1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "bit_vector.h" 18 19 namespace art { 20 21 // TODO: profile to make sure this is still a win relative to just using shifted masks. 22 static uint32_t check_masks[32] = { 23 0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010, 24 0x00000020, 0x00000040, 0x00000080, 0x00000100, 0x00000200, 25 0x00000400, 0x00000800, 0x00001000, 0x00002000, 0x00004000, 26 0x00008000, 0x00010000, 0x00020000, 0x00040000, 0x00080000, 27 0x00100000, 0x00200000, 0x00400000, 0x00800000, 0x01000000, 28 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 29 0x40000000, 0x80000000 }; 30 31 static inline uint32_t BitsToWords(uint32_t bits) { 32 return (bits + 31) >> 5; 33 } 34 35 // TODO: replace excessive argument defaulting when we are at gcc 4.7 36 // or later on host with delegating constructor support. Specifically, 37 // starts_bits and storage_size/storage are mutually exclusive. 38 BitVector::BitVector(uint32_t start_bits, 39 bool expandable, 40 Allocator* allocator, 41 uint32_t storage_size, 42 uint32_t* storage) 43 : allocator_(allocator), 44 expandable_(expandable), 45 storage_size_(storage_size), 46 storage_(storage) { 47 COMPILE_ASSERT(sizeof(*storage_) == kWordBytes, check_word_bytes); 48 COMPILE_ASSERT(sizeof(*storage_) * 8u == kWordBits, check_word_bits); 49 if (storage_ == nullptr) { 50 storage_size_ = BitsToWords(start_bits); 51 storage_ = static_cast<uint32_t*>(allocator_->Alloc(storage_size_ * kWordBytes)); 52 } 53 } 54 55 BitVector::~BitVector() { 56 allocator_->Free(storage_); 57 } 58 59 /* 60 * Determine whether or not the specified bit is set. 61 */ 62 bool BitVector::IsBitSet(uint32_t num) const { 63 // If the index is over the size: 64 if (num >= storage_size_ * kWordBits) { 65 // Whether it is expandable or not, this bit does not exist: thus it is not set. 66 return false; 67 } 68 69 return IsBitSet(storage_, num); 70 } 71 72 // Mark all bits bit as "clear". 73 void BitVector::ClearAllBits() { 74 memset(storage_, 0, storage_size_ * kWordBytes); 75 } 76 77 // Mark the specified bit as "set". 78 /* 79 * TUNING: this could have pathologically bad growth/expand behavior. Make sure we're 80 * not using it badly or change resize mechanism. 81 */ 82 void BitVector::SetBit(uint32_t num) { 83 if (num >= storage_size_ * kWordBits) { 84 DCHECK(expandable_) << "Attempted to expand a non-expandable bitmap to position " << num; 85 86 /* Round up to word boundaries for "num+1" bits */ 87 uint32_t new_size = BitsToWords(num + 1); 88 DCHECK_GT(new_size, storage_size_); 89 uint32_t *new_storage = 90 static_cast<uint32_t*>(allocator_->Alloc(new_size * kWordBytes)); 91 memcpy(new_storage, storage_, storage_size_ * kWordBytes); 92 // Zero out the new storage words. 93 memset(&new_storage[storage_size_], 0, (new_size - storage_size_) * kWordBytes); 94 // TOTO: collect stats on space wasted because of resize. 95 storage_ = new_storage; 96 storage_size_ = new_size; 97 } 98 99 storage_[num >> 5] |= check_masks[num & 0x1f]; 100 } 101 102 // Mark the specified bit as "unset". 103 void BitVector::ClearBit(uint32_t num) { 104 // If the index is over the size, we don't have to do anything, it is cleared. 105 if (num < storage_size_ * kWordBits) { 106 // Otherwise, go ahead and clear it. 107 storage_[num >> 5] &= ~check_masks[num & 0x1f]; 108 } 109 } 110 111 bool BitVector::SameBitsSet(const BitVector *src) { 112 int our_highest = GetHighestBitSet(); 113 int src_highest = src->GetHighestBitSet(); 114 115 // If the highest bit set is different, we are different. 