1 /* 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #include "webrtc/modules/audio_processing/utility/delay_estimator.h" 12 13 #include <assert.h> 14 #include <stdlib.h> 15 #include <string.h> 16 17 // Number of right shifts for scaling is linearly depending on number of bits in 18 // the far-end binary spectrum. 19 static const int kShiftsAtZero = 13; // Right shifts at zero binary spectrum. 20 static const int kShiftsLinearSlope = 3; 21 22 static const int32_t kProbabilityOffset = 1024; // 2 in Q9. 23 static const int32_t kProbabilityLowerLimit = 8704; // 17 in Q9. 24 static const int32_t kProbabilityMinSpread = 2816; // 5.5 in Q9. 25 26 // Robust validation settings 27 static const float kHistogramMax = 3000.f; 28 static const float kLastHistogramMax = 250.f; 29 static const float kMinHistogramThreshold = 1.5f; 30 static const int kMinRequiredHits = 10; 31 static const int kMaxHitsWhenPossiblyNonCausal = 10; 32 static const int kMaxHitsWhenPossiblyCausal = 1000; 33 static const float kQ14Scaling = 1.f / (1 << 14); // Scaling by 2^14 to get Q0. 34 static const float kFractionSlope = 0.05f; 35 static const float kMinFractionWhenPossiblyCausal = 0.5f; 36 static const float kMinFractionWhenPossiblyNonCausal = 0.25f; 37 38 // Counts and returns number of bits of a 32-bit word. 39 static int BitCount(uint32_t u32) { 40 uint32_t tmp = u32 - ((u32 >> 1) & 033333333333) - 41 ((u32 >> 2) & 011111111111); 42 tmp = ((tmp + (tmp >> 3)) & 030707070707); 43 tmp = (tmp + (tmp >> 6)); 44 tmp = (tmp + (tmp >> 12) + (tmp >> 24)) & 077; 45 46 return ((int) tmp); 47 } 48 49 // Compares the |binary_vector| with all rows of the |binary_matrix| and counts 50 // per row the number of times they have the same value. 51 // 52 // Inputs: 53 // - binary_vector : binary "vector" stored in a long 54 // - binary_matrix : binary "matrix" stored as a vector of long 55 // - matrix_size : size of binary "matrix" 56 // 57 // Output: 58 // - bit_counts : "Vector" stored as a long, containing for each 59 // row the number of times the matrix row and the 60 // input vector have the same value 61 // 62 static void BitCountComparison(uint32_t binary_vector, 63 const uint32_t* binary_matrix, 64 int matrix_size, 65 int32_t* bit_counts) { 66 int n = 0; 67 68 // Compare |binary_vector| with all rows of the |binary_matrix| 69 for (; n < matrix_size; n++) { 70 bit_counts[n] = (int32_t) BitCount(binary_vector ^ binary_matrix[n]); 71 } 72 } 73 74 // Collects necessary statistics for the HistogramBasedValidation(). This 75 // function has to be called prior to calling HistogramBasedValidation(). The 76 // statistics updated and used by the HistogramBasedValidation() are: 77 // 1. the number of |candidate_hits|, which states for how long we have had the 78 // same |candidate_delay| 79 // 2. the |histogram| of candidate delays over time. This histogram is 80 // weighted with respect to a reliability measure and time-varying to cope 81 // with possible delay shifts. 82 // For further description see commented code. 83 // 84 // Inputs: 85 // - candidate_delay : The delay to validate. 86 // - valley_depth_q14 : The cost function has a valley/minimum at the 87 // |candidate_delay| location. |valley_depth_q14| is the 88 // cost function difference between the minimum and 89 // maximum locations. The value is in the Q14 domain. 90 // - valley_level_q14 : Is the cost function value at the minimum, in Q14. 91 static void UpdateRobustValidationStatistics(BinaryDelayEstimator* self, 92 int candidate_delay, 93 int32_t valley_depth_q14, 94 int32_t valley_level_q14) { 95 const float valley_depth = valley_depth_q14 * kQ14Scaling; 96 float decrease_in_last_set = valley_depth; 97 const int max_hits_for_slow_change = (candidate_delay < self->last_delay) ? 