1 // Copyright 2010 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // Frame-reconstruction function. Memory allocation. 11 // 12 // Author: Skal (pascal.massimino (at) gmail.com) 13 14 #include <stdlib.h> 15 #include "./vp8i.h" 16 #include "../utils/utils.h" 17 18 #define ALIGN_MASK (32 - 1) 19 20 static void ReconstructRow(const VP8Decoder* const dec, 21 const VP8ThreadContext* ctx); // TODO(skal): remove 22 23 //------------------------------------------------------------------------------ 24 // Filtering 25 26 // kFilterExtraRows[] = How many extra lines are needed on the MB boundary 27 // for caching, given a filtering level. 28 // Simple filter: up to 2 luma samples are read and 1 is written. 29 // Complex filter: up to 4 luma samples are read and 3 are written. Same for 30 // U/V, so it's 8 samples total (because of the 2x upsampling). 31 static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 }; 32 33 static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) { 34 const VP8ThreadContext* const ctx = &dec->thread_ctx_; 35 const int cache_id = ctx->id_; 36 const int y_bps = dec->cache_y_stride_; 37 const VP8FInfo* const f_info = ctx->f_info_ + mb_x; 38 uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16; 39 const int ilevel = f_info->f_ilevel_; 40 const int limit = f_info->f_limit_; 41 if (limit == 0) { 42 return; 43 } 44 assert(limit >= 3); 45 if (dec->filter_type_ == 1) { // simple 46 if (mb_x > 0) { 47 VP8SimpleHFilter16(y_dst, y_bps, limit + 4); 48 } 49 if (f_info->f_inner_) { 50 VP8SimpleHFilter16i(y_dst, y_bps, limit); 51 } 52 if (mb_y > 0) { 53 VP8SimpleVFilter16(y_dst, y_bps, limit + 4); 54 } 55 if (f_info->f_inner_) { 56 VP8SimpleVFilter16i(y_dst, y_bps, limit); 57 } 58 } else { // complex 59 const int uv_bps = dec->cache_uv_stride_; 60 uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; 61 uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; 62 const int hev_thresh = f_info->hev_thresh_; 63 if (mb_x > 0) { 64 VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); 65 VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); 66 } 67 if (f_info->f_inner_) { 68 VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); 69 VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); 70 } 71 if (mb_y > 0) { 72 VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); 73 VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); 74 } 75 if (f_info->f_inner_) { 76 VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); 77 VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); 78 } 79 } 80 } 81 82 // Filter the decoded macroblock row (if needed) 83 static void FilterRow(const VP8Decoder* const dec) { 84 int mb_x; 85 const int mb_y = dec->thread_ctx_.mb_y_; 86 assert(dec->thread_ctx_.filter_row_); 87 for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { 88 DoFilter(dec, mb_x, mb_y); 89 } 90 } 91 92 //------------------------------------------------------------------------------ 93 // Precompute the filtering strength for each segment and each i4x4/i16x16 mode. 94 95 static void PrecomputeFilterStrengths(VP8Decoder* const dec) { 96 if (dec->filter_type_ > 0) { 97 int s; 98 const VP8FilterHeader* const hdr = &dec->filter_hdr_; 99 for (s = 0; s < NUM_MB_SEGMENTS; ++s) { 100 int i4x4; 101 // First, compute the initial level 102 int base_level; 103 if (dec->segment_hdr_.use_segment_) { 104 base_level = dec->segment_hdr_.filter_strength_[s]; 105 if (!dec->segment_hdr_.absolute_delta_) { 106 base_level += hdr->level_; 107 } 108 } else { 109 base_level = hdr->level_; 110 } 111 for (i4x4 = 0; i4x4 <= 1; ++i4x4) { 112 VP8FInfo* const info = &dec->fstrengths_[s][i4x4]; 113 int level = base_level; 114 if (hdr->use_lf_delta_) { 115 // TODO(skal): only CURRENT is handled for now. 116 level += hdr->ref_lf_delta_[0]; 117 if (i4x4) { 118 level += hdr->mode_lf_delta_[0]; 119 } 120 } 121 level = (level < 0) ? 0 : (level > 63) ? 