Home | History | Annotate | Download | only in ssl
      1 /*
      2  * Key Derivation that doesn't use PKCS11
      3  *
      4  * This Source Code Form is subject to the terms of the Mozilla Public
      5  * License, v. 2.0. If a copy of the MPL was not distributed with this
      6  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
      7 
      8 #include "ssl.h" 	/* prereq to sslimpl.h */
      9 #include "certt.h"	/* prereq to sslimpl.h */
     10 #include "keythi.h"	/* prereq to sslimpl.h */
     11 #include "sslimpl.h"
     12 #ifndef NO_PKCS11_BYPASS
     13 #include "blapi.h"
     14 #endif
     15 
     16 #include "keyhi.h"
     17 #include "pk11func.h"
     18 #include "secasn1.h"
     19 #include "cert.h"
     20 #include "secmodt.h"
     21 
     22 #include "sslproto.h"
     23 #include "sslerr.h"
     24 
     25 #ifndef NO_PKCS11_BYPASS
     26 /* make this a macro! */
     27 #ifdef NOT_A_MACRO
     28 static void
     29 buildSSLKey(unsigned char * keyBlock, unsigned int keyLen, SECItem * result,
     30             const char * label)
     31 {
     32     result->type = siBuffer;
     33     result->data = keyBlock;
     34     result->len  = keyLen;
     35     PRINT_BUF(100, (NULL, label, keyBlock, keyLen));
     36 }
     37 #else
     38 #define buildSSLKey(keyBlock, keyLen, result, label) \
     39 { \
     40     (result)->type = siBuffer; \
     41     (result)->data = keyBlock; \
     42     (result)->len  = keyLen; \
     43     PRINT_BUF(100, (NULL, label, keyBlock, keyLen)); \
     44 }
     45 #endif
     46 
     47 /*
     48  * SSL Key generation given pre master secret
     49  */
     50 #ifndef NUM_MIXERS
     51 #define NUM_MIXERS 9
     52 #endif
     53 static const char * const mixers[NUM_MIXERS] = {
     54     "A",
     55     "BB",
     56     "CCC",
     57     "DDDD",
     58     "EEEEE",
     59     "FFFFFF",
     60     "GGGGGGG",
     61     "HHHHHHHH",
     62     "IIIIIIIII"
     63 };
     64 
     65 
     66 SECStatus
     67 ssl3_KeyAndMacDeriveBypass(
     68     ssl3CipherSpec *      pwSpec,
     69     const unsigned char * cr,
     70     const unsigned char * sr,
     71     PRBool                isTLS,
     72     PRBool                isExport)
     73 {
     74     const ssl3BulkCipherDef *cipher_def = pwSpec->cipher_def;
     75     unsigned char * key_block    = pwSpec->key_block;
     76     unsigned char * key_block2   = NULL;
     77     unsigned int    block_bytes  = 0;
     78     unsigned int    block_needed = 0;
     79     unsigned int    i;
     80     unsigned int    keySize;            /* actual    size of cipher keys */
     81     unsigned int    effKeySize;		/* effective size of cipher keys */
     82     unsigned int    macSize;		/* size of MAC secret */
     83     unsigned int    IVSize;		/* size of IV */
     84     PRBool          explicitIV = PR_FALSE;
     85     SECStatus       rv    = SECFailure;
     86     SECStatus       status = SECSuccess;
     87     PRBool          isFIPS = PR_FALSE;
     88     PRBool          isTLS12 = pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2;
     89 
     90     SECItem         srcr;
     91     SECItem         crsr;
     92 
     93     unsigned char     srcrdata[SSL3_RANDOM_LENGTH * 2];
     94     unsigned char     crsrdata[SSL3_RANDOM_LENGTH * 2];
     95     PRUint64          md5buf[22];
     96     PRUint64          shabuf[40];
     97 
     98 #define md5Ctx ((MD5Context *)md5buf)
     99 #define shaCtx ((SHA1Context *)shabuf)
    100 
    101     static const SECItem zed  = { siBuffer, NULL, 0 };
    102 
    103     if (pwSpec->msItem.data == NULL ||
    104         pwSpec->msItem.len  != SSL3_MASTER_SECRET_LENGTH) {
    105 	PORT_SetError(SEC_ERROR_INVALID_ARGS);
    106 	return rv;
    107     }
    108 
    109     PRINT_BUF(100, (NULL, "Master Secret", pwSpec->msItem.data,
    110                                            pwSpec->msItem.len));
    111 
    112     /* figure out how much is needed */
    113     macSize    = pwSpec->mac_size;
    114     keySize    = cipher_def->key_size;
    115     effKeySize = cipher_def->secret_key_size;
    116     IVSize     = cipher_def->iv_size;
    117     if (keySize == 0) {
    118 	effKeySize = IVSize = 0; /* only MACing */
    119     }
    120     if (cipher_def->type == type_block &&
    121 	pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_1) {
    122 	/* Block ciphers in >= TLS 1.1 use a per-record, explicit IV. */
    123 	explicitIV = PR_TRUE;
    124     }
    125     block_needed =
    126 	2 * (macSize + effKeySize + ((!isExport && !explicitIV) * IVSize));
    127 
    128     /*
