1 /* 2 * Copyright 2006 The Android Open Source Project 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef SkTypes_DEFINED 9 #define SkTypes_DEFINED 10 11 #include "SkPreConfig.h" 12 #include "SkUserConfig.h" 13 #include "SkPostConfig.h" 14 #include <stdint.h> 15 16 /** \file SkTypes.h 17 */ 18 19 /** See SkGraphics::GetVersion() to retrieve these at runtime 20 */ 21 #define SKIA_VERSION_MAJOR 1 22 #define SKIA_VERSION_MINOR 0 23 #define SKIA_VERSION_PATCH 0 24 25 /* 26 memory wrappers to be implemented by the porting layer (platform) 27 */ 28 29 /** Called internally if we run out of memory. The platform implementation must 30 not return, but should either throw an exception or otherwise exit. 31 */ 32 SK_API extern void sk_out_of_memory(void); 33 /** Called internally if we hit an unrecoverable error. 34 The platform implementation must not return, but should either throw 35 an exception or otherwise exit. 36 */ 37 SK_API extern void sk_throw(void); 38 39 enum { 40 SK_MALLOC_TEMP = 0x01, //!< hint to sk_malloc that the requested memory will be freed in the scope of the stack frame 41 SK_MALLOC_THROW = 0x02 //!< instructs sk_malloc to call sk_throw if the memory cannot be allocated. 42 }; 43 /** Return a block of memory (at least 4-byte aligned) of at least the 44 specified size. If the requested memory cannot be returned, either 45 return null (if SK_MALLOC_TEMP bit is clear) or throw an exception 46 (if SK_MALLOC_TEMP bit is set). To free the memory, call sk_free(). 47 */ 48 SK_API extern void* sk_malloc_flags(size_t size, unsigned flags); 49 /** Same as sk_malloc(), but hard coded to pass SK_MALLOC_THROW as the flag 50 */ 51 SK_API extern void* sk_malloc_throw(size_t size); 52 /** Same as standard realloc(), but this one never returns null on failure. It will throw 53 an exception if it fails. 54 */ 55 SK_API extern void* sk_realloc_throw(void* buffer, size_t size); 56 /** Free memory returned by sk_malloc(). It is safe to pass null. 57 */ 58 SK_API extern void sk_free(void*); 59 60 /** Much like calloc: returns a pointer to at least size zero bytes, or NULL on failure. 61 */ 62 SK_API extern void* sk_calloc(size_t size); 63 64 /** Same as sk_calloc, but throws an exception instead of returning NULL on failure. 65 */ 66 SK_API extern void* sk_calloc_throw(size_t size); 67 68 // bzero is safer than memset, but we can't rely on it, so... sk_bzero() 69 static inline void sk_bzero(void* buffer, size_t size) { 70 memset(buffer, 0, size); 71 } 72 73 /////////////////////////////////////////////////////////////////////////////// 74 75 #ifdef SK_OVERRIDE_GLOBAL_NEW 76 #include <new> 77 78 inline void* operator new(size_t size) { 79 return sk_malloc_throw(size); 80 } 81 82 inline void operator delete(void* p) { 83 sk_free(p); 84 } 85 #endif 86 87 /////////////////////////////////////////////////////////////////////////////// 88 89 #define SK_INIT_TO_AVOID_WARNING = 0 90 91 #ifndef SkDebugf 92 SK_API void SkDebugf(const char format[], ...); 93 #endif 94 95 #ifdef SK_DEBUG 96 #define SkASSERT(cond) SK_ALWAYSBREAK(cond) 97 #define SkDEBUGFAIL(message) SkASSERT(false && message) 98 #define SkDEBUGCODE(code) code 99 #define SkDECLAREPARAM(type, var) , type var 100 #define SkPARAM(var) , var 101 // #define SkDEBUGF(args ) SkDebugf##args 102 #define SkDEBUGF(args ) SkDebugf args 103 #define SkAssertResult(cond) SkASSERT(cond) 104 #else 105 #define