98 kMaxHitsWhenPossiblyNonCausal : kMaxHitsWhenPossiblyCausal; 99 int i = 0; 100 101 assert(self->history_size == self->farend->history_size); 102 // Reset |candidate_hits| if we have a new candidate. 103 if (candidate_delay != self->last_candidate_delay) { 104 self->candidate_hits = 0; 105 self->last_candidate_delay = candidate_delay; 106 } 107 self->candidate_hits++; 108 109 // The |histogram| is updated differently across the bins. 110 // 1. The |candidate_delay| histogram bin is increased with the 111 // |valley_depth|, which is a simple measure of how reliable the 112 // |candidate_delay| is. The histogram is not increased above 113 // |kHistogramMax|. 114 self->histogram[candidate_delay] += valley_depth; 115 if (self->histogram[candidate_delay] > kHistogramMax) { 116 self->histogram[candidate_delay] = kHistogramMax; 117 } 118 // 2. The histogram bins in the neighborhood of |candidate_delay| are 119 // unaffected. The neighborhood is defined as x + {-2, -1, 0, 1}. 120 // 3. The histogram bins in the neighborhood of |last_delay| are decreased 121 // with |decrease_in_last_set|. This value equals the difference between 122 // the cost function values at the locations |candidate_delay| and 123 // |last_delay| until we reach |max_hits_for_slow_change| consecutive hits 124 // at the |candidate_delay|. If we exceed this amount of hits the 125 // |candidate_delay| is a "potential" candidate and we start decreasing 126 // these histogram bins more rapidly with |valley_depth|. 127 if (self->candidate_hits < max_hits_for_slow_change) { 128 decrease_in_last_set = (self->mean_bit_counts[self->compare_delay] - 129 valley_level_q14) * kQ14Scaling; 130 } 131 // 4. All other bins are decreased with |valley_depth|. 132 // TODO(bjornv): Investigate how to make this loop more efficient. Split up 133 // the loop? Remove parts that doesn't add too much. 134 for (i = 0; i < self->history_size; ++i) { 135 int is_in_last_set = (i >= self->last_delay - 2) && 136 (i <= self->last_delay + 1) && (i != candidate_delay); 137 int is_in_candidate_set = (i >= candidate_delay - 2) && 138 (i <= candidate_delay + 1); 139 self->histogram[i] -= decrease_in_last_set * is_in_last_set + 140 valley_depth * (!is_in_last_set && !is_in_candidate_set); 141 // 5. No histogram bin can go below 0. 142 if (self->histogram[i] < 0) { 143 self->histogram[i] = 0; 144 } 145 } 146 } 147 148 // Validates the |candidate_delay|, estimated in WebRtc_ProcessBinarySpectrum(), 149 // based on a mix of counting concurring hits with a modified histogram 150 // of recent delay estimates. In brief a candidate is valid (returns 1) if it 151 // is the most likely according to the histogram. There are a couple of 152 // exceptions that are worth mentioning: 153 // 1. If the |candidate_delay| < |last_delay| it can be that we are in a 154 // non-causal state, breaking a possible echo control algorithm. Hence, we 155 // open up for a quicker change by allowing the change even if the 156 // |candidate_delay| is not the most likely one according to the histogram. 157 // 2. There's a minimum number of hits (kMinRequiredHits) and the histogram 158 // value has to reached a minimum (kMinHistogramThreshold) to be valid. 159 // 3. The action is also depending on the filter length used for echo control. 160 // If the delay difference is larger than what the filter can capture, we 161 // also move quicker towards a change. 162 // For further description see commented code. 163 // 164 // Input: 165 // - candidate_delay : The delay to validate. 166 // 167 // Return value: 168 // - is_histogram_valid : 1 - The |candidate_delay| is valid. 169 // 0 - Otherwise. 170 static int HistogramBasedValidation(const BinaryDelayEstimator* self, 171 int candidate_delay) { 172 float fraction = 1.f; 173 float histogram_threshold = self->histogram[self->compare_delay]; 174 const int delay_difference = candidate_delay - self->last_delay; 175 int is_histogram_valid = 0; 176 177 // The histogram based validation of |candidate_delay| is done by comparing 178 // the |histogram| at bin |candidate_delay| with a |histogram_threshold|. 