    129      * clear out our returned keys so we can recover on failure
    130      */
    131     pwSpec->client.write_key_item     = zed;
    132     pwSpec->client.write_mac_key_item = zed;
    133     pwSpec->server.write_key_item     = zed;
    134     pwSpec->server.write_mac_key_item = zed;
    135 
    136     /* initialize the server random, client random block */
    137     srcr.type   = siBuffer;
    138     srcr.data   = srcrdata;
    139     srcr.len    = sizeof srcrdata;
    140     PORT_Memcpy(srcrdata, sr, SSL3_RANDOM_LENGTH);
    141     PORT_Memcpy(srcrdata + SSL3_RANDOM_LENGTH, cr, SSL3_RANDOM_LENGTH);
    142 
    143     /* initialize the client random, server random block */
    144     crsr.type   = siBuffer;
    145     crsr.data   = crsrdata;
    146     crsr.len    = sizeof crsrdata;
    147     PORT_Memcpy(crsrdata, cr, SSL3_RANDOM_LENGTH);
    148     PORT_Memcpy(crsrdata + SSL3_RANDOM_LENGTH, sr, SSL3_RANDOM_LENGTH);
    149     PRINT_BUF(100, (NULL, "Key & MAC CRSR", crsr.data, crsr.len));
    150 
    151     /*
    152      * generate the key material:
    153      */
    154     if (isTLS) {
    155 	SECItem       keyblk;
    156 
    157 	keyblk.type = siBuffer;
    158 	keyblk.data = key_block;
    159 	keyblk.len  = block_needed;
    160 
    161 	if (isTLS12) {
    162 	    status = TLS_P_hash(HASH_AlgSHA256, &pwSpec->msItem,
    163 				"key expansion", &srcr, &keyblk, isFIPS);
    164 	} else {
    165 	    status = TLS_PRF(&pwSpec->msItem, "key expansion", &srcr, &keyblk,
    166 			     isFIPS);
    167 	}
    168 	if (status != SECSuccess) {
    169 	    goto key_and_mac_derive_fail;
    170 	}
    171 	block_bytes = keyblk.len;
    172     } else {
    173 	/* key_block =
    174 	 *     MD5(master_secret + SHA('A' + master_secret +
    175 	 *                      ServerHello.random + ClientHello.random)) +
    176 	 *     MD5(master_secret + SHA('BB' + master_secret +
    177 	 *                      ServerHello.random + ClientHello.random)) +
    178 	 *     MD5(master_secret + SHA('CCC' + master_secret +
    179 	 *                      ServerHello.random + ClientHello.random)) +
    180 	 *     [...];
    181 	 */
    182 	unsigned int made = 0;
    183 	for (i = 0; made < block_needed && i < NUM_MIXERS; ++i) {
    184 	    unsigned int    outLen;
    185 	    unsigned char   sha_out[SHA1_LENGTH];
    186 
    187 	    SHA1_Begin(shaCtx);
    188 	    SHA1_Update(shaCtx, (unsigned char*)(mixers[i]), i+1);
    189 	    SHA1_Update(shaCtx, pwSpec->msItem.data, pwSpec->msItem.len);
    190 	    SHA1_Update(shaCtx, srcr.data, srcr.len);
    191 	    SHA1_End(shaCtx, sha_out, &outLen, SHA1_LENGTH);
    192 	    PORT_Assert(outLen == SHA1_LENGTH);
    193 
    194 	    MD5_Begin(md5Ctx);
    195 	    MD5_Update(md5Ctx, pwSpec->msItem.data, pwSpec->msItem.len);
    196 	    MD5_Update(md5Ctx, sha_out, outLen);
    197 	    MD5_End(md5Ctx, key_block + made, &outLen, MD5_LENGTH);
    198 	    PORT_Assert(outLen == MD5_LENGTH);
    199 	    made += MD5_LENGTH;
    200 	}
    201 	block_bytes = made;
    202     }
    203     PORT_Assert(block_bytes >= block_needed);
    204     PORT_Assert(block_bytes <= sizeof pwSpec->key_block);
    205     PRINT_BUF(100, (NULL, "key block", key_block, block_bytes));
    206 
    207     /*
    208      * Put the key material where it goes.
    209      */
    210     key_block2 = key_block + block_bytes;
    211     i = 0;			/* now shows how much consumed */
    212 
    213     /*
    214      * The key_block is partitioned as follows:
    215      * client_write_MAC_secret[CipherSpec.hash_size]
    216      */
    217     buildSSLKey(&key_block[i],macSize, &pwSpec->client.write_mac_key_item, \
    218                 "Client Write MAC Secret");
    219     i += macSize;
    220 
    221     /*
    222      * server_write_MAC_secret[CipherSpec.hash_size]
    223      */
    224     buildSSLKey(&key_block[i],macSize, &pwSpec->server.write_mac_key_item, \
    225                 "Server Write MAC Secret");
    226     i += macSize;
    227 
    228     if (!keySize) {
    229 	/* only MACing */
    230 	buildSSLKey(NULL, 0, &pwSpec->client.write_key_item, \
    231 	            "Client Write Key (MAC only)");
    232 	buildSSLKey(NULL, 0, &pwSpec->server.write_key_item, \
    233 	            "Server Write Key (MAC only)");
    234 	buildSSLKey(NULL, 0, &pwSpec->client.write_iv_item, \
    235 	            "Client Write IV (MAC only)");
    236 	buildSSLKey(NULL, 0, &pwSpec->server.write_iv_item, \
    237 	            "Server Write IV (MAC only)");
    238     } else if (!isExport) {
    239 	/*
    240 	** Generate Domestic write keys and IVs.
