Home | History | Annotate | Download | only in MCJIT
      1 //===- MCJITTestBase.h - Common base class for MCJIT Unit tests  ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This class implements common functionality required by the MCJIT unit tests,
     11 // as well as logic to skip tests on unsupported architectures and operating
     12 // systems.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 
     17 #ifndef MCJIT_TEST_BASE_H
     18 #define MCJIT_TEST_BASE_H
     19 
     20 #include "MCJITTestAPICommon.h"
     21 #include "llvm/Config/config.h"
     22 #include "llvm/ExecutionEngine/ExecutionEngine.h"
     23 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
     24 #include "llvm/IR/Function.h"
     25 #include "llvm/IR/IRBuilder.h"
     26 #include "llvm/IR/LLVMContext.h"
     27 #include "llvm/IR/Module.h"
     28 #include "llvm/IR/TypeBuilder.h"
     29 #include "llvm/Support/CodeGen.h"
     30 
     31 namespace llvm {
     32 
     33 /// Helper class that can build very simple Modules
     34 class TrivialModuleBuilder {
     35 protected:
     36   LLVMContext Context;
     37   IRBuilder<> Builder;
     38   std::string BuilderTriple;
     39 
     40   TrivialModuleBuilder(const std::string &Triple)
     41     : Builder(Context), BuilderTriple(Triple) {}
     42 
     43   Module *createEmptyModule(StringRef Name = StringRef()) {
     44     Module * M = new Module(Name, Context);
     45     M->setTargetTriple(Triple::normalize(BuilderTriple));
     46     return M;
     47   }
     48 
     49   template<typename FuncType>
     50   Function *startFunction(Module *M, StringRef Name) {
     51     Function *Result = Function::Create(
     52       TypeBuilder<FuncType, false>::get(Context),
     53       GlobalValue::ExternalLinkage, Name, M);
     54 
     55     BasicBlock *BB = BasicBlock::Create(Context, Name, Result);
     56     Builder.SetInsertPoint(BB);
     57 
     58     return Result;
     59   }
     60 
     61   void endFunctionWithRet(Function *Func, Value *RetValue) {
     62     Builder.CreateRet(RetValue);
     63   }
     64 
     65   // Inserts a simple function that invokes Callee and takes the same arguments:
     66   //    int Caller(...) { return Callee(...); }
     67   template<typename Signature>
     68   Function *insertSimpleCallFunction(Module *M, Function *Callee) {
     69     Function *Result = startFunction<Signature>(M, "caller");
     70 
     71     SmallVector<Value*, 1> CallArgs;
     72 
     73     Function::arg_iterator arg_iter = Result->arg_begin();
     74     for(;arg_iter != Result->arg_end(); ++arg_iter)
     75       CallArgs.push_back(arg_iter);
     76 
     77     Value *ReturnCode = Builder.CreateCall(Callee, CallArgs);
     78     Builder.CreateRet(ReturnCode);
     79     return Result;
     80   }
     81 
     82   // Inserts a function named 'main' that returns a uint32_t:
     83   //    int32_t main() { return X; }
     84   // where X is given by returnCode
     85   Function *insertMainFunction(Module *M, uint32_t returnCode) {
     86     Function *Result = startFunction<int32_t(void)>(M, "main");
     87 
     88     Value *ReturnVal = ConstantInt::get(Context, APInt(32, returnCode));
     89     endFunctionWithRet(Result, ReturnVal);
     90 
     91     return Result;
     92   }
     93 
     94   // Inserts a function
     95   //    int32_t add(int32_t a, int32_t b) { return a + b; }
     96   // in the current module and returns a pointer to it.
     97   Function *insertAddFunction(Module *M, StringRef Name = "add") {
     98     Function *Result = startFunction<int32_t(int32_t, int32_t)>(M, Name);
     99 
    100     Function::arg_iterator args = Result->arg_begin();
    101     Value *Arg1 = args;
    102     Value *Arg2 = ++args;
    103     Value *AddResult = Builder.CreateAdd(Arg1, Arg2);
    104 
    105     endFunctionWithRet(Result, AddResult);
    106 
    107     return Result;
    108   }
    109 
    110   // Inserts an declaration to a function defined elsewhere
    111   Function *insertExternalReferenceToFunction(Module *M, StringRef Name,
    112                                               FunctionType *FuncTy) {
    113     Function *Result = Function::Create(FuncTy,
    114                                         GlobalValue::ExternalLinkage,
    115                                         Name, M);
    116     return Result;
    117   }
    118 
    119   // Inserts an declaration to a function defined elsewhere
    120   Function *insertExternalReferenceToFunction(Module *M, Function *Func) {
    121     Function *Result = Function::Create(Func->getFunctionType(),
    122                                         GlobalValue::ExternalLinkage,
    123                                         Func->getName(), M);
    124     return Result;
    125   }
    126 
    127   // Inserts a global variable of type int32
    128   // FIXME: make this a template function to support any type
    129   GlobalVariable *insertGlobalInt32(Module *M,
    130                                     StringRef name,
    131                                     int32_t InitialValue) {
    132     Type *GlobalTy = TypeBuilder<types::i<32>, true>::get(Context);
    133     Constant *IV = ConstantInt::get(Context, APInt(32, InitialValue));
    134     GlobalVariable *Global = new GlobalVariable(*M,
    135                                                 GlobalTy,
    136                                                 false,
    137                                                 GlobalValue::ExternalLinkage,
    138                                                 IV,
    139                                                 name);
    140     return Global;
    141   }
    142 
    143   // Inserts a function
    144   //   int32_t recursive_add(int32_t num) {
    145   //     if (num == 0) {
    146   //       return num;
    147   //     } else {
    148   //       int32_t recursive_param = num - 1;
    149   //       return num + Helper(recursive_param);
    150   //     }
    151   //   }
    152   // NOTE: if Helper is left as the default parameter, Helper == recursive_add.