179 // This |histogram_threshold| equals a |fraction| of the |histogram| at bin 180 // |last_delay|. The |fraction| is a piecewise linear function of the 181 // |delay_difference| between the |candidate_delay| and the |last_delay| 182 // allowing for a quicker move if 183 // i) a potential echo control filter can not handle these large differences. 184 // ii) keeping |last_delay| instead of updating to |candidate_delay| could 185 // force an echo control into a non-causal state. 186 // We further require the histogram to have reached a minimum value of 187 // |kMinHistogramThreshold|. In addition, we also require the number of 188 // |candidate_hits| to be more than |kMinRequiredHits| to remove spurious 189 // values. 190 191 // Calculate a comparison histogram value (|histogram_threshold|) that is 192 // depending on the distance between the |candidate_delay| and |last_delay|. 193 // TODO(bjornv): How much can we gain by turning the fraction calculation 194 // into tables? 195 if (delay_difference > self->allowed_offset) { 196 fraction = 1.f - kFractionSlope * (delay_difference - self->allowed_offset); 197 fraction = (fraction > kMinFractionWhenPossiblyCausal ? fraction : 198 kMinFractionWhenPossiblyCausal); 199 } else if (delay_difference < 0) { 200 fraction = kMinFractionWhenPossiblyNonCausal - 201 kFractionSlope * delay_difference; 202 fraction = (fraction > 1.f ? 1.f : fraction); 203 } 204 histogram_threshold *= fraction; 205 histogram_threshold = (histogram_threshold > kMinHistogramThreshold ? 206 histogram_threshold : kMinHistogramThreshold); 207 208 is_histogram_valid = 209 (self->histogram[candidate_delay] >= histogram_threshold) && 210 (self->candidate_hits > kMinRequiredHits); 211 212 return is_histogram_valid; 213 } 214 215 // Performs a robust validation of the |candidate_delay| estimated in 216 // WebRtc_ProcessBinarySpectrum(). The algorithm takes the 217 // |is_instantaneous_valid| and the |is_histogram_valid| and combines them 218 // into a robust validation. The HistogramBasedValidation() has to be called 219 // prior to this call. 220 // For further description on how the combination is done, see commented code. 221 // 222 // Inputs: 223 // - candidate_delay : The delay to validate. 224 // - is_instantaneous_valid : The instantaneous validation performed in 225 // WebRtc_ProcessBinarySpectrum(). 226 // - is_histogram_valid : The histogram based validation. 227 // 228 // Return value: 229 // - is_robust : 1 - The candidate_delay is valid according to a 230 // combination of the two inputs. 231 // : 0 - Otherwise. 232 static int RobustValidation(const BinaryDelayEstimator* self, 233 int candidate_delay, 234 int is_instantaneous_valid, 235 int is_histogram_valid) { 236 int is_robust = 0; 237 238 // The final robust validation is based on the two algorithms; 1) the 239 // |is_instantaneous_valid| and 2) the histogram based with result stored in 240 // |is_histogram_valid|. 241 // i) Before we actually have a valid estimate (|last_delay| == -2), we say 242 // a candidate is valid if either algorithm states so 243 // (|is_instantaneous_valid| OR |is_histogram_valid|). 244 is_robust = (self->last_delay < 0) && 245 (is_instantaneous_valid || is_histogram_valid); 246 // ii) Otherwise, we need both algorithms to be certain 247 // (|is_instantaneous_valid| AND |is_histogram_valid|) 248 is_robust |= is_instantaneous_valid && is_histogram_valid; 249 // iii) With one exception, i.e., the histogram based algorithm can overrule 250 // the instantaneous one if |is_histogram_valid| = 1 and the histogram 251 // is significantly strong. 