SkASSERT(cond) 106 #define SkDEBUGFAIL(message) 107 #define SkDEBUGCODE(code) 108 #define SkDEBUGF(args) 109 #define SkDECLAREPARAM(type, var) 110 #define SkPARAM(var) 111 112 // unlike SkASSERT, this guy executes its condition in the non-debug build 113 #define SkAssertResult(cond) cond 114 #endif 115 116 #define SkFAIL(message) SK_ALWAYSBREAK(false && message) 117 118 // We want to evaluate cond only once, and inside the SkASSERT somewhere so we see its string form. 119 // So we use the comma operator to make an SkDebugf that always returns false: we'll evaluate cond, 120 // and if it's true the assert passes; if it's false, we'll print the message and the assert fails. 121 #define SkASSERTF(cond, fmt, ...) SkASSERT((cond) || (SkDebugf(fmt"\n", __VA_ARGS__), false)) 122 123 #ifdef SK_DEVELOPER 124 #define SkDEVCODE(code) code 125 #else 126 #define SkDEVCODE(code) 127 #endif 128 129 #ifdef SK_IGNORE_TO_STRING 130 #define SK_TO_STRING_NONVIRT() 131 #define SK_TO_STRING_VIRT() 132 #define SK_TO_STRING_PUREVIRT() 133 #define SK_TO_STRING_OVERRIDE() 134 #else 135 // the 'toString' helper functions convert Sk* objects to human-readable 136 // form in developer mode 137 #define SK_TO_STRING_NONVIRT() void toString(SkString* str) const; 138 #define SK_TO_STRING_VIRT() virtual void toString(SkString* str) const; 139 #define SK_TO_STRING_PUREVIRT() virtual void toString(SkString* str) const = 0; 140 #define SK_TO_STRING_OVERRIDE() virtual void toString(SkString* str) const SK_OVERRIDE; 141 #endif 142 143 template <bool> 144 struct SkCompileAssert { 145 }; 146 147 // Uses static_cast<bool>(expr) instead of bool(expr) due to 148 // https://connect.microsoft.com/VisualStudio/feedback/details/832915 149 150 // The extra parentheses in SkCompileAssert<(...)> are a work around for 151 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57771 152 // which was fixed in gcc 4.8.2. 153 #define SK_COMPILE_ASSERT(expr, msg) \ 154 typedef SkCompileAssert<(static_cast<bool>(expr))> \ 155 msg[static_cast<bool>(expr) ? 1 : -1] SK_UNUSED 156 157 /* 158 * Usage: SK_MACRO_CONCAT(a, b) to construct the symbol ab 159 * 160 * SK_MACRO_CONCAT_IMPL_PRIV just exists to make this work. Do not use directly 161 * 162 */ 163 #define SK_MACRO_CONCAT(X, Y) SK_MACRO_CONCAT_IMPL_PRIV(X, Y) 164 #define SK_MACRO_CONCAT_IMPL_PRIV(X, Y) X ## Y 165 166 /* 167 * Usage: SK_MACRO_APPEND_LINE(foo) to make foo123, where 123 is the current 168 * line number. Easy way to construct 169 * unique names for local functions or 170 * variables. 171 */ 172 #define SK_MACRO_APPEND_LINE(name) SK_MACRO_CONCAT(name, __LINE__) 173 174 /** 175 * For some classes, it's almost always an error to instantiate one without a name, e.g. 176 * { 177 * SkAutoMutexAcquire(&mutex); 178 * <some code> 179 * } 180 * In this case, the writer meant to hold mutex while the rest of the code in the block runs, 181 * but instead the mutex is acquired and then immediately released. The correct usage is 182 * { 183 * SkAutoMutexAcquire lock(&mutex); 184 * <some code> 185 * } 186 * 187 * To prevent callers from instantiating your class without a name, use SK_REQUIRE_LOCAL_VAR 188 * like this: 189 * class classname { 190 * <your class> 191 * }; 192 * #define classname(...) SK_REQUIRE_LOCAL_VAR(classname) 193 * 194 * This won't work with templates, and you must inline the class' constructors and destructors. 