116 if (our_highest != src_highest) { 117 return false; 118 } 119 120 // If the highest bit set is -1, both are cleared, we are the same. 121 // If the highest bit set is 0, both have a unique bit set, we are the same. 122 if (our_highest <= 0) { 123 return true; 124 } 125 126 // Get the highest bit set's cell's index 127 // No need of highest + 1 here because it can't be 0 so BitsToWords will work here. 128 int our_highest_index = BitsToWords(our_highest); 129 130 // This memcmp is enough: we know that the highest bit set is the same for both: 131 // - Therefore, min_size goes up to at least that, we are thus comparing at least what we need to, but not less. 132 // ie. we are comparing all storage cells that could have difference, if both vectors have cells above our_highest_index, 133 // they are automatically at 0. 134 return (memcmp(storage_, src->GetRawStorage(), our_highest_index * kWordBytes) == 0); 135 } 136 137 // Intersect with another bit vector. 138 void BitVector::Intersect(const BitVector* src) { 139 uint32_t src_storage_size = src->storage_size_; 140 141 // Get the minimum size between us and source. 142 uint32_t min_size = (storage_size_ < src_storage_size) ? storage_size_ : src_storage_size; 143 144 uint32_t idx; 145 for (idx = 0; idx < min_size; idx++) { 146 storage_[idx] &= src->GetRawStorageWord(idx); 147 } 148 149 // Now, due to this being an intersection, there are two possibilities: 150 // - Either src was larger than us: we don't care, all upper bits would thus be 0. 151 // - Either we are larger than src: we don't care, all upper bits would have been 0 too. 152 // So all we need to do is set all remaining bits to 0. 153 for (; idx < storage_size_; idx++) { 154 storage_[idx] = 0; 155 } 156 } 157 158 /* 159 * Union with another bit vector. 160 */ 161 bool BitVector::Union(const BitVector* src) { 162 // Get the highest bit to determine how much we need to expand. 163 int highest_bit = src->GetHighestBitSet(); 164 bool changed = false; 165 166 // If src has no bit set, we are done: there is no need for a union with src. 167 if (highest_bit == -1) { 168 return changed; 169 } 170 171 // Update src_size to how many cells we actually care about: where the bit is + 1. 172 uint32_t src_size = BitsToWords(highest_bit + 1); 173 174 // Is the storage size smaller than src's? 175 if (storage_size_ < src_size) { 176 changed = true; 177 178 // Set it to reallocate. 179 SetBit(highest_bit); 180 181 // Paranoid: storage size should be big enough to hold this bit now. 182 DCHECK_LT(static_cast<uint32_t> (highest_bit), storage_size_ * kWordBits); 183 } 184 185 for (uint32_t idx = 0; idx < src_size; idx++) { 186 uint32_t existing = storage_[idx]; 187 uint32_t update = existing | src->GetRawStorageWord(idx); 188 if (existing != update) { 189 changed = true; 190 storage_[idx] = update; 191 } 192 } 193 return changed; 194 } 195 196 bool BitVector::UnionIfNotIn(const BitVector* union_with, const BitVector* not_in) { 197 // Get the highest bit to determine how much we need to expand. 198 int highest_bit = union_with->GetHighestBitSet(); 199 bool changed = false; 200 201 // If src has no bit set, we are done: there is no need for a union with src. 202 if (highest_bit == -1) { 203 return changed; 204 } 205 206 // Update union_with_size to how many cells we actually care about: where the bit is + 1. 