    241 	** client_write_key[CipherSpec.key_material]
    242 	*/
    243 	buildSSLKey(&key_block[i], keySize, &pwSpec->client.write_key_item, \
    244 	            "Domestic Client Write Key");
    245 	i += keySize;
    246 
    247 	/*
    248 	** server_write_key[CipherSpec.key_material]
    249 	*/
    250 	buildSSLKey(&key_block[i], keySize, &pwSpec->server.write_key_item, \
    251 	            "Domestic Server Write Key");
    252 	i += keySize;
    253 
    254 	if (IVSize > 0) {
    255 	    if (explicitIV) {
    256 		static unsigned char zero_block[32];
    257 		PORT_Assert(IVSize <= sizeof zero_block);
    258 		buildSSLKey(&zero_block[0], IVSize, \
    259 			    &pwSpec->client.write_iv_item, \
    260 			    "Domestic Client Write IV");
    261 		buildSSLKey(&zero_block[0], IVSize, \
    262 			    &pwSpec->server.write_iv_item, \
    263 			    "Domestic Server Write IV");
    264 	    } else {
    265 		/*
    266 		** client_write_IV[CipherSpec.IV_size]
    267 		*/
    268 		buildSSLKey(&key_block[i], IVSize, \
    269 			    &pwSpec->client.write_iv_item, \
    270 			    "Domestic Client Write IV");
    271 		i += IVSize;
    272 
    273 		/*
    274 		** server_write_IV[CipherSpec.IV_size]
    275 		*/
    276 		buildSSLKey(&key_block[i], IVSize, \
    277 			    &pwSpec->server.write_iv_item, \
    278 			    "Domestic Server Write IV");
    279 		i += IVSize;
    280 	    }
    281 	}
    282 	PORT_Assert(i <= block_bytes);
    283     } else if (!isTLS) {
    284 	/*
    285 	** Generate SSL3 Export write keys and IVs.
    286 	*/
    287 	unsigned int    outLen;
    288 
    289 	/*
    290 	** client_write_key[CipherSpec.key_material]
    291 	** final_client_write_key = MD5(client_write_key +
    292 	**                   ClientHello.random + ServerHello.random);
    293 	*/
    294 	MD5_Begin(md5Ctx);
    295 	MD5_Update(md5Ctx, &key_block[i], effKeySize);
    296 	MD5_Update(md5Ctx, crsr.data, crsr.len);
    297 	MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
    298 	i += effKeySize;
    299 	buildSSLKey(key_block2, keySize, &pwSpec->client.write_key_item, \
    300 	            "SSL3 Export Client Write Key");
    301 	key_block2 += keySize;
    302 
    303 	/*
    304 	** server_write_key[CipherSpec.key_material]
    305 	** final_server_write_key = MD5(server_write_key +
    306 	**                    ServerHello.random + ClientHello.random);
    307 	*/
    308 	MD5_Begin(md5Ctx);
    309 	MD5_Update(md5Ctx, &key_block[i], effKeySize);
    310 	MD5_Update(md5Ctx, srcr.data, srcr.len);
    311 	MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
    312 	i += effKeySize;
    313 	buildSSLKey(key_block2, keySize, &pwSpec->server.write_key_item, \
    314 	            "SSL3 Export Server Write Key");
    315 	key_block2 += keySize;
    316 	PORT_Assert(i <= block_bytes);
    317 
    318 	if (IVSize) {
    319 	    /*
    320 	    ** client_write_IV =
    321 	    **	MD5(ClientHello.random + ServerHello.random);
    322 	    */
    323 	    MD5_Begin(md5Ctx);
    324 	    MD5_Update(md5Ctx, crsr.data, crsr.len);
    325 	    MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
    326 	    buildSSLKey(key_block2, IVSize, &pwSpec->client.write_iv_item, \
    327 	                "SSL3 Export Client Write IV");
    328 	    key_block2 += IVSize;
    329 
    330 	    /*
    331 	    ** server_write_IV =
    332 	    **	MD5(ServerHello.random + ClientHello.random);
    333 	    */
    334 	    MD5_Begin(md5Ctx);
    335 	    MD5_Update(md5Ctx, srcr.data, srcr.len);
    336 	    MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
    337 	    buildSSLKey(key_block2, IVSize, &pwSpec->server.write_iv_item, \
    338 	                "SSL3 Export Server Write IV");
    339 	    key_block2 += IVSize;
    340 	}
    341 
    342 	PORT_Assert(key_block2 - key_block <= sizeof pwSpec->key_block);
    343     } else {
    344 	/*
    345 	** Generate TLS Export write keys and IVs.