195 * Take a look at SkAutoFree and SkAutoMalloc in this file for examples. 196 */ 197 #define SK_REQUIRE_LOCAL_VAR(classname) \ 198 SK_COMPILE_ASSERT(false, missing_name_for_##classname) 199 200 /////////////////////////////////////////////////////////////////////// 201 202 /** 203 * Fast type for signed 8 bits. Use for parameter passing and local variables, 204 * not for storage. 205 */ 206 typedef int S8CPU; 207 208 /** 209 * Fast type for unsigned 8 bits. Use for parameter passing and local 210 * variables, not for storage 211 */ 212 typedef unsigned U8CPU; 213 214 /** 215 * Fast type for signed 16 bits. Use for parameter passing and local variables, 216 * not for storage 217 */ 218 typedef int S16CPU; 219 220 /** 221 * Fast type for unsigned 16 bits. Use for parameter passing and local 222 * variables, not for storage 223 */ 224 typedef unsigned U16CPU; 225 226 /** 227 * Meant to be faster than bool (doesn't promise to be 0 or 1, 228 * just 0 or non-zero 229 */ 230 typedef int SkBool; 231 232 /** 233 * Meant to be a small version of bool, for storage purposes. Will be 0 or 1 234 */ 235 typedef uint8_t SkBool8; 236 237 #ifdef SK_DEBUG 238 SK_API int8_t SkToS8(intmax_t); 239 SK_API uint8_t SkToU8(uintmax_t); 240 SK_API int16_t SkToS16(intmax_t); 241 SK_API uint16_t SkToU16(uintmax_t); 242 SK_API int32_t SkToS32(intmax_t); 243 SK_API uint32_t SkToU32(uintmax_t); 244 SK_API int SkToInt(intmax_t); 245 SK_API unsigned SkToUInt(uintmax_t); 246 SK_API size_t SkToSizeT(uintmax_t); 247 #else 248 #define SkToS8(x) ((int8_t)(x)) 249 #define SkToU8(x) ((uint8_t)(x)) 250 #define SkToS16(x) ((int16_t)(x)) 251 #define SkToU16(x) ((uint16_t)(x)) 252 #define SkToS32(x) ((int32_t)(x)) 253 #define SkToU32(x) ((uint32_t)(x)) 254 #define SkToInt(x) ((int)(x)) 255 #define SkToUInt(x) ((unsigned)(x)) 256 #define SkToSizeT(x) ((size_t)(x)) 257 #endif 258 259 /** Returns 0 or 1 based on the condition 260 */ 261 #define SkToBool(cond) ((cond) != 0) 262 263 #define SK_MaxS16 32767 264 #define SK_MinS16 -32767 265 #define SK_MaxU16 0xFFFF 266 #define SK_MinU16 0 267 #define SK_MaxS32 0x7FFFFFFF 268 #define SK_MinS32 -SK_MaxS32 269 #define SK_MaxU32 0xFFFFFFFF 270 #define SK_MinU32 0 271 #define SK_NaN32 (1 << 31) 272 273 /** Returns true if the value can be represented with signed 16bits 274 */ 275 static inline bool SkIsS16(long x) { 276 return (int16_t)x == x; 277 } 278 279 /** Returns true if the value can be represented with unsigned 16bits 280 */ 281 static inline bool SkIsU16(long x) { 282 return (uint16_t)x == x; 283 } 284 285 ////////////////////////////////////////////////////////////////////////////// 286 #ifndef SK_OFFSETOF 287 #define SK_OFFSETOF(type, field) (size_t)((char*)&(((type*)1)->field) - (char*)1) 288 #endif 289 290 /** Returns the number of entries in an array (not a pointer) 291 */ 292 #define SK_ARRAY_COUNT(array) (sizeof(array) / sizeof(array[0])) 293 294 #define SkAlign2(x) (((x) + 1) >> 1 << 1) 295 #define SkIsAlign2(x) (0 == ((x) & 1)) 296 297 #define SkAlign4(x) (((x) + 3) >> 2 << 2) 298 #define SkIsAlign4(x) (0 == ((x) & 3)) 299 300 #define SkAlign8(x) (((x) + 7) >> 3 << 3) 301 #define SkIsAlign8(x) (0 == ((x) & 7)) 302 303 #define SkAlignPtr(x) (sizeof(void*) == 8 ? SkAlign8(x) : SkAlign4(x)) 304 #define SkIsAlignPtr(x) (sizeof(void*) == 8 ? SkIsAlign8(x) : SkIsAlign4(x)) 305 306 typedef uint32_t SkFourByteTag; 307 #define SkSetFourByteTag(a, b, c, d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d)) 