63 : level; 122 if (level > 0) { 123 int ilevel = level; 124 if (hdr->sharpness_ > 0) { 125 if (hdr->sharpness_ > 4) { 126 ilevel >>= 2; 127 } else { 128 ilevel >>= 1; 129 } 130 if (ilevel > 9 - hdr->sharpness_) { 131 ilevel = 9 - hdr->sharpness_; 132 } 133 } 134 if (ilevel < 1) ilevel = 1; 135 info->f_ilevel_ = ilevel; 136 info->f_limit_ = 2 * level + ilevel; 137 info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0; 138 } else { 139 info->f_limit_ = 0; // no filtering 140 } 141 info->f_inner_ = i4x4; 142 } 143 } 144 } 145 } 146 147 //------------------------------------------------------------------------------ 148 // Dithering 149 150 #define DITHER_AMP_TAB_SIZE 12 151 static const int kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = { 152 // roughly, it's dqm->uv_mat_[1] 153 8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1 154 }; 155 156 void VP8InitDithering(const WebPDecoderOptions* const options, 157 VP8Decoder* const dec) { 158 assert(dec != NULL); 159 if (options != NULL) { 160 const int d = options->dithering_strength; 161 const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1; 162 const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100); 163 if (f > 0) { 164 int s; 165 int all_amp = 0; 166 for (s = 0; s < NUM_MB_SEGMENTS; ++s) { 167 VP8QuantMatrix* const dqm = &dec->dqm_[s]; 168 if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) { 169 // TODO(skal): should we specially dither more for uv_quant_ < 0? 170 const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_; 171 dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3; 172 } 173 all_amp |= dqm->dither_; 174 } 175 if (all_amp != 0) { 176 VP8InitRandom(&dec->dithering_rg_, 1.0f); 177 dec->dither_ = 1; 178 } 179 } 180 #if WEBP_DECODER_ABI_VERSION > 0x0203 181 // potentially allow alpha dithering 182 dec->alpha_dithering_ = options->alpha_dithering_strength; 183 if (dec->alpha_dithering_ > 100) { 184 dec->alpha_dithering_ = 100; 185 } else if (dec->alpha_dithering_ < 0) { 186 dec->alpha_dithering_ = 0; 187 } 188 #endif 189 } 190 } 191 192 // minimal amp that will provide a non-zero dithering effect 193 #define MIN_DITHER_AMP 4 194 #define DITHER_DESCALE 4 195 #define DITHER_DESCALE_ROUNDER (1 << (DITHER_DESCALE - 1)) 196 #define DITHER_AMP_BITS 8 197 #define DITHER_AMP_CENTER (1 << DITHER_AMP_BITS) 198 199 static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) { 200 int i, j; 201 for (j = 0; j < 8; ++j) { 202 for (i = 0; i < 8; ++i) { 203 // TODO: could be made faster with SSE2 204 const int bits = 205 VP8RandomBits2(rg, DITHER_AMP_BITS + 1, amp) - DITHER_AMP_CENTER; 206 // Convert to range: [-2,2] for dither=50, [-4,4] for dither=100 207 const int delta = (bits + DITHER_DESCALE_ROUNDER) >> DITHER_DESCALE; 208 const int v = (int)dst[i] + delta; 209 dst[i] = (v < 0) ? 0 : (v > 255) ? 255u : (uint8_t)v; 210 } 211 dst += bps; 212 } 213 } 214 215 static void DitherRow(VP8Decoder* const dec) { 216 int mb_x; 217 assert(dec->dither_); 218 for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { 219 const VP8ThreadContext* const ctx = &dec->thread_ctx_; 220 const VP8MBData* const data = ctx->mb_data_ + mb_x; 221 const int cache_id = ctx->id_; 222 const int uv_bps = dec->cache_uv_stride_; 223 if (data->dither_ >= MIN_DITHER_AMP) { 224 uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; 225 uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; 226 Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_); 227 Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_); 228 } 229 } 230 } 231 232 //------------------------------------------------------------------------------ 233 // This function is called after a row of macroblocks is finished decoding. 234 // It also takes into account the following restrictions: 235 // * In case of in-loop filtering, we must hold off sending some of the bottom 236 // pixels as they are yet unfiltered. They will be when the next macroblock 237 // row is decoded. Meanwhile, we must preserve them by rotating them in the 238 // cache area. This doesn't hold for the very bottom row of the uncropped 239 // picture of course. 