    153   Function *insertAccumulateFunction(Module *M,
    154                                               Function *Helper = 0,
    155                                               StringRef Name = "accumulate") {
    156     Function *Result = startFunction<int32_t(int32_t)>(M, Name);
    157     if (Helper == 0)
    158       Helper = Result;
    159 
    160     BasicBlock *BaseCase = BasicBlock::Create(Context, "", Result);
    161     BasicBlock *RecursiveCase = BasicBlock::Create(Context, "", Result);
    162 
    163     // if (num == 0)
    164     Value *Param = Result->arg_begin();
    165     Value *Zero = ConstantInt::get(Context, APInt(32, 0));
    166     Builder.CreateCondBr(Builder.CreateICmpEQ(Param, Zero),
    167                          BaseCase, RecursiveCase);
    168 
    169     //   return num;
    170     Builder.SetInsertPoint(BaseCase);
    171     Builder.CreateRet(Param);
    172 
    173     //   int32_t recursive_param = num - 1;
    174     //   return Helper(recursive_param);
    175     Builder.SetInsertPoint(RecursiveCase);
    176     Value *One = ConstantInt::get(Context, APInt(32, 1));
    177     Value *RecursiveParam = Builder.CreateSub(Param, One);
    178     Value *RecursiveReturn = Builder.CreateCall(Helper, RecursiveParam);
    179     Value *Accumulator = Builder.CreateAdd(Param, RecursiveReturn);
    180     Builder.CreateRet(Accumulator);
    181 
    182     return Result;
    183   }
    184 
    185   // Populates Modules A and B:
    186   // Module A { Extern FB1, Function FA which calls FB1 },
    187   // Module B { Extern FA, Function FB1, Function FB2 which calls FA },
    188   void createCrossModuleRecursiveCase(std::unique_ptr<Module> &A, Function *&FA,
    189                                       std::unique_ptr<Module> &B,
    190                                       Function *&FB1, Function *&FB2) {
    191     // Define FB1 in B.
    192     B.reset(createEmptyModule("B"));
    193     FB1 = insertAccumulateFunction(B.get(), 0, "FB1");
    194 
    195     // Declare FB1 in A (as an external).
    196     A.reset(createEmptyModule("A"));
    197     Function *FB1Extern = insertExternalReferenceToFunction(A.get(), FB1);
    198 
    199     // Define FA in A (with a call to FB1).
    200     FA = insertAccumulateFunction(A.get(), FB1Extern, "FA");
    201 
    202     // Declare FA in B (as an external)
    203     Function *FAExtern = insertExternalReferenceToFunction(B.get(), FA);
    204 
    205     // Define FB2 in B (with a call to FA)
    206     FB2 = insertAccumulateFunction(B.get(), FAExtern, "FB2");
    207   }
    208 
    209   // Module A { Function FA },
    210   // Module B { Extern FA, Function FB which calls FA },
    211   // Module C { Extern FB, Function FC which calls FB },
    212   void
    213   createThreeModuleChainedCallsCase(std::unique_ptr<Module> &A, Function *&FA,
    214                                     std::unique_ptr<Module> &B, Function *&FB,
    215                                     std::unique_ptr<Module> &C, Function *&FC) {
    216     A.reset(createEmptyModule("A"));
    217     FA = insertAddFunction(A.get());
    218 
    219     B.reset(createEmptyModule("B"));
    220     Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
    221     FB = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(B.get(), FAExtern_in_B);
    222 
    223     C.reset(createEmptyModule("C"));
    224     Function *FBExtern_in_C = insertExternalReferenceToFunction(C.get(), FB);
    225     FC = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(C.get(), FBExtern_in_C);
    226   }
    227 
    228 
    229   // Module A { Function FA },
    230   // Populates Modules A and B:
    231   // Module B { Function FB }
    232   void createTwoModuleCase(std::unique_ptr<Module> &A, Function *&FA,
    233                            std::unique_ptr<Module> &B, Function *&FB) {
    234     A.reset(createEmptyModule("A"));
    235     FA = insertAddFunction(A.get());
    236 
    237     B.reset(createEmptyModule("B"));
    238     FB = insertAddFunction(B.get());
    239   }
    240 
    241   // Module A { Function FA },
    242   // Module B { Extern FA, Function FB which calls FA }
    243   void createTwoModuleExternCase(std::unique_ptr<Module> &A, Function *&FA,
    244                                  std::unique_ptr<Module> &B, Function *&FB) {
    245     A.reset(createEmptyModule("A"));
    246     FA = insertAddFunction(A.get());
    247 
    248     B.reset(createEmptyModule("B"));
