1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Expression parsing implementation for C++. 11 // 12 //===----------------------------------------------------------------------===// 13 #include "clang/AST/ASTContext.h" 14 #include "RAIIObjectsForParser.h" 15 #include "clang/AST/DeclTemplate.h" 16 #include "clang/Basic/PrettyStackTrace.h" 17 #include "clang/Lex/LiteralSupport.h" 18 #include "clang/Parse/ParseDiagnostic.h" 19 #include "clang/Parse/Parser.h" 20 #include "clang/Sema/DeclSpec.h" 21 #include "clang/Sema/ParsedTemplate.h" 22 #include "clang/Sema/Scope.h" 23 #include "llvm/Support/ErrorHandling.h" 24 25 26 using namespace clang; 27 28 static int SelectDigraphErrorMessage(tok::TokenKind Kind) { 29 switch (Kind) { 30 // template name 31 case tok::unknown: return 0; 32 // casts 33 case tok::kw_const_cast: return 1; 34 case tok::kw_dynamic_cast: return 2; 35 case tok::kw_reinterpret_cast: return 3; 36 case tok::kw_static_cast: return 4; 37 default: 38 llvm_unreachable("Unknown type for digraph error message."); 39 } 40 } 41 42 // Are the two tokens adjacent in the same source file? 43 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) { 44 SourceManager &SM = PP.getSourceManager(); 45 SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation()); 46 SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength()); 47 return FirstEnd == SM.getSpellingLoc(Second.getLocation()); 48 } 49 50 // Suggest fixit for "<::" after a cast. 51 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken, 52 Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) { 53 // Pull '<:' and ':' off token stream. 54 if (!AtDigraph) 55 PP.Lex(DigraphToken); 56 PP.Lex(ColonToken); 57 58 SourceRange Range; 59 Range.setBegin(DigraphToken.getLocation()); 60 Range.setEnd(ColonToken.getLocation()); 61 P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph) 62 << SelectDigraphErrorMessage(Kind) 63 << FixItHint::CreateReplacement(Range, "< ::"); 64 65 // Update token information to reflect their change in token type. 66 ColonToken.setKind(tok::coloncolon); 67 ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1)); 68 ColonToken.setLength(2); 69 DigraphToken.setKind(tok::less); 70 DigraphToken.setLength(1); 71 72 // Push new tokens back to token stream. 73 PP.EnterToken(ColonToken); 74 if (!AtDigraph) 75 PP.EnterToken(DigraphToken); 76 } 77 78 // Check for '<::' which should be '< ::' instead of '[:' when following 79 // a template name. 80 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType, 81 bool EnteringContext, 82 IdentifierInfo &II, CXXScopeSpec &SS) { 83 if (!Next.is(tok::l_square) || Next.getLength() != 2) 84 return; 85 86 Token SecondToken = GetLookAheadToken(2); 87 if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken)) 88 return; 89 90 TemplateTy Template; 91 UnqualifiedId TemplateName; 92 TemplateName.setIdentifier(&II, Tok.getLocation()); 93 bool MemberOfUnknownSpecialization; 94 if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false, 95 TemplateName, ObjectType, EnteringContext, 96 Template, MemberOfUnknownSpecialization)) 97 return; 98 99 FixDigraph(*this, PP, Next, SecondToken, tok::unknown, 100 /*AtDigraph*/false); 101 } 102 103 /// \brief Emits an error for a left parentheses after a double colon. 104 /// 105 /// When a '(' is found after a '::', emit an error. Attempt to fix the token 106 /// stream by removing the '(', and the matching ')' if found. 107 void Parser::CheckForLParenAfterColonColon() { 108 if (!Tok.is(tok::l_paren)) 109 return; 110 111 SourceLocation l_parenLoc = ConsumeParen(), r_parenLoc; 112 Token Tok1 = getCurToken(); 113 if (!Tok1.is(tok::identifier) && !Tok1.is(tok::star)) 114 return; 115 116 if (Tok1.is(tok::identifier)) { 117 Token Tok2 = GetLookAheadToken(1); 118 if (Tok2.is(tok::r_paren)) { 119 ConsumeToken(); 120 PP.EnterToken(Tok1); 121 r_parenLoc = ConsumeParen(); 122 } 123 } else if (Tok1.is(tok::star)) { 124 Token Tok2 = GetLookAheadToken(1); 125 if (Tok2.is(tok::identifier)) { 126 Token Tok3 = GetLookAheadToken(2); 127 if (Tok3.is(tok::r_paren)) { 128 ConsumeToken(); 129 ConsumeToken(); 130 PP.EnterToken(Tok2); 131 PP.EnterToken(Tok1); 132 r_parenLoc = ConsumeParen(); 133 } 134 } 135 } 136 137 Diag(l_parenLoc, diag::err_paren_after_colon_colon) 138 << FixItHint::CreateRemoval(l_parenLoc) 139 << FixItHint::CreateRemoval(r_parenLoc); 140 } 141 142 /// \brief Parse global scope or nested-name-specifier if present. 143 /// 144 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which 145 /// may be preceded by '::'). Note that this routine will not parse ::new or 146 /// ::delete; it will just leave them in the token stream. 147 /// 148 /// '::'[opt] nested-name-specifier 149 /// '::' 150 /// 151 /// nested-name-specifier: 152 /// type-name '::' 153 /// namespace-name '::' 154 /// nested-name-specifier identifier '::' 155 /// nested-name-specifier 'template'[opt] simple-template-id '::' 156 /// 157 /// 158 /// \param SS the scope specifier that will be set to the parsed 159 /// nested-name-specifier (or empty) 160 /// 161 /// \param ObjectType if this nested-name-specifier is being parsed following 162 /// the "." or "->" of a member access expression, this parameter provides the 163 /// type of the object whose members are being accessed. 164 /// 165 /// \param EnteringContext whether we will be entering into the context of 166 /// the nested-name-specifier after parsing it. 167 /// 168 /// \param MayBePseudoDestructor When non-NULL, points to a flag that 169 /// indicates whether this nested-name-specifier may be part of a 170 /// pseudo-destructor name. In this case, the flag will be set false 171 /// if we don't actually end up parsing a destructor name. Moreorover, 172 /// if we do end up determining that we are parsing a destructor name, 173 /// the last component of the nested-name-specifier is not parsed as 174 /// part of the scope specifier. 175 /// 176 /// \param IsTypename If \c true, this nested-name-specifier is known to be 177 /// part of a type name. This is used to improve error recovery. 178 /// 179 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be 180 /// filled in with the leading identifier in the last component of the 181 /// nested-name-specifier, if any. 182 /// 183 /// \returns true if there was an error parsing a scope specifier 184 bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS, 185 ParsedType ObjectType, 186 bool EnteringContext, 187 bool *MayBePseudoDestructor, 188 bool IsTypename, 189 IdentifierInfo **LastII) { 190 assert(getLangOpts().CPlusPlus && 191 "Call sites of this function should be guarded by checking for C++"); 192 193 if (Tok.is(tok::annot_cxxscope)) { 194 assert(!LastII && "want last identifier but have already annotated scope"); 195 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(), 196 Tok.getAnnotationRange(), 197 SS); 198 ConsumeToken(); 199 return false; 200 } 201 202 if (Tok.is(tok::annot_template_id)) { 203 // If the current token is an annotated template id, it may already have 204 // a scope specifier. Restore it. 205 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 206 SS = TemplateId->SS; 207 } 208 209 if (LastII) 210 *LastII = nullptr; 211 212 bool HasScopeSpecifier = false; 213 214 if (Tok.is(tok::coloncolon)) { 215 // ::new and ::delete aren't nested-name-specifiers. 216 tok::TokenKind NextKind = NextToken().getKind(); 217 if (NextKind == tok::kw_new || NextKind == tok::kw_delete) 218 return false; 219 220 // '::' - Global scope qualifier. 221 if (Actions.ActOnCXXGlobalScopeSpecifier(getCurScope(), ConsumeToken(), SS)) 222 return true; 223 224 CheckForLParenAfterColonColon(); 225 226 HasScopeSpecifier = true; 227 } 228 229 bool CheckForDestructor = false; 230 if (MayBePseudoDestructor && *MayBePseudoDestructor) { 231 CheckForDestructor = true; 232 *MayBePseudoDestructor = false; 233 } 234 235 if (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype)) { 236 DeclSpec DS(AttrFactory); 237 SourceLocation DeclLoc = Tok.getLocation(); 238 SourceLocation EndLoc = ParseDecltypeSpecifier(DS); 239 240 SourceLocation CCLoc; 241 if (!TryConsumeToken(tok::coloncolon, CCLoc)) { 242 AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc); 243 return false; 244 } 245 246 if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc)) 247 SS.SetInvalid(SourceRange(DeclLoc, CCLoc)); 248 249 HasScopeSpecifier = true; 250 } 251 252 while (true) { 253 if (HasScopeSpecifier) { 254 // C++ [basic.lookup.classref]p5: 255 // If the qualified-id has the form 256 // 257 // ::class-name-or-namespace-name::... 258 // 259 // the class-name-or-namespace-name is looked up in global scope as a 260 // class-name or namespace-name. 261 // 262 // To implement this, we clear out the object type as soon as we've 263 // seen a leading '::' or part of a nested-name-specifier. 264 ObjectType = ParsedType(); 265 266 if (Tok.is(tok::code_completion)) { 267 // Code completion for a nested-name-specifier, where the code 268 // code completion token follows the '::'. 269 Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext); 270 // Include code completion token into the range of the scope otherwise 271 // when we try to annotate the scope tokens the dangling code completion 272 // token will cause assertion in 273 // Preprocessor::AnnotatePreviousCachedTokens. 274 SS.setEndLoc(Tok.getLocation()); 275 cutOffParsing(); 276 return true; 277 } 278 } 279 280 // nested-name-specifier: 281 // nested-name-specifier 'template'[opt] simple-template-id '::' 282 283 // Parse the optional 'template' keyword, then make sure we have 284 // 'identifier <' after it. 285 if (Tok.is(tok::kw_template)) { 286 // If we don't have a scope specifier or an object type, this isn't a 287 // nested-name-specifier, since they aren't allowed to start with 288 // 'template'. 289 if (!HasScopeSpecifier && !ObjectType) 290 break; 291 292 TentativeParsingAction TPA(*this); 293 SourceLocation TemplateKWLoc = ConsumeToken(); 294 295 UnqualifiedId TemplateName; 296 if (Tok.is(tok::identifier)) { 297 // Consume the identifier. 298 TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); 299 ConsumeToken(); 300 } else if (Tok.is(tok::kw_operator)) { 301 // We don't need to actually parse the unqualified-id in this case, 302 // because a simple-template-id cannot start with 'operator', but 303 // go ahead and parse it anyway for consistency with the case where 304 // we already annotated the template-id. 305 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, 306 TemplateName)) { 307 TPA.Commit(); 308 break; 309 } 310 311 if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId && 312 TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) { 313 Diag(TemplateName.getSourceRange().getBegin(), 314 diag::err_id_after_template_in_nested_name_spec) 315 << TemplateName.getSourceRange(); 316 TPA.Commit(); 317 break; 318 } 319 } else { 320 TPA.Revert(); 321 break; 322 } 323 324 // If the next token is not '<', we have a qualified-id that refers 325 // to a template name, such as T::template apply, but is not a 326 // template-id. 327 if (Tok.isNot(tok::less)) { 328 TPA.Revert(); 329 break; 330 } 331 332 // Commit to parsing the template-id. 333 TPA.Commit(); 334 TemplateTy Template; 335 if (TemplateNameKind TNK 336 = Actions.ActOnDependentTemplateName(getCurScope(), 337 SS, TemplateKWLoc, TemplateName, 338 ObjectType, EnteringContext, 339 Template)) { 340 if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc, 341 TemplateName, false)) 342 return true; 343 } else 344 return true; 345 346 continue; 347 } 348 349 if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) { 350 // We have 351 // 352 // template-id '::' 353 // 354 // So we need to check whether the template-id is a simple-template-id of 355 // the right kind (it should name a type or be dependent), and then 356 // convert it into a type within the nested-name-specifier. 357 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 358 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) { 359 *MayBePseudoDestructor = true; 360 return false; 361 } 362 363 if (LastII) 364 *LastII = TemplateId->Name; 365 366 // Consume the template-id token. 367 ConsumeToken(); 368 369 assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!"); 370 SourceLocation CCLoc = ConsumeToken(); 371 372 HasScopeSpecifier = true; 373 374 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 375 TemplateId->NumArgs); 376 377 if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), 378 SS, 379 TemplateId->TemplateKWLoc, 380 TemplateId->Template, 381 TemplateId->TemplateNameLoc, 382 TemplateId->LAngleLoc, 383 TemplateArgsPtr, 384 TemplateId->RAngleLoc, 385 CCLoc, 386 EnteringContext)) { 387 SourceLocation StartLoc 388 = SS.getBeginLoc().isValid()? SS.getBeginLoc() 389 : TemplateId->TemplateNameLoc; 390 SS.SetInvalid(SourceRange(StartLoc, CCLoc)); 391 } 392 393 continue; 394 } 395 396 // The rest of the nested-name-specifier possibilities start with 397 // tok::identifier. 