1 /* 2 ** 2004 May 22 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ****************************************************************************** 12 ** 13 ** This file contains the VFS implementation for unix-like operating systems 14 ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others. 15 ** 16 ** There are actually several different VFS implementations in this file. 17 ** The differences are in the way that file locking is done. The default 18 ** implementation uses Posix Advisory Locks. Alternative implementations 19 ** use flock(), dot-files, various proprietary locking schemas, or simply 20 ** skip locking all together. 21 ** 22 ** This source file is organized into divisions where the logic for various 23 ** subfunctions is contained within the appropriate division. PLEASE 24 ** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed 25 ** in the correct division and should be clearly labeled. 26 ** 27 ** The layout of divisions is as follows: 28 ** 29 ** * General-purpose declarations and utility functions. 30 ** * Unique file ID logic used by VxWorks. 31 ** * Various locking primitive implementations (all except proxy locking): 32 ** + for Posix Advisory Locks 33 ** + for no-op locks 34 ** + for dot-file locks 35 ** + for flock() locking 36 ** + for named semaphore locks (VxWorks only) 37 ** + for AFP filesystem locks (MacOSX only) 38 ** * sqlite3_file methods not associated with locking. 39 ** * Definitions of sqlite3_io_methods objects for all locking 40 ** methods plus "finder" functions for each locking method. 41 ** * sqlite3_vfs method implementations. 42 ** * Locking primitives for the proxy uber-locking-method. (MacOSX only) 43 ** * Definitions of sqlite3_vfs objects for all locking methods 44 ** plus implementations of sqlite3_os_init() and sqlite3_os_end(). 45 */ 46 #include "sqliteInt.h" 47 #if SQLITE_OS_UNIX /* This file is used on unix only */ 48 49 /* 50 ** There are various methods for file locking used for concurrency 51 ** control: 52 ** 53 ** 1. POSIX locking (the default), 54 ** 2. No locking, 55 ** 3. Dot-file locking, 56 ** 4. flock() locking, 57 ** 5. AFP locking (OSX only), 58 ** 6. Named POSIX semaphores (VXWorks only), 59 ** 7. proxy locking. (OSX only) 60 ** 61 ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE 62 ** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic 63 ** selection of the appropriate locking style based on the filesystem 64 ** where the database is located. 65 */ 66 #if !defined(SQLITE_ENABLE_LOCKING_STYLE) 67 # if defined(__APPLE__) 68 # define SQLITE_ENABLE_LOCKING_STYLE 1 69 # else 70 # define SQLITE_ENABLE_LOCKING_STYLE 0 71 # endif 72 #endif 73 74 /* 75 ** Define the OS_VXWORKS pre-processor macro to 1 if building on 76 ** vxworks, or 0 otherwise. 77 */ 78 #ifndef OS_VXWORKS 79 # if defined(__RTP__) || defined(_WRS_KERNEL) 80 # define OS_VXWORKS 1 81 # else 82 # define OS_VXWORKS 0 83 # endif 84 #endif 85 86 /* 87 ** These #defines should enable >2GB file support on Posix if the 88 ** underlying operating system supports it. If the OS lacks 89 ** large file support, these should be no-ops. 90 ** 91 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 92 ** on the compiler command line. This is necessary if you are compiling 93 ** on a recent machine (ex: RedHat 7.2) but you want your code to work 94 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 95 ** without this option, LFS is enable. But LFS does not exist in the kernel 96 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary 97 ** portability you should omit LFS. 98 ** 99 ** The previous paragraph was written in 2005. (This paragraph is written 100 ** on 2008-11-28.) These days, all Linux kernels support large files, so 101 ** you should probably leave LFS enabled. But some embedded platforms might 102 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 103 */ 104 #ifndef SQLITE_DISABLE_LFS 105 # define _LARGE_FILE 1 106 # ifndef _FILE_OFFSET_BITS 107 # define _FILE_OFFSET_BITS 64 108 # endif 109 # define _LARGEFILE_SOURCE 1 110 #endif 111 112 /* 113 ** standard include files. 114 */ 115 #include <sys/types.h> 116 #include <sys/stat.h> 117 #include <fcntl.h> 118 #include <unistd.h> 119 #include <time.h> 120 #include <sys/time.h> 121 #include <errno.h> 122 #ifndef SQLITE_OMIT_WAL 123 #include <sys/mman.h> 124 #endif 125 126 #if SQLITE_ENABLE_LOCKING_STYLE 127 # include <sys/ioctl.h> 128 # if OS_VXWORKS 129 # include <semaphore.h> 130 # include <limits.h> 131 # else 132 # include <sys/file.h> 133 # include <sys/param.h> 134 # endif 135 #endif /* SQLITE_ENABLE_LOCKING_STYLE */ 136 137 #if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS) 138 # include <sys/mount.h> 139 #endif 140 141 /* 142 ** Allowed values of unixFile.fsFlags 143 */ 144 #define SQLITE_FSFLAGS_IS_MSDOS 0x1 145 146 /* 147 ** If we are to be thread-safe, include the pthreads header and define 148 ** the SQLITE_UNIX_THREADS macro. 