Home | History | Annotate | Download | only in base
      1 /*
      2  *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include "webrtc/base/win32.h"
     12 
     13 #include <winsock2.h>
     14 #include <ws2tcpip.h>
     15 #include <algorithm>
     16 
     17 #include "webrtc/base/basictypes.h"
     18 #include "webrtc/base/byteorder.h"
     19 #include "webrtc/base/common.h"
     20 #include "webrtc/base/logging.h"
     21 
     22 namespace rtc {
     23 
     24 // Helper function declarations for inet_ntop/inet_pton.
     25 static const char* inet_ntop_v4(const void* src, char* dst, socklen_t size);
     26 static const char* inet_ntop_v6(const void* src, char* dst, socklen_t size);
     27 static int inet_pton_v4(const char* src, void* dst);
     28 static int inet_pton_v6(const char* src, void* dst);
     29 
     30 // Implementation of inet_ntop (create a printable representation of an
     31 // ip address). XP doesn't have its own inet_ntop, and
     32 // WSAAddressToString requires both IPv6 to be  installed and for Winsock
     33 // to be initialized.
     34 const char* win32_inet_ntop(int af, const void *src,
     35                             char* dst, socklen_t size) {
     36   if (!src || !dst) {
     37     return NULL;
     38   }
     39   switch (af) {
     40     case AF_INET: {
     41       return inet_ntop_v4(src, dst, size);
     42     }
     43     case AF_INET6: {
     44       return inet_ntop_v6(src, dst, size);
     45     }
     46   }
     47   return NULL;
     48 }
     49 
     50 // As above, but for inet_pton. Implements inet_pton for v4 and v6.
     51 // Note that our inet_ntop will output normal 'dotted' v4 addresses only.
     52 int win32_inet_pton(int af, const char* src, void* dst) {
     53   if (!src || !dst) {
     54     return 0;
     55   }
     56   if (af == AF_INET) {
     57     return inet_pton_v4(src, dst);
     58   } else if (af == AF_INET6) {
     59     return inet_pton_v6(src, dst);
     60   }
     61   return -1;
     62 }
     63 
     64 // Helper function for inet_ntop for IPv4 addresses.
     65 // Outputs "dotted-quad" decimal notation.
     66 const char* inet_ntop_v4(const void* src, char* dst, socklen_t size) {
     67   if (size < INET_ADDRSTRLEN) {
     68     return NULL;
     69   }
     70   const struct in_addr* as_in_addr =
     71       reinterpret_cast<const struct in_addr*>(src);
     72   rtc::sprintfn(dst, size, "%d.%d.%d.%d",
     73                       as_in_addr->S_un.S_un_b.s_b1,
     74                       as_in_addr->S_un.S_un_b.s_b2,
     75                       as_in_addr->S_un.S_un_b.s_b3,
     76                       as_in_addr->S_un.S_un_b.s_b4);
     77   return dst;
     78 }
     79 
     80 // Helper function for inet_ntop for IPv6 addresses.
     81 const char* inet_ntop_v6(const void* src, char* dst, socklen_t size) {
     82   if (size < INET6_ADDRSTRLEN) {
     83     return NULL;
     84   }
     85   const uint16* as_shorts =
     86       reinterpret_cast<const uint16*>(src);
     87   int runpos[8];
     88   int current = 1;
     89   int max = 1;
     90   int maxpos = -1;
     91   int run_array_size = ARRAY_SIZE(runpos);
     92   // Run over the address marking runs of 0s.
     93   for (int i = 0; i < run_array_size; ++i) {
     94     if (as_shorts[i] == 0) {
     95       runpos[i] = current;
     96       if (current > max) {
     97         maxpos = i;
     98         max = current;
     99       }
    100       ++current;
    101     } else {
    102       runpos[i] = -1;
    103       current =1;
    104     }
    105   }
    106 
    107   if (max > 1) {
    108     int tmpmax = maxpos;
    109     // Run back through, setting -1 for all but the longest run.
    110     for (int i = run_array_size - 1; i >= 0; i--) {
    111       if (i > tmpmax) {
    112         runpos[i] = -1;
    113       } else if (runpos[i] == -1) {
    114         // We're less than maxpos, we hit a -1, so the 'good' run is done.
    115         // Setting tmpmax -1 means all remaining positions get set to -1.
    116         tmpmax = -1;
    117       }
    118     }
    119   }
    120 
    121   char* cursor = dst;
    122   // Print IPv4 compatible and IPv4 mapped addresses using the IPv4 helper.
    123   // These addresses have an initial run of either eight zero-bytes followed
    124   // by 0xFFFF, or an initial run of ten zero-bytes.