252 is_robust |= is_histogram_valid && 253 (self->histogram[candidate_delay] > self->last_delay_histogram); 254 255 return is_robust; 256 } 257 258 void WebRtc_FreeBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) { 259 260 if (self == NULL) { 261 return; 262 } 263 264 free(self->binary_far_history); 265 self->binary_far_history = NULL; 266 267 free(self->far_bit_counts); 268 self->far_bit_counts = NULL; 269 270 free(self); 271 } 272 273 BinaryDelayEstimatorFarend* WebRtc_CreateBinaryDelayEstimatorFarend( 274 int history_size) { 275 BinaryDelayEstimatorFarend* self = NULL; 276 277 if (history_size > 1) { 278 // Sanity conditions fulfilled. 279 self = malloc(sizeof(BinaryDelayEstimatorFarend)); 280 } 281 if (self == NULL) { 282 return NULL; 283 } 284 285 self->history_size = 0; 286 self->binary_far_history = NULL; 287 self->far_bit_counts = NULL; 288 if (WebRtc_AllocateFarendBufferMemory(self, history_size) == 0) { 289 WebRtc_FreeBinaryDelayEstimatorFarend(self); 290 self = NULL; 291 } 292 return self; 293 } 294 295 int WebRtc_AllocateFarendBufferMemory(BinaryDelayEstimatorFarend* self, 296 int history_size) { 297 assert(self != NULL); 298 // (Re-)Allocate memory for history buffers. 299 self->binary_far_history = 300 realloc(self->binary_far_history, 301 history_size * sizeof(*self->binary_far_history)); 302 self->far_bit_counts = realloc(self->far_bit_counts, 303 history_size * sizeof(*self->far_bit_counts)); 304 if ((self->binary_far_history == NULL) || (self->far_bit_counts == NULL)) { 305 history_size = 0; 306 } 307 // Fill with zeros if we have expanded the buffers. 308 if (history_size > self->history_size) { 309 int size_diff = history_size - self->history_size; 310 memset(&self->binary_far_history[self->history_size], 311 0, 312 sizeof(*self->binary_far_history) * size_diff); 313 memset(&self->far_bit_counts[self->history_size], 314 0, 315 sizeof(*self->far_bit_counts) * size_diff); 316 } 317 self->history_size = history_size; 318 319 return self->history_size; 320 } 321 322 void WebRtc_InitBinaryDelayEstimatorFarend(BinaryDelayEstimatorFarend* self) { 323 assert(self != NULL); 324 memset(self->binary_far_history, 0, sizeof(uint32_t) * self->history_size); 325 memset(self->far_bit_counts, 0, sizeof(int) * self->history_size); 326 } 327 328 void WebRtc_SoftResetBinaryDelayEstimatorFarend( 329 BinaryDelayEstimatorFarend* self, int delay_shift) { 330 int abs_shift = abs(delay_shift); 331 int shift_size = 0; 332 int dest_index = 0; 333 int src_index = 0; 334 int padding_index = 0; 335 336 assert(self != NULL); 337 shift_size = self->history_size - abs_shift; 338 assert(shift_size > 0); 339 if (delay_shift == 0) { 340 return; 341 } else if (delay_shift > 0) { 342 dest_index = abs_shift; 343 } else if (delay_shift < 0) { 344 src_index = abs_shift; 345 padding_index = shift_size; 346 } 347 348 // Shift and zero pad buffers. 349 memmove(&self->binary_far_history[dest_index], 350 &self->binary_far_history[src_index], 351 sizeof(*self->binary_far_history) * shift_size); 352 memset(&self->binary_far_history[padding_index], 0, 353 sizeof(*self->binary_far_history) * abs_shift); 354 memmove(&self->far_bit_counts[dest_index], 355 &self->far_bit_counts[src_index], 356 sizeof(*self->far_bit_counts) * shift_size); 357 memset(&self->far_bit_counts[padding_index], 0, 358 sizeof(*self->far_bit_counts) * abs_shift); 359 } 360 361 void WebRtc_AddBinaryFarSpectrum(BinaryDelayEstimatorFarend* handle, 362 uint32_t binary_far_spectrum) { 363 assert(handle != NULL); 364 // Shift binary spectrum history and insert current |binary_far_spectrum|. 365 memmove(&(handle->binary_far_history[1]), &(handle->binary_far_history[0]), 366 (handle->history_size - 1) * sizeof(uint32_t)); 367 handle->binary_far_history[0] = binary_far_spectrum; 368 369 // Shift history of far-end binary spectrum bit counts and insert bit count 370 // of current |binary_far_spectrum|. 