Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2006 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef SkTypes_DEFINED
      9 #define SkTypes_DEFINED
     10 
     11 #include "SkPreConfig.h"
     12 #include "SkUserConfig.h"
     13 #include "SkPostConfig.h"
     14 #include <stdint.h>
     15 
     16 /** \file SkTypes.h
     17 */
     18 
     19 /** See SkGraphics::GetVersion() to retrieve these at runtime
     20  */
     21 #define SKIA_VERSION_MAJOR  1
     22 #define SKIA_VERSION_MINOR  0
     23 #define SKIA_VERSION_PATCH  0
     24 
     25 /*
     26     memory wrappers to be implemented by the porting layer (platform)
     27 */
     28 
     29 /** Called internally if we run out of memory. The platform implementation must
     30     not return, but should either throw an exception or otherwise exit.
     31 */
     32 SK_API extern void sk_out_of_memory(void);
     33 /** Called internally if we hit an unrecoverable error.
     34     The platform implementation must not return, but should either throw
     35     an exception or otherwise exit.
     36 */
     37 SK_API extern void sk_throw(void);
     38 
     39 enum {
     40     SK_MALLOC_TEMP  = 0x01, //!< hint to sk_malloc that the requested memory will be freed in the scope of the stack frame
     41     SK_MALLOC_THROW = 0x02  //!< instructs sk_malloc to call sk_throw if the memory cannot be allocated.
     42 };
     43 /** Return a block of memory (at least 4-byte aligned) of at least the
     44     specified size. If the requested memory cannot be returned, either
     45     return null (if SK_MALLOC_TEMP bit is clear) or throw an exception
     46     (if SK_MALLOC_TEMP bit is set). To free the memory, call sk_free().
     47 */
     48 SK_API extern void* sk_malloc_flags(size_t size, unsigned flags);
     49 /** Same as sk_malloc(), but hard coded to pass SK_MALLOC_THROW as the flag
     50 */
     51 SK_API extern void* sk_malloc_throw(size_t size);
     52 /** Same as standard realloc(), but this one never returns null on failure. It will throw
     53     an exception if it fails.
     54 */
     55 SK_API extern void* sk_realloc_throw(void* buffer, size_t size);
     56 /** Free memory returned by sk_malloc(). It is safe to pass null.
     57 */
     58 SK_API extern void sk_free(void*);
     59 
     60 /** Much like calloc: returns a pointer to at least size zero bytes, or NULL on failure.
     61  */
     62 SK_API extern void* sk_calloc(size_t size);
     63 
     64 /** Same as sk_calloc, but throws an exception instead of returning NULL on failure.
     65  */
     66 SK_API extern void* sk_calloc_throw(size_t size);
     67 
     68 // bzero is safer than memset, but we can't rely on it, so... sk_bzero()
     69 static inline void sk_bzero(void* buffer, size_t size) {
     70     memset(buffer, 0, size);
     71 }
     72 
     73 ///////////////////////////////////////////////////////////////////////////////
     74 
     75 #ifdef SK_OVERRIDE_GLOBAL_NEW
     76 #include <new>
     77 
     78 inline void* operator new(size_t size) {
     79     return sk_malloc_throw(size);
     80 }
     81 
     82 inline void operator delete(void* p) {
     83     sk_free(p);
     84 }
     85 #endif
     86 
     87 ///////////////////////////////////////////////////////////////////////////////
     88 
     89 #define SK_INIT_TO_AVOID_WARNING    = 0
     90 
     91 #ifndef SkDebugf
     92     SK_API void SkDebugf(const char format[], ...);
     93 #endif
     94 
     95 #ifdef SK_DEBUG
     96     #define SkASSERT(cond)              SK_ALWAYSBREAK(cond)
     97     #define SkDEBUGFAIL(message)        SkASSERT(false && message)
     98     #define SkDEBUGCODE(code)           code
     99     #define SkDECLAREPARAM(type, var)   , type var
    100     #define SkPARAM(var)                , var
    101 //  #define SkDEBUGF(args       )       SkDebugf##args
    102     #define SkDEBUGF(args       )       SkDebugf args
    103     #define SkAssertResult(cond)        SkASSERT(cond)
    104 #else
    105     #define SkASSERT(cond)
    106     #define SkDEBUGFAIL(message)
    107     #define SkDEBUGCODE(code)
    108     #define SkDEBUGF(args)
    109     #define SkDECLAREPARAM(type, var)
    110     #define SkPARAM(var)
    111 
    112     // unlike SkASSERT, this guy executes its condition in the non-debug build
    113     #define SkAssertResult(cond)        cond
    114 #endif
    115 
    116 #define SkFAIL(message)                 SK_ALWAYSBREAK(false && message)
    117 
    118 // We want to evaluate cond only once, and inside the SkASSERT somewhere so we see its string form.