398 if (Tok.isNot(tok::identifier)) 399 break; 400 401 IdentifierInfo &II = *Tok.getIdentifierInfo(); 402 403 // nested-name-specifier: 404 // type-name '::' 405 // namespace-name '::' 406 // nested-name-specifier identifier '::' 407 Token Next = NextToken(); 408 409 // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover 410 // and emit a fixit hint for it. 411 if (Next.is(tok::colon) && !ColonIsSacred) { 412 if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II, 413 Tok.getLocation(), 414 Next.getLocation(), ObjectType, 415 EnteringContext) && 416 // If the token after the colon isn't an identifier, it's still an 417 // error, but they probably meant something else strange so don't 418 // recover like this. 419 PP.LookAhead(1).is(tok::identifier)) { 420 Diag(Next, diag::err_unexpected_colon_in_nested_name_spec) 421 << FixItHint::CreateReplacement(Next.getLocation(), "::"); 422 // Recover as if the user wrote '::'. 423 Next.setKind(tok::coloncolon); 424 } 425 } 426 427 if (Next.is(tok::coloncolon)) { 428 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) && 429 !Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, Tok.getLocation(), 430 II, ObjectType)) { 431 *MayBePseudoDestructor = true; 432 return false; 433 } 434 435 if (ColonIsSacred) { 436 const Token &Next2 = GetLookAheadToken(2); 437 if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) || 438 Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) { 439 Diag(Next2, diag::err_unexpected_token_in_nested_name_spec) 440 << Next2.getName() 441 << FixItHint::CreateReplacement(Next.getLocation(), ":"); 442 Token ColonColon; 443 PP.Lex(ColonColon); 444 ColonColon.setKind(tok::colon); 445 PP.EnterToken(ColonColon); 446 break; 447 } 448 } 449 450 if (LastII) 451 *LastII = &II; 452 453 // We have an identifier followed by a '::'. Lookup this name 454 // as the name in a nested-name-specifier. 455 Token Identifier = Tok; 456 SourceLocation IdLoc = ConsumeToken(); 457 assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) && 458 "NextToken() not working properly!"); 459 Token ColonColon = Tok; 460 SourceLocation CCLoc = ConsumeToken(); 461 462 CheckForLParenAfterColonColon(); 463 464 bool IsCorrectedToColon = false; 465 bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr; 466 if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc, 467 ObjectType, EnteringContext, SS, 468 false, CorrectionFlagPtr)) { 469 // Identifier is not recognized as a nested name, but we can have 470 // mistyped '::' instead of ':'. 471 if (CorrectionFlagPtr && IsCorrectedToColon) { 472 ColonColon.setKind(tok::colon); 473 PP.EnterToken(Tok); 474 PP.EnterToken(ColonColon); 475 Tok = Identifier; 476 break; 477 } 478 SS.SetInvalid(SourceRange(IdLoc, CCLoc)); 479 } 480 HasScopeSpecifier = true; 481 continue; 482 } 483 484 CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS); 485 486 // nested-name-specifier: 487 // type-name '<' 488 if (Next.is(tok::less)) { 489 TemplateTy Template; 490 UnqualifiedId TemplateName; 491 TemplateName.setIdentifier(&II, Tok.getLocation()); 492 bool MemberOfUnknownSpecialization; 493 if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS, 494 /*hasTemplateKeyword=*/false, 495 TemplateName, 496 ObjectType, 497 EnteringContext, 498 Template, 499 MemberOfUnknownSpecialization)) { 500 // We have found a template name, so annotate this token 501 // with a template-id annotation. We do not permit the 502 // template-id to be translated into a type annotation, 503 // because some clients (e.g., the parsing of class template 504 // specializations) still want to see the original template-id 505 // token. 506 ConsumeToken(); 507 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(), 508 TemplateName, false)) 509 return true; 510 continue; 511 } 512 513 if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) && 514 (IsTypename || IsTemplateArgumentList(1))) { 515 // We have something like t::getAs<T>, where getAs is a 516 // member of an unknown specialization. However, this will only 517 // parse correctly as a template, so suggest the keyword 'template' 518 // before 'getAs' and treat this as a dependent template name. 519 unsigned DiagID = diag::err_missing_dependent_template_keyword; 520 if (getLangOpts().MicrosoftExt) 521 DiagID = diag::warn_missing_dependent_template_keyword; 522 523 Diag(Tok.getLocation(), DiagID) 524 << II.getName() 525 << FixItHint::CreateInsertion(Tok.getLocation(), "template "); 526 527 if (TemplateNameKind TNK 528 = Actions.ActOnDependentTemplateName(getCurScope(), 529 SS, SourceLocation(), 530 TemplateName, ObjectType, 531 EnteringContext, Template)) { 532 // Consume the identifier. 533 ConsumeToken(); 534 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(), 535 TemplateName, false)) 536 return true; 537 } 538 else 539 return true; 540 541 continue; 542 } 543 } 544 545 // We don't have any tokens that form the beginning of a 546 // nested-name-specifier, so we're done. 547 break; 548 } 549 550 // Even if we didn't see any pieces of a nested-name-specifier, we 551 // still check whether there is a tilde in this position, which 552 // indicates a potential pseudo-destructor. 553 if (CheckForDestructor && Tok.is(tok::tilde)) 554 *MayBePseudoDestructor = true; 555 556 return false; 557 } 558 559 /// ParseCXXIdExpression - Handle id-expression. 560 /// 561 /// id-expression: 562 /// unqualified-id 563 /// qualified-id 564 /// 565 /// qualified-id: 566 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id 567 /// '::' identifier 568 /// '::' operator-function-id 569 /// '::' template-id 570 /// 571 /// NOTE: The standard specifies that, for qualified-id, the parser does not 572 /// expect: 573 /// 574 /// '::' conversion-function-id 575 /// '::' '~' class-name 576 /// 577 /// This may cause a slight inconsistency on diagnostics: 578 /// 579 /// class C {}; 580 /// namespace A {} 581 /// void f() { 582 /// :: A :: ~ C(); // Some Sema error about using destructor with a 583 /// // namespace. 584 /// :: ~ C(); // Some Parser error like 'unexpected ~'. 585 /// } 586 /// 587 /// We simplify the parser a bit and make it work like: 588 /// 589 /// qualified-id: 590 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id 591 /// '::' unqualified-id 592 /// 593 /// That way Sema can handle and report similar errors for namespaces and the 594 /// global scope. 595 /// 596 /// The isAddressOfOperand parameter indicates that this id-expression is a 597 /// direct operand of the address-of operator. This is, besides member contexts, 598 /// the only place where a qualified-id naming a non-static class member may 599 /// appear. 600 /// 601 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) { 602 // qualified-id: 603 // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id 604 // '::' unqualified-id 605 // 606 CXXScopeSpec SS; 607 ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false); 608 609 SourceLocation TemplateKWLoc; 610 UnqualifiedId Name; 611 if (ParseUnqualifiedId(SS, 612 /*EnteringContext=*/false, 613 /*AllowDestructorName=*/false, 614 /*AllowConstructorName=*/false, 615 /*ObjectType=*/ ParsedType(), 616 TemplateKWLoc, 617 Name)) 618 return ExprError(); 619 620 // This is only the direct operand of an & operator if it is not 621 // followed by a postfix-expression suffix. 622 if (isAddressOfOperand && isPostfixExpressionSuffixStart()) 623 isAddressOfOperand = false; 624 625 return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name, 626 Tok.is(tok::l_paren), isAddressOfOperand); 627 } 628 629 /// ParseLambdaExpression - Parse a C++11 lambda expression. 630 /// 631 /// lambda-expression: 632 /// lambda-introducer lambda-declarator[opt] compound-statement 633 /// 634 /// lambda-introducer: 635 /// '[' lambda-capture[opt] ']' 636 /// 637 /// lambda-capture: 638 /// capture-default 639 /// capture-list 640 /// capture-default ',' capture-list 641 /// 642 /// capture-default: 643 /// '&' 644 /// '=' 645 /// 646 /// capture-list: 647 /// capture 648 /// capture-list ',' capture 649 /// 650 /// capture: 651 /// simple-capture 652 /// init-capture [C++1y] 653 /// 654 /// simple-capture: 655 /// identifier 656 /// '&' identifier 657 /// 'this' 658 /// 659 /// init-capture: [C++1y] 660 /// identifier initializer 661 /// '&' identifier initializer 662 /// 663 /// lambda-declarator: 664 /// '(' parameter-declaration-clause ')' attribute-specifier[opt] 665 /// 'mutable'[opt] exception-specification[opt] 666 /// trailing-return-type[opt] 667 /// 668 ExprResult Parser::ParseLambdaExpression() { 669 // Parse lambda-introducer. 670 LambdaIntroducer Intro; 671 Optional<unsigned> DiagID = ParseLambdaIntroducer(Intro); 672 if (DiagID) { 673 Diag(Tok, DiagID.getValue()); 674 SkipUntil(tok::r_square, StopAtSemi); 675 SkipUntil(tok::l_brace, StopAtSemi); 676 SkipUntil(tok::r_brace, StopAtSemi); 677 return ExprError(); 678 } 679 680 return ParseLambdaExpressionAfterIntroducer(Intro); 681 } 682 683 /// TryParseLambdaExpression - Use lookahead and potentially tentative 684 /// parsing to determine if we are looking at a C++0x lambda expression, and parse 685 /// it if we are. 686 /// 687 /// If we are not looking at a lambda expression, returns ExprError(). 688 ExprResult Parser::TryParseLambdaExpression() { 689 assert(getLangOpts().CPlusPlus11 690 && Tok.is(tok::l_square) 691 && "Not at the start of a possible lambda expression."); 692 693 const Token Next = NextToken(), After = GetLookAheadToken(2); 694 695 // If lookahead indicates this is a lambda... 696 if (Next.is(tok::r_square) || // [] 697 Next.is(tok::equal) || // [= 698 (Next.is(tok::amp) && // [&] or [&, 699 (After.is(tok::r_square) || 700 After.is(tok::comma))) || 701 (Next.is(tok::identifier) && // [identifier] 702 After.is(tok::r_square))) { 703 return ParseLambdaExpression(); 704 } 705 706 // If lookahead indicates an ObjC message send... 707 // [identifier identifier 708 if (Next.is(tok::identifier) && After.is(tok::identifier)) { 709 return ExprEmpty(); 710 } 711 712 // Here, we're stuck: lambda introducers and Objective-C message sends are 713 // unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a 714 // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of 715 // writing two routines to parse a lambda introducer, just try to parse 716 // a lambda introducer first, and fall back if that fails. 717 // (TryParseLambdaIntroducer never produces any diagnostic output.) 718 LambdaIntroducer Intro; 719 if (TryParseLambdaIntroducer(Intro)) 720 return ExprEmpty(); 721 722 return ParseLambdaExpressionAfterIntroducer(Intro); 723 } 724 725 /// \brief Parse a lambda introducer. 726 /// \param Intro A LambdaIntroducer filled in with information about the 727 /// contents of the lambda-introducer. 728 /// \param SkippedInits If non-null, we are disambiguating between an Obj-C 729 /// message send and a lambda expression. In this mode, we will 730 /// sometimes skip the initializers for init-captures and not fully 731 /// populate \p Intro. This flag will be set to \c true if we do so. 732 /// \return A DiagnosticID if it hit something unexpected. The location for 733 /// for the diagnostic is that of the current token. 734 Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro, 735 bool *SkippedInits) { 736 typedef Optional<unsigned> DiagResult; 737 738 assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['."); 739 BalancedDelimiterTracker T(*this, tok::l_square); 740 T.consumeOpen(); 741 742 Intro.Range.setBegin(T.getOpenLocation()); 743 744 bool first = true; 745 746 // Parse capture-default. 747 if (Tok.is(tok::amp) && 748 (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) { 749 Intro.Default = LCD_ByRef; 750 Intro.DefaultLoc = ConsumeToken(); 751 first = false; 752 } else if (Tok.is(tok::equal)) { 753 Intro.Default = LCD_ByCopy; 754 Intro.DefaultLoc = ConsumeToken(); 755 first = false; 756 } 757 758 while (Tok.isNot(tok::r_square)) { 759 if (!first) { 760 if (Tok.isNot(tok::comma)) { 761 // Provide a completion for a lambda introducer here. Except 762 // in Objective-C, where this is Almost Surely meant to be a message 763 // send. In that case, fail here and let the ObjC message 764 // expression parser perform the completion. 765 if (Tok.is(tok::code_completion) && 766 !(getLangOpts().ObjC1 && Intro.Default == LCD_None && 767 !Intro.Captures.empty())) { 768 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 769 /*AfterAmpersand=*/false); 770 cutOffParsing(); 771 break; 772 } 773 774 return DiagResult(diag::err_expected_comma_or_rsquare); 775 } 776 ConsumeToken(); 777 } 778 779 if (Tok.is(tok::code_completion)) { 780 // If we're in Objective-C++ and we have a bare '[', then this is more 781 // likely to be a message receiver. 