371 memmove(&(handle->far_bit_counts[1]), &(handle->far_bit_counts[0]), 372 (handle->history_size - 1) * sizeof(int)); 373 handle->far_bit_counts[0] = BitCount(binary_far_spectrum); 374 } 375 376 void WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* self) { 377 378 if (self == NULL) { 379 return; 380 } 381 382 free(self->mean_bit_counts); 383 self->mean_bit_counts = NULL; 384 385 free(self->bit_counts); 386 self->bit_counts = NULL; 387 388 free(self->binary_near_history); 389 self->binary_near_history = NULL; 390 391 free(self->histogram); 392 self->histogram = NULL; 393 394 // BinaryDelayEstimator does not have ownership of |farend|, hence we do not 395 // free the memory here. That should be handled separately by the user. 396 self->farend = NULL; 397 398 free(self); 399 } 400 401 BinaryDelayEstimator* WebRtc_CreateBinaryDelayEstimator( 402 BinaryDelayEstimatorFarend* farend, int max_lookahead) { 403 BinaryDelayEstimator* self = NULL; 404 405 if ((farend != NULL) && (max_lookahead >= 0)) { 406 // Sanity conditions fulfilled. 407 self = malloc(sizeof(BinaryDelayEstimator)); 408 } 409 if (self == NULL) { 410 return NULL; 411 } 412 413 self->farend = farend; 414 self->near_history_size = max_lookahead + 1; 415 self->history_size = 0; 416 self->robust_validation_enabled = 0; // Disabled by default. 417 self->allowed_offset = 0; 418 419 self->lookahead = max_lookahead; 420 421 // Allocate memory for spectrum and history buffers. 422 self->mean_bit_counts = NULL; 423 self->bit_counts = NULL; 424 self->histogram = NULL; 425 self->binary_near_history = 426 malloc((max_lookahead + 1) * sizeof(*self->binary_near_history)); 427 if (self->binary_near_history == NULL || 428 WebRtc_AllocateHistoryBufferMemory(self, farend->history_size) == 0) { 429 WebRtc_FreeBinaryDelayEstimator(self); 430 self = NULL; 431 } 432 433 return self; 434 } 435 436 int WebRtc_AllocateHistoryBufferMemory(BinaryDelayEstimator* self, 437 int history_size) { 438 BinaryDelayEstimatorFarend* far = self->farend; 439 // (Re-)Allocate memory for spectrum and history buffers. 440 if (history_size != far->history_size) { 441 // Only update far-end buffers if we need. 442 history_size = WebRtc_AllocateFarendBufferMemory(far, history_size); 443 } 444 // The extra array element in |mean_bit_counts| and |histogram| is a dummy 445 // element only used while |last_delay| == -2, i.e., before we have a valid 446 // estimate. 447 self->mean_bit_counts = 448 realloc(self->mean_bit_counts, 449 (history_size + 1) * sizeof(*self->mean_bit_counts)); 450 self->bit_counts = 451 realloc(self->bit_counts, history_size * sizeof(*self->bit_counts)); 452 self->histogram = 453 realloc(self->histogram, (history_size + 1) * sizeof(*self->histogram)); 454 455 if ((self->mean_bit_counts == NULL) || 456 (self->bit_counts == NULL) || 457 (self->histogram == NULL)) { 458 history_size = 0; 459 } 460 // Fill with zeros if we have expanded the buffers. 461 if (history_size > self->history_size) { 462 int size_diff = history_size - self->history_size; 463 memset(&self->mean_bit_counts[self->history_size], 464 0, 465 sizeof(*self->mean_bit_counts) * size_diff); 466 memset(&self->bit_counts[self->history_size], 467 0, 468 sizeof(*self->bit_counts) * size_diff); 469 memset(&self->histogram[self->history_size], 470 0, 471 sizeof(*self->histogram) * size_diff); 472 } 473 self->history_size = history_size; 474 475 return self->history_size; 476 } 477 478 void WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* self) { 479 int i = 0; 480 assert(self != NULL); 481 482 memset(self->bit_counts, 0, sizeof(int32_t) * self->history_size); 483 memset(self->binary_near_history, 484 0, 485 sizeof(uint32_t) * self->near_history_size); 486 for (i = 0; i <= self->history_size; ++i) { 487 self->mean_bit_counts[i] = (20 << 9); // 20 in Q9. 488 self->histogram[i] = 0.f; 489 } 490 self->minimum_probability = kMaxBitCountsQ9; // 32 in Q9. 