignedLong:
   7490         HowLong = 1;
   7491         break;
   7492       case TargetInfo::SignedLongLong:
   7493         HowLong = 2;
   7494         break;
   7495       }
   7496     }
   7497   }
   7498 
   7499   QualType Type;
   7500 
   7501   // Read the base type.
   7502   switch (*Str++) {
   7503   default: llvm_unreachable("Unknown builtin type letter!");
   7504   case 'v':
   7505     assert(HowLong == 0 && !Signed && !Unsigned &&
   7506            "Bad modifiers used with 'v'!");
   7507     Type = Context.VoidTy;
   7508     break;
   7509   case 'h':
   7510     assert(HowLong == 0 && !Signed && !Unsigned &&
   7511            "Bad modifiers used with 'f'!");
   7512     Type = Context.HalfTy;
   7513     break;
   7514   case 'f':
   7515     assert(HowLong == 0 && !Signed && !Unsigned &&
   7516            "Bad modifiers used with 'f'!");
   7517     Type = Context.FloatTy;
   7518     break;
   7519   case 'd':
   7520     assert(HowLong < 2 && !Signed && !Unsigned &&
   7521            "Bad modifiers used with 'd'!");
   7522     if (HowLong)
   7523       Type = Context.LongDoubleTy;
   7524     else
   7525       Type = Context.DoubleTy;
   7526     break;
   7527   case 's':
   7528     assert(HowLong == 0 && "Bad modifiers used with 's'!");
   7529     if (Unsigned)
   7530       Type = Context.UnsignedShortTy;
   7531     else
   7532       Type = Context.ShortTy;
   7533     break;
   7534   case 'i':
   7535     if (HowLong == 3)
   7536       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
   7537     else if (HowLong == 2)
   7538       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
   7539     else if (HowLong == 1)
   7540       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
   7541     else
   7542       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
   7543     break;
   7544   case 'c':
   7545     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
   7546     if (Signed)
   7547       Type = Context.SignedCharTy;
   7548     else if (Unsigned)
   7549       Type = Context.UnsignedCharTy;
   7550     else
   7551       Type = Context.CharTy;
   7552     break;
   7553   case 'b': // boolean
   7554     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
   7555     Type = Context.BoolTy;
   7556     break;
   7557   case 'z':  // size_t.
   7558     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
   7559     Type = Context.getSizeType();
   7560     break;
   7561   case 'F':
   7562     Type = Context.getCFConstantStringType();
   7563     break;
   7564   case 'G':
   7565     Type = Context.getObjCIdType();
   7566     break;
   7567   case 'H':
   7568     Type = Context.getObjCSelType();
   7569     break;
   7570   case 'M':
   7571     Type = Context.getObjCSuperType();
   7572     break;
   7573   case 'a':
   7574     Type = Context.getBuiltinVaListType();
   7575     assert(!Type.isNull() && "builtin va list type not initialized!");
   7576     break;
   7577   case 'A':
   7578     // This is a "reference" to a va_list; however, what exactly
   7579     // this means depends on how va_list is defined. There are two
   7580     // different kinds of va_list: ones passed by value, and ones
   7581     // passed by reference.  An example of a by-value va_list is
   7582     // x86, where va_list is a char*. An example of by-ref va_list
   7583     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
   7584     // we want this argument to be a char*&; for x86-64, we want
   7585     // it to be a __va_list_tag*.
   7586     Type = Context.getBuiltinVaListType();
   7587     assert(!Type.isNull() && "builtin va list type not initialized!");
   7588     if (Type->isArrayType())
   7589       Type = Context.getArrayDecayedType(Type);
   7590     else
   7591       Type = Context.getLValueReferenceType(Type);
   7592     break;
   7593   case 'V': {
   7594     char *End;
   7595     unsigned NumElements = strtoul(Str, &End, 10);
   7596     assert(End != Str && "Missing vector size");
   7597     Str = End;
   7598 
   7599     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
   7600                                              RequiresICE, false);
   7601     assert(!RequiresICE && "Can't require vector ICE");
   7602 
   7603     // TODO: No way to make AltiVec vectors in builtins yet.