240 // * we must clip the remaining pixels against the cropping area. The VP8Io 241 // struct must have the following fields set correctly before calling put(): 242 243 #define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB 244 245 // Finalize and transmit a complete row. Return false in case of user-abort. 246 static int FinishRow(VP8Decoder* const dec, VP8Io* const io) { 247 int ok = 1; 248 const VP8ThreadContext* const ctx = &dec->thread_ctx_; 249 const int cache_id = ctx->id_; 250 const int extra_y_rows = kFilterExtraRows[dec->filter_type_]; 251 const int ysize = extra_y_rows * dec->cache_y_stride_; 252 const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_; 253 const int y_offset = cache_id * 16 * dec->cache_y_stride_; 254 const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; 255 uint8_t* const ydst = dec->cache_y_ - ysize + y_offset; 256 uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset; 257 uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset; 258 const int mb_y = ctx->mb_y_; 259 const int is_first_row = (mb_y == 0); 260 const int is_last_row = (mb_y >= dec->br_mb_y_ - 1); 261 262 if (dec->mt_method_ == 2) { 263 ReconstructRow(dec, ctx); 264 } 265 266 if (ctx->filter_row_) { 267 FilterRow(dec); 268 } 269 270 if (dec->dither_) { 271 DitherRow(dec); 272 } 273 274 if (io->put != NULL) { 275 int y_start = MACROBLOCK_VPOS(mb_y); 276 int y_end = MACROBLOCK_VPOS(mb_y + 1); 277 if (!is_first_row) { 278 y_start -= extra_y_rows; 279 io->y = ydst; 280 io->u = udst; 281 io->v = vdst; 282 } else { 283 io->y = dec->cache_y_ + y_offset; 284 io->u = dec->cache_u_ + uv_offset; 285 io->v = dec->cache_v_ + uv_offset; 286 } 287 288 if (!is_last_row) { 289 y_end -= extra_y_rows; 290 } 291 if (y_end > io->crop_bottom) { 292 y_end = io->crop_bottom; // make sure we don't overflow on last row. 293 } 294 io->a = NULL; 295 if (dec->alpha_data_ != NULL && y_start < y_end) { 296 // TODO(skal): testing presence of alpha with dec->alpha_data_ is not a 297 // good idea. 298 io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start); 299 if (io->a == NULL) { 300 return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, 301 "Could not decode alpha data."); 302 } 303 } 304 if (y_start < io->crop_top) { 305 const int delta_y = io->crop_top - y_start; 306 y_start = io->crop_top; 307 assert(!(delta_y & 1)); 308 io->y += dec->cache_y_stride_ * delta_y; 309 io->u += dec->cache_uv_stride_ * (delta_y >> 1); 310 io->v += dec->cache_uv_stride_ * (delta_y >> 1); 311 if (io->a != NULL) { 312 io->a += io->width * delta_y; 313 } 314 } 315 if (y_start < y_end) { 316 io->y += io->crop_left; 317 io->u += io->crop_left >> 1; 318 io->v += io->crop_left >> 1; 319 if (io->a != NULL) { 320 io->a += io->crop_left; 321 } 322 io->mb_y = y_start - io->crop_top; 323 io->mb_w = io->crop_right - io->crop_left; 324 io->mb_h = y_end - y_start; 325 ok = io->put(io); 326 } 327 } 328 // rotate top samples if needed 329 if (cache_id + 1 == dec->num_caches_) { 330 if (!is_last_row) { 331 memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize); 332 memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize); 333 memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize); 334 } 335 } 336 337 return ok; 338 } 339 340 #undef MACROBLOCK_VPOS 341 342 //------------------------------------------------------------------------------ 343 344 int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) { 345 int ok = 1; 346 VP8ThreadContext* const ctx = &dec->thread_ctx_; 347 const int filter_row = 348 (dec->filter_type_ > 0) && 349 (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_); 350 if (dec->mt_method_ == 0) { 351 // ctx->id_ and ctx->f_info_ are already set 352 ctx->mb_y_ = dec->mb_y_; 353 ctx->filter_row_ = filter_row; 354 ReconstructRow(dec, ctx); 355 ok = FinishRow(dec, io); 356 } else { 357 WebPWorker* const worker = &dec->worker_; 358 // Finish previous job *before* updating context 359 ok &= WebPGetWorkerInterface()->Sync(worker); 360 assert(worker->status_ == OK); 361 if (ok) { // spawn a new deblocking/output job 362 ctx->io_ = *io; 363 ctx->id_ = dec->cache_id_; 364 ctx->mb_y_ = dec->mb_y_; 365 ctx->filter_row_ = filter_row; 366 if (dec->mt_method_ == 2) { // swap macroblock data 367 VP8MBData* const tmp = ctx->mb_data_; 368 ctx->mb_data_ = dec->mb_data_; 369 dec->mb_data_ = tmp; 370 } else { 371 // perform reconstruction directly in main thread 372 ReconstructRow(dec, ctx); 373 } 374 if (filter_row) { // swap filter info 375 VP8FInfo* const tmp = ctx->f_info_; 376 ctx->f_info_ = dec->f_info_; 377 dec->f_info_ = tmp; 378 } 379 // (reconstruct)+filter in parallel 380 WebPGetWorkerInterface()->Launch(worker); 381 if (++dec->cache_id_ == dec->num_caches_) { 382 dec->cache_id_ = 0; 383 } 384 } 385 } 386 return ok; 387 } 388 389 //------------------------------------------------------------------------------ 390 // Finish setting up the decoding parameter once user's setup() is called. 391 392 VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) { 393 // Call setup() first. This may trigger additional decoding features on 'io'. 394 // Note: Afterward, we must call teardown() no matter what. 395 if (io->setup != NULL && !io->setup(io)) { 396 VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed"); 397 return dec->status_; 398 } 399 400 // Disable filtering per user request 401 if (io->bypass_filtering) { 402 dec->filter_type_ = 0; 403 } 404 // TODO(skal): filter type / strength / sharpness forcing 405 406 // Define the area where we can skip in-loop filtering, in case of cropping. 407 // 408 // 'Simple' filter reads two luma samples outside of the macroblock 409 // and filters one. It doesn't filter the chroma samples. Hence, we can 410 // avoid doing the in-loop filtering before crop_top/crop_left position. 411 // For the 'Complex' filter, 3 samples are read and up to 3 are filtered. 412 // Means: there's a dependency chain that goes all the way up to the 413 // top-left corner of the picture (MB #0). We must filter all the previous 414 // macroblocks. 415 // TODO(skal): add an 'approximate_decoding' option, that won't produce 416 // a 1:1 bit-exactness for complex filtering? 417 { 418 const int extra_pixels = kFilterExtraRows[dec->filter_type_]; 419 if (dec->filter_type_ == 2) { 420 // For complex filter, we need to preserve the dependency chain. 421 dec->tl_mb_x_ = 0; 422 dec->tl_mb_y_ = 0; 423 } else { 424 // For simple filter, we can filter only the cropped region. 425 // We include 'extra_pixels' on the other side of the boundary, since 426 // vertical or horizontal filtering of the previous macroblock can 427 // modify some abutting pixels. 428 dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4; 429 dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4; 430 if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0; 431 if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0; 432 } 433 // We need some 'extra' pixels on the right/bottom. 434 dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4; 435 dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4; 436 if (dec->br_mb_x_ > dec->mb_w_) { 437 dec->br_mb_x_ = dec->mb_w_; 438 } 439 if (dec->br_mb_y_ > dec->mb_h_) { 440 dec->br_mb_y_ = dec->mb_h_; 441 } 442 } 443 PrecomputeFilterStrengths(dec); 444 return VP8_STATUS_OK; 445 } 446 447 int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) { 448 int ok = 1; 449 if (dec->mt_method_ > 0) { 450 ok = WebPGetWorkerInterface()->Sync(&dec->worker_); 451 } 452 453 if (io->teardown != NULL) { 454 io->teardown(io); 455 } 456 return ok; 457 } 458 459 //------------------------------------------------------------------------------ 460 // For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line. 461 // 462 // Reason is: the deblocking filter cannot deblock the bottom horizontal edges 463 // immediately, and needs to wait for first few rows of the next macroblock to 464 // be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending 465 // on strength). 466 // With two threads, the vertical positions of the rows being decoded are: 467 // Decode: [ 0..15][16..31][32..47][48..63][64..79][... 468 // Deblock: [ 0..11][12..27][28..43][44..59][... 469 // If we use two threads and two caches of 16 pixels, the sequence would be: 470 // Decode: [ 0..15][16..31][ 0..15!!][16..31][ 0..15][... 