491 self->last_delay_probability = (int) kMaxBitCountsQ9; // 32 in Q9. 492 493 // Default return value if we're unable to estimate. -1 is used for errors. 494 self->last_delay = -2; 495 496 self->last_candidate_delay = -2; 497 self->compare_delay = self->history_size; 498 self->candidate_hits = 0; 499 self->last_delay_histogram = 0.f; 500 } 501 502 int WebRtc_SoftResetBinaryDelayEstimator(BinaryDelayEstimator* self, 503 int delay_shift) { 504 int lookahead = 0; 505 assert(self != NULL); 506 lookahead = self->lookahead; 507 self->lookahead -= delay_shift; 508 if (self->lookahead < 0) { 509 self->lookahead = 0; 510 } 511 if (self->lookahead > self->near_history_size - 1) { 512 self->lookahead = self->near_history_size - 1; 513 } 514 return lookahead - self->lookahead; 515 } 516 517 int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* self, 518 uint32_t binary_near_spectrum) { 519 int i = 0; 520 int candidate_delay = -1; 521 int valid_candidate = 0; 522 523 int32_t value_best_candidate = kMaxBitCountsQ9; 524 int32_t value_worst_candidate = 0; 525 int32_t valley_depth = 0; 526 527 assert(self != NULL); 528 if (self->farend->history_size != self->history_size) { 529 // Non matching history sizes. 530 return -1; 531 } 532 if (self->near_history_size > 1) { 533 // If we apply lookahead, shift near-end binary spectrum history. Insert 534 // current |binary_near_spectrum| and pull out the delayed one. 535 memmove(&(self->binary_near_history[1]), &(self->binary_near_history[0]), 536 (self->near_history_size - 1) * sizeof(uint32_t)); 537 self->binary_near_history[0] = binary_near_spectrum; 538 binary_near_spectrum = self->binary_near_history[self->lookahead]; 539 } 540 541 // Compare with delayed spectra and store the |bit_counts| for each delay. 542 BitCountComparison(binary_near_spectrum, self->farend->binary_far_history, 543 self->history_size, self->bit_counts); 544 545 // Update |mean_bit_counts|, which is the smoothed version of |bit_counts|. 546 for (i = 0; i < self->history_size; i++) { 547 // |bit_counts| is constrained to [0, 32], meaning we can smooth with a 548 // factor up to 2^26. We use Q9. 549 int32_t bit_count = (self->bit_counts[i] << 9); // Q9. 550 551 // Update |mean_bit_counts| only when far-end signal has something to 552 // contribute. If |far_bit_counts| is zero the far-end signal is weak and 553 // we likely have a poor echo condition, hence don't update. 554 if (self->farend->far_bit_counts[i] > 0) { 555 // Make number of right shifts piecewise linear w.r.t. |far_bit_counts|. 556 int shifts = kShiftsAtZero; 557 shifts -= (kShiftsLinearSlope * self->farend->far_bit_counts[i]) >> 4; 558 WebRtc_MeanEstimatorFix(bit_count, shifts, &(self->mean_bit_counts[i])); 559 } 560 } 561 562 // Find |candidate_delay|, |value_best_candidate| and |value_worst_candidate| 563 // of |mean_bit_counts|. 564 for (i = 0; i < self->history_size; i++) { 565 if (self->mean_bit_counts[i] < value_best_candidate) { 566 value_best_candidate = self->mean_bit_counts[i]; 567 candidate_delay = i; 568 } 569 if (self->mean_bit_counts[i] > value_worst_candidate) { 570 value_worst_candidate = self->mean_bit_counts[i]; 571 } 572 } 573 valley_depth = value_worst_candidate - value_best_candidate; 574 575 // The |value_best_candidate| is a good indicator on the probability of 576 // |candidate_delay| being an accurate delay (a small |value_best_candidate| 577 // means a good binary match). In the following sections we make a decision 578 // whether to update |last_delay| or not. 579 // 1) If the difference bit counts between the best and the worst delay 580 // candidates is too small we consider the situation to be unreliable and 581 // don't update |last_delay|. 