    119 // So we use the comma operator to make an SkDebugf that always returns false: we'll evaluate cond,
    120 // and if it's true the assert passes; if it's false, we'll print the message and the assert fails.
    121 #define SkASSERTF(cond, fmt, ...)       SkASSERT((cond) || (SkDebugf(fmt"\n", __VA_ARGS__), false))
    122 
    123 #ifdef SK_DEVELOPER
    124     #define SkDEVCODE(code)             code
    125 #else
    126     #define SkDEVCODE(code)
    127 #endif
    128 
    129 #ifdef SK_IGNORE_TO_STRING
    130     #define SK_TO_STRING_NONVIRT()
    131     #define SK_TO_STRING_VIRT()
    132     #define SK_TO_STRING_PUREVIRT()
    133     #define SK_TO_STRING_OVERRIDE()
    134 #else
    135     // the 'toString' helper functions convert Sk* objects to human-readable
    136     // form in developer mode
    137     #define SK_TO_STRING_NONVIRT() void toString(SkString* str) const;
    138     #define SK_TO_STRING_VIRT() virtual void toString(SkString* str) const;
    139     #define SK_TO_STRING_PUREVIRT() virtual void toString(SkString* str) const = 0;
    140     #define SK_TO_STRING_OVERRIDE() virtual void toString(SkString* str) const SK_OVERRIDE;
    141 #endif
    142 
    143 template <bool>
    144 struct SkCompileAssert {
    145 };
    146 
    147 // Uses static_cast<bool>(expr) instead of bool(expr) due to
    148 // https://connect.microsoft.com/VisualStudio/feedback/details/832915
    149 
    150 // The extra parentheses in SkCompileAssert<(...)> are a work around for
    151 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57771
    152 // which was fixed in gcc 4.8.2.
    153 #define SK_COMPILE_ASSERT(expr, msg) \
    154     typedef SkCompileAssert<(static_cast<bool>(expr))> \
    155             msg[static_cast<bool>(expr) ? 1 : -1] SK_UNUSED
    156 
    157 /*
    158  *  Usage:  SK_MACRO_CONCAT(a, b)   to construct the symbol ab
    159  *
    160  *  SK_MACRO_CONCAT_IMPL_PRIV just exists to make this work. Do not use directly
    161  *
    162  */
    163 #define SK_MACRO_CONCAT(X, Y)           SK_MACRO_CONCAT_IMPL_PRIV(X, Y)
    164 #define SK_MACRO_CONCAT_IMPL_PRIV(X, Y)  X ## Y
    165 
    166 /*
    167  *  Usage: SK_MACRO_APPEND_LINE(foo)    to make foo123, where 123 is the current
    168  *                                      line number. Easy way to construct
    169  *                                      unique names for local functions or
    170  *                                      variables.
    171  */
    172 #define SK_MACRO_APPEND_LINE(name)  SK_MACRO_CONCAT(name, __LINE__)
    173 
    174 /**
    175  * For some classes, it's almost always an error to instantiate one without a name, e.g.
    176  *   {
    177  *       SkAutoMutexAcquire(&mutex);
    178  *       <some code>
    179  *   }
    180  * In this case, the writer meant to hold mutex while the rest of the code in the block runs,
    181  * but instead the mutex is acquired and then immediately released.  The correct usage is
    182  *   {
    183  *       SkAutoMutexAcquire lock(&mutex);
    184  *       <some code>
    185  *   }
    186  *
    187  * To prevent callers from instantiating your class without a name, use SK_REQUIRE_LOCAL_VAR
    188  * like this:
    189  *   class classname {
    190  *       <your class>
    191  *   };
    192  *   #define classname(...) SK_REQUIRE_LOCAL_VAR(classname)
    193  *
    194  * This won't work with templates, and you must inline the class' constructors and destructors.
    195  * Take a look at SkAutoFree and SkAutoMalloc in this file for examples.