308 309 /** 32 bit integer to hold a unicode value 310 */ 311 typedef int32_t SkUnichar; 312 /** 32 bit value to hold a millisecond count 313 */ 314 typedef uint32_t SkMSec; 315 /** 1 second measured in milliseconds 316 */ 317 #define SK_MSec1 1000 318 /** maximum representable milliseconds 319 */ 320 #define SK_MSecMax 0x7FFFFFFF 321 /** Returns a < b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0 322 */ 323 #define SkMSec_LT(a, b) ((int32_t)(a) - (int32_t)(b) < 0) 324 /** Returns a <= b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0 325 */ 326 #define SkMSec_LE(a, b) ((int32_t)(a) - (int32_t)(b) <= 0) 327 328 /** The generation IDs in Skia reserve 0 has an invalid marker. 329 */ 330 #define SK_InvalidGenID 0 331 /** The unique IDs in Skia reserve 0 has an invalid marker. 332 */ 333 #define SK_InvalidUniqueID 0 334 335 /**************************************************************************** 336 The rest of these only build with C++ 337 */ 338 #ifdef __cplusplus 339 340 /** Faster than SkToBool for integral conditions. Returns 0 or 1 341 */ 342 static inline int Sk32ToBool(uint32_t n) { 343 return (n | (0-n)) >> 31; 344 } 345 346 /** Generic swap function. Classes with efficient swaps should specialize this function to take 347 their fast path. This function is used by SkTSort. */ 348 template <typename T> inline void SkTSwap(T& a, T& b) { 349 T c(a); 350 a = b; 351 b = c; 352 } 353 354 static inline int32_t SkAbs32(int32_t value) { 355 if (value < 0) { 356 value = -value; 357 } 358 return value; 359 } 360 361 template <typename T> inline T SkTAbs(T value) { 362 if (value < 0) { 363 value = -value; 364 } 365 return value; 366 } 367 368 static inline int32_t SkMax32(int32_t a, int32_t b) { 369 if (a < b) 370 a = b; 371 return a; 372 } 373 374 static inline int32_t SkMin32(int32_t a, int32_t b) { 375 if (a > b) 376 a = b; 377 return a; 378 } 379 380 template <typename T> const T& SkTMin(const T& a, const T& b) { 381 return (a < b) ? a : b; 382 } 383 384 template <typename T> const T& SkTMax(const T& a, const T& b) { 385 return (b < a) ? a : b; 386 } 387 388 static inline int32_t SkSign32(int32_t a) { 389 return (a >> 31) | ((unsigned) -a >> 31); 390 } 391 392 static inline int32_t SkFastMin32(int32_t value, int32_t max) { 393 if (value > max) { 394 value = max; 395 } 396 return value; 397 } 398 399 /** Returns signed 32 bit value pinned between min and max, inclusively 400 */ 401 static inline int32_t SkPin32(int32_t value, int32_t min, int32_t max) { 402 if (value < min) { 403 value = min; 404 } 405 if (value > max) { 406 value = max; 407 } 408 return value; 409 } 410 411 static inline uint32_t SkSetClearShift(uint32_t bits, bool cond, 412 unsigned shift) { 413 SkASSERT((int)cond == 0 || (int)cond == 1); 414 return (bits & ~(1 << shift)) | ((int)cond << shift); 415 } 416 417 static inline uint32_t SkSetClearMask(uint32_t bits, bool cond, 418 uint32_t mask) { 419 return cond ? bits | mask : bits & ~mask; 420 } 421 422 /////////////////////////////////////////////////////////////////////////////// 423 424 /** Use to combine multiple bits in a bitmask in a type safe way. 425 */ 426 template <typename T> 427 T SkTBitOr(T a, T b) { 428 return (T)(a | b); 429 } 430 431 /** 432 * Use to cast a pointer to a different type, and maintaining strict-aliasing 433 */ 434 template <typename Dst> Dst SkTCast(const void* ptr) { 435 union { 436 const void* src; 437 Dst dst; 438 } data; 439 data.src = ptr; 440 return data.dst; 441 } 442 443 ////////////////////////////////////////////////////////////////////////////// 444 445 /** \class SkNoncopyable 446 447 SkNoncopyable is the base class for objects that may do not want to 448 be copied. It hides its copy-constructor and its assignment-operator. 