782 if (getLangOpts().ObjC1 && first) 783 Actions.CodeCompleteObjCMessageReceiver(getCurScope()); 784 else 785 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 786 /*AfterAmpersand=*/false); 787 cutOffParsing(); 788 break; 789 } 790 791 first = false; 792 793 // Parse capture. 794 LambdaCaptureKind Kind = LCK_ByCopy; 795 SourceLocation Loc; 796 IdentifierInfo *Id = nullptr; 797 SourceLocation EllipsisLoc; 798 ExprResult Init; 799 800 if (Tok.is(tok::kw_this)) { 801 Kind = LCK_This; 802 Loc = ConsumeToken(); 803 } else { 804 if (Tok.is(tok::amp)) { 805 Kind = LCK_ByRef; 806 ConsumeToken(); 807 808 if (Tok.is(tok::code_completion)) { 809 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 810 /*AfterAmpersand=*/true); 811 cutOffParsing(); 812 break; 813 } 814 } 815 816 if (Tok.is(tok::identifier)) { 817 Id = Tok.getIdentifierInfo(); 818 Loc = ConsumeToken(); 819 } else if (Tok.is(tok::kw_this)) { 820 // FIXME: If we want to suggest a fixit here, will need to return more 821 // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be 822 // Clear()ed to prevent emission in case of tentative parsing? 823 return DiagResult(diag::err_this_captured_by_reference); 824 } else { 825 return DiagResult(diag::err_expected_capture); 826 } 827 828 if (Tok.is(tok::l_paren)) { 829 BalancedDelimiterTracker Parens(*this, tok::l_paren); 830 Parens.consumeOpen(); 831 832 ExprVector Exprs; 833 CommaLocsTy Commas; 834 if (SkippedInits) { 835 Parens.skipToEnd(); 836 *SkippedInits = true; 837 } else if (ParseExpressionList(Exprs, Commas)) { 838 Parens.skipToEnd(); 839 Init = ExprError(); 840 } else { 841 Parens.consumeClose(); 842 Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(), 843 Parens.getCloseLocation(), 844 Exprs); 845 } 846 } else if (Tok.is(tok::l_brace) || Tok.is(tok::equal)) { 847 // Each lambda init-capture forms its own full expression, which clears 848 // Actions.MaybeODRUseExprs. So create an expression evaluation context 849 // to save the necessary state, and restore it later. 850 EnterExpressionEvaluationContext EC(Actions, 851 Sema::PotentiallyEvaluated); 852 TryConsumeToken(tok::equal); 853 854 if (!SkippedInits) 855 Init = ParseInitializer(); 856 else if (Tok.is(tok::l_brace)) { 857 BalancedDelimiterTracker Braces(*this, tok::l_brace); 858 Braces.consumeOpen(); 859 Braces.skipToEnd(); 860 *SkippedInits = true; 861 } else { 862 // We're disambiguating this: 863 // 864 // [..., x = expr 865 // 866 // We need to find the end of the following expression in order to 867 // determine whether this is an Obj-C message send's receiver, a 868 // C99 designator, or a lambda init-capture. 869 // 870 // Parse the expression to find where it ends, and annotate it back 871 // onto the tokens. We would have parsed this expression the same way 872 // in either case: both the RHS of an init-capture and the RHS of an 873 // assignment expression are parsed as an initializer-clause, and in 874 // neither case can anything be added to the scope between the '[' and 875 // here. 876 // 877 // FIXME: This is horrible. Adding a mechanism to skip an expression 878 // would be much cleaner. 879 // FIXME: If there is a ',' before the next ']' or ':', we can skip to 880 // that instead. (And if we see a ':' with no matching '?', we can 881 // classify this as an Obj-C message send.) 882 SourceLocation StartLoc = Tok.getLocation(); 883 InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true); 884 Init = ParseInitializer(); 885 886 if (Tok.getLocation() != StartLoc) { 887 // Back out the lexing of the token after the initializer. 888 PP.RevertCachedTokens(1); 889 890 // Replace the consumed tokens with an appropriate annotation. 891 Tok.setLocation(StartLoc); 892 Tok.setKind(tok::annot_primary_expr); 893 setExprAnnotation(Tok, Init); 894 Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation()); 895 PP.AnnotateCachedTokens(Tok); 896 897 // Consume the annotated initializer. 898 ConsumeToken(); 899 } 900 } 901 } else 902 TryConsumeToken(tok::ellipsis, EllipsisLoc); 903 } 904 // If this is an init capture, process the initialization expression 905 // right away. For lambda init-captures such as the following: 906 // const int x = 10; 907 // auto L = [i = x+1](int a) { 908 // return [j = x+2, 909 // &k = x](char b) { }; 910 // }; 911 // keep in mind that each lambda init-capture has to have: 912 // - its initialization expression executed in the context 913 // of the enclosing/parent decl-context. 914 // - but the variable itself has to be 'injected' into the 915 // decl-context of its lambda's call-operator (which has 916 // not yet been created). 917 // Each init-expression is a full-expression that has to get 918 // Sema-analyzed (for capturing etc.) before its lambda's 919 // call-operator's decl-context, scope & scopeinfo are pushed on their 920 // respective stacks. Thus if any variable is odr-used in the init-capture 921 // it will correctly get captured in the enclosing lambda, if one exists. 922 // The init-variables above are created later once the lambdascope and 923 // call-operators decl-context is pushed onto its respective stack. 924 925 // Since the lambda init-capture's initializer expression occurs in the 926 // context of the enclosing function or lambda, therefore we can not wait 927 // till a lambda scope has been pushed on before deciding whether the 928 // variable needs to be captured. We also need to process all 929 // lvalue-to-rvalue conversions and discarded-value conversions, 930 // so that we can avoid capturing certain constant variables. 931 // For e.g., 932 // void test() { 933 // const int x = 10; 934 // auto L = [&z = x](char a) { <-- don't capture by the current lambda 935 // return [y = x](int i) { <-- don't capture by enclosing lambda 936 // return y; 937 // } 938 // }; 939 // If x was not const, the second use would require 'L' to capture, and 940 // that would be an error. 941 942 ParsedType InitCaptureParsedType; 943 if (Init.isUsable()) { 944 // Get the pointer and store it in an lvalue, so we can use it as an 945 // out argument. 946 Expr *InitExpr = Init.get(); 947 // This performs any lvalue-to-rvalue conversions if necessary, which 948 // can affect what gets captured in the containing decl-context. 949 QualType InitCaptureType = Actions.performLambdaInitCaptureInitialization( 950 Loc, Kind == LCK_ByRef, Id, InitExpr); 951 Init = InitExpr; 952 InitCaptureParsedType.set(InitCaptureType); 953 } 954 Intro.addCapture(Kind, Loc, Id, EllipsisLoc, Init, InitCaptureParsedType); 955 } 956 957 T.consumeClose(); 958 Intro.Range.setEnd(T.getCloseLocation()); 959 return DiagResult(); 960 } 961 962 /// TryParseLambdaIntroducer - Tentatively parse a lambda introducer. 963 /// 964 /// Returns true if it hit something unexpected. 965 bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) { 966 TentativeParsingAction PA(*this); 967 968 bool SkippedInits = false; 969 Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro, &SkippedInits)); 970 971 if (DiagID) { 972 PA.Revert(); 973 return true; 974 } 975 976 if (SkippedInits) { 977 // Parse it again, but this time parse the init-captures too. 978 PA.Revert(); 979 Intro = LambdaIntroducer(); 980 DiagID = ParseLambdaIntroducer(Intro); 981 assert(!DiagID && "parsing lambda-introducer failed on reparse"); 982 return false; 983 } 984 985 PA.Commit(); 986 return false; 987 } 988 989 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda 990 /// expression. 991 ExprResult Parser::ParseLambdaExpressionAfterIntroducer( 992 LambdaIntroducer &Intro) { 993 SourceLocation LambdaBeginLoc = Intro.Range.getBegin(); 994 Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda); 995 996 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc, 997 "lambda expression parsing"); 998 999 1000 1001 // FIXME: Call into Actions to add any init-capture declarations to the 1002 // scope while parsing the lambda-declarator and compound-statement. 1003 1004 // Parse lambda-declarator[opt]. 1005 DeclSpec DS(AttrFactory); 1006 Declarator D(DS, Declarator::LambdaExprContext); 1007 TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth); 1008 Actions.PushLambdaScope(); 1009 1010 if (Tok.is(tok::l_paren)) { 1011 ParseScope PrototypeScope(this, 1012 Scope::FunctionPrototypeScope | 1013 Scope::FunctionDeclarationScope | 1014 Scope::DeclScope); 1015 1016 SourceLocation DeclEndLoc; 1017 BalancedDelimiterTracker T(*this, tok::l_paren); 1018 T.consumeOpen(); 1019 SourceLocation LParenLoc = T.getOpenLocation(); 1020 1021 // Parse parameter-declaration-clause. 1022 ParsedAttributes Attr(AttrFactory); 1023 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo; 1024 SourceLocation EllipsisLoc; 1025 1026 if (Tok.isNot(tok::r_paren)) { 1027 Actions.RecordParsingTemplateParameterDepth(TemplateParameterDepth); 1028 ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc); 1029 // For a generic lambda, each 'auto' within the parameter declaration 1030 // clause creates a template type parameter, so increment the depth. 1031 if (Actions.getCurGenericLambda()) 1032 ++CurTemplateDepthTracker; 1033 } 1034 T.consumeClose(); 1035 SourceLocation RParenLoc = T.getCloseLocation(); 1036 DeclEndLoc = RParenLoc; 1037 1038 // GNU-style attributes must be parsed before the mutable specifier to be 1039 // compatible with GCC. 1040 MaybeParseGNUAttributes(Attr, &DeclEndLoc); 1041 1042 // Parse 'mutable'[opt]. 1043 SourceLocation MutableLoc; 1044 if (TryConsumeToken(tok::kw_mutable, MutableLoc)) 1045 DeclEndLoc = MutableLoc; 1046 1047 // Parse exception-specification[opt]. 1048 ExceptionSpecificationType ESpecType = EST_None; 1049 SourceRange ESpecRange; 1050 SmallVector<ParsedType, 2> DynamicExceptions; 1051 SmallVector<SourceRange, 2> DynamicExceptionRanges; 1052 ExprResult NoexceptExpr; 1053 ESpecType = tryParseExceptionSpecification(ESpecRange, 1054 DynamicExceptions, 1055 DynamicExceptionRanges, 1056 NoexceptExpr); 1057 1058 if (ESpecType != EST_None) 1059 DeclEndLoc = ESpecRange.getEnd(); 1060 1061 // Parse attribute-specifier[opt]. 1062 MaybeParseCXX11Attributes(Attr, &DeclEndLoc); 1063 1064 SourceLocation FunLocalRangeEnd = DeclEndLoc; 1065 1066 // Parse trailing-return-type[opt]. 1067 TypeResult TrailingReturnType; 1068 if (Tok.is(tok::arrow)) { 1069 FunLocalRangeEnd = Tok.getLocation(); 1070 SourceRange Range; 1071 TrailingReturnType = ParseTrailingReturnType(Range); 1072 if (Range.getEnd().isValid()) 1073 DeclEndLoc = Range.getEnd(); 1074 } 1075 1076 PrototypeScope.Exit(); 1077 1078 SourceLocation NoLoc; 1079 D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true, 1080 /*isAmbiguous=*/false, 1081 LParenLoc, 1082 ParamInfo.data(), ParamInfo.size(), 1083 EllipsisLoc, RParenLoc, 1084 DS.getTypeQualifiers(), 1085 /*RefQualifierIsLValueRef=*/true, 1086 /*RefQualifierLoc=*/NoLoc, 1087 /*ConstQualifierLoc=*/NoLoc, 1088 /*VolatileQualifierLoc=*/NoLoc, 1089 MutableLoc, 1090 ESpecType, ESpecRange.getBegin(), 1091 DynamicExceptions.data(), 1092 DynamicExceptionRanges.data(), 1093 DynamicExceptions.size(), 1094 NoexceptExpr.isUsable() ? 1095 NoexceptExpr.get() : nullptr, 1096 LParenLoc, FunLocalRangeEnd, D, 1097 TrailingReturnType), 1098 Attr, DeclEndLoc); 1099 } else if (Tok.is(tok::kw_mutable) || Tok.is(tok::arrow) || 1100 Tok.is(tok::kw___attribute) || 1101 (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) { 1102 // It's common to forget that one needs '()' before 'mutable', an attribute 1103 // specifier, or the result type. Deal with this. 1104 unsigned TokKind = 0; 1105 switch (Tok.getKind()) { 1106 case tok::kw_mutable: TokKind = 0; break; 1107 case tok::arrow: TokKind = 1; break; 1108 case tok::kw___attribute: 1109 case tok::l_square: TokKind = 2; break; 1110 default: llvm_unreachable("Unknown token kind"); 1111 } 1112 1113 Diag(Tok, diag::err_lambda_missing_parens) 1114 << TokKind 1115 << FixItHint::CreateInsertion(Tok.getLocation(), "() "); 1116 SourceLocation DeclLoc = Tok.getLocation(); 1117 SourceLocation DeclEndLoc = DeclLoc; 1118 1119 // GNU-style attributes must be parsed before the mutable specifier to be 1120 // compatible with GCC. 1121 ParsedAttributes Attr(AttrFactory); 1122 MaybeParseGNUAttributes(Attr, &DeclEndLoc); 1123 1124 // Parse 'mutable', if it's there. 1125 SourceLocation MutableLoc; 1126 if (Tok.is(tok::kw_mutable)) { 1127 MutableLoc = ConsumeToken(); 1128 DeclEndLoc = MutableLoc; 1129 } 1130 1131 // Parse attribute-specifier[opt]. 