    346 	*/
    347 	SECItem       secret ;
    348 	SECItem       keyblk ;
    349 
    350 	secret.type = siBuffer;
    351 	keyblk.type = siBuffer;
    352 	/*
    353 	** client_write_key[CipherSpec.key_material]
    354 	** final_client_write_key = PRF(client_write_key,
    355 	**                              "client write key",
    356 	**                              client_random + server_random);
    357 	*/
    358 	secret.data = &key_block[i];
    359 	secret.len  = effKeySize;
    360 	i          += effKeySize;
    361 	keyblk.data = key_block2;
    362 	keyblk.len  = keySize;
    363 	status = TLS_PRF(&secret, "client write key", &crsr, &keyblk, isFIPS);
    364 	if (status != SECSuccess) {
    365 	    goto key_and_mac_derive_fail;
    366 	}
    367 	buildSSLKey(key_block2, keySize, &pwSpec->client.write_key_item, \
    368 	            "TLS Export Client Write Key");
    369 	key_block2 += keySize;
    370 
    371 	/*
    372 	** server_write_key[CipherSpec.key_material]
    373 	** final_server_write_key = PRF(server_write_key,
    374 	**                              "server write key",
    375 	**                              client_random + server_random);
    376 	*/
    377 	secret.data = &key_block[i];
    378 	secret.len  = effKeySize;
    379 	i          += effKeySize;
    380 	keyblk.data = key_block2;
    381 	keyblk.len  = keySize;
    382 	status = TLS_PRF(&secret, "server write key", &crsr, &keyblk, isFIPS);
    383 	if (status != SECSuccess) {
    384 	    goto key_and_mac_derive_fail;
    385 	}
    386 	buildSSLKey(key_block2, keySize, &pwSpec->server.write_key_item, \
    387 	            "TLS Export Server Write Key");
    388 	key_block2 += keySize;
    389 
    390 	/*
    391 	** iv_block = PRF("", "IV block", client_random + server_random);
    392 	** client_write_IV[SecurityParameters.IV_size]
    393 	** server_write_IV[SecurityParameters.IV_size]
    394 	*/
    395 	if (IVSize) {
    396 	    secret.data = NULL;
    397 	    secret.len  = 0;
    398 	    keyblk.data = key_block2;
    399 	    keyblk.len  = 2 * IVSize;
    400 	    status = TLS_PRF(&secret, "IV block", &crsr, &keyblk, isFIPS);
    401 	    if (status != SECSuccess) {
    402 		goto key_and_mac_derive_fail;
    403 	    }
    404 	    buildSSLKey(key_block2,          IVSize, \
    405 	                &pwSpec->client.write_iv_item, \
    406 			"TLS Export Client Write IV");
    407 	    buildSSLKey(key_block2 + IVSize, IVSize, \
    408 	                &pwSpec->server.write_iv_item, \
    409 			"TLS Export Server Write IV");
    410 	    key_block2 += 2 * IVSize;
    411 	}
    412 	PORT_Assert(key_block2 - key_block <= sizeof pwSpec->key_block);
    413     }
    414     rv = SECSuccess;
    415 
    416 key_and_mac_derive_fail:
    417 
    418     MD5_DestroyContext(md5Ctx, PR_FALSE);
    419     SHA1_DestroyContext(shaCtx, PR_FALSE);
    420 
    421     if (rv != SECSuccess) {
    422 	PORT_SetError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
    423     }
    424 
    425     return rv;
    426 }
    427 
    428 
    429 /* derive the Master Secret from the PMS */
    430 /* Presently, this is only done wtih RSA PMS, and only on the server side,
    431  * so isRSA is always true.
    432  */
    433 SECStatus
    434 ssl3_MasterKeyDeriveBypass(
    435     ssl3CipherSpec *      pwSpec,
    436     const unsigned char * cr,
    437     const unsigned char * sr,
    438     const SECItem *       pms,
    439     PRBool                isTLS,
    440     PRBool                isRSA)
    441 {
    442     unsigned char * key_block    = pwSpec->key_block;
    443     SECStatus       rv    = SECSuccess;
    444     PRBool          isFIPS = PR_FALSE;
    445     PRBool          isTLS12 = pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2;
    446 
    447     SECItem         crsr;
    448 
    449     unsigned char     crsrdata[SSL3_RANDOM_LENGTH * 2];
    450     PRUint64          md5buf[22];
    451     PRUint64          shabuf[40];
    452 
    453 #define md5Ctx ((MD5Context *)md5buf)
    454 #define shaCtx ((SHA1Context *)shabuf)
    455 
    456     /* first do the consistancy checks */
    457     if (isRSA) {
    458 	PORT_Assert(pms->len == SSL3_RSA_PMS_LENGTH);
    459 	if (pms->len != SSL3_RSA_PMS_LENGTH) {
    460 	    PORT_SetError(SEC_ERROR_INVALID_ARGS);
    461 	    return SECFailure;
    462 	}
    463 	/* caller must test PMS version for rollback */
    464     }
    465 
    466     /* initialize the client random, server random block */