149 */ 150 #if SQLITE_THREADSAFE 151 # include <pthread.h> 152 # define SQLITE_UNIX_THREADS 1 153 #endif 154 155 /* 156 ** Default permissions when creating a new file 157 */ 158 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS 159 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644 160 #endif 161 162 /* 163 ** Default permissions when creating auto proxy dir 164 */ 165 #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 166 # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755 167 #endif 168 169 /* 170 ** Maximum supported path-length. 171 */ 172 #define MAX_PATHNAME 512 173 174 /* 175 ** Only set the lastErrno if the error code is a real error and not 176 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK 177 */ 178 #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY)) 179 180 /* Forward references */ 181 typedef struct unixShm unixShm; /* Connection shared memory */ 182 typedef struct unixShmNode unixShmNode; /* Shared memory instance */ 183 typedef struct unixInodeInfo unixInodeInfo; /* An i-node */ 184 typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */ 185 186 /* 187 ** Sometimes, after a file handle is closed by SQLite, the file descriptor 188 ** cannot be closed immediately. In these cases, instances of the following 189 ** structure are used to store the file descriptor while waiting for an 190 ** opportunity to either close or reuse it. 191 */ 192 struct UnixUnusedFd { 193 int fd; /* File descriptor to close */ 194 int flags; /* Flags this file descriptor was opened with */ 195 UnixUnusedFd *pNext; /* Next unused file descriptor on same file */ 196 }; 197 198 /* 199 ** The unixFile structure is subclass of sqlite3_file specific to the unix 200 ** VFS implementations. 201 */ 202 typedef struct unixFile unixFile; 203 struct unixFile { 204 sqlite3_io_methods const *pMethod; /* Always the first entry */ 205 unixInodeInfo *pInode; /* Info about locks on this inode */ 206 int h; /* The file descriptor */ 207 unsigned char eFileLock; /* The type of lock held on this fd */ 208 unsigned char ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */ 209 int lastErrno; /* The unix errno from last I/O error */ 210 void *lockingContext; /* Locking style specific state */ 211 UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */ 212 const char *zPath; /* Name of the file */ 213 unixShm *pShm; /* Shared memory segment information */ 214 int szChunk; /* Configured by FCNTL_CHUNK_SIZE */ 215 #if SQLITE_ENABLE_LOCKING_STYLE 216 int openFlags; /* The flags specified at open() */ 217 #endif 218 #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__) 219 unsigned fsFlags; /* cached details from statfs() */ 220 #endif 221 #if OS_VXWORKS 222 int isDelete; /* Delete on close if true */ 223 struct vxworksFileId *pId; /* Unique file ID */ 224 #endif 225 #ifndef NDEBUG 226 /* The next group of variables are used to track whether or not the 227 ** transaction counter in bytes 24-27 of database files are updated 228 ** whenever any part of the database changes. An assertion fault will 229 ** occur if a file is updated without also updating the transaction 230 ** counter. This test is made to avoid new problems similar to the 231 ** one described by ticket #3584. 232 */ 233 unsigned char transCntrChng; /* True if the transaction counter changed */ 234 unsigned char dbUpdate; /* True if any part of database file changed */ 235 unsigned char inNormalWrite; /* True if in a normal write operation */ 236 #endif 237 #ifdef SQLITE_TEST 238 /* In test mode, increase the size of this structure a bit so that 239 ** it is larger than the struct CrashFile defined in test6.c. 240 */ 241 char aPadding[32]; 242 #endif 243 }; 244 245 /* 246 ** Allowed values for the unixFile.ctrlFlags bitmask: 247 */ 248 #define UNIXFILE_EXCL 0x01 /* Connections from one process only */ 249 #define UNIXFILE_RDONLY 0x02 /* Connection is read only */ 250 #define UNIXFILE_DIRSYNC 0x04 /* Directory sync needed */ 251 252 /* 253 ** Include code that is common to all os_*.c files 254 */ 255 #include "os_common.h" 256 257 /* 258 ** Define various macros that are missing from some systems. 