471 // Deblock: [ 0..11][12..27!!][-4..11][12..27][... 472 // The problem occurs during row [12..15!!] that both the decoding and 473 // deblocking threads are writing simultaneously. 474 // With 3 cache lines, one get a safe write pattern: 475 // Decode: [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0.. 476 // Deblock: [ 0..11][12..27][28..43][-4..11][12..27][28... 477 // Note that multi-threaded output _without_ deblocking can make use of two 478 // cache lines of 16 pixels only, since there's no lagging behind. The decoding 479 // and output process have non-concurrent writing: 480 // Decode: [ 0..15][16..31][ 0..15][16..31][... 481 // io->put: [ 0..15][16..31][ 0..15][... 482 483 #define MT_CACHE_LINES 3 484 #define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case 485 486 // Initialize multi/single-thread worker 487 static int InitThreadContext(VP8Decoder* const dec) { 488 dec->cache_id_ = 0; 489 if (dec->mt_method_ > 0) { 490 WebPWorker* const worker = &dec->worker_; 491 if (!WebPGetWorkerInterface()->Reset(worker)) { 492 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, 493 "thread initialization failed."); 494 } 495 worker->data1 = dec; 496 worker->data2 = (void*)&dec->thread_ctx_.io_; 497 worker->hook = (WebPWorkerHook)FinishRow; 498 dec->num_caches_ = 499 (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1; 500 } else { 501 dec->num_caches_ = ST_CACHE_LINES; 502 } 503 return 1; 504 } 505 506 int VP8GetThreadMethod(const WebPDecoderOptions* const options, 507 const WebPHeaderStructure* const headers, 508 int width, int height) { 509 if (options == NULL || options->use_threads == 0) { 510 return 0; 511 } 512 (void)headers; 513 (void)width; 514 (void)height; 515 assert(headers == NULL || !headers->is_lossless); 516 #if defined(WEBP_USE_THREAD) 517 if (width < MIN_WIDTH_FOR_THREADS) return 0; 518 // TODO(skal): tune the heuristic further 519 #if 0 520 if (height < 2 * width) return 2; 521 #endif 522 return 2; 523 #else // !WEBP_USE_THREAD 524 return 0; 525 #endif 526 } 527 528 #undef MT_CACHE_LINES 529 #undef ST_CACHE_LINES 530 531 //------------------------------------------------------------------------------ 532 // Memory setup 533 534 static int AllocateMemory(VP8Decoder* const dec) { 535 const int num_caches = dec->num_caches_; 536 const int mb_w = dec->mb_w_; 537 // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise. 538 const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t); 539 const size_t top_size = sizeof(VP8TopSamples) * mb_w; 540 const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB); 541 const size_t f_info_size = 542 (dec->filter_type_ > 0) ? 543 mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo) 544 : 0; 545 const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_); 546 const size_t mb_data_size = 547 (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_); 548 const size_t cache_height = (16 * num_caches 549 + kFilterExtraRows[dec->filter_type_]) * 3 / 2; 550 const size_t cache_size = top_size * cache_height; 551 // alpha_size is the only one that scales as width x height. 552 const uint64_t alpha_size = (dec->alpha_data_ != NULL) ? 553 (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL; 554 const uint64_t needed = (uint64_t)intra_pred_mode_size 555 + top_size + mb_info_size + f_info_size 556 + yuv_size + mb_data_size 557 + cache_size + alpha_size + ALIGN_MASK; 558 uint8_t* mem; 559 560 if (needed != (size_t)needed) return 0; // check for overflow 561 if (needed > dec->mem_size_) { 562 WebPSafeFree(dec->mem_); 563 dec->mem_size_ = 0; 564 dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t)); 565 if (dec->mem_ == NULL) { 566 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, 567 "no memory during frame initialization."); 568 } 569 // down-cast is ok, thanks to WebPSafeAlloc() above. 