    467     crsr.type   = siBuffer;
    468     crsr.data   = crsrdata;
    469     crsr.len    = sizeof crsrdata;
    470     PORT_Memcpy(crsrdata, cr, SSL3_RANDOM_LENGTH);
    471     PORT_Memcpy(crsrdata + SSL3_RANDOM_LENGTH, sr, SSL3_RANDOM_LENGTH);
    472     PRINT_BUF(100, (NULL, "Master Secret CRSR", crsr.data, crsr.len));
    473 
    474     /* finally do the key gen */
    475     if (isTLS) {
    476 	SECItem master = { siBuffer, NULL, 0 };
    477 
    478 	master.data = key_block;
    479 	master.len = SSL3_MASTER_SECRET_LENGTH;
    480 
    481 	if (isTLS12) {
    482 	    rv = TLS_P_hash(HASH_AlgSHA256, pms, "master secret", &crsr,
    483 			    &master, isFIPS);
    484 	} else {
    485 	    rv = TLS_PRF(pms, "master secret", &crsr, &master, isFIPS);
    486 	}
    487 	if (rv != SECSuccess) {
    488 	    PORT_SetError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
    489 	}
    490     } else {
    491 	int i;
    492 	unsigned int made = 0;
    493 	for (i = 0; i < 3; i++) {
    494 	    unsigned int    outLen;
    495 	    unsigned char   sha_out[SHA1_LENGTH];
    496 
    497 	    SHA1_Begin(shaCtx);
    498 	    SHA1_Update(shaCtx, (unsigned char*) mixers[i], i+1);
    499 	    SHA1_Update(shaCtx, pms->data, pms->len);
    500 	    SHA1_Update(shaCtx, crsr.data, crsr.len);
    501 	    SHA1_End(shaCtx, sha_out, &outLen, SHA1_LENGTH);
    502 	    PORT_Assert(outLen == SHA1_LENGTH);
    503 
    504 	    MD5_Begin(md5Ctx);
    505 	    MD5_Update(md5Ctx, pms->data, pms->len);
    506 	    MD5_Update(md5Ctx, sha_out, outLen);
    507 	    MD5_End(md5Ctx, key_block + made, &outLen, MD5_LENGTH);
    508 	    PORT_Assert(outLen == MD5_LENGTH);
    509 	    made += outLen;
    510 	}
    511     }
    512 
    513     /* store the results */
    514     PORT_Memcpy(pwSpec->raw_master_secret, key_block,
    515 		SSL3_MASTER_SECRET_LENGTH);
    516     pwSpec->msItem.data = pwSpec->raw_master_secret;
    517     pwSpec->msItem.len  = SSL3_MASTER_SECRET_LENGTH;
    518     PRINT_BUF(100, (NULL, "Master Secret", pwSpec->msItem.data,
    519                                            pwSpec->msItem.len));
    520 
    521     return rv;
    522 }
    523 
    524 static SECStatus
    525 ssl_canExtractMS(PK11SymKey *pms, PRBool isTLS, PRBool isDH, PRBool *pcbp)
    526 {   SECStatus	      rv;
    527     PK11SymKey *    ms = NULL;
    528     SECItem         params = {siBuffer, NULL, 0};
    529     CK_SSL3_MASTER_KEY_DERIVE_PARAMS master_params;
    530     unsigned char   rand[SSL3_RANDOM_LENGTH];
    531     CK_VERSION      pms_version;
    532     CK_MECHANISM_TYPE master_derive;
    533     CK_MECHANISM_TYPE key_derive;
    534     CK_FLAGS          keyFlags;
    535 
    536     if (pms == NULL)
    537 	return(SECFailure);
    538 
    539     PORT_Memset(rand, 0, SSL3_RANDOM_LENGTH);
    540 
    541     if (isTLS) {
    542 	if(isDH) master_derive = CKM_TLS_MASTER_KEY_DERIVE_DH;
    543 	else master_derive = CKM_TLS_MASTER_KEY_DERIVE;
    544 	key_derive    = CKM_TLS_KEY_AND_MAC_DERIVE;
    545 	keyFlags      = CKF_SIGN | CKF_VERIFY;
    546     } else {
    547 	if (isDH) master_derive = CKM_SSL3_MASTER_KEY_DERIVE_DH;
    548 	else master_derive = CKM_SSL3_MASTER_KEY_DERIVE;
    549 	key_derive    = CKM_SSL3_KEY_AND_MAC_DERIVE;
    550 	keyFlags      = 0;
    551     }
    552 
    553     master_params.pVersion                     = &pms_version;
    554     master_params.RandomInfo.pClientRandom     = rand;
    555     master_params.RandomInfo.ulClientRandomLen = SSL3_RANDOM_LENGTH;
    556     master_params.RandomInfo.pServerRandom     = rand;
    557     master_params.RandomInfo.ulServerRandomLen = SSL3_RANDOM_LENGTH;
    558 
    559     params.data = (unsigned char *) &master_params;
    560     params.len  = sizeof master_params;
    561 
    562     ms = PK11_DeriveWithFlags(pms, master_derive, &params, key_derive,
    563 			      CKA_DERIVE, 0, keyFlags);
    564     if (ms == NULL)
    565 	return(SECFailure);
    566 
    567     rv = PK11_ExtractKeyValue(ms);
    568     *pcbp = (rv == SECSuccess);
    569     PK11_FreeSymKey(ms);
    570 
    571     return(rv);
    572 
    573 }
    574 #endif  /* !NO_PKCS11_BYPASS */
    575 
    576 /* Check the key exchange algorithm for each cipher in the list to see if
    577  * a master secret key can be extracted. If the KEA will use keys from the
    578  * specified cert make sure the extract operation is attempted from the slot
    579  * where the private key resides.