   7604     Type = Context.getVectorType(ElementType, NumElements,
   7605                                  VectorType::GenericVector);
   7606     break;
   7607   }
   7608   case 'E': {
   7609     char *End;
   7610 
   7611     unsigned NumElements = strtoul(Str, &End, 10);
   7612     assert(End != Str && "Missing vector size");
   7613 
   7614     Str = End;
   7615 
   7616     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
   7617                                              false);
   7618     Type = Context.getExtVectorType(ElementType, NumElements);
   7619     break;
   7620   }
   7621   case 'X': {
   7622     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
   7623                                              false);
   7624     assert(!RequiresICE && "Can't require complex ICE");
   7625     Type = Context.getComplexType(ElementType);
   7626     break;
   7627   }
   7628   case 'Y' : {
   7629     Type = Context.getPointerDiffType();
   7630     break;
   7631   }
   7632   case 'P':
   7633     Type = Context.getFILEType();
   7634     if (Type.isNull()) {
   7635       Error = ASTContext::GE_Missing_stdio;
   7636       return QualType();
   7637     }
   7638     break;
   7639   case 'J':
   7640     if (Signed)
   7641       Type = Context.getsigjmp_bufType();
   7642     else
   7643       Type = Context.getjmp_bufType();
   7644 
   7645     if (Type.isNull()) {
   7646       Error = ASTContext::GE_Missing_setjmp;
   7647       return QualType();
   7648     }
   7649     break;
   7650   case 'K':
   7651     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
   7652     Type = Context.getucontext_tType();
   7653 
   7654     if (Type.isNull()) {
   7655       Error = ASTContext::GE_Missing_ucontext;
   7656       return QualType();
   7657     }
   7658     break;
   7659   case 'p':
   7660     Type = Context.getProcessIDType();
   7661     break;
   7662   }
   7663 
   7664   // If there are modifiers and if we're allowed to parse them, go for it.
   7665   Done = !AllowTypeModifiers;
   7666   while (!Done) {
   7667     switch (char c = *Str++) {
   7668     default: Done = true; --Str; break;
   7669     case '*':
   7670     case '&': {
   7671       // Both pointers and references can have their pointee types
   7672       // qualified with an address space.
   7673       char *End;
   7674       unsigned AddrSpace = strtoul(Str, &End, 10);
   7675       if (End != Str && AddrSpace != 0) {
   7676         Type = Context.getAddrSpaceQualType(Type, AddrSpace);
   7677         Str = End;
   7678       }
   7679       if (c == '*')
   7680         Type = Context.getPointerType(Type);
   7681       else
   7682         Type = Context.getLValueReferenceType(Type);
   7683       break;
   7684     }
   7685     // FIXME: There's no way to have a built-in with an rvalue ref arg.
   7686     case 'C':
   7687       Type = Type.withConst();
   7688       break;
   7689     case 'D':
   7690       Type = Context.getVolatileType(Type);
   7691       break;
   7692     case 'R':
   7693       Type = Type.withRestrict();
   7694       break;
   7695     }
   7696   }
   7697 
   7698   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
   7699          "Integer constant 'I' type must be an integer");
   7700 
   7701   return Type;
   7702 }
   7703 
   7704 /// GetBuiltinType - Return the type for the specified builtin.
   7705 QualType ASTContext::GetBuiltinType(unsigned Id,
   7706                                     GetBuiltinTypeError &Error,
   7707                                     unsigned *IntegerConstantArgs) const {
   7708   const char *TypeStr = BuiltinInfo.GetTypeString(Id);
   7709 
   7710   SmallVector<QualType, 8> ArgTypes;
   7711 
   7712   bool RequiresICE = false;
   7713   Error = GE_None;
   7714   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
   7715                                        RequiresICE, true);
   7716   if (Error != GE_None)
   7717     return QualType();
   7718 
   7719   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
   7720 
   7721   while (TypeStr[0] && TypeStr[0] != '.') {
   7722     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
   7723     if (Error != GE_None)
   7724       return QualType();
   7725 
   7726     // If this argument is required to be an IntegerConstantExpression and the
   7727     // caller cares, fill in the bitmask we return.
   7728     if (RequiresICE && IntegerConstantArgs)
   7729       *IntegerConstantArgs |= 1 << ArgTypes.size();
   7730 
   7731     // Do array -> pointer decay.  The builtin should use the decayed type.