259 */ 260 #ifndef O_LARGEFILE 261 # define O_LARGEFILE 0 262 #endif 263 #ifdef SQLITE_DISABLE_LFS 264 # undef O_LARGEFILE 265 # define O_LARGEFILE 0 266 #endif 267 #ifndef O_NOFOLLOW 268 # define O_NOFOLLOW 0 269 #endif 270 #ifndef O_BINARY 271 # define O_BINARY 0 272 #endif 273 274 /* 275 ** The threadid macro resolves to the thread-id or to 0. Used for 276 ** testing and debugging only. 277 */ 278 #if SQLITE_THREADSAFE 279 #define threadid pthread_self() 280 #else 281 #define threadid 0 282 #endif 283 284 /* Forward reference */ 285 static int openDirectory(const char*, int*); 286 287 /* 288 ** Many system calls are accessed through pointer-to-functions so that 289 ** they may be overridden at runtime to facilitate fault injection during 290 ** testing and sandboxing. The following array holds the names and pointers 291 ** to all overrideable system calls. 292 */ 293 static struct unix_syscall { 294 const char *zName; /* Name of the sytem call */ 295 sqlite3_syscall_ptr pCurrent; /* Current value of the system call */ 296 sqlite3_syscall_ptr pDefault; /* Default value */ 297 } aSyscall[] = { 298 { "open", (sqlite3_syscall_ptr)open, 0 }, 299 #define osOpen ((int(*)(const char*,int,...))aSyscall[0].pCurrent) 300 301 { "close", (sqlite3_syscall_ptr)close, 0 }, 302 #define osClose ((int(*)(int))aSyscall[1].pCurrent) 303 304 { "access", (sqlite3_syscall_ptr)access, 0 }, 305 #define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent) 306 307 { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 }, 308 #define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent) 309 310 { "stat", (sqlite3_syscall_ptr)stat, 0 }, 311 #define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent) 312 313 /* 314 ** The DJGPP compiler environment looks mostly like Unix, but it 315 ** lacks the fcntl() system call. So redefine fcntl() to be something 316 ** that always succeeds. This means that locking does not occur under 317 ** DJGPP. But it is DOS - what did you expect? 318 */ 319 #ifdef __DJGPP__ 320 { "fstat", 0, 0 }, 321 #define osFstat(a,b,c) 0 322 #else 323 { "fstat", (sqlite3_syscall_ptr)fstat, 0 }, 324 #define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent) 325 #endif 326 327 { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 }, 328 #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent) 329 330 { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 }, 331 #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent) 332 333 { "read", (sqlite3_syscall_ptr)read, 0 }, 334 #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent) 335 336 #if defined(USE_PREAD) || defined(SQLITE_ENABLE_LOCKING_STYLE) 337 { "pread", (sqlite3_syscall_ptr)pread, 0 }, 338 #else 339 { "pread", (sqlite3_syscall_ptr)0, 0 }, 340 #endif 341 #define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent) 342 343 #if defined(USE_PREAD64) 344 { "pread64", (sqlite3_syscall_ptr)pread64, 0 }, 345 #else 346 { "pread64", (sqlite3_syscall_ptr)0, 0 }, 347 #endif 348 #define osPread64 ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent) 349 350 { "write", (sqlite3_syscall_ptr)write, 0 }, 351 #define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent) 352 353 #if defined(USE_PREAD) || defined(SQLITE_ENABLE_LOCKING_STYLE) 354 { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 }, 355 #else 356 { "pwrite", (sqlite3_syscall_ptr)0, 0 }, 357 #endif 358 #define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\ 359 aSyscall[12].pCurrent) 360 361 #if defined(USE_PREAD64) 362 { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 }, 363 #else 364 { "pwrite64", (sqlite3_syscall_ptr)0, 0 }, 365 #endif 366 #define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off_t))\ 367 aSyscall[13].pCurrent) 368 369 #if SQLITE_ENABLE_LOCKING_STYLE 370 { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 }, 371 #else 372 { "fchmod", (sqlite3_syscall_ptr)0, 0 }, 373 #endif 374 #define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent) 375 376 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE 377 { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 }, 378 #else 379 { "fallocate", (sqlite3_syscall_ptr)0, 0 }, 380 #endif 381 #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent) 382 383 { "unlink", (sqlite3_syscall_ptr)unlink, 0 }, 384 #define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent) 385 386 { "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 }, 387 #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent) 388 389 }; /* End of the overrideable system calls */ 390 391 /* 392 ** This is the xSetSystemCall() method of sqlite3_vfs for all of the 393 ** "unix" VFSes. Return SQLITE_OK opon successfully updating the 394 ** system call pointer, or SQLITE_NOTFOUND if there is no configurable 395 ** system call named zName. 