    249     Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
    250     FB = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(B.get(),
    251                                                              FAExtern_in_B);
    252   }
    253 
    254   // Module A { Function FA },
    255   // Module B { Extern FA, Function FB which calls FA },
    256   // Module C { Extern FB, Function FC which calls FA },
    257   void createThreeModuleCase(std::unique_ptr<Module> &A, Function *&FA,
    258                              std::unique_ptr<Module> &B, Function *&FB,
    259                              std::unique_ptr<Module> &C, Function *&FC) {
    260     A.reset(createEmptyModule("A"));
    261     FA = insertAddFunction(A.get());
    262 
    263     B.reset(createEmptyModule("B"));
    264     Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
    265     FB = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(B.get(), FAExtern_in_B);
    266 
    267     C.reset(createEmptyModule("C"));
    268     Function *FAExtern_in_C = insertExternalReferenceToFunction(C.get(), FA);
    269     FC = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(C.get(), FAExtern_in_C);
    270   }
    271 };
    272 
    273 
    274 class MCJITTestBase : public MCJITTestAPICommon, public TrivialModuleBuilder {
    275 protected:
    276 
    277   MCJITTestBase()
    278     : TrivialModuleBuilder(HostTriple)
    279     , OptLevel(CodeGenOpt::None)
    280     , RelocModel(Reloc::Default)
    281     , CodeModel(CodeModel::Default)
    282     , MArch("")
    283     , MM(new SectionMemoryManager)
    284   {
    285     // The architectures below are known to be compatible with MCJIT as they
    286     // are copied from test/ExecutionEngine/MCJIT/lit.local.cfg and should be
    287     // kept in sync.
    288     SupportedArchs.push_back(Triple::aarch64);
    289     SupportedArchs.push_back(Triple::arm);
    290     SupportedArchs.push_back(Triple::mips);
    291     SupportedArchs.push_back(Triple::mipsel);
    292     SupportedArchs.push_back(Triple::x86);
    293     SupportedArchs.push_back(Triple::x86_64);
    294 
    295     // Some architectures have sub-architectures in which tests will fail, like
    296     // ARM. These two vectors will define if they do have sub-archs (to avoid
    297     // extra work for those who don't), and if so, if they are listed to work
    298     HasSubArchs.push_back(Triple::arm);
    299     SupportedSubArchs.push_back("armv6");
    300     SupportedSubArchs.push_back("armv7");
    301 
    302     // The operating systems below are known to be incompatible with MCJIT as
    303     // they are copied from the test/ExecutionEngine/MCJIT/lit.local.cfg and
    304     // should be kept in sync.
    305     UnsupportedOSs.push_back(Triple::Cygwin);
    306     UnsupportedOSs.push_back(Triple::Darwin);
    307 
    308     UnsupportedEnvironments.push_back(Triple::Cygnus);
    309   }
    310 
    311   void createJIT(Module *M) {
    312 
    313     // Due to the EngineBuilder constructor, it is required to have a Module
    314     // in order to construct an ExecutionEngine (i.e. MCJIT)
    315     assert(M != 0 && "a non-null Module must be provided to create MCJIT");
    316 
    317     EngineBuilder EB(M);
    318     std::string Error;
    319     TheJIT.reset(EB.setEngineKind(EngineKind::JIT)
    320                  .setUseMCJIT(true) /* can this be folded into the EngineKind enum? */
    321                  .setMCJITMemoryManager(MM)
    322                  .setErrorStr(&Error)
    323                  .setOptLevel(CodeGenOpt::None)
    324                  .setAllocateGVsWithCode(false) /*does this do anything?*/
    325                  .setCodeModel(CodeModel::JITDefault)
    326                  .setRelocationModel(Reloc::Default)
    327                  .setMArch(MArch)
    328                  .setMCPU(sys::getHostCPUName())
    329                  //.setMAttrs(MAttrs)
    330                  .create());
    331     // At this point, we cannot modify the module any more.
    332     assert(TheJIT.get() != NULL && "error creating MCJIT with EngineBuilder");
    333   }
    334 
    335   CodeGenOpt::Level OptLevel;
    336   Reloc::Model RelocModel;
    337   CodeModel::Model CodeModel;
    338   StringRef MArch;
    339   SmallVector<std::string, 1> MAttrs;
    340   std::unique_ptr<ExecutionEngine> TheJIT;
    341   RTDyldMemoryManager *MM;
    342 
    343   std::unique_ptr<Module> M;
    344 };
    345 
    346 } // namespace llvm
    347 
    348 #endif // MCJIT_TEST_H
    349