   7732     if (Ty->isArrayType())
   7733       Ty = getArrayDecayedType(Ty);
   7734 
   7735     ArgTypes.push_back(Ty);
   7736   }
   7737 
   7738   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
   7739          "'.' should only occur at end of builtin type list!");
   7740 
   7741   FunctionType::ExtInfo EI(CC_C);
   7742   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
   7743 
   7744   bool Variadic = (TypeStr[0] == '.');
   7745 
   7746   // We really shouldn't be making a no-proto type here, especially in C++.
   7747   if (ArgTypes.empty() && Variadic)
   7748     return getFunctionNoProtoType(ResType, EI);
   7749 
   7750   FunctionProtoType::ExtProtoInfo EPI;
   7751   EPI.ExtInfo = EI;
   7752   EPI.Variadic = Variadic;
   7753 
   7754   return getFunctionType(ResType, ArgTypes, EPI);
   7755 }
   7756 
   7757 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
   7758                                              const FunctionDecl *FD) {
   7759   if (!FD->isExternallyVisible())
   7760     return GVA_Internal;
   7761 
   7762   GVALinkage External = GVA_StrongExternal;
   7763   switch (FD->getTemplateSpecializationKind()) {
   7764   case TSK_Undeclared:
   7765   case TSK_ExplicitSpecialization:
   7766     External = GVA_StrongExternal;
   7767     break;
   7768 
   7769   case TSK_ExplicitInstantiationDefinition:
   7770     return GVA_StrongODR;
   7771 
   7772   // C++11 [temp.explicit]p10:
   7773   //   [ Note: The intent is that an inline function that is the subject of
   7774   //   an explicit instantiation declaration will still be implicitly
   7775   //   instantiated when used so that the body can be considered for
   7776   //   inlining, but that no out-of-line copy of the inline function would be
   7777   //   generated in the translation unit. -- end note ]
   7778   case TSK_ExplicitInstantiationDeclaration:
   7779     return GVA_AvailableExternally;
   7780 
   7781   case TSK_ImplicitInstantiation:
   7782     External = GVA_DiscardableODR;
   7783     break;
   7784   }
   7785 
   7786   if (!FD->isInlined())
   7787     return External;
   7788 
   7789   if ((!Context.getLangOpts().CPlusPlus && !Context.getLangOpts().MSVCCompat &&
   7790        !FD->hasAttr<DLLExportAttr>()) ||
   7791       FD->hasAttr<GNUInlineAttr>()) {
   7792     // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
   7793 
   7794     // GNU or C99 inline semantics. Determine whether this symbol should be
   7795     // externally visible.
   7796     if (FD->isInlineDefinitionExternallyVisible())
   7797       return External;
   7798 
   7799     // C99 inline semantics, where the symbol is not externally visible.
   7800     return GVA_AvailableExternally;
   7801   }
   7802 
   7803   // Functions specified with extern and inline in -fms-compatibility mode
   7804   // forcibly get emitted.  While the body of the function cannot be later
   7805   // replaced, the function definition cannot be discarded.
   7806   if (FD->getMostRecentDecl()->isMSExternInline())
   7807     return GVA_StrongODR;
   7808 
   7809   return GVA_DiscardableODR;
   7810 }
   7811 
   7812 static GVALinkage adjustGVALinkageForDLLAttribute(GVALinkage L, const Decl *D) {
   7813   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
   7814   // dllexport/dllimport on inline functions.
   7815   if (D->hasAttr<DLLImportAttr>()) {
   7816     if (L == GVA_DiscardableODR || L == GVA_StrongODR)
   7817       return GVA_AvailableExternally;
   7818   } else if (D->hasAttr<DLLExportAttr>()) {
   7819     if (L == GVA_DiscardableODR)
   7820       return GVA_StrongODR;
   7821   }
   7822   return L;
   7823 }
   7824 
   7825 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
   7826   return adjustGVALinkageForDLLAttribute(basicGVALinkageForFunction(*this, FD),
   7827                                          FD);
   7828 }
   7829 
   7830 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
   7831                                              const VarDecl *VD) {
   7832   if (!VD->isExternallyVisible())
   7833     return GVA_Internal;
   7834 
   7835   if (VD->isStaticLocal()) {
   7836     GVALinkage StaticLocalLinkage = GVA_DiscardableODR;
   7837     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
   7838     while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
   7839       LexicalContext = LexicalContext->getLexicalParent();
   7840 
   7841     // Let the static local variable inherit it's linkage from the nearest
   7842     // enclosing function.