207 uint32_t union_with_size = BitsToWords(highest_bit + 1); 208 209 // Is the storage size smaller than src's? 210 if (storage_size_ < union_with_size) { 211 changed = true; 212 213 // Set it to reallocate. 214 SetBit(highest_bit); 215 216 // Paranoid: storage size should be big enough to hold this bit now. 217 DCHECK_LT(static_cast<uint32_t> (highest_bit), storage_size_ * kWordBits); 218 } 219 220 uint32_t not_in_size = not_in->GetStorageSize(); 221 222 uint32_t idx = 0; 223 for (; idx < std::min(not_in_size, union_with_size); idx++) { 224 uint32_t existing = storage_[idx]; 225 uint32_t update = existing | 226 (union_with->GetRawStorageWord(idx) & ~not_in->GetRawStorageWord(idx)); 227 if (existing != update) { 228 changed = true; 229 storage_[idx] = update; 230 } 231 } 232 233 for (; idx < union_with_size; idx++) { 234 uint32_t existing = storage_[idx]; 235 uint32_t update = existing | union_with->GetRawStorageWord(idx); 236 if (existing != update) { 237 changed = true; 238 storage_[idx] = update; 239 } 240 } 241 return changed; 242 } 243 244 void BitVector::Subtract(const BitVector *src) { 245 uint32_t src_size = src->storage_size_; 246 247 // We only need to operate on bytes up to the smaller of the sizes of the two operands. 248 unsigned int min_size = (storage_size_ > src_size) ? src_size : storage_size_; 249 250 // Difference until max, we know both accept it: 251 // There is no need to do more: 252 // If we are bigger than src, the upper bits are unchanged. 253 // If we are smaller than src, the non-existant upper bits are 0 and thus can't get subtracted. 254 for (uint32_t idx = 0; idx < min_size; idx++) { 255 storage_[idx] &= (~(src->GetRawStorageWord(idx))); 256 } 257 } 258 259 // Count the number of bits that are set. 260 uint32_t BitVector::NumSetBits() const { 261 uint32_t count = 0; 262 for (uint32_t word = 0; word < storage_size_; word++) { 263 count += POPCOUNT(storage_[word]); 264 } 265 return count; 266 } 267 268 // Count the number of bits that are set in range [0, end). 269 uint32_t BitVector::NumSetBits(uint32_t end) const { 270 DCHECK_LE(end, storage_size_ * kWordBits); 271 return NumSetBits(storage_, end); 272 } 273 274 /* 275 * Mark specified number of bits as "set". Cannot set all bits like ClearAll 276 * since there might be unused bits - setting those to one will confuse the 277 * iterator. 278 */ 279 void BitVector::SetInitialBits(uint32_t num_bits) { 280 // If num_bits is 0, clear everything. 281 if (num_bits == 0) { 282 ClearAllBits(); 283 return; 284 } 285 286 // Set the highest bit we want to set to get the BitVector allocated if need be. 287 SetBit(num_bits - 1); 288 289 uint32_t idx; 290 // We can set every storage element with -1. 291 for (idx = 0; idx < (num_bits >> 5); idx++) { 292 storage_[idx] = -1; 293 } 294 295 // Handle the potentially last few bits. 296 uint32_t rem_num_bits = num_bits & 0x1f; 297 if (rem_num_bits != 0) { 298 storage_[idx] = (1 << rem_num_bits) - 1; 299 ++idx; 300 } 301 302 // Now set the upper ones to 0. 303 for (; idx < storage_size_; idx++) { 304 storage_[idx] = 0; 305 } 306 } 307 308 int BitVector::GetHighestBitSet() const { 309 unsigned int max = storage_size_; 310 for (int idx = max - 1; idx >= 0; idx--) { 311 // If not 0, we have more work: check the bits. 312 uint32_t value = storage_[idx]; 313 314 if (value != 0) { 315 // Shift right for the counting. 