    125   if (runpos[0] == 1 && (maxpos == 5 ||
    126                          (maxpos == 4 && as_shorts[5] == 0xFFFF))) {
    127     *cursor++ = ':';
    128     *cursor++ = ':';
    129     if (maxpos == 4) {
    130       cursor += rtc::sprintfn(cursor, INET6_ADDRSTRLEN - 2, "ffff:");
    131     }
    132     const struct in_addr* as_v4 =
    133         reinterpret_cast<const struct in_addr*>(&(as_shorts[6]));
    134     inet_ntop_v4(as_v4, cursor,
    135                  static_cast<socklen_t>(INET6_ADDRSTRLEN - (cursor - dst)));
    136   } else {
    137     for (int i = 0; i < run_array_size; ++i) {
    138       if (runpos[i] == -1) {
    139         cursor += rtc::sprintfn(cursor,
    140                                       INET6_ADDRSTRLEN - (cursor - dst),
    141                                       "%x", NetworkToHost16(as_shorts[i]));
    142         if (i != 7 && runpos[i + 1] != 1) {
    143           *cursor++ = ':';
    144         }
    145       } else if (runpos[i] == 1) {
    146         // Entered the run; print the colons and skip the run.
    147         *cursor++ = ':';
    148         *cursor++ = ':';
    149         i += (max - 1);
    150       }
    151     }
    152   }
    153   return dst;
    154 }
    155 
    156 // Helper function for inet_pton for IPv4 addresses.
    157 // |src| points to a character string containing an IPv4 network address in
    158 // dotted-decimal format, "ddd.ddd.ddd.ddd", where ddd is a decimal number
    159 // of up to three digits in the range 0 to 255.
    160 // The address is converted and copied to dst,
    161 // which must be sizeof(struct in_addr) (4) bytes (32 bits) long.
    162 int inet_pton_v4(const char* src, void* dst) {
    163   const int kIpv4AddressSize = 4;
    164   int found = 0;
    165   const char* src_pos = src;
    166   unsigned char result[kIpv4AddressSize] = {0};
    167 
    168   while (*src_pos != '\0') {
    169     // strtol won't treat whitespace characters in the begining as an error,
    170     // so check to ensure this is started with digit before passing to strtol.
    171     if (!isdigit(*src_pos)) {
    172       return 0;
    173     }
    174     char* end_pos;
    175     long value = strtol(src_pos, &end_pos, 10);
    176     if (value < 0 || value > 255 || src_pos == end_pos) {
    177       return 0;
    178     }
    179     ++found;
    180     if (found > kIpv4AddressSize) {
    181       return 0;
    182     }
    183     result[found - 1] = static_cast<unsigned char>(value);
    184     src_pos = end_pos;
    185     if (*src_pos == '.') {
    186       // There's more.
    187       ++src_pos;
    188     } else if (*src_pos != '\0') {
    189       // If it's neither '.' nor '\0' then return fail.
    190       return 0;
    191     }
    192   }
    193   if (found != kIpv4AddressSize) {
    194     return 0;
    195   }
    196   memcpy(dst, result, sizeof(result));
    197   return 1;
    198 }
    199 
    200 // Helper function for inet_pton for IPv6 addresses.
    201 int inet_pton_v6(const char* src, void* dst) {
    202   // sscanf will pick any other invalid chars up, but it parses 0xnnnn as hex.
    203   // Check for literal x in the input string.
    204   const char* readcursor = src;
    205   char c = *readcursor++;
    206   while (c) {
    207     if (c == 'x') {
    208       return 0;
    209     }
    210     c = *readcursor++;
    211   }
    212   readcursor = src;
    213 
    214   struct in6_addr an_addr;
    215   memset(&an_addr, 0, sizeof(an_addr));
    216 
    217   uint16* addr_cursor = reinterpret_cast<uint16*>(&an_addr.s6_addr[0]);
    218   uint16* addr_end = reinterpret_cast<uint16*>(&an_addr.s6_addr[16]);
    219   bool seencompressed = false;
    220 
    221   // Addresses that start with "::" (i.e., a run of initial zeros) or
    222   // "::ffff:" can potentially be IPv4 mapped or compatibility addresses.
    223   // These have dotted-style IPv4 addresses on the end (e.g. "::192.168.7.1").
    224   if (*readcursor == ':' && *(readcursor+1) == ':' &&
    225       *(readcursor + 2) != 0) {
    226     // Check for periods, which we'll take as a sign of v4 addresses.
    227     const char* addrstart = readcursor + 2;
    228     if (rtc::strchr(addrstart, ".")) {
    229       const char* colon = rtc::strchr(addrstart, "::");
    230       if (colon) {
    231         uint16 a_short;
    232         int bytesread = 0;
    233         if (sscanf(addrstart, "%hx%n", &a_short, &bytesread) != 1 ||
    234             a_short != 0xFFFF || bytesread != 4) {
    235           // Colons + periods means has to be ::ffff:a.b.c.d. But it wasn't.