    580  * If MS can be extracted for all ciphers, (*pcanbypass) is set to TRUE and
    581  * SECSuccess is returned. In all other cases but one (*pcanbypass) is
    582  * set to FALSE and SECFailure is returned.
    583  * In that last case Derive() has been called successfully but the MS is null,
    584  * CanBypass sets (*pcanbypass) to FALSE and returns SECSuccess indicating the
    585  * arguments were all valid but the slot cannot be bypassed.
    586  */
    587 
    588 /* XXX Add SSL_CBP_TLS1_1 and test it in protocolmask when setting isTLS. */
    589 
    590 SECStatus
    591 SSL_CanBypass(CERTCertificate *cert, SECKEYPrivateKey *srvPrivkey,
    592 	      PRUint32 protocolmask, PRUint16 *ciphersuites, int nsuites,
    593               PRBool *pcanbypass, void *pwArg)
    594 {
    595 #ifdef NO_PKCS11_BYPASS
    596     if (!pcanbypass) {
    597         PORT_SetError(SEC_ERROR_INVALID_ARGS);
    598         return SECFailure;
    599     }
    600     *pcanbypass = PR_FALSE;
    601     return SECSuccess;
    602 #else
    603     SECStatus	      rv;
    604     int		      i;
    605     PRUint16	      suite;
    606     PK11SymKey *      pms = NULL;
    607     SECKEYPublicKey * srvPubkey = NULL;
    608     KeyType	      privKeytype;
    609     PK11SlotInfo *    slot = NULL;
    610     SECItem           param;
    611     CK_VERSION 	      version;
    612     CK_MECHANISM_TYPE mechanism_array[2];
    613     SECItem           enc_pms = {siBuffer, NULL, 0};
    614     PRBool	      isTLS = PR_FALSE;
    615     SSLCipherSuiteInfo csdef;
    616     PRBool	      testrsa = PR_FALSE;
    617     PRBool	      testrsa_export = PR_FALSE;
    618     PRBool	      testecdh = PR_FALSE;
    619     PRBool	      testecdhe = PR_FALSE;
    620 #ifdef NSS_ENABLE_ECC
    621     SECKEYECParams ecParams = { siBuffer, NULL, 0 };
    622 #endif
    623 
    624     if (!cert || !srvPrivkey || !ciphersuites || !pcanbypass) {
    625 	PORT_SetError(SEC_ERROR_INVALID_ARGS);
    626         return SECFailure;
    627     }
    628 
    629     srvPubkey = CERT_ExtractPublicKey(cert);
    630     if (!srvPubkey)
    631         return SECFailure;
    632 
    633     *pcanbypass = PR_TRUE;
    634     rv = SECFailure;
    635 
    636     /* determine which KEAs to test */
    637     /* 0 (SSL_NULL_WITH_NULL_NULL) is used as a list terminator because
    638      * SSL3 and TLS specs forbid negotiating that cipher suite number.
    639      */
    640     for (i=0; i < nsuites && (suite = *ciphersuites++) != 0; i++) {
    641 	/* skip SSL2 cipher suites and ones NSS doesn't support */
    642 	if (SSL_GetCipherSuiteInfo(suite, &csdef, sizeof(csdef)) != SECSuccess
    643 	    || SSL_IS_SSL2_CIPHER(suite) )
    644 	    continue;
    645 	switch (csdef.keaType) {
    646 	case ssl_kea_rsa:
    647 	    switch (csdef.cipherSuite) {
    648 	    case TLS_RSA_EXPORT1024_WITH_RC4_56_SHA:
    649 	    case TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA:
    650 	    case SSL_RSA_EXPORT_WITH_RC4_40_MD5:
    651 	    case SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5:
    652 		testrsa_export = PR_TRUE;
    653 	    }
    654 	    if (!testrsa_export)
    655 		testrsa = PR_TRUE;
    656 	    break;
    657 	case ssl_kea_ecdh:
    658 	    if (strcmp(csdef.keaTypeName, "ECDHE") == 0) /* ephemeral? */
    659 		testecdhe = PR_TRUE;
    660 	    else
    661 		testecdh = PR_TRUE;
    662 	    break;
    663 	case ssl_kea_dh:
    664 	    /* this is actually DHE */
    665 	default:
    666 	    continue;
    667 	}
    668     }
    669 
    670     /* For each protocol try to derive and extract an MS.
    671      * Failure of function any function except MS extract means
    672      * continue with the next cipher test. Stop testing when the list is
    673      * exhausted or when the first MS extract--not derive--fails.