396 */ 397 static int unixSetSystemCall( 398 sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */ 399 const char *zName, /* Name of system call to override */ 400 sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */ 401 ){ 402 unsigned int i; 403 int rc = SQLITE_NOTFOUND; 404 405 UNUSED_PARAMETER(pNotUsed); 406 if( zName==0 ){ 407 /* If no zName is given, restore all system calls to their default 408 ** settings and return NULL 409 */ 410 rc = SQLITE_OK; 411 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ 412 if( aSyscall[i].pDefault ){ 413 aSyscall[i].pCurrent = aSyscall[i].pDefault; 414 } 415 } 416 }else{ 417 /* If zName is specified, operate on only the one system call 418 ** specified. 419 */ 420 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ 421 if( strcmp(zName, aSyscall[i].zName)==0 ){ 422 if( aSyscall[i].pDefault==0 ){ 423 aSyscall[i].pDefault = aSyscall[i].pCurrent; 424 } 425 rc = SQLITE_OK; 426 if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault; 427 aSyscall[i].pCurrent = pNewFunc; 428 break; 429 } 430 } 431 } 432 return rc; 433 } 434 435 /* 436 ** Return the value of a system call. Return NULL if zName is not a 437 ** recognized system call name. NULL is also returned if the system call 438 ** is currently undefined. 439 */ 440 static sqlite3_syscall_ptr unixGetSystemCall( 441 sqlite3_vfs *pNotUsed, 442 const char *zName 443 ){ 444 unsigned int i; 445 446 UNUSED_PARAMETER(pNotUsed); 447 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ 448 if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent; 449 } 450 return 0; 451 } 452 453 /* 454 ** Return the name of the first system call after zName. If zName==NULL 455 ** then return the name of the first system call. Return NULL if zName 456 ** is the last system call or if zName is not the name of a valid 457 ** system call. 458 */ 459 static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){ 460 int i = -1; 461 462 UNUSED_PARAMETER(p); 463 if( zName ){ 464 for(i=0; i<ArraySize(aSyscall)-1; i++){ 465 if( strcmp(zName, aSyscall[i].zName)==0 ) break; 466 } 467 } 468 for(i++; i<ArraySize(aSyscall); i++){ 469 if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName; 470 } 471 return 0; 472 } 473 474 /* 475 ** Retry open() calls that fail due to EINTR 476 */ 477 static int robust_open(const char *z, int f, int m){ 478 int rc; 479 do{ rc = osOpen(z,f,m); }while( rc<0 && errno==EINTR ); 480 return rc; 481 } 482 483 /* 484 ** Helper functions to obtain and relinquish the global mutex. The 485 ** global mutex is used to protect the unixInodeInfo and 486 ** vxworksFileId objects used by this file, all of which may be 487 ** shared by multiple threads. 488 ** 489 ** Function unixMutexHeld() is used to assert() that the global mutex 490 ** is held when required. This function is only used as part of assert() 491 ** statements. e.g. 492 ** 493 ** unixEnterMutex() 494 ** assert( unixMutexHeld() ); 495 ** unixEnterLeave() 496 */ 497 static void unixEnterMutex(void){ 498 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 499 } 500 static void unixLeaveMutex(void){ 501 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 502 } 503 #ifdef SQLITE_DEBUG 504 static int unixMutexHeld(void) { 505 return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 506 } 507 #endif 508 509 510 #ifdef SQLITE_DEBUG 511 /* 512 ** Helper function for printing out trace information from debugging 513 ** binaries. This returns the string represetation of the supplied 514 ** integer lock-type. 515 */ 516 static const char *azFileLock(int eFileLock){ 517 switch( eFileLock ){ 518 case NO_LOCK: return "NONE"; 519 case SHARED_LOCK: return "SHARED"; 520 case RESERVED_LOCK: return "RESERVED"; 521 case PENDING_LOCK: return "PENDING"; 522 case EXCLUSIVE_LOCK: return "EXCLUSIVE"; 523 } 524 return "ERROR"; 525 } 526 #endif 527 528 #ifdef SQLITE_LOCK_TRACE 529 /* 530 ** Print out information about all locking operations. 