    236           return 0;
    237         } else {
    238           an_addr.s6_addr[10] = 0xFF;
    239           an_addr.s6_addr[11] = 0xFF;
    240           addrstart = colon + 1;
    241         }
    242       }
    243       struct in_addr v4;
    244       if (inet_pton_v4(addrstart, &v4.s_addr)) {
    245         memcpy(&an_addr.s6_addr[12], &v4, sizeof(v4));
    246         memcpy(dst, &an_addr, sizeof(an_addr));
    247         return 1;
    248       } else {
    249         // Invalid v4 address.
    250         return 0;
    251       }
    252     }
    253   }
    254 
    255   // For addresses without a trailing IPv4 component ('normal' IPv6 addresses).
    256   while (*readcursor != 0 && addr_cursor < addr_end) {
    257     if (*readcursor == ':') {
    258       if (*(readcursor + 1) == ':') {
    259         if (seencompressed) {
    260           // Can only have one compressed run of zeroes ("::") per address.
    261           return 0;
    262         }
    263         // Hit a compressed run. Count colons to figure out how much of the
    264         // address is skipped.
    265         readcursor += 2;
    266         const char* coloncounter = readcursor;
    267         int coloncount = 0;
    268         if (*coloncounter == 0) {
    269           // Special case - trailing ::.
    270           addr_cursor = addr_end;
    271         } else {
    272           while (*coloncounter) {
    273             if (*coloncounter == ':') {
    274               ++coloncount;
    275             }
    276             ++coloncounter;
    277           }
    278           // (coloncount + 1) is the number of shorts left in the address.
    279           addr_cursor = addr_end - (coloncount + 1);
    280           seencompressed = true;
    281         }
    282       } else {
    283         ++readcursor;
    284       }
    285     } else {
    286       uint16 word;
    287       int bytesread = 0;
    288       if (sscanf(readcursor, "%hx%n", &word, &bytesread) != 1) {
    289         return 0;
    290       } else {
    291         *addr_cursor = HostToNetwork16(word);
    292         ++addr_cursor;
    293         readcursor += bytesread;
    294         if (*readcursor != ':' && *readcursor != '\0') {
    295           return 0;
    296         }
    297       }
    298     }
    299   }
    300 
    301   if (*readcursor != '\0' || addr_cursor < addr_end) {
    302     // Catches addresses too short or too long.
    303     return 0;
    304   }
    305   memcpy(dst, &an_addr, sizeof(an_addr));
    306   return 1;
    307 }
    308 
    309 //
    310 // Unix time is in seconds relative to 1/1/1970.  So we compute the windows
    311 // FILETIME of that time/date, then we add/subtract in appropriate units to
    312 // convert to/from unix time.
    313 // The units of FILETIME are 100ns intervals, so by multiplying by or dividing
    314 // by 10000000, we can convert to/from seconds.
    315 //
    316 // FileTime = UnixTime*10000000 + FileTime(1970)
    317 // UnixTime = (FileTime-FileTime(1970))/10000000
    318 //
    319 
    320 void FileTimeToUnixTime(const FILETIME& ft, time_t* ut) {
    321   ASSERT(NULL != ut);
    322 
    323   // FILETIME has an earlier date base than time_t (1/1/1970), so subtract off
    324   // the difference.
    325   SYSTEMTIME base_st;
    326   memset(&base_st, 0, sizeof(base_st));
    327   base_st.wDay = 1;
    328   base_st.wMonth = 1;
    329   base_st.wYear = 1970;
    330 
    331   FILETIME base_ft;
    332   SystemTimeToFileTime(&base_st, &base_ft);
    333 
    334   ULARGE_INTEGER base_ul, current_ul;
    335   memcpy(&base_ul, &base_ft, sizeof(FILETIME));
    336   memcpy(&current_ul, &ft, sizeof(FILETIME));
    337 
    338   // Divide by big number to convert to seconds, then subtract out the 1970
    339   // base date value.
    340   const ULONGLONG RATIO = 10000000;
    341   *ut = static_cast<time_t>((current_ul.QuadPart - base_ul.QuadPart) / RATIO);
    342 }
    343 
    344 void UnixTimeToFileTime(const time_t& ut, FILETIME* ft) {
    345   ASSERT(NULL != ft);
    346 
    347   // FILETIME has an earlier date base than time_t (1/1/1970), so add in
    348   // the difference.