449 */ 450 class SK_API SkNoncopyable { 451 public: 452 SkNoncopyable() {} 453 454 private: 455 SkNoncopyable(const SkNoncopyable&); 456 SkNoncopyable& operator=(const SkNoncopyable&); 457 }; 458 459 class SkAutoFree : SkNoncopyable { 460 public: 461 SkAutoFree() : fPtr(NULL) {} 462 explicit SkAutoFree(void* ptr) : fPtr(ptr) {} 463 ~SkAutoFree() { sk_free(fPtr); } 464 465 /** Return the currently allocate buffer, or null 466 */ 467 void* get() const { return fPtr; } 468 469 /** Assign a new ptr allocated with sk_malloc (or null), and return the 470 previous ptr. Note it is the caller's responsibility to sk_free the 471 returned ptr. 472 */ 473 void* set(void* ptr) { 474 void* prev = fPtr; 475 fPtr = ptr; 476 return prev; 477 } 478 479 /** Transfer ownership of the current ptr to the caller, setting the 480 internal reference to null. Note the caller is reponsible for calling 481 sk_free on the returned address. 482 */ 483 void* detach() { return this->set(NULL); } 484 485 /** Free the current buffer, and set the internal reference to NULL. Same 486 as calling sk_free(detach()) 487 */ 488 void free() { 489 sk_free(fPtr); 490 fPtr = NULL; 491 } 492 493 private: 494 void* fPtr; 495 // illegal 496 SkAutoFree(const SkAutoFree&); 497 SkAutoFree& operator=(const SkAutoFree&); 498 }; 499 #define SkAutoFree(...) SK_REQUIRE_LOCAL_VAR(SkAutoFree) 500 501 /** 502 * Manage an allocated block of heap memory. This object is the sole manager of 503 * the lifetime of the block, so the caller must not call sk_free() or delete 504 * on the block, unless detach() was called. 505 */ 506 class SkAutoMalloc : SkNoncopyable { 507 public: 508 explicit SkAutoMalloc(size_t size = 0) { 509 fPtr = size ? sk_malloc_throw(size) : NULL; 510 fSize = size; 511 } 512 513 ~SkAutoMalloc() { 514 sk_free(fPtr); 515 } 516 517 /** 518 * Passed to reset to specify what happens if the requested size is smaller 519 * than the current size (and the current block was dynamically allocated). 520 */ 521 enum OnShrink { 522 /** 523 * If the requested size is smaller than the current size, and the 524 * current block is dynamically allocated, free the old block and 525 * malloc a new block of the smaller size. 526 */ 527 kAlloc_OnShrink, 528 529 /** 530 * If the requested size is smaller than the current size, and the 531 * current block is dynamically allocated, just return the old 532 * block. 533 */ 534 kReuse_OnShrink 535 }; 536 537 /** 538 * Reallocates the block to a new size. The ptr may or may not change. 539 */ 540 void* reset(size_t size, OnShrink shrink = kAlloc_OnShrink, bool* didChangeAlloc = NULL) { 541 if (size == fSize || (kReuse_OnShrink == shrink && size < fSize)) { 542 if (didChangeAlloc) { 543 *didChangeAlloc = false; 544 } 545 return fPtr; 546 } 547 548 sk_free(fPtr); 549 fPtr = size ? sk_malloc_throw(size) : NULL; 550 fSize = size; 551 if (didChangeAlloc) { 552 *didChangeAlloc = true; 553 } 554 555 return fPtr; 556 } 557 558 /** 559 * Releases the block back to the heap 560 */ 561 void free() { 562 this->reset(0); 563 } 564 565 /** 566 * Return the allocated block. 