316 value /= 2; 317 318 int cnt = 0; 319 320 // Count the bits. 321 while (value > 0) { 322 value /= 2; 323 cnt++; 324 } 325 326 // Return cnt + how many storage units still remain * the number of bits per unit. 327 int res = cnt + (idx * kWordBits); 328 return res; 329 } 330 } 331 332 // All zero, therefore return -1. 333 return -1; 334 } 335 336 bool BitVector::EnsureSizeAndClear(unsigned int num) { 337 // Check if the bitvector is expandable. 338 if (IsExpandable() == false) { 339 return false; 340 } 341 342 if (num > 0) { 343 // Now try to expand by setting the last bit. 344 SetBit(num - 1); 345 } 346 347 // We must clear all bits as per our specification. 348 ClearAllBits(); 349 350 return true; 351 } 352 353 void BitVector::Copy(const BitVector *src) { 354 // Get highest bit set, we only need to copy till then. 355 int highest_bit = src->GetHighestBitSet(); 356 357 // If nothing is set, clear everything. 358 if (highest_bit == -1) { 359 ClearAllBits(); 360 return; 361 } 362 363 // Set upper bit to ensure right size before copy. 364 SetBit(highest_bit); 365 366 // Now set until highest bit's storage. 367 uint32_t size = 1 + (highest_bit / kWordBits); 368 memcpy(storage_, src->GetRawStorage(), kWordBytes * size); 369 370 // Set upper bits to 0. 371 uint32_t left = storage_size_ - size; 372 373 if (left > 0) { 374 memset(storage_ + size, 0, kWordBytes * left); 375 } 376 } 377 378 bool BitVector::IsBitSet(const uint32_t* storage, uint32_t num) { 379 uint32_t val = storage[num >> 5] & check_masks[num & 0x1f]; 380 return (val != 0); 381 } 382 383 uint32_t BitVector::NumSetBits(const uint32_t* storage, uint32_t end) { 384 uint32_t word_end = end >> 5; 385 uint32_t partial_word_bits = end & 0x1f; 386 387 uint32_t count = 0u; 388 for (uint32_t word = 0u; word < word_end; word++) { 389 count += POPCOUNT(storage[word]); 390 } 391 if (partial_word_bits != 0u) { 392 count += POPCOUNT(storage[word_end] & ~(0xffffffffu << partial_word_bits)); 393 } 394 return count; 395 } 396 397 void BitVector::Dump(std::ostream& os, const char *prefix) const { 398 std::ostringstream buffer; 399 DumpHelper(prefix, buffer); 400 os << buffer.str() << std::endl; 401 } 402 403 404 void BitVector::DumpDotHelper(bool last_entry, FILE* file, std::ostringstream& buffer) const { 405 // Now print it to the file. 406 fprintf(file, " {%s}", buffer.str().c_str()); 407 408 // If it isn't the last entry, add a |. 409 if (last_entry == false) { 410 fprintf(file, "|"); 411 } 412 413 // Add the \n. 414 fprintf(file, "\\\n"); 415 } 416 417 void BitVector::DumpDot(FILE* file, const char* prefix, bool last_entry) const { 418 std::ostringstream buffer; 419 DumpHelper(prefix, buffer); 420 DumpDotHelper(last_entry, file, buffer); 421 } 422 423 void BitVector::DumpIndicesDot(FILE* file, const char* prefix, bool last_entry) const { 424 std::ostringstream buffer; 425 DumpIndicesHelper(prefix, buffer); 426 DumpDotHelper(last_entry, file, buffer); 427 } 428 429 void BitVector::DumpIndicesHelper(const char* prefix, std::ostringstream& buffer) const { 430 // Initialize it. 431 if (prefix != nullptr) { 432 buffer << prefix; 433 } 434 435 for (size_t i = 0; i < storage_size_ * kWordBits; i++) { 436 if (IsBitSet(i)) { 437 buffer << i << " "; 438 } 439 } 440 } 441 442 void BitVector::DumpHelper(const char* prefix, std::ostringstream& buffer) const { 443 // Initialize it. 444 if (prefix != nullptr) { 445 buffer << prefix; 446 } 447 448 buffer << '('; 449 for (size_t i = 0; i < storage_size_ * kWordBits; i++) { 450 buffer << IsBitSet(i); 451 } 452 buffer << ')'; 453 } 454 455 } // namespace art 456