    349   SYSTEMTIME base_st;
    350   memset(&base_st, 0, sizeof(base_st));
    351   base_st.wDay = 1;
    352   base_st.wMonth = 1;
    353   base_st.wYear = 1970;
    354 
    355   FILETIME base_ft;
    356   SystemTimeToFileTime(&base_st, &base_ft);
    357 
    358   ULARGE_INTEGER base_ul;
    359   memcpy(&base_ul, &base_ft, sizeof(FILETIME));
    360 
    361   // Multiply by big number to convert to 100ns units, then add in the 1970
    362   // base date value.
    363   const ULONGLONG RATIO = 10000000;
    364   ULARGE_INTEGER current_ul;
    365   current_ul.QuadPart = base_ul.QuadPart + static_cast<int64>(ut) * RATIO;
    366   memcpy(ft, &current_ul, sizeof(FILETIME));
    367 }
    368 
    369 bool Utf8ToWindowsFilename(const std::string& utf8, std::wstring* filename) {
    370   // TODO: Integrate into fileutils.h
    371   // TODO: Handle wide and non-wide cases via TCHAR?
    372   // TODO: Skip \\?\ processing if the length is not > MAX_PATH?
    373   // TODO: Write unittests
    374 
    375   // Convert to Utf16
    376   int wlen = ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(),
    377                                    static_cast<int>(utf8.length() + 1), NULL,
    378                                    0);
    379   if (0 == wlen) {
    380     return false;
    381   }
    382   wchar_t* wfilename = STACK_ARRAY(wchar_t, wlen);
    383   if (0 == ::MultiByteToWideChar(CP_UTF8, 0, utf8.c_str(),
    384                                  static_cast<int>(utf8.length() + 1),
    385                                  wfilename, wlen)) {
    386     return false;
    387   }
    388   // Replace forward slashes with backslashes
    389   std::replace(wfilename, wfilename + wlen, L'/', L'\\');
    390   // Convert to complete filename
    391   DWORD full_len = ::GetFullPathName(wfilename, 0, NULL, NULL);
    392   if (0 == full_len) {
    393     return false;
    394   }
    395   wchar_t* filepart = NULL;
    396   wchar_t* full_filename = STACK_ARRAY(wchar_t, full_len + 6);
    397   wchar_t* start = full_filename + 6;
    398   if (0 == ::GetFullPathName(wfilename, full_len, start, &filepart)) {
    399     return false;
    400   }
    401   // Add long-path prefix
    402   const wchar_t kLongPathPrefix[] = L"\\\\?\\UNC";
    403   if ((start[0] != L'\\') || (start[1] != L'\\')) {
    404     // Non-unc path:     <pathname>
    405     //      Becomes: \\?\<pathname>
    406     start -= 4;
    407     ASSERT(start >= full_filename);
    408     memcpy(start, kLongPathPrefix, 4 * sizeof(wchar_t));
    409   } else if (start[2] != L'?') {
    410     // Unc path:       \\<server>\<pathname>
    411     //  Becomes: \\?\UNC\<server>\<pathname>
    412     start -= 6;
    413     ASSERT(start >= full_filename);
    414     memcpy(start, kLongPathPrefix, 7 * sizeof(wchar_t));
    415   } else {
    416     // Already in long-path form.
    417   }
    418   filename->assign(start);
    419   return true;
    420 }
    421 
    422 bool GetOsVersion(int* major, int* minor, int* build) {
    423   OSVERSIONINFO info = {0};
    424   info.dwOSVersionInfoSize = sizeof(info);
    425   if (GetVersionEx(&info)) {
    426     if (major) *major = info.dwMajorVersion;
    427     if (minor) *minor = info.dwMinorVersion;
    428     if (build) *build = info.dwBuildNumber;
    429     return true;
    430   }
    431   return false;
    432 }
    433 
    434 bool GetCurrentProcessIntegrityLevel(int* level) {
    435   bool ret = false;
    436   HANDLE process = ::GetCurrentProcess(), token;
    437   if (OpenProcessToken(process, TOKEN_QUERY | TOKEN_QUERY_SOURCE, &token)) {
    438     DWORD size;
    439     if (!GetTokenInformation(token, TokenIntegrityLevel, NULL, 0, &size) &&
    440         GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
    441 
    442       char* buf = STACK_ARRAY(char, size);
    443       TOKEN_MANDATORY_LABEL* til =
    444           reinterpret_cast<TOKEN_MANDATORY_LABEL*>(buf);
    445       if (GetTokenInformation(token, TokenIntegrityLevel, til, size, &size)) {
    446 
    447         DWORD count = *GetSidSubAuthorityCount(til->Label.Sid);
    448         *level = *GetSidSubAuthority(til->Label.Sid, count - 1);
    449         ret = true;
    450       }
    451     }
    452     CloseHandle(token);
    453   }
    454   return ret;
    455 }
    456 }  // namespace rtc
    457