570 dec->mem_size_ = (size_t)needed; 571 } 572 573 mem = (uint8_t*)dec->mem_; 574 dec->intra_t_ = (uint8_t*)mem; 575 mem += intra_pred_mode_size; 576 577 dec->yuv_t_ = (VP8TopSamples*)mem; 578 mem += top_size; 579 580 dec->mb_info_ = ((VP8MB*)mem) + 1; 581 mem += mb_info_size; 582 583 dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL; 584 mem += f_info_size; 585 dec->thread_ctx_.id_ = 0; 586 dec->thread_ctx_.f_info_ = dec->f_info_; 587 if (dec->mt_method_ > 0) { 588 // secondary cache line. The deblocking process need to make use of the 589 // filtering strength from previous macroblock row, while the new ones 590 // are being decoded in parallel. We'll just swap the pointers. 591 dec->thread_ctx_.f_info_ += mb_w; 592 } 593 594 mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK); 595 assert((yuv_size & ALIGN_MASK) == 0); 596 dec->yuv_b_ = (uint8_t*)mem; 597 mem += yuv_size; 598 599 dec->mb_data_ = (VP8MBData*)mem; 600 dec->thread_ctx_.mb_data_ = (VP8MBData*)mem; 601 if (dec->mt_method_ == 2) { 602 dec->thread_ctx_.mb_data_ += mb_w; 603 } 604 mem += mb_data_size; 605 606 dec->cache_y_stride_ = 16 * mb_w; 607 dec->cache_uv_stride_ = 8 * mb_w; 608 { 609 const int extra_rows = kFilterExtraRows[dec->filter_type_]; 610 const int extra_y = extra_rows * dec->cache_y_stride_; 611 const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_; 612 dec->cache_y_ = ((uint8_t*)mem) + extra_y; 613 dec->cache_u_ = dec->cache_y_ 614 + 16 * num_caches * dec->cache_y_stride_ + extra_uv; 615 dec->cache_v_ = dec->cache_u_ 616 + 8 * num_caches * dec->cache_uv_stride_ + extra_uv; 617 dec->cache_id_ = 0; 618 } 619 mem += cache_size; 620 621 // alpha plane 622 dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL; 623 mem += alpha_size; 624 assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_); 625 626 // note: left/top-info is initialized once for all. 627 memset(dec->mb_info_ - 1, 0, mb_info_size); 628 VP8InitScanline(dec); // initialize left too. 629 630 // initialize top 631 memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size); 632 633 return 1; 634 } 635 636 static void InitIo(VP8Decoder* const dec, VP8Io* io) { 637 // prepare 'io' 638 io->mb_y = 0; 639 io->y = dec->cache_y_; 640 io->u = dec->cache_u_; 641 io->v = dec->cache_v_; 642 io->y_stride = dec->cache_y_stride_; 643 io->uv_stride = dec->cache_uv_stride_; 644 io->a = NULL; 645 } 646 647 int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) { 648 if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_. 649 if (!AllocateMemory(dec)) return 0; 650 InitIo(dec, io); 651 VP8DspInit(); // Init critical function pointers and look-up tables. 652 return 1; 653 } 654 655 //------------------------------------------------------------------------------ 656 // Main reconstruction function. 657 658 static const int kScan[16] = { 659 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, 660 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, 661 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, 662 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS 663 }; 664 665 static int CheckMode(int mb_x, int mb_y, int mode) { 666 if (mode == B_DC_PRED) { 667 if (mb_x == 0) { 668 return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT; 669 } else { 670 return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED; 671 } 672 } 673 return mode; 674 } 675 676 static void Copy32b(uint8_t* dst, uint8_t* src) { 677 memcpy(dst, src, 4); 678 } 679 680 static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src, 681 uint8_t* const dst) { 682 switch (bits >> 30) { 683 case 3: 684 VP8Transform(src, dst, 0); 685 break; 686 case 2: 687 VP8TransformAC3(src, dst); 688 break; 689 case 1: 690 VP8TransformDC(src, dst); 691 break; 692 default: 693 break; 694 } 695 } 696 697 static void DoUVTransform(uint32_t bits, const int16_t* const src, 698 uint8_t* const dst) { 699 if (bits & 0xff) { // any non-zero coeff at all? 700 if (bits & 0xaa) { // any non-zero AC coefficient? 