582 // 2) If the situation is reliable we update |last_delay| if the value of the 583 // best candidate delay has a value less than 584 // i) an adaptive threshold |minimum_probability|, or 585 // ii) this corresponding value |last_delay_probability|, but updated at 586 // this time instant. 587 588 // Update |minimum_probability|. 589 if ((self->minimum_probability > kProbabilityLowerLimit) && 590 (valley_depth > kProbabilityMinSpread)) { 591 // The "hard" threshold can't be lower than 17 (in Q9). 592 // The valley in the curve also has to be distinct, i.e., the 593 // difference between |value_worst_candidate| and |value_best_candidate| has 594 // to be large enough. 595 int32_t threshold = value_best_candidate + kProbabilityOffset; 596 if (threshold < kProbabilityLowerLimit) { 597 threshold = kProbabilityLowerLimit; 598 } 599 if (self->minimum_probability > threshold) { 600 self->minimum_probability = threshold; 601 } 602 } 603 // Update |last_delay_probability|. 604 // We use a Markov type model, i.e., a slowly increasing level over time. 605 self->last_delay_probability++; 606 // Validate |candidate_delay|. We have a reliable instantaneous delay 607 // estimate if 608 // 1) The valley is distinct enough (|valley_depth| > |kProbabilityOffset|) 609 // and 610 // 2) The depth of the valley is deep enough 611 // (|value_best_candidate| < |minimum_probability|) 612 // and deeper than the best estimate so far 613 // (|value_best_candidate| < |last_delay_probability|) 614 valid_candidate = ((valley_depth > kProbabilityOffset) && 615 ((value_best_candidate < self->minimum_probability) || 616 (value_best_candidate < self->last_delay_probability))); 617 618 if (self->robust_validation_enabled) { 619 int is_histogram_valid = 0; 620 UpdateRobustValidationStatistics(self, candidate_delay, valley_depth, 621 value_best_candidate); 622 is_histogram_valid = HistogramBasedValidation(self, candidate_delay); 623 valid_candidate = RobustValidation(self, candidate_delay, valid_candidate, 624 is_histogram_valid); 625 626 } 627 if (valid_candidate) { 628 if (candidate_delay != self->last_delay) { 629 self->last_delay_histogram = 630 (self->histogram[candidate_delay] > kLastHistogramMax ? 631 kLastHistogramMax : self->histogram[candidate_delay]); 632 // Adjust the histogram if we made a change to |last_delay|, though it was 633 // not the most likely one according to the histogram. 634 if (self->histogram[candidate_delay] < 635 self->histogram[self->compare_delay]) { 636 self->histogram[self->compare_delay] = self->histogram[candidate_delay]; 637 } 638 } 639 self->last_delay = candidate_delay; 640 if (value_best_candidate < self->last_delay_probability) { 641 self->last_delay_probability = value_best_candidate; 642 } 643 self->compare_delay = self->last_delay; 644 } 645 646 return self->last_delay; 647 } 648 649 int WebRtc_binary_last_delay(BinaryDelayEstimator* self) { 650 assert(self != NULL); 651 return self->last_delay; 652 } 653 654 float WebRtc_binary_last_delay_quality(BinaryDelayEstimator* self) { 655 float quality = 0; 656 assert(self != NULL); 657 658 if (self->robust_validation_enabled) { 659 // Simply a linear function of the histogram height at delay estimate. 660 quality = self->histogram[self->compare_delay] / kHistogramMax; 661 } else { 662 // Note that |last_delay_probability| states how deep the minimum of the 663 // cost function is, so it is rather an error probability. 664 quality = (float) (kMaxBitCountsQ9 - self->last_delay_probability) / 665 kMaxBitCountsQ9; 666 if (quality < 0) { 667 quality = 0; 668 } 669 } 670 return quality; 671 } 672 673 void WebRtc_MeanEstimatorFix(int32_t new_value, 674 int factor, 675 int32_t* mean_value) { 676 int32_t diff = new_value - *mean_value; 677 678 // mean_new = mean_value + ((new_value - mean_value) >> factor); 679 if (diff < 0) { 680 diff = -((-diff) >> factor); 681 } else { 682 diff = (diff >> factor); 683 } 684 *mean_value += diff; 685 } 686