   7843     if (LexicalContext)
   7844       StaticLocalLinkage =
   7845           Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
   7846 
   7847     // GVA_StrongODR function linkage is stronger than what we need,
   7848     // downgrade to GVA_DiscardableODR.
   7849     // This allows us to discard the variable if we never end up needing it.
   7850     return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR
   7851                                                : StaticLocalLinkage;
   7852   }
   7853 
   7854   switch (VD->getTemplateSpecializationKind()) {
   7855   case TSK_Undeclared:
   7856   case TSK_ExplicitSpecialization:
   7857     return GVA_StrongExternal;
   7858 
   7859   case TSK_ExplicitInstantiationDefinition:
   7860     return GVA_StrongODR;
   7861 
   7862   case TSK_ExplicitInstantiationDeclaration:
   7863     return GVA_AvailableExternally;
   7864 
   7865   case TSK_ImplicitInstantiation:
   7866     return GVA_DiscardableODR;
   7867   }
   7868 
   7869   llvm_unreachable("Invalid Linkage!");
   7870 }
   7871 
   7872 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
   7873   return adjustGVALinkageForDLLAttribute(basicGVALinkageForVariable(*this, VD),
   7874                                          VD);
   7875 }
   7876 
   7877 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
   7878   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   7879     if (!VD->isFileVarDecl())
   7880       return false;
   7881     // Global named register variables (GNU extension) are never emitted.
   7882     if (VD->getStorageClass() == SC_Register)
   7883       return false;
   7884   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   7885     // We never need to emit an uninstantiated function template.
   7886     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
   7887       return false;
   7888   } else
   7889     return false;
   7890 
   7891   // If this is a member of a class template, we do not need to emit it.
   7892   if (D->getDeclContext()->isDependentContext())
   7893     return false;
   7894 
   7895   // Weak references don't produce any output by themselves.
   7896   if (D->hasAttr<WeakRefAttr>())
   7897     return false;
   7898 
   7899   // Aliases and used decls are required.
   7900   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
   7901     return true;
   7902 
   7903   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   7904     // Forward declarations aren't required.
   7905     if (!FD->doesThisDeclarationHaveABody())
   7906       return FD->doesDeclarationForceExternallyVisibleDefinition();
   7907 
   7908     // Constructors and destructors are required.
   7909     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
   7910       return true;
   7911 
   7912     // The key function for a class is required.  This rule only comes
   7913     // into play when inline functions can be key functions, though.
   7914     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
   7915       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   7916         const CXXRecordDecl *RD = MD->getParent();
   7917         if (MD->isOutOfLine() && RD->isDynamicClass()) {
   7918           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
   7919           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
   7920             return true;
   7921         }
   7922       }
   7923     }
   7924 
   7925     GVALinkage Linkage = GetGVALinkageForFunction(FD);
   7926 
   7927     // static, static inline, always_inline, and extern inline functions can
   7928     // always be deferred.  Normal inline functions can be deferred in C99/C++.
   7929     // Implicit template instantiations can also be deferred in C++.
   7930     if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally ||
   7931         Linkage == GVA_DiscardableODR)
   7932       return false;
   7933     return true;
   7934   }
   7935 
   7936   const VarDecl *VD = cast<VarDecl>(D);
   7937   assert(VD->isFileVarDecl() && "Expected file scoped var");
   7938 
   7939   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
   7940     return false;
   7941 
   7942   // Variables that can be needed in other TUs are required.
   7943   GVALinkage L = GetGVALinkageForVariable(VD);
   7944   if (L != GVA_Internal && L != GVA_AvailableExternally &&
   7945       L != GVA_DiscardableODR)
   7946     return true;
   7947 
   7948   // Variables that have destruction with side-effects are required.
   7949   if (VD->getType().isDestructedType())
   7950     return true;
   7951 
   7952   // Variables that have initialization with side-effects are required.