    196  */
    197 #define SK_REQUIRE_LOCAL_VAR(classname) \
    198     SK_COMPILE_ASSERT(false, missing_name_for_##classname)
    199 
    200 ///////////////////////////////////////////////////////////////////////
    201 
    202 /**
    203  *  Fast type for signed 8 bits. Use for parameter passing and local variables,
    204  *  not for storage.
    205  */
    206 typedef int S8CPU;
    207 
    208 /**
    209  *  Fast type for unsigned 8 bits. Use for parameter passing and local
    210  *  variables, not for storage
    211  */
    212 typedef unsigned U8CPU;
    213 
    214 /**
    215  *  Fast type for signed 16 bits. Use for parameter passing and local variables,
    216  *  not for storage
    217  */
    218 typedef int S16CPU;
    219 
    220 /**
    221  *  Fast type for unsigned 16 bits. Use for parameter passing and local
    222  *  variables, not for storage
    223  */
    224 typedef unsigned U16CPU;
    225 
    226 /**
    227  *  Meant to be faster than bool (doesn't promise to be 0 or 1,
    228  *  just 0 or non-zero
    229  */
    230 typedef int SkBool;
    231 
    232 /**
    233  *  Meant to be a small version of bool, for storage purposes. Will be 0 or 1
    234  */
    235 typedef uint8_t SkBool8;
    236 
    237 #ifdef SK_DEBUG
    238     SK_API int8_t      SkToS8(intmax_t);
    239     SK_API uint8_t     SkToU8(uintmax_t);
    240     SK_API int16_t     SkToS16(intmax_t);
    241     SK_API uint16_t    SkToU16(uintmax_t);
    242     SK_API int32_t     SkToS32(intmax_t);
    243     SK_API uint32_t    SkToU32(uintmax_t);
    244     SK_API int         SkToInt(intmax_t);
    245     SK_API unsigned    SkToUInt(uintmax_t);
    246     SK_API size_t      SkToSizeT(uintmax_t);
    247 #else
    248     #define SkToS8(x)   ((int8_t)(x))
    249     #define SkToU8(x)   ((uint8_t)(x))
    250     #define SkToS16(x)  ((int16_t)(x))
    251     #define SkToU16(x)  ((uint16_t)(x))
    252     #define SkToS32(x)  ((int32_t)(x))
    253     #define SkToU32(x)  ((uint32_t)(x))
    254     #define SkToInt(x)  ((int)(x))
    255     #define SkToUInt(x) ((unsigned)(x))
    256     #define SkToSizeT(x) ((size_t)(x))
    257 #endif
    258 
    259 /** Returns 0 or 1 based on the condition
    260 */
    261 #define SkToBool(cond)  ((cond) != 0)
    262 
    263 #define SK_MaxS16   32767
    264 #define SK_MinS16   -32767
    265 #define SK_MaxU16   0xFFFF
    266 #define SK_MinU16   0
    267 #define SK_MaxS32   0x7FFFFFFF
    268 #define SK_MinS32   -SK_MaxS32
    269 #define SK_MaxU32   0xFFFFFFFF
    270 #define SK_MinU32   0
    271 #define SK_NaN32    (1 << 31)
    272 
    273 /** Returns true if the value can be represented with signed 16bits
    274  */
    275 static inline bool SkIsS16(long x) {
    276     return (int16_t)x == x;
    277 }
    278 
    279 /** Returns true if the value can be represented with unsigned 16bits
    280  */
    281 static inline bool SkIsU16(long x) {
    282     return (uint16_t)x == x;
    283 }
    284 
    285 //////////////////////////////////////////////////////////////////////////////
    286 #ifndef SK_OFFSETOF
    287     #define SK_OFFSETOF(type, field)    (size_t)((char*)&(((type*)1)->field) - (char*)1)
    288 #endif
    289 
    290 /** Returns the number of entries in an array (not a pointer)
    291 */
    292 #define SK_ARRAY_COUNT(array)       (sizeof(array) / sizeof(array[0]))
    293 
    294 #define SkAlign2(x)     (((x) + 1) >> 1 << 1)
    295 #define SkIsAlign2(x)   (0 == ((x) & 1))
    296 
    297 #define SkAlign4(x)     (((x) + 3) >> 2 << 2)
    298 #define SkIsAlign4(x)   (0 == ((x) & 3))
    299 
    300 #define SkAlign8(x)     (((x) + 7) >> 3 << 3)
    301 #define SkIsAlign8(x)   (0 == ((x) & 7))
    302 
    303 #define SkAlignPtr(x)   (sizeof(void*) == 8 ?   SkAlign8(x) :   SkAlign4(x))
    304 #define SkIsAlignPtr(x) (sizeof(void*) == 8 ? SkIsAlign8(x) : SkIsAlign4(x))
    305 
    306 typedef uint32_t SkFourByteTag;
    307 #define SkSetFourByteTag(a, b, c, d)    (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
    308 
    309 /** 32 bit integer to hold a unicode value
    310 */
    311 typedef int32_t SkUnichar;
    312 /** 32 bit value to hold a millisecond count
    313 */
    314 typedef uint32_t SkMSec;
    315 /** 1 second measured in milliseconds
    316 */
    317 #define SK_MSec1 1000
    318 /** maximum representable milliseconds
    319 */
    320 #define SK_MSecMax 0x7FFFFFFF
    321 /** Returns a < b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
    322 */
    323 #define SkMSec_LT(a, b)     ((int32_t)(a) - (int32_t)(b) < 0)
    324 /** Returns a <= b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
    325 */
    326 #define SkMSec_LE(a, b)     ((int32_t)(a) - (int32_t)(b) <= 0)
    327 
    328 /** The generation IDs in Skia reserve 0 has an invalid marker.