1132 MaybeParseCXX11Attributes(Attr, &DeclEndLoc); 1133 1134 // Parse the return type, if there is one. 1135 TypeResult TrailingReturnType; 1136 if (Tok.is(tok::arrow)) { 1137 SourceRange Range; 1138 TrailingReturnType = ParseTrailingReturnType(Range); 1139 if (Range.getEnd().isValid()) 1140 DeclEndLoc = Range.getEnd(); 1141 } 1142 1143 SourceLocation NoLoc; 1144 D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true, 1145 /*isAmbiguous=*/false, 1146 /*LParenLoc=*/NoLoc, 1147 /*Params=*/nullptr, 1148 /*NumParams=*/0, 1149 /*EllipsisLoc=*/NoLoc, 1150 /*RParenLoc=*/NoLoc, 1151 /*TypeQuals=*/0, 1152 /*RefQualifierIsLValueRef=*/true, 1153 /*RefQualifierLoc=*/NoLoc, 1154 /*ConstQualifierLoc=*/NoLoc, 1155 /*VolatileQualifierLoc=*/NoLoc, 1156 MutableLoc, 1157 EST_None, 1158 /*ESpecLoc=*/NoLoc, 1159 /*Exceptions=*/nullptr, 1160 /*ExceptionRanges=*/nullptr, 1161 /*NumExceptions=*/0, 1162 /*NoexceptExpr=*/nullptr, 1163 DeclLoc, DeclEndLoc, D, 1164 TrailingReturnType), 1165 Attr, DeclEndLoc); 1166 } 1167 1168 1169 // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using 1170 // it. 1171 unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope; 1172 ParseScope BodyScope(this, ScopeFlags); 1173 1174 Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope()); 1175 1176 // Parse compound-statement. 1177 if (!Tok.is(tok::l_brace)) { 1178 Diag(Tok, diag::err_expected_lambda_body); 1179 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope()); 1180 return ExprError(); 1181 } 1182 1183 StmtResult Stmt(ParseCompoundStatementBody()); 1184 BodyScope.Exit(); 1185 1186 if (!Stmt.isInvalid()) 1187 return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope()); 1188 1189 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope()); 1190 return ExprError(); 1191 } 1192 1193 /// ParseCXXCasts - This handles the various ways to cast expressions to another 1194 /// type. 1195 /// 1196 /// postfix-expression: [C++ 5.2p1] 1197 /// 'dynamic_cast' '<' type-name '>' '(' expression ')' 1198 /// 'static_cast' '<' type-name '>' '(' expression ')' 1199 /// 'reinterpret_cast' '<' type-name '>' '(' expression ')' 1200 /// 'const_cast' '<' type-name '>' '(' expression ')' 1201 /// 1202 ExprResult Parser::ParseCXXCasts() { 1203 tok::TokenKind Kind = Tok.getKind(); 1204 const char *CastName = nullptr; // For error messages 1205 1206 switch (Kind) { 1207 default: llvm_unreachable("Unknown C++ cast!"); 1208 case tok::kw_const_cast: CastName = "const_cast"; break; 1209 case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break; 1210 case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break; 1211 case tok::kw_static_cast: CastName = "static_cast"; break; 1212 } 1213 1214 SourceLocation OpLoc = ConsumeToken(); 1215 SourceLocation LAngleBracketLoc = Tok.getLocation(); 1216 1217 // Check for "<::" which is parsed as "[:". If found, fix token stream, 1218 // diagnose error, suggest fix, and recover parsing. 1219 if (Tok.is(tok::l_square) && Tok.getLength() == 2) { 1220 Token Next = NextToken(); 1221 if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next)) 1222 FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true); 1223 } 1224 1225 if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName)) 1226 return ExprError(); 1227 1228 // Parse the common declaration-specifiers piece. 1229 DeclSpec DS(AttrFactory); 1230 ParseSpecifierQualifierList(DS); 1231 1232 // Parse the abstract-declarator, if present. 1233 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); 1234 ParseDeclarator(DeclaratorInfo); 1235 1236 SourceLocation RAngleBracketLoc = Tok.getLocation(); 1237 1238 if (ExpectAndConsume(tok::greater)) 1239 return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less); 1240 1241 SourceLocation LParenLoc, RParenLoc; 1242 BalancedDelimiterTracker T(*this, tok::l_paren); 1243 1244 if (T.expectAndConsume(diag::err_expected_lparen_after, CastName)) 1245 return ExprError(); 1246 1247 ExprResult Result = ParseExpression(); 1248 1249 // Match the ')'. 1250 T.consumeClose(); 1251 1252 if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType()) 1253 Result = Actions.ActOnCXXNamedCast(OpLoc, Kind, 1254 LAngleBracketLoc, DeclaratorInfo, 1255 RAngleBracketLoc, 1256 T.getOpenLocation(), Result.get(), 1257 T.getCloseLocation()); 1258 1259 return Result; 1260 } 1261 1262 /// ParseCXXTypeid - This handles the C++ typeid expression. 1263 /// 1264 /// postfix-expression: [C++ 5.2p1] 1265 /// 'typeid' '(' expression ')' 1266 /// 'typeid' '(' type-id ')' 1267 /// 1268 ExprResult Parser::ParseCXXTypeid() { 1269 assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!"); 1270 1271 SourceLocation OpLoc = ConsumeToken(); 1272 SourceLocation LParenLoc, RParenLoc; 1273 BalancedDelimiterTracker T(*this, tok::l_paren); 1274 1275 // typeid expressions are always parenthesized. 1276 if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid")) 1277 return ExprError(); 1278 LParenLoc = T.getOpenLocation(); 1279 1280 ExprResult Result; 1281 1282 // C++0x [expr.typeid]p3: 1283 // When typeid is applied to an expression other than an lvalue of a 1284 // polymorphic class type [...] The expression is an unevaluated 1285 // operand (Clause 5). 1286 // 1287 // Note that we can't tell whether the expression is an lvalue of a 1288 // polymorphic class type until after we've parsed the expression; we 1289 // speculatively assume the subexpression is unevaluated, and fix it up 1290 // later. 1291 // 1292 // We enter the unevaluated context before trying to determine whether we 1293 // have a type-id, because the tentative parse logic will try to resolve 1294 // names, and must treat them as unevaluated. 1295 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated, 1296 Sema::ReuseLambdaContextDecl); 1297 1298 if (isTypeIdInParens()) { 1299 TypeResult Ty = ParseTypeName(); 1300 1301 // Match the ')'. 1302 T.consumeClose(); 1303 RParenLoc = T.getCloseLocation(); 1304 if (Ty.isInvalid() || RParenLoc.isInvalid()) 1305 return ExprError(); 1306 1307 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true, 1308 Ty.get().getAsOpaquePtr(), RParenLoc); 1309 } else { 1310 Result = ParseExpression(); 1311 1312 // Match the ')'. 1313 if (Result.isInvalid()) 1314 SkipUntil(tok::r_paren, StopAtSemi); 1315 else { 1316 T.consumeClose(); 1317 RParenLoc = T.getCloseLocation(); 1318 if (RParenLoc.isInvalid()) 1319 return ExprError(); 1320 1321 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false, 1322 Result.get(), RParenLoc); 1323 } 1324 } 1325 1326 return Result; 1327 } 1328 1329 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression. 1330 /// 1331 /// '__uuidof' '(' expression ')' 1332 /// '__uuidof' '(' type-id ')' 1333 /// 1334 ExprResult Parser::ParseCXXUuidof() { 1335 assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!"); 1336 1337 SourceLocation OpLoc = ConsumeToken(); 1338 BalancedDelimiterTracker T(*this, tok::l_paren); 1339 1340 // __uuidof expressions are always parenthesized. 1341 if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof")) 1342 return ExprError(); 1343 1344 ExprResult Result; 1345 1346 if (isTypeIdInParens()) { 1347 TypeResult Ty = ParseTypeName(); 1348 1349 // Match the ')'. 1350 T.consumeClose(); 1351 1352 if (Ty.isInvalid()) 1353 return ExprError(); 1354 1355 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true, 1356 Ty.get().getAsOpaquePtr(), 1357 T.getCloseLocation()); 1358 } else { 1359 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated); 1360 Result = ParseExpression(); 1361 1362 // Match the ')'. 1363 if (Result.isInvalid()) 1364 SkipUntil(tok::r_paren, StopAtSemi); 1365 else { 1366 T.consumeClose(); 1367 1368 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), 1369 /*isType=*/false, 1370 Result.get(), T.getCloseLocation()); 1371 } 1372 } 1373 1374 return Result; 1375 } 1376 1377 /// \brief Parse a C++ pseudo-destructor expression after the base, 1378 /// . or -> operator, and nested-name-specifier have already been 1379 /// parsed. 1380 /// 1381 /// postfix-expression: [C++ 5.2] 1382 /// postfix-expression . pseudo-destructor-name 1383 /// postfix-expression -> pseudo-destructor-name 1384 /// 1385 /// pseudo-destructor-name: 1386 /// ::[opt] nested-name-specifier[opt] type-name :: ~type-name 1387 /// ::[opt] nested-name-specifier template simple-template-id :: 1388 /// ~type-name 1389 /// ::[opt] nested-name-specifier[opt] ~type-name 1390 /// 1391 ExprResult 1392 Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc, 1393 tok::TokenKind OpKind, 1394 CXXScopeSpec &SS, 1395 ParsedType ObjectType) { 1396 // We're parsing either a pseudo-destructor-name or a dependent 1397 // member access that has the same form as a 1398 // pseudo-destructor-name. We parse both in the same way and let 1399 // the action model sort them out. 1400 // 1401 // Note that the ::[opt] nested-name-specifier[opt] has already 1402 // been parsed, and if there was a simple-template-id, it has 1403 // been coalesced into a template-id annotation token. 1404 UnqualifiedId FirstTypeName; 1405 SourceLocation CCLoc; 1406 if (Tok.is(tok::identifier)) { 1407 FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); 1408 ConsumeToken(); 1409 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail"); 1410 CCLoc = ConsumeToken(); 1411 } else if (Tok.is(tok::annot_template_id)) { 1412 // FIXME: retrieve TemplateKWLoc from template-id annotation and 1413 // store it in the pseudo-dtor node (to be used when instantiating it). 1414 FirstTypeName.setTemplateId( 1415 (TemplateIdAnnotation *)Tok.getAnnotationValue()); 1416 ConsumeToken(); 1417 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail"); 1418 CCLoc = ConsumeToken(); 1419 } else { 1420 FirstTypeName.setIdentifier(nullptr, SourceLocation()); 1421 } 1422 1423 // Parse the tilde. 1424 assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail"); 1425 SourceLocation TildeLoc = ConsumeToken(); 1426 1427 if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) { 1428 DeclSpec DS(AttrFactory); 1429 ParseDecltypeSpecifier(DS); 1430 if (DS.getTypeSpecType() == TST_error) 1431 return ExprError(); 1432 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, 1433 OpKind, TildeLoc, DS, 1434 Tok.is(tok::l_paren)); 1435 } 1436 1437 if (!Tok.is(tok::identifier)) { 1438 Diag(Tok, diag::err_destructor_tilde_identifier); 1439 return ExprError(); 1440 } 1441 1442 // Parse the second type. 1443 UnqualifiedId SecondTypeName; 1444 IdentifierInfo *Name = Tok.getIdentifierInfo(); 1445 SourceLocation NameLoc = ConsumeToken(); 1446 SecondTypeName.setIdentifier(Name, NameLoc); 1447 1448 // If there is a '<', the second type name is a template-id. Parse 1449 // it as such. 1450 if (Tok.is(tok::less) && 1451 ParseUnqualifiedIdTemplateId(SS, SourceLocation(), 1452 Name, NameLoc, 1453 false, ObjectType, SecondTypeName, 1454 /*AssumeTemplateName=*/true)) 1455 return ExprError(); 1456 1457 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, 1458 OpLoc, OpKind, 1459 SS, FirstTypeName, CCLoc, 1460 TildeLoc, SecondTypeName, 1461 Tok.is(tok::l_paren)); 1462 } 1463 1464 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals. 1465 /// 1466 /// boolean-literal: [C++ 2.13.5] 1467 /// 'true' 1468 /// 'false' 1469 ExprResult Parser::ParseCXXBoolLiteral() { 1470 tok::TokenKind Kind = Tok.getKind(); 1471 return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind); 1472 } 1473 1474 /// ParseThrowExpression - This handles the C++ throw expression. 1475 /// 1476 /// throw-expression: [C++ 15] 1477 /// 'throw' assignment-expression[opt] 1478 ExprResult Parser::ParseThrowExpression() { 1479 assert(Tok.is(tok::kw_throw) && "Not throw!"); 1480 SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token. 1481 1482 // If the current token isn't the start of an assignment-expression, 1483 // then the expression is not present. This handles things like: 1484 // "C ? throw : (void)42", which is crazy but legal. 1485 switch (Tok.getKind()) { // FIXME: move this predicate somewhere common. 1486 case tok::semi: 1487 case tok::r_paren: 1488 case tok::r_square: 1489 case tok::r_brace: 1490 case tok::colon: 1491 case tok::comma: 1492 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr); 1493 1494 default: 1495 ExprResult Expr(ParseAssignmentExpression()); 1496 if (Expr.isInvalid()) return Expr; 1497 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get()); 1498 } 1499 } 1500 1501 /// ParseCXXThis - This handles the C++ 'this' pointer. 1502 /// 1503 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is 1504 /// a non-lvalue expression whose value is the address of the object for which 1505 /// the function is called. 1506 ExprResult Parser::ParseCXXThis() { 1507 assert(Tok.is(tok::kw_this) && "Not 'this'!"); 1508 SourceLocation ThisLoc = ConsumeToken(); 1509 return Actions.ActOnCXXThis(ThisLoc); 1510 } 1511 1512 /// ParseCXXTypeConstructExpression - Parse construction of a specified type. 1513 /// Can be interpreted either as function-style casting ("int(x)") 1514 /// or class type construction ("ClassType(x,y,z)") 1515 /// or creation of a value-initialized type ("int()"). 1516 /// See [C++ 5.2.3]. 