   7953   if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
   7954     return true;
   7955 
   7956   return false;
   7957 }
   7958 
   7959 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
   7960                                                     bool IsCXXMethod) const {
   7961   // Pass through to the C++ ABI object
   7962   if (IsCXXMethod)
   7963     return ABI->getDefaultMethodCallConv(IsVariadic);
   7964 
   7965   return (LangOpts.MRTD && !IsVariadic) ? CC_X86StdCall : CC_C;
   7966 }
   7967 
   7968 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
   7969   // Pass through to the C++ ABI object
   7970   return ABI->isNearlyEmpty(RD);
   7971 }
   7972 
   7973 VTableContextBase *ASTContext::getVTableContext() {
   7974   if (!VTContext.get()) {
   7975     if (Target->getCXXABI().isMicrosoft())
   7976       VTContext.reset(new MicrosoftVTableContext(*this));
   7977     else
   7978       VTContext.reset(new ItaniumVTableContext(*this));
   7979   }
   7980   return VTContext.get();
   7981 }
   7982 
   7983 MangleContext *ASTContext::createMangleContext() {
   7984   switch (Target->getCXXABI().getKind()) {
   7985   case TargetCXXABI::GenericAArch64:
   7986   case TargetCXXABI::GenericItanium:
   7987   case TargetCXXABI::GenericARM:
   7988   case TargetCXXABI::iOS:
   7989   case TargetCXXABI::iOS64:
   7990     return ItaniumMangleContext::create(*this, getDiagnostics());
   7991   case TargetCXXABI::Microsoft:
   7992     return MicrosoftMangleContext::create(*this, getDiagnostics());
   7993   }
   7994   llvm_unreachable("Unsupported ABI");
   7995 }
   7996 
   7997 CXXABI::~CXXABI() {}
   7998 
   7999 size_t ASTContext::getSideTableAllocatedMemory() const {
   8000   return ASTRecordLayouts.getMemorySize() +
   8001          llvm::capacity_in_bytes(ObjCLayouts) +
   8002          llvm::capacity_in_bytes(KeyFunctions) +
   8003          llvm::capacity_in_bytes(ObjCImpls) +
   8004          llvm::capacity_in_bytes(BlockVarCopyInits) +
   8005          llvm::capacity_in_bytes(DeclAttrs) +
   8006          llvm::capacity_in_bytes(TemplateOrInstantiation) +
   8007          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
   8008          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
   8009          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
   8010          llvm::capacity_in_bytes(OverriddenMethods) +
   8011          llvm::capacity_in_bytes(Types) +
   8012          llvm::capacity_in_bytes(VariableArrayTypes) +
   8013          llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
   8014 }
   8015 
   8016 /// getIntTypeForBitwidth -
   8017 /// sets integer QualTy according to specified details:
   8018 /// bitwidth, signed/unsigned.
   8019 /// Returns empty type if there is no appropriate target types.
   8020 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
   8021                                            unsigned Signed) const {
   8022   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
   8023   CanQualType QualTy = getFromTargetType(Ty);
   8024   if (!QualTy && DestWidth == 128)
   8025     return Signed ? Int128Ty : UnsignedInt128Ty;
   8026   return QualTy;
   8027 }
   8028 
   8029 /// getRealTypeForBitwidth -
   8030 /// sets floating point QualTy according to specified bitwidth.
   8031 /// Returns empty type if there is no appropriate target types.