    329  */
    330 #define SK_InvalidGenID     0
    331 /** The unique IDs in Skia reserve 0 has an invalid marker.
    332  */
    333 #define SK_InvalidUniqueID  0
    334 
    335 /****************************************************************************
    336     The rest of these only build with C++
    337 */
    338 #ifdef __cplusplus
    339 
    340 /** Faster than SkToBool for integral conditions. Returns 0 or 1
    341 */
    342 static inline int Sk32ToBool(uint32_t n) {
    343     return (n | (0-n)) >> 31;
    344 }
    345 
    346 /** Generic swap function. Classes with efficient swaps should specialize this function to take
    347     their fast path. This function is used by SkTSort. */
    348 template <typename T> inline void SkTSwap(T& a, T& b) {
    349     T c(a);
    350     a = b;
    351     b = c;
    352 }
    353 
    354 static inline int32_t SkAbs32(int32_t value) {
    355     if (value < 0) {
    356         value = -value;
    357     }
    358     return value;
    359 }
    360 
    361 template <typename T> inline T SkTAbs(T value) {
    362     if (value < 0) {
    363         value = -value;
    364     }
    365     return value;
    366 }
    367 
    368 static inline int32_t SkMax32(int32_t a, int32_t b) {
    369     if (a < b)
    370         a = b;
    371     return a;
    372 }
    373 
    374 static inline int32_t SkMin32(int32_t a, int32_t b) {
    375     if (a > b)
    376         a = b;
    377     return a;
    378 }
    379 
    380 template <typename T> const T& SkTMin(const T& a, const T& b) {
    381     return (a < b) ? a : b;
    382 }
    383 
    384 template <typename T> const T& SkTMax(const T& a, const T& b) {
    385     return (b < a) ? a : b;
    386 }
    387 
    388 static inline int32_t SkSign32(int32_t a) {
    389     return (a >> 31) | ((unsigned) -a >> 31);
    390 }
    391 
    392 static inline int32_t SkFastMin32(int32_t value, int32_t max) {
    393     if (value > max) {
    394         value = max;
    395     }
    396     return value;
    397 }
    398 
    399 /** Returns signed 32 bit value pinned between min and max, inclusively
    400 */
    401 static inline int32_t SkPin32(int32_t value, int32_t min, int32_t max) {
    402     if (value < min) {
    403         value = min;
    404     }
    405     if (value > max) {
    406         value = max;
    407     }
    408     return value;
    409 }
    410 
    411 static inline uint32_t SkSetClearShift(uint32_t bits, bool cond,
    412                                        unsigned shift) {
    413     SkASSERT((int)cond == 0 || (int)cond == 1);
    414     return (bits & ~(1 << shift)) | ((int)cond << shift);
    415 }
    416 
    417 static inline uint32_t SkSetClearMask(uint32_t bits, bool cond,
    418                                       uint32_t mask) {
    419     return cond ? bits | mask : bits & ~mask;
    420 }
    421 
    422 ///////////////////////////////////////////////////////////////////////////////
    423 
    424 /** Use to combine multiple bits in a bitmask in a type safe way.