1517 /// 1518 /// postfix-expression: [C++ 5.2p1] 1519 /// simple-type-specifier '(' expression-list[opt] ')' 1520 /// [C++0x] simple-type-specifier braced-init-list 1521 /// typename-specifier '(' expression-list[opt] ')' 1522 /// [C++0x] typename-specifier braced-init-list 1523 /// 1524 ExprResult 1525 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) { 1526 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); 1527 ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get(); 1528 1529 assert((Tok.is(tok::l_paren) || 1530 (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace))) 1531 && "Expected '(' or '{'!"); 1532 1533 if (Tok.is(tok::l_brace)) { 1534 ExprResult Init = ParseBraceInitializer(); 1535 if (Init.isInvalid()) 1536 return Init; 1537 Expr *InitList = Init.get(); 1538 return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(), 1539 MultiExprArg(&InitList, 1), 1540 SourceLocation()); 1541 } else { 1542 BalancedDelimiterTracker T(*this, tok::l_paren); 1543 T.consumeOpen(); 1544 1545 ExprVector Exprs; 1546 CommaLocsTy CommaLocs; 1547 1548 if (Tok.isNot(tok::r_paren)) { 1549 if (ParseExpressionList(Exprs, CommaLocs)) { 1550 SkipUntil(tok::r_paren, StopAtSemi); 1551 return ExprError(); 1552 } 1553 } 1554 1555 // Match the ')'. 1556 T.consumeClose(); 1557 1558 // TypeRep could be null, if it references an invalid typedef. 1559 if (!TypeRep) 1560 return ExprError(); 1561 1562 assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&& 1563 "Unexpected number of commas!"); 1564 return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(), 1565 Exprs, 1566 T.getCloseLocation()); 1567 } 1568 } 1569 1570 /// ParseCXXCondition - if/switch/while condition expression. 1571 /// 1572 /// condition: 1573 /// expression 1574 /// type-specifier-seq declarator '=' assignment-expression 1575 /// [C++11] type-specifier-seq declarator '=' initializer-clause 1576 /// [C++11] type-specifier-seq declarator braced-init-list 1577 /// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt] 1578 /// '=' assignment-expression 1579 /// 1580 /// \param ExprOut if the condition was parsed as an expression, the parsed 1581 /// expression. 1582 /// 1583 /// \param DeclOut if the condition was parsed as a declaration, the parsed 1584 /// declaration. 1585 /// 1586 /// \param Loc The location of the start of the statement that requires this 1587 /// condition, e.g., the "for" in a for loop. 1588 /// 1589 /// \param ConvertToBoolean Whether the condition expression should be 1590 /// converted to a boolean value. 1591 /// 1592 /// \returns true if there was a parsing, false otherwise. 1593 bool Parser::ParseCXXCondition(ExprResult &ExprOut, 1594 Decl *&DeclOut, 1595 SourceLocation Loc, 1596 bool ConvertToBoolean) { 1597 if (Tok.is(tok::code_completion)) { 1598 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition); 1599 cutOffParsing(); 1600 return true; 1601 } 1602 1603 ParsedAttributesWithRange attrs(AttrFactory); 1604 MaybeParseCXX11Attributes(attrs); 1605 1606 if (!isCXXConditionDeclaration()) { 1607 ProhibitAttributes(attrs); 1608 1609 // Parse the expression. 1610 ExprOut = ParseExpression(); // expression 1611 DeclOut = nullptr; 1612 if (ExprOut.isInvalid()) 1613 return true; 1614 1615 // If required, convert to a boolean value. 1616 if (ConvertToBoolean) 1617 ExprOut 1618 = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get()); 1619 return ExprOut.isInvalid(); 1620 } 1621 1622 // type-specifier-seq 1623 DeclSpec DS(AttrFactory); 1624 DS.takeAttributesFrom(attrs); 1625 ParseSpecifierQualifierList(DS); 1626 1627 // declarator 1628 Declarator DeclaratorInfo(DS, Declarator::ConditionContext); 1629 ParseDeclarator(DeclaratorInfo); 1630 1631 // simple-asm-expr[opt] 1632 if (Tok.is(tok::kw_asm)) { 1633 SourceLocation Loc; 1634 ExprResult AsmLabel(ParseSimpleAsm(&Loc)); 1635 if (AsmLabel.isInvalid()) { 1636 SkipUntil(tok::semi, StopAtSemi); 1637 return true; 1638 } 1639 DeclaratorInfo.setAsmLabel(AsmLabel.get()); 1640 DeclaratorInfo.SetRangeEnd(Loc); 1641 } 1642 1643 // If attributes are present, parse them. 1644 MaybeParseGNUAttributes(DeclaratorInfo); 1645 1646 // Type-check the declaration itself. 1647 DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(), 1648 DeclaratorInfo); 1649 DeclOut = Dcl.get(); 1650 ExprOut = ExprError(); 1651 1652 // '=' assignment-expression 1653 // If a '==' or '+=' is found, suggest a fixit to '='. 1654 bool CopyInitialization = isTokenEqualOrEqualTypo(); 1655 if (CopyInitialization) 1656 ConsumeToken(); 1657 1658 ExprResult InitExpr = ExprError(); 1659 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 1660 Diag(Tok.getLocation(), 1661 diag::warn_cxx98_compat_generalized_initializer_lists); 1662 InitExpr = ParseBraceInitializer(); 1663 } else if (CopyInitialization) { 1664 InitExpr = ParseAssignmentExpression(); 1665 } else if (Tok.is(tok::l_paren)) { 1666 // This was probably an attempt to initialize the variable. 1667 SourceLocation LParen = ConsumeParen(), RParen = LParen; 1668 if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch)) 1669 RParen = ConsumeParen(); 1670 Diag(DeclOut ? DeclOut->getLocation() : LParen, 1671 diag::err_expected_init_in_condition_lparen) 1672 << SourceRange(LParen, RParen); 1673 } else { 1674 Diag(DeclOut ? DeclOut->getLocation() : Tok.getLocation(), 1675 diag::err_expected_init_in_condition); 1676 } 1677 1678 if (!InitExpr.isInvalid()) 1679 Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization, 1680 DS.containsPlaceholderType()); 1681 else 1682 Actions.ActOnInitializerError(DeclOut); 1683 1684 // FIXME: Build a reference to this declaration? Convert it to bool? 1685 // (This is currently handled by Sema). 1686 1687 Actions.FinalizeDeclaration(DeclOut); 1688 1689 return false; 1690 } 1691 1692 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers. 1693 /// This should only be called when the current token is known to be part of 1694 /// simple-type-specifier. 1695 /// 1696 /// simple-type-specifier: 1697 /// '::'[opt] nested-name-specifier[opt] type-name 1698 /// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO] 1699 /// char 1700 /// wchar_t 1701 /// bool 1702 /// short 1703 /// int 1704 /// long 1705 /// signed 1706 /// unsigned 1707 /// float 1708 /// double 1709 /// void 1710 /// [GNU] typeof-specifier 1711 /// [C++0x] auto [TODO] 1712 /// 1713 /// type-name: 1714 /// class-name 1715 /// enum-name 1716 /// typedef-name 1717 /// 1718 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) { 1719 DS.SetRangeStart(Tok.getLocation()); 1720 const char *PrevSpec; 1721 unsigned DiagID; 1722 SourceLocation Loc = Tok.getLocation(); 1723 const clang::PrintingPolicy &Policy = 1724 Actions.getASTContext().getPrintingPolicy(); 1725 1726 switch (Tok.getKind()) { 1727 case tok::identifier: // foo::bar 1728 case tok::coloncolon: // ::foo::bar 1729 llvm_unreachable("Annotation token should already be formed!"); 1730 default: 1731 llvm_unreachable("Not a simple-type-specifier token!"); 1732 1733 // type-name 1734 case tok::annot_typename: { 1735 if (getTypeAnnotation(Tok)) 1736 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, 1737 getTypeAnnotation(Tok), Policy); 1738 else 1739 DS.SetTypeSpecError(); 1740 1741 DS.SetRangeEnd(Tok.getAnnotationEndLoc()); 1742 ConsumeToken(); 1743 1744 // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id' 1745 // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an 1746 // Objective-C interface. If we don't have Objective-C or a '<', this is 1747 // just a normal reference to a typedef name. 1748 if (Tok.is(tok::less) && getLangOpts().ObjC1) 1749 ParseObjCProtocolQualifiers(DS); 1750 1751 DS.Finish(Diags, PP, Policy); 1752 return; 1753 } 1754 1755 // builtin types 1756 case tok::kw_short: 1757 DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID, Policy); 1758 break; 1759 case tok::kw_long: 1760 DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID, Policy); 1761 break; 1762 case tok::kw___int64: 1763 DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID, Policy); 1764 break; 1765 case tok::kw_signed: 1766 DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID); 1767 break; 1768 case tok::kw_unsigned: 1769 DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID); 1770 break; 1771 case tok::kw_void: 1772 DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy); 1773 break; 1774 case tok::kw_char: 1775 DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy); 1776 break; 1777 case tok::kw_int: 1778 DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy); 1779 break; 1780 case tok::kw___int128: 1781 DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy); 1782 break; 1783 case tok::kw_half: 1784 DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy); 1785 break; 1786 case tok::kw_float: 1787 DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy); 1788 break; 1789 case tok::kw_double: 1790 DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy); 1791 break; 1792 case tok::kw_wchar_t: 1793 DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy); 1794 break; 1795 case tok::kw_char16_t: 1796 DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy); 1797 break; 1798 case tok::kw_char32_t: 1799 DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy); 1800 break; 1801 case tok::kw_bool: 1802 DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy); 1803 break; 1804 case tok::annot_decltype: 1805 case tok::kw_decltype: 1806 DS.SetRangeEnd(ParseDecltypeSpecifier(DS)); 1807 return DS.Finish(Diags, PP, Policy); 1808 1809 // GNU typeof support. 1810 case tok::kw_typeof: 1811 ParseTypeofSpecifier(DS); 1812 DS.Finish(Diags, PP, Policy); 1813 return; 1814 } 1815 if (Tok.is(tok::annot_typename)) 1816 DS.SetRangeEnd(Tok.getAnnotationEndLoc()); 1817 else 1818 DS.SetRangeEnd(Tok.getLocation()); 1819 ConsumeToken(); 1820 DS.Finish(Diags, PP, Policy); 1821 } 1822 1823 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++ 1824 /// [dcl.name]), which is a non-empty sequence of type-specifiers, 1825 /// e.g., "const short int". Note that the DeclSpec is *not* finished 1826 /// by parsing the type-specifier-seq, because these sequences are 1827 /// typically followed by some form of declarator. Returns true and 1828 /// emits diagnostics if this is not a type-specifier-seq, false 1829 /// otherwise. 1830 /// 1831 /// type-specifier-seq: [C++ 8.1] 1832 /// type-specifier type-specifier-seq[opt] 1833 /// 1834 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) { 1835 ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier); 1836 DS.Finish(Diags, PP, Actions.getASTContext().getPrintingPolicy()); 1837 return false; 1838 } 1839 1840 /// \brief Finish parsing a C++ unqualified-id that is a template-id of 1841 /// some form. 1842 /// 1843 /// This routine is invoked when a '<' is encountered after an identifier or 1844 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine 1845 /// whether the unqualified-id is actually a template-id. This routine will 1846 /// then parse the template arguments and form the appropriate template-id to 1847 /// return to the caller. 1848 /// 1849 /// \param SS the nested-name-specifier that precedes this template-id, if 1850 /// we're actually parsing a qualified-id. 1851 /// 1852 /// \param Name for constructor and destructor names, this is the actual 1853 /// identifier that may be a template-name. 1854 /// 1855 /// \param NameLoc the location of the class-name in a constructor or 1856 /// destructor. 1857 /// 1858 /// \param EnteringContext whether we're entering the scope of the 1859 /// nested-name-specifier. 1860 /// 1861 /// \param ObjectType if this unqualified-id occurs within a member access 1862 /// expression, the type of the base object whose member is being accessed. 1863 /// 1864 /// \param Id as input, describes the template-name or operator-function-id 1865 /// that precedes the '<'. If template arguments were parsed successfully, 1866 /// will be updated with the template-id. 1867 /// 1868 /// \param AssumeTemplateId When true, this routine will assume that the name 1869 /// refers to a template without performing name lookup to verify. 1870 /// 1871 /// \returns true if a parse error occurred, false otherwise. 