Home | History | Annotate | Download | only in dsp
      1 // Copyright 2010 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // inline YUV<->RGB conversion function
     11 //
     12 // The exact naming is Y'CbCr, following the ITU-R BT.601 standard.
     13 // More information at: http://en.wikipedia.org/wiki/YCbCr
     14 // Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16
     15 // U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128
     16 // V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128
     17 // We use 16bit fixed point operations for RGB->YUV conversion (YUV_FIX).
     18 //
     19 // For the Y'CbCr to RGB conversion, the BT.601 specification reads:
     20 //   R = 1.164 * (Y-16) + 1.596 * (V-128)
     21 //   G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128)
     22 //   B = 1.164 * (Y-16)                   + 2.018 * (U-128)
     23 // where Y is in the [16,235] range, and U/V in the [16,240] range.
     24 // In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor
     25 // "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table.
     26 // So in this case the formulae should read:
     27 //   R = 1.164 * [Y + 1.371 * (V-128)                  ] - 18.624
     28 //   G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624
     29 //   B = 1.164 * [Y                   + 1.733 * (U-128)] - 18.624
     30 // once factorized.
     31 // For YUV->RGB conversion, only 14bit fixed precision is used (YUV_FIX2).
     32 // That's the maximum possible for a convenient ARM implementation.
     33 //
     34 // Author: Skal (pascal.massimino (at) gmail.com)
     35 
     36 #ifndef WEBP_DSP_YUV_H_
     37 #define WEBP_DSP_YUV_H_
     38 
     39 #include "./dsp.h"
     40 #include "../dec/decode_vp8.h"
     41 
     42 // Define the following to use the LUT-based code:
     43 // #define WEBP_YUV_USE_TABLE
     44 
     45 #if defined(WEBP_EXPERIMENTAL_FEATURES)
     46 // Do NOT activate this feature for real compression. This is only experimental!
     47 // This flag is for comparison purpose against JPEG's "YUVj" natural colorspace.
     48 // This colorspace is close to Rec.601's Y'CbCr model with the notable
     49 // difference of allowing larger range for luma/chroma.
     50 // See http://en.wikipedia.org/wiki/YCbCr#JPEG_conversion paragraph, and its
     51 // difference with http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion
     52 // #define USE_YUVj
     53 #endif
     54 
     55 //------------------------------------------------------------------------------
     56 // YUV -> RGB conversion
     57 
     58 #ifdef __cplusplus
     59 extern "C" {
     60 #endif
     61 
     62 enum {
     63   YUV_FIX = 16,                    // fixed-point precision for RGB->YUV
     64   YUV_HALF = 1 << (YUV_FIX - 1),
     65   YUV_MASK = (256 << YUV_FIX) - 1,
     66   YUV_RANGE_MIN = -227,            // min value of r/g/b output
     67   YUV_RANGE_MAX = 256 + 226,       // max value of r/g/b output
     68 
     69   YUV_FIX2 = 14,                   // fixed-point precision for YUV->RGB
     70   YUV_HALF2 = 1 << (YUV_FIX2 - 1),
     71   YUV_MASK2 = (256 << YUV_FIX2) - 1
     72 };
     73 
     74 // These constants are 14b fixed-point version of ITU-R BT.601 constants.