    674      */
    675     privKeytype = SECKEY_GetPrivateKeyType(srvPrivkey);
    676     protocolmask &= SSL_CBP_SSL3|SSL_CBP_TLS1_0;
    677     while (protocolmask) {
    678 	if (protocolmask & SSL_CBP_SSL3) {
    679 	    isTLS = PR_FALSE;
    680 	    protocolmask ^= SSL_CBP_SSL3;
    681 	} else {
    682 	    isTLS = PR_TRUE;
    683 	    protocolmask ^= SSL_CBP_TLS1_0;
    684 	}
    685 
    686 	if (privKeytype == rsaKey && testrsa_export) {
    687 	    if (PK11_GetPrivateModulusLen(srvPrivkey) > EXPORT_RSA_KEY_LENGTH) {
    688 		*pcanbypass = PR_FALSE;
    689 		rv = SECSuccess;
    690 		break;
    691 	    } else
    692 		testrsa = PR_TRUE;
    693 	}
    694 	for (; privKeytype == rsaKey && testrsa; ) {
    695 	    /* TLS_RSA */
    696 	    unsigned char     rsaPmsBuf[SSL3_RSA_PMS_LENGTH];
    697 	    unsigned int      outLen = 0;
    698 	    CK_MECHANISM_TYPE target;
    699 	    SECStatus	      irv;
    700 
    701 	    mechanism_array[0] = CKM_SSL3_PRE_MASTER_KEY_GEN;
    702 	    mechanism_array[1] = CKM_RSA_PKCS;
    703 
    704 	    slot = PK11_GetBestSlotMultiple(mechanism_array, 2, pwArg);
    705 	    if (slot == NULL) {
    706 		PORT_SetError(SSL_ERROR_TOKEN_SLOT_NOT_FOUND);
    707 		break;
    708 	    }
    709 
    710 	    /* Generate the pre-master secret ...  (client side) */
    711 	    version.major = 3 /*MSB(clientHelloVersion)*/;
    712 	    version.minor = 0 /*LSB(clientHelloVersion)*/;
    713 	    param.data = (unsigned char *)&version;
    714 	    param.len  = sizeof version;
    715 	    pms = PK11_KeyGen(slot, CKM_SSL3_PRE_MASTER_KEY_GEN, &param, 0, pwArg);
    716 	    PK11_FreeSlot(slot);
    717 	    if (!pms)
    718 		break;
    719 	    /* now wrap it */
    720 	    enc_pms.len  = SECKEY_PublicKeyStrength(srvPubkey);
    721 	    enc_pms.data = (unsigned char*)PORT_Alloc(enc_pms.len);
    722 	    if (enc_pms.data == NULL) {
    723 	        PORT_SetError(PR_OUT_OF_MEMORY_ERROR);
    724 	        break;
    725 	    }
    726 	    irv = PK11_PubWrapSymKey(CKM_RSA_PKCS, srvPubkey, pms, &enc_pms);
    727 	    if (irv != SECSuccess)
    728 		break;
    729 	    PK11_FreeSymKey(pms);
    730 	    pms = NULL;
    731 	    /* now do the server side--check the triple bypass first */
    732 	    rv = PK11_PrivDecryptPKCS1(srvPrivkey, rsaPmsBuf, &outLen,
    733 				       sizeof rsaPmsBuf,
    734 				       (unsigned char *)enc_pms.data,
    735 				       enc_pms.len);
    736 	    /* if decrypt worked we're done with the RSA test */
    737 	    if (rv == SECSuccess) {
    738 		*pcanbypass = PR_TRUE;
    739 		break;
    740 	    }
    741 	    /* check for fallback to double bypass */
    742 	    target = isTLS ? CKM_TLS_MASTER_KEY_DERIVE
    743 			: CKM_SSL3_MASTER_KEY_DERIVE;
    744 	    pms = PK11_PubUnwrapSymKey(srvPrivkey, &enc_pms,
    745 				       target, CKA_DERIVE, 0);
    746 	    rv = ssl_canExtractMS(pms, isTLS, PR_FALSE, pcanbypass);
    747 	    if (rv == SECSuccess && *pcanbypass == PR_FALSE)
    748 		goto done;
    749 	    break;
    750 	}
    751 
    752 	/* Check for NULL to avoid double free.