701 VP8TransformUV(src, dst); // note we don't use the AC3 variant for U/V 702 } else { 703 VP8TransformDCUV(src, dst); 704 } 705 } 706 } 707 708 static void ReconstructRow(const VP8Decoder* const dec, 709 const VP8ThreadContext* ctx) { 710 int j; 711 int mb_x; 712 const int mb_y = ctx->mb_y_; 713 const int cache_id = ctx->id_; 714 uint8_t* const y_dst = dec->yuv_b_ + Y_OFF; 715 uint8_t* const u_dst = dec->yuv_b_ + U_OFF; 716 uint8_t* const v_dst = dec->yuv_b_ + V_OFF; 717 for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) { 718 const VP8MBData* const block = ctx->mb_data_ + mb_x; 719 720 // Rotate in the left samples from previously decoded block. We move four 721 // pixels at a time for alignment reason, and because of in-loop filter. 722 if (mb_x > 0) { 723 for (j = -1; j < 16; ++j) { 724 Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]); 725 } 726 for (j = -1; j < 8; ++j) { 727 Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]); 728 Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]); 729 } 730 } else { 731 for (j = 0; j < 16; ++j) { 732 y_dst[j * BPS - 1] = 129; 733 } 734 for (j = 0; j < 8; ++j) { 735 u_dst[j * BPS - 1] = 129; 736 v_dst[j * BPS - 1] = 129; 737 } 738 // Init top-left sample on left column too 739 if (mb_y > 0) { 740 y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129; 741 } 742 } 743 { 744 // bring top samples into the cache 745 VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x; 746 const int16_t* const coeffs = block->coeffs_; 747 uint32_t bits = block->non_zero_y_; 748 int n; 749 750 if (mb_y > 0) { 751 memcpy(y_dst - BPS, top_yuv[0].y, 16); 752 memcpy(u_dst - BPS, top_yuv[0].u, 8); 753 memcpy(v_dst - BPS, top_yuv[0].v, 8); 754 } else if (mb_x == 0) { 755 // we only need to do this init once at block (0,0). 756 // Afterward, it remains valid for the whole topmost row. 757 memset(y_dst - BPS - 1, 127, 16 + 4 + 1); 758 memset(u_dst - BPS - 1, 127, 8 + 1); 759 memset(v_dst - BPS - 1, 127, 8 + 1); 760 } 761 762 // predict and add residuals 763 if (block->is_i4x4_) { // 4x4 764 uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16); 765 766 if (mb_y > 0) { 767 if (mb_x >= dec->mb_w_ - 1) { // on rightmost border 768 memset(top_right, top_yuv[0].y[15], sizeof(*top_right)); 769 } else { 770 memcpy(top_right, top_yuv[1].y, sizeof(*top_right)); 771 } 772 } 773 // replicate the top-right pixels below 774 top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0]; 775 776 // predict and add residuals for all 4x4 blocks in turn. 777 for (n = 0; n < 16; ++n, bits <<= 2) { 778 uint8_t* const dst = y_dst + kScan[n]; 779 VP8PredLuma4[block->imodes_[n]](dst); 780 DoTransform(bits, coeffs + n * 16, dst); 781 } 782 } else { // 16x16 783 const int pred_func = CheckMode(mb_x, mb_y, 784 block->imodes_[0]); 785 VP8PredLuma16[pred_func](y_dst); 786 if (bits != 0) { 787 for (n = 0; n < 16; ++n, bits <<= 2) { 788 DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]); 789 } 790 } 791 } 792 { 793 // Chroma 794 const uint32_t bits_uv = block->non_zero_uv_; 795 const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_); 796 VP8PredChroma8[pred_func](u_dst); 797 VP8PredChroma8[pred_func](v_dst); 798 DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst); 799 DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst); 800 } 801 802 // stash away top samples for next block 803 if (mb_y < dec->mb_h_ - 1) { 804 memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16); 805 memcpy(top_yuv[0].u, u_dst + 7 * BPS, 8); 806 memcpy(top_yuv[0].v, v_dst + 7 * BPS, 8); 807 } 808 } 809 // Transfer reconstructed samples from yuv_b_ cache to final destination. 810 { 811 const int y_offset = cache_id * 16 * dec->cache_y_stride_; 812 const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; 813 uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset; 814 uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset; 815 uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset; 816 for (j = 0; j < 16; ++j) { 817 memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16); 818 } 819 for (j = 0; j < 8; ++j) { 820 memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8); 821 memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8); 822 } 823 } 824 } 825 } 826 827 //------------------------------------------------------------------------------ 828 829