     75 #define kYScale 19077    // 1.164 = 255 / 219
     76 #define kVToR   26149    // 1.596 = 255 / 112 * 0.701
     77 #define kUToG   6419     // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587
     78 #define kVToG   13320    // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587
     79 #define kUToB   33050    // 2.018 = 255 / 112 * 0.886
     80 #define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF2)
     81 #define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF2)
     82 #define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF2)
     83 
     84 //------------------------------------------------------------------------------
     85 
     86 #if !defined(WEBP_YUV_USE_TABLE)
     87 
     88 // slower on x86 by ~7-8%, but bit-exact with the SSE2 version
     89 
     90 static WEBP_INLINE int VP8Clip8(int v) {
     91   return ((v & ~YUV_MASK2) == 0) ? (v >> YUV_FIX2) : (v < 0) ? 0 : 255;
     92 }
     93 
     94 static WEBP_INLINE int VP8YUVToR(int y, int v) {
     95   return VP8Clip8(kYScale * y + kVToR * v + kRCst);
     96 }
     97 
     98 static WEBP_INLINE int VP8YUVToG(int y, int u, int v) {
     99   return VP8Clip8(kYScale * y - kUToG * u - kVToG * v + kGCst);
    100 }
    101 
    102 static WEBP_INLINE int VP8YUVToB(int y, int u) {
    103   return VP8Clip8(kYScale * y + kUToB * u + kBCst);
    104 }
    105 
    106 static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v,
    107                                     uint8_t* const rgb) {
    108   rgb[0] = VP8YUVToR(y, v);
    109   rgb[1] = VP8YUVToG(y, u, v);
    110   rgb[2] = VP8YUVToB(y, u);
    111 }
    112 
    113 static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v,
    114                                     uint8_t* const bgr) {
    115   bgr[0] = VP8YUVToB(y, u);
    116   bgr[1] = VP8YUVToG(y, u, v);
    117   bgr[2] = VP8YUVToR(y, v);
    118 }
    119 
    120 static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v,
    121                                        uint8_t* const rgb) {
    122   const int r = VP8YUVToR(y, v);      // 5 usable bits
    123   const int g = VP8YUVToG(y, u, v);   // 6 usable bits
    124   const int b = VP8YUVToB(y, u);      // 5 usable bits
    125   const int rg = (r & 0xf8) | (g >> 5);
    126   const int gb = ((g << 3) & 0xe0) | (b >> 3);
    127 #ifdef WEBP_SWAP_16BIT_CSP
    128   rgb[0] = gb;
    129   rgb[1] = rg;
    130 #else
    131   rgb[0] = rg;
    132   rgb[1] = gb;
    133 #endif
    134 }
    135 
    136 static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v,
    137                                          uint8_t* const argb) {
    138   const int r = VP8YUVToR(y, v);        // 4 usable bits
    139   const int g = VP8YUVToG(y, u, v);     // 4 usable bits
    140   const int b = VP8YUVToB(y, u);        // 4 usable bits
    141   const int rg = (r & 0xf0) | (g >> 4);
    142   const int ba = (b & 0xf0) | 0x0f;     // overwrite the lower 4 bits
    143 #ifdef WEBP_SWAP_16BIT_CSP
    144   argb[0] = ba;
    145   argb[1] = rg;
    146 #else
    147   argb[0] = rg;
    148   argb[1] = ba;
    149 #endif
    150 }
    151 
    152 #else
    153 
    154 // Table-based version, not totally equivalent to the SSE2 version.
    155 // Rounding diff is only +/-1 though.
    156 
    157 extern int16_t VP8kVToR[256], VP8kUToB[256];
    158 extern int32_t VP8kVToG[256], VP8kUToG[256];
    159 extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
    160 extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN];
    161 
    162 static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v,
    163                                     uint8_t* const rgb) {
    164   const int r_off = VP8kVToR[v];
    165   const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
    166   const int b_off = VP8kUToB[u];
    167   rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN];
    168   rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
    169   rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN];
    170 }
    171 
    172 static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v,
    173                                     uint8_t* const bgr) {
    174   const int r_off = VP8kVToR[v];
    175   const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
    176   const int b_off = VP8kUToB[u];
    177   bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN];
    178   bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
    179   bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN];
    180 }
    181 
    182 static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v,
    183                                        uint8_t* const rgb) {
    184   const int r_off = VP8kVToR[v];
    185   const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
    186   const int b_off = VP8kUToB[u];
    187   const int rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) |
    188                   (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5));
    189   const int gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) |
    190                    (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3));
    191 #ifdef WEBP_SWAP_16BIT_CSP
    192   rgb[0] = gb;
    193   rgb[1] = rg;
    194 #else
    195   rgb[0] = rg;
    196   rgb[1] = gb;
    197 #endif
    198 }
    199 
    200 static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v,
    201                                          uint8_t* const argb) {
    202   const int r_off = VP8kVToR[v];
    203   const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
    204   const int b_off = VP8kUToB[u];
    205   const int rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) |
    206                    VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]);
    207   const int ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f;
    208 #ifdef WEBP_SWAP_16BIT_CSP
    209   argb[0] = ba;
    210   argb[1] = rg;
    211 #else
    212   argb[0] = rg;
    213   argb[1] = ba;
    214 #endif
    215 }
    216 
    217 #endif  // WEBP_YUV_USE_TABLE
    218 
    219 //-----------------------------------------------------------------------------
    220 // Alpha handling variants
    221 
    222 static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v,
    223                                      uint8_t* const argb) {
    224   argb[0] = 0xff;
    225   VP8YuvToRgb(y, u, v, argb + 1);
    226 }
    227 
    228 static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v,
    229                                      uint8_t* const bgra) {
    230   VP8YuvToBgr(y, u, v, bgra);
    231   bgra[3] = 0xff;
    232 }
    233 
    234 static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v,
    235                                      uint8_t* const rgba) {
    236   VP8YuvToRgb(y, u, v, rgba);
    237   rgba[3] = 0xff;
    238 }
    239 
    240 // Must be called before everything, to initialize the tables.