1872 bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS, 1873 SourceLocation TemplateKWLoc, 1874 IdentifierInfo *Name, 1875 SourceLocation NameLoc, 1876 bool EnteringContext, 1877 ParsedType ObjectType, 1878 UnqualifiedId &Id, 1879 bool AssumeTemplateId) { 1880 assert((AssumeTemplateId || Tok.is(tok::less)) && 1881 "Expected '<' to finish parsing a template-id"); 1882 1883 TemplateTy Template; 1884 TemplateNameKind TNK = TNK_Non_template; 1885 switch (Id.getKind()) { 1886 case UnqualifiedId::IK_Identifier: 1887 case UnqualifiedId::IK_OperatorFunctionId: 1888 case UnqualifiedId::IK_LiteralOperatorId: 1889 if (AssumeTemplateId) { 1890 TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc, 1891 Id, ObjectType, EnteringContext, 1892 Template); 1893 if (TNK == TNK_Non_template) 1894 return true; 1895 } else { 1896 bool MemberOfUnknownSpecialization; 1897 TNK = Actions.isTemplateName(getCurScope(), SS, 1898 TemplateKWLoc.isValid(), Id, 1899 ObjectType, EnteringContext, Template, 1900 MemberOfUnknownSpecialization); 1901 1902 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization && 1903 ObjectType && IsTemplateArgumentList()) { 1904 // We have something like t->getAs<T>(), where getAs is a 1905 // member of an unknown specialization. However, this will only 1906 // parse correctly as a template, so suggest the keyword 'template' 1907 // before 'getAs' and treat this as a dependent template name. 1908 std::string Name; 1909 if (Id.getKind() == UnqualifiedId::IK_Identifier) 1910 Name = Id.Identifier->getName(); 1911 else { 1912 Name = "operator "; 1913 if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId) 1914 Name += getOperatorSpelling(Id.OperatorFunctionId.Operator); 1915 else 1916 Name += Id.Identifier->getName(); 1917 } 1918 Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword) 1919 << Name 1920 << FixItHint::CreateInsertion(Id.StartLocation, "template "); 1921 TNK = Actions.ActOnDependentTemplateName(getCurScope(), 1922 SS, TemplateKWLoc, Id, 1923 ObjectType, EnteringContext, 1924 Template); 1925 if (TNK == TNK_Non_template) 1926 return true; 1927 } 1928 } 1929 break; 1930 1931 case UnqualifiedId::IK_ConstructorName: { 1932 UnqualifiedId TemplateName; 1933 bool MemberOfUnknownSpecialization; 1934 TemplateName.setIdentifier(Name, NameLoc); 1935 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(), 1936 TemplateName, ObjectType, 1937 EnteringContext, Template, 1938 MemberOfUnknownSpecialization); 1939 break; 1940 } 1941 1942 case UnqualifiedId::IK_DestructorName: { 1943 UnqualifiedId TemplateName; 1944 bool MemberOfUnknownSpecialization; 1945 TemplateName.setIdentifier(Name, NameLoc); 1946 if (ObjectType) { 1947 TNK = Actions.ActOnDependentTemplateName(getCurScope(), 1948 SS, TemplateKWLoc, TemplateName, 1949 ObjectType, EnteringContext, 1950 Template); 1951 if (TNK == TNK_Non_template) 1952 return true; 1953 } else { 1954 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(), 1955 TemplateName, ObjectType, 1956 EnteringContext, Template, 1957 MemberOfUnknownSpecialization); 1958 1959 if (TNK == TNK_Non_template && !Id.DestructorName.get()) { 1960 Diag(NameLoc, diag::err_destructor_template_id) 1961 << Name << SS.getRange(); 1962 return true; 1963 } 1964 } 1965 break; 1966 } 1967 1968 default: 1969 return false; 1970 } 1971 1972 if (TNK == TNK_Non_template) 1973 return false; 1974 1975 // Parse the enclosed template argument list. 1976 SourceLocation LAngleLoc, RAngleLoc; 1977 TemplateArgList TemplateArgs; 1978 if (Tok.is(tok::less) && 1979 ParseTemplateIdAfterTemplateName(Template, Id.StartLocation, 1980 SS, true, LAngleLoc, 1981 TemplateArgs, 1982 RAngleLoc)) 1983 return true; 1984 1985 if (Id.getKind() == UnqualifiedId::IK_Identifier || 1986 Id.getKind() == UnqualifiedId::IK_OperatorFunctionId || 1987 Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) { 1988 // Form a parsed representation of the template-id to be stored in the 1989 // UnqualifiedId. 1990 TemplateIdAnnotation *TemplateId 1991 = TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds); 1992 1993 // FIXME: Store name for literal operator too. 1994 if (Id.getKind() == UnqualifiedId::IK_Identifier) { 1995 TemplateId->Name = Id.Identifier; 1996 TemplateId->Operator = OO_None; 1997 TemplateId->TemplateNameLoc = Id.StartLocation; 1998 } else { 1999 TemplateId->Name = nullptr; 2000 TemplateId->Operator = Id.OperatorFunctionId.Operator; 2001 TemplateId->TemplateNameLoc = Id.StartLocation; 2002 } 2003 2004 TemplateId->SS = SS; 2005 TemplateId->TemplateKWLoc = TemplateKWLoc; 2006 TemplateId->Template = Template; 2007 TemplateId->Kind = TNK; 2008 TemplateId->LAngleLoc = LAngleLoc; 2009 TemplateId->RAngleLoc = RAngleLoc; 2010 ParsedTemplateArgument *Args = TemplateId->getTemplateArgs(); 2011 for (unsigned Arg = 0, ArgEnd = TemplateArgs.size(); 2012 Arg != ArgEnd; ++Arg) 2013 Args[Arg] = TemplateArgs[Arg]; 2014 2015 Id.setTemplateId(TemplateId); 2016 return false; 2017 } 2018 2019 // Bundle the template arguments together. 2020 ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs); 2021 2022 // Constructor and destructor names. 2023 TypeResult Type 2024 = Actions.ActOnTemplateIdType(SS, TemplateKWLoc, 2025 Template, NameLoc, 2026 LAngleLoc, TemplateArgsPtr, RAngleLoc, 2027 /*IsCtorOrDtorName=*/true); 2028 if (Type.isInvalid()) 2029 return true; 2030 2031 if (Id.getKind() == UnqualifiedId::IK_ConstructorName) 2032 Id.setConstructorName(Type.get(), NameLoc, RAngleLoc); 2033 else 2034 Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc); 2035 2036 return false; 2037 } 2038 2039 /// \brief Parse an operator-function-id or conversion-function-id as part 2040 /// of a C++ unqualified-id. 2041 /// 2042 /// This routine is responsible only for parsing the operator-function-id or 2043 /// conversion-function-id; it does not handle template arguments in any way. 2044 /// 2045 /// \code 2046 /// operator-function-id: [C++ 13.5] 2047 /// 'operator' operator 2048 /// 2049 /// operator: one of 2050 /// new delete new[] delete[] 2051 /// + - * / % ^ & | ~ 2052 /// ! = < > += -= *= /= %= 2053 /// ^= &= |= << >> >>= <<= == != 2054 /// <= >= && || ++ -- , ->* -> 2055 /// () [] 2056 /// 2057 /// conversion-function-id: [C++ 12.3.2] 2058 /// operator conversion-type-id 2059 /// 2060 /// conversion-type-id: 2061 /// type-specifier-seq conversion-declarator[opt] 2062 /// 2063 /// conversion-declarator: 2064 /// ptr-operator conversion-declarator[opt] 2065 /// \endcode 2066 /// 2067 /// \param SS The nested-name-specifier that preceded this unqualified-id. If 2068 /// non-empty, then we are parsing the unqualified-id of a qualified-id. 2069 /// 2070 /// \param EnteringContext whether we are entering the scope of the 2071 /// nested-name-specifier. 2072 /// 2073 /// \param ObjectType if this unqualified-id occurs within a member access 2074 /// expression, the type of the base object whose member is being accessed. 2075 /// 2076 /// \param Result on a successful parse, contains the parsed unqualified-id. 2077 /// 2078 /// \returns true if parsing fails, false otherwise. 2079 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext, 2080 ParsedType ObjectType, 2081 UnqualifiedId &Result) { 2082 assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword"); 2083 2084 // Consume the 'operator' keyword. 2085 SourceLocation KeywordLoc = ConsumeToken(); 2086 2087 // Determine what kind of operator name we have. 2088 unsigned SymbolIdx = 0; 2089 SourceLocation SymbolLocations[3]; 2090 OverloadedOperatorKind Op = OO_None; 2091 switch (Tok.getKind()) { 2092 case tok::kw_new: 2093 case tok::kw_delete: { 2094 bool isNew = Tok.getKind() == tok::kw_new; 2095 // Consume the 'new' or 'delete'. 2096 SymbolLocations[SymbolIdx++] = ConsumeToken(); 2097 // Check for array new/delete. 2098 if (Tok.is(tok::l_square) && 2099 (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) { 2100 // Consume the '[' and ']'. 2101 BalancedDelimiterTracker T(*this, tok::l_square); 2102 T.consumeOpen(); 2103 T.consumeClose(); 2104 if (T.getCloseLocation().isInvalid()) 2105 return true; 2106 2107 SymbolLocations[SymbolIdx++] = T.getOpenLocation(); 2108 SymbolLocations[SymbolIdx++] = T.getCloseLocation(); 2109 Op = isNew? OO_Array_New : OO_Array_Delete; 2110 } else { 2111 Op = isNew? OO_New : OO_Delete; 2112 } 2113 break; 2114 } 2115 2116 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 2117 case tok::Token: \ 2118 SymbolLocations[SymbolIdx++] = ConsumeToken(); \ 2119 Op = OO_##Name; \ 2120 break; 2121 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly) 2122 #include "clang/Basic/OperatorKinds.def" 2123 2124 case tok::l_paren: { 2125 // Consume the '(' and ')'. 2126 BalancedDelimiterTracker T(*this, tok::l_paren); 2127 T.consumeOpen(); 2128 T.consumeClose(); 2129 if (T.getCloseLocation().isInvalid()) 2130 return true; 2131 2132 SymbolLocations[SymbolIdx++] = T.getOpenLocation(); 2133 SymbolLocations[SymbolIdx++] = T.getCloseLocation(); 2134 Op = OO_Call; 2135 break; 2136 } 2137 2138 case tok::l_square: { 2139 // Consume the '[' and ']'. 2140 BalancedDelimiterTracker T(*this, tok::l_square); 2141 T.consumeOpen(); 2142 T.consumeClose(); 2143 if (T.getCloseLocation().isInvalid()) 2144 return true; 2145 2146 SymbolLocations[SymbolIdx++] = T.getOpenLocation(); 2147 SymbolLocations[SymbolIdx++] = T.getCloseLocation(); 2148 Op = OO_Subscript; 2149 break; 2150 } 2151 2152 case tok::code_completion: { 2153 // Code completion for the operator name. 2154 Actions.CodeCompleteOperatorName(getCurScope()); 2155 cutOffParsing(); 2156 // Don't try to parse any further. 2157 return true; 2158 } 2159 2160 default: 2161 break; 2162 } 2163 2164 if (Op != OO_None) { 2165 // We have parsed an operator-function-id. 2166 Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations); 2167 return false; 2168 } 2169 2170 // Parse a literal-operator-id. 2171 // 2172 // literal-operator-id: C++11 [over.literal] 2173 // operator string-literal identifier 2174 // operator user-defined-string-literal 2175 2176 if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) { 2177 Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator); 2178 2179 SourceLocation DiagLoc; 2180 unsigned DiagId = 0; 2181 2182 // We're past translation phase 6, so perform string literal concatenation 2183 // before checking for "". 2184 SmallVector<Token, 4> Toks; 2185 SmallVector<SourceLocation, 4> TokLocs; 2186 while (isTokenStringLiteral()) { 2187 if (!Tok.is(tok::string_literal) && !DiagId) { 2188 // C++11 [over.literal]p1: 2189 // The string-literal or user-defined-string-literal in a 2190 // literal-operator-id shall have no encoding-prefix [...]. 2191 DiagLoc = Tok.getLocation(); 2192 DiagId = diag::err_literal_operator_string_prefix; 2193 } 2194 Toks.push_back(Tok); 2195 TokLocs.push_back(ConsumeStringToken()); 2196 } 2197 2198 StringLiteralParser Literal(Toks, PP); 2199 if (Literal.hadError) 2200 return true; 2201 2202 // Grab the literal operator's suffix, which will be either the next token 2203 // or a ud-suffix from the string literal. 2204 IdentifierInfo *II = nullptr; 2205 SourceLocation SuffixLoc; 2206 if (!Literal.getUDSuffix().empty()) { 2207 II = &PP.getIdentifierTable().get(Literal.getUDSuffix()); 2208 SuffixLoc = 2209 Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()], 2210 Literal.getUDSuffixOffset(), 2211 PP.getSourceManager(), getLangOpts()); 2212 } else if (Tok.is(tok::identifier)) { 2213 II = Tok.getIdentifierInfo(); 2214 SuffixLoc = ConsumeToken(); 2215 TokLocs.push_back(SuffixLoc); 2216 } else { 2217 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier; 2218 return true; 2219 } 2220 2221 // The string literal must be empty. 2222 if (!Literal.GetString().empty() || Literal.Pascal) { 2223 // C++11 [over.literal]p1: 2224 // The string-literal or user-defined-string-literal in a 2225 // literal-operator-id shall [...] contain no characters 2226 // other than the implicit terminating '\0'. 2227 DiagLoc = TokLocs.front(); 2228 DiagId = diag::err_literal_operator_string_not_empty; 2229 } 2230 2231 if (DiagId) { 2232 // This isn't a valid literal-operator-id, but we think we know 2233 // what the user meant. Tell them what they should have written. 2234 SmallString<32> Str; 2235 Str += "\"\" "; 2236 Str += II->getName(); 2237 Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement( 2238 SourceRange(TokLocs.front(), TokLocs.back()), Str); 2239 } 2240 2241 Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc); 2242 2243 return Actions.checkLiteralOperatorId(SS, Result); 2244 } 2245 2246 // Parse a conversion-function-id. 2247 // 2248 // conversion-function-id: [C++ 12.3.2] 2249 // operator conversion-type-id 2250 // 2251 // conversion-type-id: 2252 // type-specifier-seq conversion-declarator[opt] 2253 // 2254 // conversion-declarator: 2255 // ptr-operator conversion-declarator[opt] 2256 2257 // Parse the type-specifier-seq. 2258 DeclSpec DS(AttrFactory); 2259 if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType? 2260 return true; 2261 2262 // Parse the conversion-declarator, which is merely a sequence of 2263 // ptr-operators. 2264 Declarator D(DS, Declarator::ConversionIdContext); 2265 ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr); 2266 2267 // Finish up the type. 2268 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D); 2269 if (Ty.isInvalid()) 2270 return true; 2271 2272 // Note that this is a conversion-function-id. 2273 Result.setConversionFunctionId(KeywordLoc, Ty.get(), 2274 D.getSourceRange().getEnd()); 2275 return false; 2276 } 2277 2278 /// \brief Parse a C++ unqualified-id (or a C identifier), which describes the 2279 /// name of an entity. 