   8032 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
   8033   TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
   8034   switch (Ty) {
   8035   case TargetInfo::Float:
   8036     return FloatTy;
   8037   case TargetInfo::Double:
   8038     return DoubleTy;
   8039   case TargetInfo::LongDouble:
   8040     return LongDoubleTy;
   8041   case TargetInfo::NoFloat:
   8042     return QualType();
   8043   }
   8044 
   8045   llvm_unreachable("Unhandled TargetInfo::RealType value");
   8046 }
   8047 
   8048 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
   8049   if (Number > 1)
   8050     MangleNumbers[ND] = Number;
   8051 }
   8052 
   8053 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
   8054   llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I =
   8055     MangleNumbers.find(ND);
   8056   return I != MangleNumbers.end() ? I->second : 1;
   8057 }
   8058 
   8059 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
   8060   if (Number > 1)
   8061     StaticLocalNumbers[VD] = Number;
   8062 }
   8063 
   8064 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
   8065   llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I =
   8066       StaticLocalNumbers.find(VD);
   8067   return I != StaticLocalNumbers.end() ? I->second : 1;
   8068 }
   8069 
   8070 MangleNumberingContext &
   8071 ASTContext::getManglingNumberContext(const DeclContext *DC) {
   8072   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
   8073   MangleNumberingContext *&MCtx = MangleNumberingContexts[DC];
   8074   if (!MCtx)
   8075     MCtx = createMangleNumberingContext();
   8076   return *MCtx;
   8077 }
   8078 
   8079 MangleNumberingContext *ASTContext::createMangleNumberingContext() const {
   8080   return ABI->createMangleNumberingContext();
   8081 }
   8082 
   8083 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
   8084   ParamIndices[D] = index;
   8085 }
   8086 
   8087 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
   8088   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
   8089   assert(I != ParamIndices.end() &&
   8090          "ParmIndices lacks entry set by ParmVarDecl");
   8091   return I->second;
   8092 }
   8093 
   8094 APValue *
   8095 ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
   8096                                           bool MayCreate) {
   8097   assert(E && E->getStorageDuration() == SD_Static &&
   8098          "don't need to cache the computed value for this temporary");
   8099   if (MayCreate)
   8100     return &MaterializedTemporaryValues[E];
   8101 
   8102   llvm::DenseMap<const MaterializeTemporaryExpr *, APValue>::iterator I =
   8103       MaterializedTemporaryValues.find(E);
   8104   return I == MaterializedTemporaryValues.end() ? nullptr : &I->second;
   8105 }
   8106 
   8107 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
   8108   const llvm::Triple &T = getTargetInfo().getTriple();
   8109   if (!T.isOSDarwin())
   8110     return false;
   8111 
   8112   if (!(T.isiOS() && T.isOSVersionLT(7)) &&
   8113       !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
   8114     return false;
   8115 
   8116   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
   8117   CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
   8118   uint64_t Size = sizeChars.getQuantity();
   8119   CharUnits alignChars = getTypeAlignInChars(AtomicTy);
   8120   unsigned Align = alignChars.getQuantity();
   8121   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
   8122   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
   8123 }
   8124 
   8125 namespace {
   8126 
   8127   /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
   8128   /// parents as defined by the \c RecursiveASTVisitor.
   8129   ///
   8130   /// Note that the relationship described here is purely in terms of AST
   8131   /// traversal - there are other relationships (for example declaration context)
   8132   /// in the AST that are better modeled by special matchers.
   8133   ///
   8134   /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
   8135   class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
   8136 
   8137   public:
   8138     /// \brief Builds and returns the translation unit's parent map.
   8139     ///
   8140     ///  The caller takes ownership of the returned \c ParentMap.
   8141     static ASTContext::ParentMap *buildMap(TranslationUnitDecl &TU) {
   8142       ParentMapASTVisitor Visitor(new ASTContext::ParentMap);
   8143       Visitor.TraverseDecl(&TU);
   8144       return Visitor.Parents;
   8145     }
   8146 
   8147   private:
   8148     typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
   8149 
   8150     ParentMapASTVisitor(ASTContext::ParentMap *Parents) : Parents(Parents) {
   8151     }
   8152 
   8153     bool shouldVisitTemplateInstantiations() const {
   8154       return true;
   8155     }
   8156     bool shouldVisitImplicitCode() const {
   8157       return true;
   8158     }
   8159     // Disables data recursion. We intercept Traverse* methods in the RAV, which
   8160     // are not triggered during data recursion.
   8161     bool shouldUseDataRecursionFor(clang::Stmt *S) const {
   8162       return false;
   8163     }
   8164 
   8165     template <typename T>
   8166     bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) {
   8167       if (!Node)
   8168         return true;
   8169       if (ParentStack.size() > 0) {
   8170         // FIXME: Currently we add the same parent multiple times, but only
   8171         // when no memoization data is available for the type.
   8172         // For example when we visit all subexpressions of template
   8173         // instantiations; this is suboptimal, but benign: the only way to
   8174         // visit those is with hasAncestor / hasParent, and those do not create
   8175         // new matches.
   8176         // The plan is to enable DynTypedNode to be storable in a map or hash
   8177         // map. The main problem there is to implement hash functions /
   8178         // comparison operators for all types that DynTypedNode supports that
   8179         // do not have pointer identity.