567 */ 568 void* get() { return fPtr; } 569 const void* get() const { return fPtr; } 570 571 /** Transfer ownership of the current ptr to the caller, setting the 572 internal reference to null. Note the caller is reponsible for calling 573 sk_free on the returned address. 574 */ 575 void* detach() { 576 void* ptr = fPtr; 577 fPtr = NULL; 578 fSize = 0; 579 return ptr; 580 } 581 582 private: 583 void* fPtr; 584 size_t fSize; // can be larger than the requested size (see kReuse) 585 }; 586 #define SkAutoMalloc(...) SK_REQUIRE_LOCAL_VAR(SkAutoMalloc) 587 588 /** 589 * Manage an allocated block of memory. If the requested size is <= kSize, then 590 * the allocation will come from the stack rather than the heap. This object 591 * is the sole manager of the lifetime of the block, so the caller must not 592 * call sk_free() or delete on the block. 593 */ 594 template <size_t kSize> class SkAutoSMalloc : SkNoncopyable { 595 public: 596 /** 597 * Creates initially empty storage. get() returns a ptr, but it is to 598 * a zero-byte allocation. Must call reset(size) to return an allocated 599 * block. 600 */ 601 SkAutoSMalloc() { 602 fPtr = fStorage; 603 fSize = kSize; 604 } 605 606 /** 607 * Allocate a block of the specified size. If size <= kSize, then the 608 * allocation will come from the stack, otherwise it will be dynamically 609 * allocated. 610 */ 611 explicit SkAutoSMalloc(size_t size) { 612 fPtr = fStorage; 613 fSize = kSize; 614 this->reset(size); 615 } 616 617 /** 618 * Free the allocated block (if any). If the block was small enought to 619 * have been allocated on the stack (size <= kSize) then this does nothing. 620 */ 621 ~SkAutoSMalloc() { 622 if (fPtr != (void*)fStorage) { 623 sk_free(fPtr); 624 } 625 } 626 627 /** 628 * Return the allocated block. May return non-null even if the block is 629 * of zero size. Since this may be on the stack or dynamically allocated, 630 * the caller must not call sk_free() on it, but must rely on SkAutoSMalloc 631 * to manage it. 632 */ 633 void* get() const { return fPtr; } 634 635 /** 636 * Return a new block of the requested size, freeing (as necessary) any 637 * previously allocated block. As with the constructor, if size <= kSize 638 * then the return block may be allocated locally, rather than from the 639 * heap. 640 */ 641 void* reset(size_t size, 642 SkAutoMalloc::OnShrink shrink = SkAutoMalloc::kAlloc_OnShrink, 643 bool* didChangeAlloc = NULL) { 644 size = (size < kSize) ? kSize : size; 645 bool alloc = size != fSize && (SkAutoMalloc::kAlloc_OnShrink == shrink || size > fSize); 646 if (didChangeAlloc) { 647 *didChangeAlloc = alloc; 648 } 649 if (alloc) { 650 if (fPtr != (void*)fStorage) { 651 sk_free(fPtr); 652 } 653 654 if (size == kSize) { 655 SkASSERT(fPtr != fStorage); // otherwise we lied when setting didChangeAlloc. 656 fPtr = fStorage; 657 } else { 658 fPtr = sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP); 659 } 660 661 fSize = size; 662 } 663 SkASSERT(fSize >= size && fSize >= kSize); 664 SkASSERT((fPtr == fStorage) || fSize > kSize); 665 return fPtr; 666 } 667 668 private: 669 void* fPtr; 670 size_t fSize; // can be larger than the requested size (see kReuse) 671 uint32_t fStorage[(kSize + 3) >> 2]; 672 }; 673 // Can't guard the constructor because it's a template class. 674 675 #endif /* C++ */ 676 677 #endif 678