2280 /// 2281 /// \code 2282 /// unqualified-id: [C++ expr.prim.general] 2283 /// identifier 2284 /// operator-function-id 2285 /// conversion-function-id 2286 /// [C++0x] literal-operator-id [TODO] 2287 /// ~ class-name 2288 /// template-id 2289 /// 2290 /// \endcode 2291 /// 2292 /// \param SS The nested-name-specifier that preceded this unqualified-id. If 2293 /// non-empty, then we are parsing the unqualified-id of a qualified-id. 2294 /// 2295 /// \param EnteringContext whether we are entering the scope of the 2296 /// nested-name-specifier. 2297 /// 2298 /// \param AllowDestructorName whether we allow parsing of a destructor name. 2299 /// 2300 /// \param AllowConstructorName whether we allow parsing a constructor name. 2301 /// 2302 /// \param ObjectType if this unqualified-id occurs within a member access 2303 /// expression, the type of the base object whose member is being accessed. 2304 /// 2305 /// \param Result on a successful parse, contains the parsed unqualified-id. 2306 /// 2307 /// \returns true if parsing fails, false otherwise. 2308 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext, 2309 bool AllowDestructorName, 2310 bool AllowConstructorName, 2311 ParsedType ObjectType, 2312 SourceLocation& TemplateKWLoc, 2313 UnqualifiedId &Result) { 2314 2315 // Handle 'A::template B'. This is for template-ids which have not 2316 // already been annotated by ParseOptionalCXXScopeSpecifier(). 2317 bool TemplateSpecified = false; 2318 if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) && 2319 (ObjectType || SS.isSet())) { 2320 TemplateSpecified = true; 2321 TemplateKWLoc = ConsumeToken(); 2322 } 2323 2324 // unqualified-id: 2325 // identifier 2326 // template-id (when it hasn't already been annotated) 2327 if (Tok.is(tok::identifier)) { 2328 // Consume the identifier. 2329 IdentifierInfo *Id = Tok.getIdentifierInfo(); 2330 SourceLocation IdLoc = ConsumeToken(); 2331 2332 if (!getLangOpts().CPlusPlus) { 2333 // If we're not in C++, only identifiers matter. Record the 2334 // identifier and return. 2335 Result.setIdentifier(Id, IdLoc); 2336 return false; 2337 } 2338 2339 if (AllowConstructorName && 2340 Actions.isCurrentClassName(*Id, getCurScope(), &SS)) { 2341 // We have parsed a constructor name. 2342 ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(), 2343 &SS, false, false, 2344 ParsedType(), 2345 /*IsCtorOrDtorName=*/true, 2346 /*NonTrivialTypeSourceInfo=*/true); 2347 Result.setConstructorName(Ty, IdLoc, IdLoc); 2348 } else { 2349 // We have parsed an identifier. 2350 Result.setIdentifier(Id, IdLoc); 2351 } 2352 2353 // If the next token is a '<', we may have a template. 2354 if (TemplateSpecified || Tok.is(tok::less)) 2355 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc, 2356 EnteringContext, ObjectType, 2357 Result, TemplateSpecified); 2358 2359 return false; 2360 } 2361 2362 // unqualified-id: 2363 // template-id (already parsed and annotated) 2364 if (Tok.is(tok::annot_template_id)) { 2365 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 2366 2367 // If the template-name names the current class, then this is a constructor 2368 if (AllowConstructorName && TemplateId->Name && 2369 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) { 2370 if (SS.isSet()) { 2371 // C++ [class.qual]p2 specifies that a qualified template-name 2372 // is taken as the constructor name where a constructor can be 2373 // declared. Thus, the template arguments are extraneous, so 2374 // complain about them and remove them entirely. 2375 Diag(TemplateId->TemplateNameLoc, 2376 diag::err_out_of_line_constructor_template_id) 2377 << TemplateId->Name 2378 << FixItHint::CreateRemoval( 2379 SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)); 2380 ParsedType Ty = Actions.getTypeName(*TemplateId->Name, 2381 TemplateId->TemplateNameLoc, 2382 getCurScope(), 2383 &SS, false, false, 2384 ParsedType(), 2385 /*IsCtorOrDtorName=*/true, 2386 /*NontrivialTypeSourceInfo=*/true); 2387 Result.setConstructorName(Ty, TemplateId->TemplateNameLoc, 2388 TemplateId->RAngleLoc); 2389 ConsumeToken(); 2390 return false; 2391 } 2392 2393 Result.setConstructorTemplateId(TemplateId); 2394 ConsumeToken(); 2395 return false; 2396 } 2397 2398 // We have already parsed a template-id; consume the annotation token as 2399 // our unqualified-id. 2400 Result.setTemplateId(TemplateId); 2401 TemplateKWLoc = TemplateId->TemplateKWLoc; 2402 ConsumeToken(); 2403 return false; 2404 } 2405 2406 // unqualified-id: 2407 // operator-function-id 2408 // conversion-function-id 2409 if (Tok.is(tok::kw_operator)) { 2410 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result)) 2411 return true; 2412 2413 // If we have an operator-function-id or a literal-operator-id and the next 2414 // token is a '<', we may have a 2415 // 2416 // template-id: 2417 // operator-function-id < template-argument-list[opt] > 2418 if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId || 2419 Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) && 2420 (TemplateSpecified || Tok.is(tok::less))) 2421 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, 2422 nullptr, SourceLocation(), 2423 EnteringContext, ObjectType, 2424 Result, TemplateSpecified); 2425 2426 return false; 2427 } 2428 2429 if (getLangOpts().CPlusPlus && 2430 (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) { 2431 // C++ [expr.unary.op]p10: 2432 // There is an ambiguity in the unary-expression ~X(), where X is a 2433 // class-name. The ambiguity is resolved in favor of treating ~ as a 2434 // unary complement rather than treating ~X as referring to a destructor. 2435 2436 // Parse the '~'. 2437 SourceLocation TildeLoc = ConsumeToken(); 2438 2439 if (SS.isEmpty() && Tok.is(tok::kw_decltype)) { 2440 DeclSpec DS(AttrFactory); 2441 SourceLocation EndLoc = ParseDecltypeSpecifier(DS); 2442 if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) { 2443 Result.setDestructorName(TildeLoc, Type, EndLoc); 2444 return false; 2445 } 2446 return true; 2447 } 2448 2449 // Parse the class-name. 2450 if (Tok.isNot(tok::identifier)) { 2451 Diag(Tok, diag::err_destructor_tilde_identifier); 2452 return true; 2453 } 2454 2455 // Parse the class-name (or template-name in a simple-template-id). 2456 IdentifierInfo *ClassName = Tok.getIdentifierInfo(); 2457 SourceLocation ClassNameLoc = ConsumeToken(); 2458 2459 if (TemplateSpecified || Tok.is(tok::less)) { 2460 Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc); 2461 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, 2462 ClassName, ClassNameLoc, 2463 EnteringContext, ObjectType, 2464 Result, TemplateSpecified); 2465 } 2466 2467 // Note that this is a destructor name. 2468 ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName, 2469 ClassNameLoc, getCurScope(), 2470 SS, ObjectType, 2471 EnteringContext); 2472 if (!Ty) 2473 return true; 2474 2475 Result.setDestructorName(TildeLoc, Ty, ClassNameLoc); 2476 return false; 2477 } 2478 2479 Diag(Tok, diag::err_expected_unqualified_id) 2480 << getLangOpts().CPlusPlus; 2481 return true; 2482 } 2483 2484 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate 2485 /// memory in a typesafe manner and call constructors. 2486 /// 2487 /// This method is called to parse the new expression after the optional :: has 2488 /// been already parsed. If the :: was present, "UseGlobal" is true and "Start" 2489 /// is its location. Otherwise, "Start" is the location of the 'new' token. 2490 /// 2491 /// new-expression: 2492 /// '::'[opt] 'new' new-placement[opt] new-type-id 2493 /// new-initializer[opt] 2494 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' 2495 /// new-initializer[opt] 2496 /// 2497 /// new-placement: 2498 /// '(' expression-list ')' 2499 /// 2500 /// new-type-id: 2501 /// type-specifier-seq new-declarator[opt] 2502 /// [GNU] attributes type-specifier-seq new-declarator[opt] 2503 /// 2504 /// new-declarator: 2505 /// ptr-operator new-declarator[opt] 2506 /// direct-new-declarator 2507 /// 2508 /// new-initializer: 2509 /// '(' expression-list[opt] ')' 2510 /// [C++0x] braced-init-list 2511 /// 2512 ExprResult 2513 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) { 2514 assert(Tok.is(tok::kw_new) && "expected 'new' token"); 2515 ConsumeToken(); // Consume 'new' 2516 2517 // A '(' now can be a new-placement or the '(' wrapping the type-id in the 2518 // second form of new-expression. It can't be a new-type-id. 2519 2520 ExprVector PlacementArgs; 2521 SourceLocation PlacementLParen, PlacementRParen; 2522 2523 SourceRange TypeIdParens; 2524 DeclSpec DS(AttrFactory); 2525 Declarator DeclaratorInfo(DS, Declarator::CXXNewContext); 2526 if (Tok.is(tok::l_paren)) { 2527 // If it turns out to be a placement, we change the type location. 2528 BalancedDelimiterTracker T(*this, tok::l_paren); 2529 T.consumeOpen(); 2530 PlacementLParen = T.getOpenLocation(); 2531 if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) { 2532 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 2533 return ExprError(); 2534 } 2535 2536 T.consumeClose(); 2537 PlacementRParen = T.getCloseLocation(); 2538 if (PlacementRParen.isInvalid()) { 2539 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 2540 return ExprError(); 2541 } 2542 2543 if (PlacementArgs.empty()) { 2544 // Reset the placement locations. There was no placement. 2545 TypeIdParens = T.getRange(); 2546 PlacementLParen = PlacementRParen = SourceLocation(); 2547 } else { 2548 // We still need the type. 2549 if (Tok.is(tok::l_paren)) { 2550 BalancedDelimiterTracker T(*this, tok::l_paren); 2551 T.consumeOpen(); 2552 MaybeParseGNUAttributes(DeclaratorInfo); 2553 ParseSpecifierQualifierList(DS); 2554 DeclaratorInfo.SetSourceRange(DS.getSourceRange()); 2555 ParseDeclarator(DeclaratorInfo); 2556 T.consumeClose(); 2557 TypeIdParens = T.getRange(); 2558 } else { 2559 MaybeParseGNUAttributes(DeclaratorInfo); 2560 if (ParseCXXTypeSpecifierSeq(DS)) 2561 DeclaratorInfo.setInvalidType(true); 2562 else { 2563 DeclaratorInfo.SetSourceRange(DS.getSourceRange()); 2564 ParseDeclaratorInternal(DeclaratorInfo, 2565 &Parser::ParseDirectNewDeclarator); 2566 } 2567 } 2568 } 2569 } else { 2570 // A new-type-id is a simplified type-id, where essentially the 2571 // direct-declarator is replaced by a direct-new-declarator. 2572 MaybeParseGNUAttributes(DeclaratorInfo); 2573 if (ParseCXXTypeSpecifierSeq(DS)) 2574 DeclaratorInfo.setInvalidType(true); 2575 else { 2576 DeclaratorInfo.SetSourceRange(DS.getSourceRange()); 2577 ParseDeclaratorInternal(DeclaratorInfo, 2578 &Parser::ParseDirectNewDeclarator); 2579 } 2580 } 2581 if (DeclaratorInfo.isInvalidType()) { 2582 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 2583 return ExprError(); 2584 } 2585 2586 ExprResult Initializer; 2587 2588 if (Tok.is(tok::l_paren)) { 2589 SourceLocation ConstructorLParen, ConstructorRParen; 2590 ExprVector ConstructorArgs; 2591 BalancedDelimiterTracker T(*this, tok::l_paren); 2592 T.consumeOpen(); 2593 ConstructorLParen = T.getOpenLocation(); 2594 if (Tok.isNot(tok::r_paren)) { 2595 CommaLocsTy CommaLocs; 2596 if (ParseExpressionList(ConstructorArgs, CommaLocs)) { 2597 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 2598 return ExprError(); 2599 } 2600 } 2601 T.consumeClose(); 2602 ConstructorRParen = T.getCloseLocation(); 2603 if (ConstructorRParen.isInvalid()) { 2604 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 2605 return ExprError(); 2606 } 2607 Initializer = Actions.ActOnParenListExpr(ConstructorLParen, 2608 ConstructorRParen, 2609 ConstructorArgs); 2610 } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) { 2611 Diag(Tok.getLocation(), 2612 diag::warn_cxx98_compat_generalized_initializer_lists); 2613 Initializer = ParseBraceInitializer(); 2614 } 2615 if (Initializer.isInvalid()) 2616 return Initializer; 2617 2618 return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen, 2619 PlacementArgs, PlacementRParen, 2620 TypeIdParens, DeclaratorInfo, Initializer.get()); 2621 } 2622 2623 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be 2624 /// passed to ParseDeclaratorInternal. 2625 /// 2626 /// direct-new-declarator: 2627 /// '[' expression ']' 2628 /// direct-new-declarator '[' constant-expression ']' 2629 /// 2630 void Parser::ParseDirectNewDeclarator(Declarator &D) { 2631 // Parse the array dimensions. 2632 bool first = true; 2633 while (Tok.is(tok::l_square)) { 2634 // An array-size expression can't start with a lambda. 2635 if (CheckProhibitedCXX11Attribute()) 2636 continue; 2637 2638 BalancedDelimiterTracker T(*this, tok::l_square); 2639 T.consumeOpen(); 2640 2641 ExprResult Size(first ? ParseExpression() 2642 : ParseConstantExpression()); 2643 if (Size.isInvalid()) { 2644 // Recover 2645 SkipUntil(tok::r_square, StopAtSemi); 2646 return; 2647 } 2648 first = false; 2649 2650 T.consumeClose(); 2651 2652 // Attributes here appertain to the array type. C++11 [expr.new]p5. 