   8180         auto &NodeOrVector = (*Parents)[Node];
   8181         if (NodeOrVector.isNull()) {
   8182           NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back());
   8183         } else {
   8184           if (NodeOrVector.template is<ast_type_traits::DynTypedNode *>()) {
   8185             auto *Node =
   8186                 NodeOrVector.template get<ast_type_traits::DynTypedNode *>();
   8187             auto *Vector = new ASTContext::ParentVector(1, *Node);
   8188             NodeOrVector = Vector;
   8189             delete Node;
   8190           }
   8191           assert(NodeOrVector.template is<ASTContext::ParentVector *>());
   8192 
   8193           auto *Vector =
   8194               NodeOrVector.template get<ASTContext::ParentVector *>();
   8195           // Skip duplicates for types that have memoization data.
   8196           // We must check that the type has memoization data before calling
   8197           // std::find() because DynTypedNode::operator== can't compare all
   8198           // types.
   8199           bool Found = ParentStack.back().getMemoizationData() &&
   8200                        std::find(Vector->begin(), Vector->end(),
   8201                                  ParentStack.back()) != Vector->end();
   8202           if (!Found)
   8203             Vector->push_back(ParentStack.back());
   8204         }
   8205       }
   8206       ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node));
   8207       bool Result = (this ->* traverse) (Node);
   8208       ParentStack.pop_back();
   8209       return Result;
   8210     }
   8211 
   8212     bool TraverseDecl(Decl *DeclNode) {
   8213       return TraverseNode(DeclNode, &VisitorBase::TraverseDecl);
   8214     }
   8215 
   8216     bool TraverseStmt(Stmt *StmtNode) {
   8217       return TraverseNode(StmtNode, &VisitorBase::TraverseStmt);
   8218     }
   8219 
   8220     ASTContext::ParentMap *Parents;
   8221     llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
   8222 
   8223     friend class RecursiveASTVisitor<ParentMapASTVisitor>;
   8224   };
   8225 
   8226 } // end namespace
   8227 
   8228 ASTContext::ParentVector
   8229 ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
   8230   assert(Node.getMemoizationData() &&
   8231          "Invariant broken: only nodes that support memoization may be "
   8232          "used in the parent map.");
   8233   if (!AllParents) {
   8234     // We always need to run over the whole translation unit, as
   8235     // hasAncestor can escape any subtree.
   8236     AllParents.reset(
   8237         ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()));
   8238   }
   8239   ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData());
   8240   if (I == AllParents->end()) {
   8241     return ParentVector();
   8242   }
   8243   if (I->second.is<ast_type_traits::DynTypedNode *>()) {
   8244     return ParentVector(1, *I->second.get<ast_type_traits::DynTypedNode *>());
   8245   }
   8246   const auto &Parents = *I->second.get<ParentVector *>();
   8247   return ParentVector(Parents.begin(), Parents.end());
   8248 }
   8249 
   8250 bool
   8251 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
   8252                                 const ObjCMethodDecl *MethodImpl) {
   8253   // No point trying to match an unavailable/deprecated mothod.
   8254   if (MethodDecl->hasAttr<UnavailableAttr>()
   8255       || MethodDecl->hasAttr<DeprecatedAttr>())
   8256     return false;
   8257   if (MethodDecl->getObjCDeclQualifier() !=
   8258       MethodImpl->getObjCDeclQualifier())
   8259     return false;
   8260   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
   8261     return false;
   8262 
   8263   if (MethodDecl->param_size() != MethodImpl->param_size())
   8264     return false;
   8265 
   8266   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
   8267        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
   8268        EF = MethodDecl->param_end();
   8269        IM != EM && IF != EF; ++IM, ++IF) {
   8270     const ParmVarDecl *DeclVar = (*IF);
   8271     const ParmVarDecl *ImplVar = (*IM);
   8272     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
   8273       return false;
   8274     if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
   8275       return false;
   8276   }
   8277   return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
   8278 
   8279 }
   8280 
   8281 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
   8282 // doesn't include ASTContext.h
   8283 template
   8284 clang::LazyGenerationalUpdatePtr<
   8285     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
   8286 clang::LazyGenerationalUpdatePtr<
   8287     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
   8288         const clang::ASTContext &Ctx, Decl *Value);
   8289