    425  */
    426 template <typename T>
    427 T SkTBitOr(T a, T b) {
    428     return (T)(a | b);
    429 }
    430 
    431 /**
    432  *  Use to cast a pointer to a different type, and maintaining strict-aliasing
    433  */
    434 template <typename Dst> Dst SkTCast(const void* ptr) {
    435     union {
    436         const void* src;
    437         Dst dst;
    438     } data;
    439     data.src = ptr;
    440     return data.dst;
    441 }
    442 
    443 //////////////////////////////////////////////////////////////////////////////
    444 
    445 /** \class SkNoncopyable
    446 
    447 SkNoncopyable is the base class for objects that may do not want to
    448 be copied. It hides its copy-constructor and its assignment-operator.
    449 */
    450 class SK_API SkNoncopyable {
    451 public:
    452     SkNoncopyable() {}
    453 
    454 private:
    455     SkNoncopyable(const SkNoncopyable&);
    456     SkNoncopyable& operator=(const SkNoncopyable&);
    457 };
    458 
    459 class SkAutoFree : SkNoncopyable {
    460 public:
    461     SkAutoFree() : fPtr(NULL) {}
    462     explicit SkAutoFree(void* ptr) : fPtr(ptr) {}
    463     ~SkAutoFree() { sk_free(fPtr); }
    464 
    465     /** Return the currently allocate buffer, or null
    466     */
    467     void* get() const { return fPtr; }
    468 
    469     /** Assign a new ptr allocated with sk_malloc (or null), and return the
    470         previous ptr. Note it is the caller's responsibility to sk_free the
    471         returned ptr.
    472     */
    473     void* set(void* ptr) {
    474         void* prev = fPtr;
    475         fPtr = ptr;
    476         return prev;
    477     }
    478 
    479     /** Transfer ownership of the current ptr to the caller, setting the
    480         internal reference to null. Note the caller is reponsible for calling
    481         sk_free on the returned address.
    482     */
    483     void* detach() { return this->set(NULL); }
    484 
    485     /** Free the current buffer, and set the internal reference to NULL. Same
    486         as calling sk_free(detach())
    487     */
    488     void free() {
    489         sk_free(fPtr);
    490         fPtr = NULL;
    491     }
    492 
    493 private:
    494     void* fPtr;
    495     // illegal
    496     SkAutoFree(const SkAutoFree&);
    497     SkAutoFree& operator=(const SkAutoFree&);
    498 };
    499 #define SkAutoFree(...) SK_REQUIRE_LOCAL_VAR(SkAutoFree)
    500 
    501 /**
    502  *  Manage an allocated block of heap memory. This object is the sole manager of
    503  *  the lifetime of the block, so the caller must not call sk_free() or delete
    504  *  on the block, unless detach() was called.
    505  */
    506 class SkAutoMalloc : SkNoncopyable {
    507 public:
    508     explicit SkAutoMalloc(size_t size = 0) {
    509         fPtr = size ? sk_malloc_throw(size) : NULL;
    510         fSize = size;
    511     }
    512 
    513     ~SkAutoMalloc() {
    514         sk_free(fPtr);
    515     }
    516 
    517     /**
    518      *  Passed to reset to specify what happens if the requested size is smaller
    519      *  than the current size (and the current block was dynamically allocated).
    520      */
    521     enum OnShrink {
    522         /**
    523          *  If the requested size is smaller than the current size, and the
    524          *  current block is dynamically allocated, free the old block and
    525          *  malloc a new block of the smaller size.
    526          */
    527         kAlloc_OnShrink,
    528 
    529         /**
    530          *  If the requested size is smaller than the current size, and the
    531          *  current block is dynamically allocated, just return the old
    532          *  block.
    533          */
    534         kReuse_OnShrink
    535     };
    536 
    537     /**
    538      *  Reallocates the block to a new size. The ptr may or may not change.
    539      */
    540     void* reset(size_t size, OnShrink shrink = kAlloc_OnShrink,  bool* didChangeAlloc = NULL) {
    541         if (size == fSize || (kReuse_OnShrink == shrink && size < fSize)) {
    542             if (didChangeAlloc) {
    543                 *didChangeAlloc = false;
    544             }
    545             return fPtr;
    546         }
    547 
    548         sk_free(fPtr);
    549         fPtr = size ? sk_malloc_throw(size) : NULL;
    550         fSize = size;
    551         if (didChangeAlloc) {
    552             *didChangeAlloc = true;
    553         }
    554 
    555         return fPtr;
    556     }
    557 
    558     /**
    559      *  Releases the block back to the heap
    560      */
    561     void free() {
    562         this->reset(0);
    563     }
    564 
    565     /**
    566      *  Return the allocated block.