2653 ParsedAttributes Attrs(AttrFactory); 2654 MaybeParseCXX11Attributes(Attrs); 2655 2656 D.AddTypeInfo(DeclaratorChunk::getArray(0, 2657 /*static=*/false, /*star=*/false, 2658 Size.get(), 2659 T.getOpenLocation(), 2660 T.getCloseLocation()), 2661 Attrs, T.getCloseLocation()); 2662 2663 if (T.getCloseLocation().isInvalid()) 2664 return; 2665 } 2666 } 2667 2668 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id. 2669 /// This ambiguity appears in the syntax of the C++ new operator. 2670 /// 2671 /// new-expression: 2672 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' 2673 /// new-initializer[opt] 2674 /// 2675 /// new-placement: 2676 /// '(' expression-list ')' 2677 /// 2678 bool Parser::ParseExpressionListOrTypeId( 2679 SmallVectorImpl<Expr*> &PlacementArgs, 2680 Declarator &D) { 2681 // The '(' was already consumed. 2682 if (isTypeIdInParens()) { 2683 ParseSpecifierQualifierList(D.getMutableDeclSpec()); 2684 D.SetSourceRange(D.getDeclSpec().getSourceRange()); 2685 ParseDeclarator(D); 2686 return D.isInvalidType(); 2687 } 2688 2689 // It's not a type, it has to be an expression list. 2690 // Discard the comma locations - ActOnCXXNew has enough parameters. 2691 CommaLocsTy CommaLocs; 2692 return ParseExpressionList(PlacementArgs, CommaLocs); 2693 } 2694 2695 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used 2696 /// to free memory allocated by new. 2697 /// 2698 /// This method is called to parse the 'delete' expression after the optional 2699 /// '::' has been already parsed. If the '::' was present, "UseGlobal" is true 2700 /// and "Start" is its location. Otherwise, "Start" is the location of the 2701 /// 'delete' token. 2702 /// 2703 /// delete-expression: 2704 /// '::'[opt] 'delete' cast-expression 2705 /// '::'[opt] 'delete' '[' ']' cast-expression 2706 ExprResult 2707 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) { 2708 assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword"); 2709 ConsumeToken(); // Consume 'delete' 2710 2711 // Array delete? 2712 bool ArrayDelete = false; 2713 if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) { 2714 // C++11 [expr.delete]p1: 2715 // Whenever the delete keyword is followed by empty square brackets, it 2716 // shall be interpreted as [array delete]. 2717 // [Footnote: A lambda expression with a lambda-introducer that consists 2718 // of empty square brackets can follow the delete keyword if 2719 // the lambda expression is enclosed in parentheses.] 2720 // FIXME: Produce a better diagnostic if the '[]' is unambiguously a 2721 // lambda-introducer. 2722 ArrayDelete = true; 2723 BalancedDelimiterTracker T(*this, tok::l_square); 2724 2725 T.consumeOpen(); 2726 T.consumeClose(); 2727 if (T.getCloseLocation().isInvalid()) 2728 return ExprError(); 2729 } 2730 2731 ExprResult Operand(ParseCastExpression(false)); 2732 if (Operand.isInvalid()) 2733 return Operand; 2734 2735 return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get()); 2736 } 2737 2738 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) { 2739 switch (kind) { 2740 default: llvm_unreachable("Not a known type trait"); 2741 #define TYPE_TRAIT_1(Spelling, Name, Key) \ 2742 case tok::kw_ ## Spelling: return UTT_ ## Name; 2743 #define TYPE_TRAIT_2(Spelling, Name, Key) \ 2744 case tok::kw_ ## Spelling: return BTT_ ## Name; 2745 #include "clang/Basic/TokenKinds.def" 2746 #define TYPE_TRAIT_N(Spelling, Name, Key) \ 2747 case tok::kw_ ## Spelling: return TT_ ## Name; 2748 #include "clang/Basic/TokenKinds.def" 2749 } 2750 } 2751 2752 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) { 2753 switch(kind) { 2754 default: llvm_unreachable("Not a known binary type trait"); 2755 case tok::kw___array_rank: return ATT_ArrayRank; 2756 case tok::kw___array_extent: return ATT_ArrayExtent; 2757 } 2758 } 2759 2760 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) { 2761 switch(kind) { 2762 default: llvm_unreachable("Not a known unary expression trait."); 2763 case tok::kw___is_lvalue_expr: return ET_IsLValueExpr; 2764 case tok::kw___is_rvalue_expr: return ET_IsRValueExpr; 2765 } 2766 } 2767 2768 static unsigned TypeTraitArity(tok::TokenKind kind) { 2769 switch (kind) { 2770 default: llvm_unreachable("Not a known type trait"); 2771 #define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N; 2772 #include "clang/Basic/TokenKinds.def" 2773 } 2774 } 2775 2776 /// \brief Parse the built-in type-trait pseudo-functions that allow 2777 /// implementation of the TR1/C++11 type traits templates. 2778 /// 2779 /// primary-expression: 2780 /// unary-type-trait '(' type-id ')' 2781 /// binary-type-trait '(' type-id ',' type-id ')' 2782 /// type-trait '(' type-id-seq ')' 2783 /// 2784 /// type-id-seq: 2785 /// type-id ...[opt] type-id-seq[opt] 2786 /// 2787 ExprResult Parser::ParseTypeTrait() { 2788 tok::TokenKind Kind = Tok.getKind(); 2789 unsigned Arity = TypeTraitArity(Kind); 2790 2791 SourceLocation Loc = ConsumeToken(); 2792 2793 BalancedDelimiterTracker Parens(*this, tok::l_paren); 2794 if (Parens.expectAndConsume()) 2795 return ExprError(); 2796 2797 SmallVector<ParsedType, 2> Args; 2798 do { 2799 // Parse the next type. 2800 TypeResult Ty = ParseTypeName(); 2801 if (Ty.isInvalid()) { 2802 Parens.skipToEnd(); 2803 return ExprError(); 2804 } 2805 2806 // Parse the ellipsis, if present. 2807 if (Tok.is(tok::ellipsis)) { 2808 Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken()); 2809 if (Ty.isInvalid()) { 2810 Parens.skipToEnd(); 2811 return ExprError(); 2812 } 2813 } 2814 2815 // Add this type to the list of arguments. 2816 Args.push_back(Ty.get()); 2817 } while (TryConsumeToken(tok::comma)); 2818 2819 if (Parens.consumeClose()) 2820 return ExprError(); 2821 2822 SourceLocation EndLoc = Parens.getCloseLocation(); 2823 2824 if (Arity && Args.size() != Arity) { 2825 Diag(EndLoc, diag::err_type_trait_arity) 2826 << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc); 2827 return ExprError(); 2828 } 2829 2830 if (!Arity && Args.empty()) { 2831 Diag(EndLoc, diag::err_type_trait_arity) 2832 << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc); 2833 return ExprError(); 2834 } 2835 2836 return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc); 2837 } 2838 2839 /// ParseArrayTypeTrait - Parse the built-in array type-trait 2840 /// pseudo-functions. 2841 /// 2842 /// primary-expression: 2843 /// [Embarcadero] '__array_rank' '(' type-id ')' 2844 /// [Embarcadero] '__array_extent' '(' type-id ',' expression ')' 2845 /// 2846 ExprResult Parser::ParseArrayTypeTrait() { 2847 ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind()); 2848 SourceLocation Loc = ConsumeToken(); 2849 2850 BalancedDelimiterTracker T(*this, tok::l_paren); 2851 if (T.expectAndConsume()) 2852 return ExprError(); 2853 2854 TypeResult Ty = ParseTypeName(); 2855 if (Ty.isInvalid()) { 2856 SkipUntil(tok::comma, StopAtSemi); 2857 SkipUntil(tok::r_paren, StopAtSemi); 2858 return ExprError(); 2859 } 2860 2861 switch (ATT) { 2862 case ATT_ArrayRank: { 2863 T.consumeClose(); 2864 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr, 2865 T.getCloseLocation()); 2866 } 2867 case ATT_ArrayExtent: { 2868 if (ExpectAndConsume(tok::comma)) { 2869 SkipUntil(tok::r_paren, StopAtSemi); 2870 return ExprError(); 2871 } 2872 2873 ExprResult DimExpr = ParseExpression(); 2874 T.consumeClose(); 2875 2876 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(), 2877 T.getCloseLocation()); 2878 } 2879 } 2880 llvm_unreachable("Invalid ArrayTypeTrait!"); 2881 } 2882 2883 /// ParseExpressionTrait - Parse built-in expression-trait 2884 /// pseudo-functions like __is_lvalue_expr( xxx ). 2885 /// 2886 /// primary-expression: 2887 /// [Embarcadero] expression-trait '(' expression ')' 2888 /// 2889 ExprResult Parser::ParseExpressionTrait() { 2890 ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind()); 2891 SourceLocation Loc = ConsumeToken(); 2892 2893 BalancedDelimiterTracker T(*this, tok::l_paren); 2894 if (T.expectAndConsume()) 2895 return ExprError(); 2896 2897 ExprResult Expr = ParseExpression(); 2898 2899 T.consumeClose(); 2900 2901 return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(), 2902 T.getCloseLocation()); 2903 } 2904 2905 2906 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a 2907 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate 2908 /// based on the context past the parens. 2909 ExprResult 2910 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType, 2911 ParsedType &CastTy, 2912 BalancedDelimiterTracker &Tracker, 2913 ColonProtectionRAIIObject &ColonProt) { 2914 assert(getLangOpts().CPlusPlus && "Should only be called for C++!"); 2915 assert(ExprType == CastExpr && "Compound literals are not ambiguous!"); 2916 assert(isTypeIdInParens() && "Not a type-id!"); 2917 2918 ExprResult Result(true); 2919 CastTy = ParsedType(); 2920 2921 // We need to disambiguate a very ugly part of the C++ syntax: 2922 // 2923 // (T())x; - type-id 2924 // (T())*x; - type-id 2925 // (T())/x; - expression 2926 // (T()); - expression 2927 // 2928 // The bad news is that we cannot use the specialized tentative parser, since 2929 // it can only verify that the thing inside the parens can be parsed as 2930 // type-id, it is not useful for determining the context past the parens. 2931 // 2932 // The good news is that the parser can disambiguate this part without 2933 // making any unnecessary Action calls. 2934 // 2935 // It uses a scheme similar to parsing inline methods. The parenthesized 2936 // tokens are cached, the context that follows is determined (possibly by 2937 // parsing a cast-expression), and then we re-introduce the cached tokens 2938 // into the token stream and parse them appropriately. 2939 2940 ParenParseOption ParseAs; 2941 CachedTokens Toks; 2942 2943 // Store the tokens of the parentheses. We will parse them after we determine 2944 // the context that follows them. 2945 if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) { 2946 // We didn't find the ')' we expected. 2947 Tracker.consumeClose(); 2948 return ExprError(); 2949 } 2950 2951 if (Tok.is(tok::l_brace)) { 2952 ParseAs = CompoundLiteral; 2953 } else { 2954 bool NotCastExpr; 2955 // FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression 2956 if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) { 2957 NotCastExpr = true; 2958 } else { 2959 // Try parsing the cast-expression that may follow. 2960 // If it is not a cast-expression, NotCastExpr will be true and no token 2961 // will be consumed. 2962 ColonProt.restore(); 2963 Result = ParseCastExpression(false/*isUnaryExpression*/, 2964 false/*isAddressofOperand*/, 2965 NotCastExpr, 2966 // type-id has priority. 2967 IsTypeCast); 2968 } 2969 2970 // If we parsed a cast-expression, it's really a type-id, otherwise it's 2971 // an expression. 2972 ParseAs = NotCastExpr ? SimpleExpr : CastExpr; 2973 } 2974 2975 // The current token should go after the cached tokens. 2976 Toks.push_back(Tok); 2977 // Re-enter the stored parenthesized tokens into the token stream, so we may 2978 // parse them now. 2979 PP.EnterTokenStream(Toks.data(), Toks.size(), 2980 true/*DisableMacroExpansion*/, false/*OwnsTokens*/); 2981 // Drop the current token and bring the first cached one. It's the same token 2982 // as when we entered this function. 2983 ConsumeAnyToken(); 2984 2985 if (ParseAs >= CompoundLiteral) { 2986 // Parse the type declarator. 2987 DeclSpec DS(AttrFactory); 2988 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); 2989 { 2990 ColonProtectionRAIIObject InnerColonProtection(*this); 2991 ParseSpecifierQualifierList(DS); 2992 ParseDeclarator(DeclaratorInfo); 2993 } 2994 2995 // Match the ')'. 2996 Tracker.consumeClose(); 2997 ColonProt.restore(); 2998 2999 if (ParseAs == CompoundLiteral) { 3000 ExprType = CompoundLiteral; 3001 if (DeclaratorInfo.isInvalidType()) 3002 return ExprError(); 3003 3004 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 3005 return ParseCompoundLiteralExpression(Ty.get(), 3006 Tracker.getOpenLocation(), 3007 Tracker.getCloseLocation()); 3008 } 3009 3010 // We parsed '(' type-id ')' and the thing after it wasn't a '{'. 3011 assert(ParseAs == CastExpr); 3012 3013 if (DeclaratorInfo.isInvalidType()) 3014 return ExprError(); 3015 3016 // Result is what ParseCastExpression returned earlier. 3017 if (!Result.isInvalid()) 3018 Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(), 3019 DeclaratorInfo, CastTy, 3020 Tracker.getCloseLocation(), Result.get()); 3021 return Result; 3022 } 3023 3024 // Not a compound literal, and not followed by a cast-expression. 3025 assert(ParseAs == SimpleExpr); 3026 3027 ExprType = SimpleExpr; 3028 Result = ParseExpression(); 3029 if (!Result.isInvalid() && Tok.is(tok::r_paren)) 3030 Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(), 3031 Tok.getLocation(), Result.get()); 3032 3033 // Match the ')'. 3034 if (Result.isInvalid()) { 3035 SkipUntil(tok::r_paren, StopAtSemi); 3036 return ExprError(); 3037 } 3038 3039 Tracker.consumeClose(); 3040 return Result; 3041 } 3042