    753 	 * SECItem_FreeItem sets data NULL in secitem.c#265
    754 	 */
    755 	if (enc_pms.data != NULL) {
    756 	    SECITEM_FreeItem(&enc_pms, PR_FALSE);
    757         }
    758 #ifdef NSS_ENABLE_ECC
    759 	for (; (privKeytype == ecKey && ( testecdh || testecdhe)) ||
    760 	       (privKeytype == rsaKey && testecdhe); ) {
    761 	    CK_MECHANISM_TYPE target;
    762 	    SECKEYPublicKey  *keapub = NULL;
    763 	    SECKEYPrivateKey *keapriv;
    764 	    SECKEYPublicKey  *cpub = NULL; /* client's ephemeral ECDH keys */
    765 	    SECKEYPrivateKey *cpriv = NULL;
    766 	    SECKEYECParams   *pecParams = NULL;
    767 
    768 	    if (privKeytype == ecKey && testecdhe) {
    769 		/* TLS_ECDHE_ECDSA */
    770 		pecParams = &srvPubkey->u.ec.DEREncodedParams;
    771 	    } else if (privKeytype == rsaKey && testecdhe) {
    772 		/* TLS_ECDHE_RSA */
    773 		ECName       ec_curve;
    774 		int		 serverKeyStrengthInBits;
    775 		int		 signatureKeyStrength;
    776 		int		 requiredECCbits;
    777 
    778 		/* find a curve of equivalent strength to the RSA key's */
    779 		requiredECCbits = PK11_GetPrivateModulusLen(srvPrivkey);
    780 		if (requiredECCbits < 0)
    781 		    break;
    782 		requiredECCbits *= BPB;
    783 		serverKeyStrengthInBits = srvPubkey->u.rsa.modulus.len;
    784 		if (srvPubkey->u.rsa.modulus.data[0] == 0) {
    785 		    serverKeyStrengthInBits--;
    786 		}
    787 		/* convert to strength in bits */
    788 		serverKeyStrengthInBits *= BPB;
    789 
    790 		signatureKeyStrength =
    791 		    SSL_RSASTRENGTH_TO_ECSTRENGTH(serverKeyStrengthInBits);
    792 
    793 		if ( requiredECCbits > signatureKeyStrength )
    794 		     requiredECCbits = signatureKeyStrength;
    795 
    796 		ec_curve =
    797 		    ssl3_GetCurveWithECKeyStrength(
    798 					ssl3_GetSupportedECCurveMask(NULL),
    799 				  	requiredECCbits);
    800 		rv = ssl3_ECName2Params(NULL, ec_curve, &ecParams);
    801 		if (rv == SECFailure) {
    802 		    break;
    803 		}
    804 		pecParams = &ecParams;
    805 	    }
    806 
    807 	    if (testecdhe) {
    808 		/* generate server's ephemeral keys */
    809 		keapriv = SECKEY_CreateECPrivateKey(pecParams, &keapub, NULL);
    810 		if (!keapriv || !keapub) {
    811 		    if (keapriv)
    812 			SECKEY_DestroyPrivateKey(keapriv);
    813 		    if (keapub)
    814 			SECKEY_DestroyPublicKey(keapub);
    815 		    PORT_SetError(SEC_ERROR_KEYGEN_FAIL);
    816 		    rv = SECFailure;
    817 		    break;
    818 		}
    819 	    } else {
    820 		/* TLS_ECDH_ECDSA */
    821 		keapub = srvPubkey;
    822 		keapriv = srvPrivkey;
    823 		pecParams = &srvPubkey->u.ec.DEREncodedParams;
    824 	    }
    825 
    826 	    /* perform client side ops */
    827 	    /* generate a pair of ephemeral keys using server's parms */
    828 	    cpriv = SECKEY_CreateECPrivateKey(pecParams, &cpub, NULL);
    829 	    if (!cpriv || !cpub) {
    830 		if (testecdhe) {
    831 		    SECKEY_DestroyPrivateKey(keapriv);
    832 		    SECKEY_DestroyPublicKey(keapub);
    833 		}
    834 		PORT_SetError(SEC_ERROR_KEYGEN_FAIL);
    835 		rv = SECFailure;
    836 		break;
    837 	    }
    838 	    /* now do the server side */
    839 	    /* determine the PMS using client's public value */
    840 	    target = isTLS ? CKM_TLS_MASTER_KEY_DERIVE_DH
    841 			   : CKM_SSL3_MASTER_KEY_DERIVE_DH;
    842 	    pms = PK11_PubDeriveWithKDF(keapriv, cpub, PR_FALSE, NULL, NULL,
    843 				    CKM_ECDH1_DERIVE,
    844 				    target,
    845 				    CKA_DERIVE, 0, CKD_NULL, NULL, NULL);
    846 	    rv = ssl_canExtractMS(pms, isTLS, PR_TRUE, pcanbypass);
    847 	    SECKEY_DestroyPrivateKey(cpriv);
    848 	    SECKEY_DestroyPublicKey(cpub);
    849 	    if (testecdhe) {
    850 		SECKEY_DestroyPrivateKey(keapriv);
    851 		SECKEY_DestroyPublicKey(keapub);
    852 	    }
    853 	    if (rv == SECSuccess && *pcanbypass == PR_FALSE)
    854 		goto done;
    855 	    break;
    856 	}
    857 	/* Check for NULL to avoid double free. */
    858 	if (ecParams.data != NULL) {
    859 	    PORT_Free(ecParams.data);
    860 	    ecParams.data = NULL;
    861 	}
    862 #endif /* NSS_ENABLE_ECC */
    863 	if (pms)
    864 	    PK11_FreeSymKey(pms);
    865     }
    866 
    867     /* *pcanbypass has been set */
    868     rv = SECSuccess;
    869 
    870   done:
    871     if (pms)
    872 	PK11_FreeSymKey(pms);
    873 
    874     /* Check for NULL to avoid double free.
    875      * SECItem_FreeItem sets data NULL in secitem.c#265
    876      */
    877     if (enc_pms.data != NULL) {
    878     	SECITEM_FreeItem(&enc_pms, PR_FALSE);
    879     }
    880 #ifdef NSS_ENABLE_ECC
    881     if (ecParams.data != NULL) {
    882         PORT_Free(ecParams.data);
    883         ecParams.data = NULL;
    884     }
    885 #endif /* NSS_ENABLE_ECC */
    886 
    887     if (srvPubkey) {
    888     	SECKEY_DestroyPublicKey(srvPubkey);
    889 	srvPubkey = NULL;
    890     }
    891 
    892 
    893     return rv;
    894 #endif /* NO_PKCS11_BYPASS */
    895 }
    896 
    897