    241 void VP8YUVInit(void);
    242 
    243 //-----------------------------------------------------------------------------
    244 // SSE2 extra functions (mostly for upsampling_sse2.c)
    245 
    246 #if defined(WEBP_USE_SSE2)
    247 
    248 // When the following is defined, tables are initialized statically, adding ~12k
    249 // to the binary size. Otherwise, they are initialized at run-time (small cost).
    250 #define WEBP_YUV_USE_SSE2_TABLES
    251 
    252 #if defined(FANCY_UPSAMPLING)
    253 // Process 32 pixels and store the result (24b or 32b per pixel) in *dst.
    254 void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
    255                     uint8_t* dst);
    256 void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
    257                    uint8_t* dst);
    258 void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
    259                     uint8_t* dst);
    260 void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
    261                    uint8_t* dst);
    262 #endif  // FANCY_UPSAMPLING
    263 
    264 // Must be called to initialize tables before using the functions.
    265 void VP8YUVInitSSE2(void);
    266 
    267 #endif    // WEBP_USE_SSE2
    268 
    269 //------------------------------------------------------------------------------
    270 // RGB -> YUV conversion
    271 
    272 // Stub functions that can be called with various rounding values:
    273 static WEBP_INLINE int VP8ClipUV(int uv, int rounding) {
    274   uv = (uv + rounding + (128 << (YUV_FIX + 2))) >> (YUV_FIX + 2);
    275   return ((uv & ~0xff) == 0) ? uv : (uv < 0) ? 0 : 255;
    276 }
    277 
    278 #ifndef USE_YUVj
    279 
    280 static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) {
    281   const int luma = 16839 * r + 33059 * g + 6420 * b;
    282   return (luma + rounding + (16 << YUV_FIX)) >> YUV_FIX;  // no need to clip
    283 }
    284 
    285 static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) {
    286   const int u = -9719 * r - 19081 * g + 28800 * b;
    287   return VP8ClipUV(u, rounding);
    288 }
    289 
    290 static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) {
    291   const int v = +28800 * r - 24116 * g - 4684 * b;
    292   return VP8ClipUV(v, rounding);
    293 }
    294 
    295 #else
    296 
    297 // This JPEG-YUV colorspace, only for comparison!
    298 // These are also 16bit precision coefficients from Rec.601, but with full
    299 // [0..255] output range.
    300 static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) {
    301   const int luma = 19595 * r + 38470 * g + 7471 * b;
    302   return (luma + rounding) >> YUV_FIX;  // no need to clip
    303 }
    304 
    305 static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) {
    306   const int u = -11058 * r - 21710 * g + 32768 * b;
    307   return VP8ClipUV(u, rounding);
    308 }
    309 
    310 static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) {
    311   const int v = 32768 * r - 27439 * g - 5329 * b;
    312   return VP8ClipUV(v, rounding);
    313 }
    314 
    315 #endif    // USE_YUVj
    316 
    317 #ifdef __cplusplus
    318 }    // extern "C"
    319 #endif
    320 
    321 #endif  /* WEBP_DSP_YUV_H_ */
    322