    567      */
    568     void* get() { return fPtr; }
    569     const void* get() const { return fPtr; }
    570 
    571    /** Transfer ownership of the current ptr to the caller, setting the
    572        internal reference to null. Note the caller is reponsible for calling
    573        sk_free on the returned address.
    574     */
    575     void* detach() {
    576         void* ptr = fPtr;
    577         fPtr = NULL;
    578         fSize = 0;
    579         return ptr;
    580     }
    581 
    582 private:
    583     void*   fPtr;
    584     size_t  fSize;  // can be larger than the requested size (see kReuse)
    585 };
    586 #define SkAutoMalloc(...) SK_REQUIRE_LOCAL_VAR(SkAutoMalloc)
    587 
    588 /**
    589  *  Manage an allocated block of memory. If the requested size is <= kSize, then
    590  *  the allocation will come from the stack rather than the heap. This object
    591  *  is the sole manager of the lifetime of the block, so the caller must not
    592  *  call sk_free() or delete on the block.
    593  */
    594 template <size_t kSize> class SkAutoSMalloc : SkNoncopyable {
    595 public:
    596     /**
    597      *  Creates initially empty storage. get() returns a ptr, but it is to
    598      *  a zero-byte allocation. Must call reset(size) to return an allocated
    599      *  block.
    600      */
    601     SkAutoSMalloc() {
    602         fPtr = fStorage;
    603         fSize = kSize;
    604     }
    605 
    606     /**
    607      *  Allocate a block of the specified size. If size <= kSize, then the
    608      *  allocation will come from the stack, otherwise it will be dynamically
    609      *  allocated.
    610      */
    611     explicit SkAutoSMalloc(size_t size) {
    612         fPtr = fStorage;
    613         fSize = kSize;
    614         this->reset(size);
    615     }
    616 
    617     /**
    618      *  Free the allocated block (if any). If the block was small enought to
    619      *  have been allocated on the stack (size <= kSize) then this does nothing.
    620      */
    621     ~SkAutoSMalloc() {
    622         if (fPtr != (void*)fStorage) {
    623             sk_free(fPtr);
    624         }
    625     }
    626 
    627     /**
    628      *  Return the allocated block. May return non-null even if the block is
    629      *  of zero size. Since this may be on the stack or dynamically allocated,
    630      *  the caller must not call sk_free() on it, but must rely on SkAutoSMalloc
    631      *  to manage it.
    632      */
    633     void* get() const { return fPtr; }
    634 
    635     /**
    636      *  Return a new block of the requested size, freeing (as necessary) any
    637      *  previously allocated block. As with the constructor, if size <= kSize
    638      *  then the return block may be allocated locally, rather than from the
    639      *  heap.
    640      */
    641     void* reset(size_t size,
    642                 SkAutoMalloc::OnShrink shrink = SkAutoMalloc::kAlloc_OnShrink,
    643                 bool* didChangeAlloc = NULL) {
    644         size = (size < kSize) ? kSize : size;
    645         bool alloc = size != fSize && (SkAutoMalloc::kAlloc_OnShrink == shrink || size > fSize);
    646         if (didChangeAlloc) {
    647             *didChangeAlloc = alloc;
    648         }
    649         if (alloc) {
    650             if (fPtr != (void*)fStorage) {
    651                 sk_free(fPtr);
    652             }
    653 
    654             if (size == kSize) {
    655                 SkASSERT(fPtr != fStorage); // otherwise we lied when setting didChangeAlloc.
    656                 fPtr = fStorage;
    657             } else {
    658                 fPtr = sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP);
    659             }
    660 
    661             fSize = size;
    662         }
    663         SkASSERT(fSize >= size && fSize >= kSize);
    664         SkASSERT((fPtr == fStorage) || fSize > kSize);
    665         return fPtr;
    666     }
    667 
    668 private:
    669     void*       fPtr;
    670     size_t      fSize;  // can be larger than the requested size (see kReuse)
    671     uint32_t    fStorage[(kSize + 3) >> 2];
    672 };
    673 // Can't guard the constructor because it's a template class.
    674 
    675 #endif /* C++ */
    676 
    677 #endif
    678