531 ** 532 ** This routine is used for troubleshooting locks on multithreaded 533 ** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE 534 ** command-line option on the compiler. This code is normally 535 ** turned off. 536 */ 537 static int lockTrace(int fd, int op, struct flock *p){ 538 char *zOpName, *zType; 539 int s; 540 int savedErrno; 541 if( op==F_GETLK ){ 542 zOpName = "GETLK"; 543 }else if( op==F_SETLK ){ 544 zOpName = "SETLK"; 545 }else{ 546 s = osFcntl(fd, op, p); 547 sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s); 548 return s; 549 } 550 if( p->l_type==F_RDLCK ){ 551 zType = "RDLCK"; 552 }else if( p->l_type==F_WRLCK ){ 553 zType = "WRLCK"; 554 }else if( p->l_type==F_UNLCK ){ 555 zType = "UNLCK"; 556 }else{ 557 assert( 0 ); 558 } 559 assert( p->l_whence==SEEK_SET ); 560 s = osFcntl(fd, op, p); 561 savedErrno = errno; 562 sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n", 563 threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len, 564 (int)p->l_pid, s); 565 if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){ 566 struct flock l2; 567 l2 = *p; 568 osFcntl(fd, F_GETLK, &l2); 569 if( l2.l_type==F_RDLCK ){ 570 zType = "RDLCK"; 571 }else if( l2.l_type==F_WRLCK ){ 572 zType = "WRLCK"; 573 }else if( l2.l_type==F_UNLCK ){ 574 zType = "UNLCK"; 575 }else{ 576 assert( 0 ); 577 } 578 sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n", 579 zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid); 580 } 581 errno = savedErrno; 582 return s; 583 } 584 #undef osFcntl 585 #define osFcntl lockTrace 586 #endif /* SQLITE_LOCK_TRACE */ 587 588 /* 589 ** Retry ftruncate() calls that fail due to EINTR 590 */ 591 static int robust_ftruncate(int h, sqlite3_int64 sz){ 592 int rc; 593 do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR ); 594 return rc; 595 } 596 597 /* 598 ** This routine translates a standard POSIX errno code into something 599 ** useful to the clients of the sqlite3 functions. Specifically, it is 600 ** intended to translate a variety of "try again" errors into SQLITE_BUSY 601 ** and a variety of "please close the file descriptor NOW" errors into 602 ** SQLITE_IOERR 603 ** 604 ** Errors during initialization of locks, or file system support for locks, 605 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately. 606 */ 607 static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) { 608 switch (posixError) { 609 #if 0 610 /* At one point this code was not commented out. In theory, this branch 611 ** should never be hit, as this function should only be called after 612 ** a locking-related function (i.e. fcntl()) has returned non-zero with 613 ** the value of errno as the first argument. Since a system call has failed, 614 ** errno should be non-zero. 615 ** 616 ** Despite this, if errno really is zero, we still don't want to return 617 ** SQLITE_OK. The system call failed, and *some* SQLite error should be 618 ** propagated back to the caller. Commenting this branch out means errno==0 619 ** will be handled by the "default:" case below. 620 */ 621 case 0: 622 return SQLITE_OK; 623 #endif 624 625 case EAGAIN: 626 case ETIMEDOUT: 627 case EBUSY: 628 case EINTR: 629 case ENOLCK: 630 /* random NFS retry error, unless during file system support 631 * introspection, in which it actually means what it says */ 632 return SQLITE_BUSY; 633 634 case EACCES: 635 /* EACCES is like EAGAIN during locking operations, but not any other time*/ 636 if( (sqliteIOErr == SQLITE_IOERR_LOCK) || 637 (sqliteIOErr == SQLITE_IOERR_UNLOCK) || 638 (sqliteIOErr == SQLITE_IOERR_RDLOCK) || 639 (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){ 640 return SQLITE_BUSY; 641 } 642 /* else fall through */ 643 case EPERM: 644 return SQLITE_PERM; 645 646 /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And 647 ** this module never makes such a call. And the code in SQLite itself 648 ** asserts that SQLITE_IOERR_BLOCKED is never returned. For these reasons 649 ** this case is also commented out. If the system does set errno to EDEADLK, 650 ** the default SQLITE_IOERR_XXX code will be returned. */ 651 #if 0 652 case EDEADLK: 653 return SQLITE_IOERR_BLOCKED; 654 #endif 655 656 #if EOPNOTSUPP!=ENOTSUP 657 case EOPNOTSUPP: 658 /* something went terribly awry, unless during file system support 659 * introspection, in which it actually means what it says */ 660 #endif 661 #ifdef ENOTSUP 662 case ENOTSUP: 663 /* invalid fd, unless during file system support introspection, in which 664 * it actually means what it says */ 665 #endif 666 case EIO: 667 case EBADF: 668 case EINVAL: 669 case ENOTCONN: 670 case ENODEV: 671 case ENXIO: 672 case ENOENT: 673 case ESTALE: 674 case ENOSYS: 675 /* these should force the client to close the file and reconnect */ 676 677 default: 678 return sqliteIOErr; 679 } 680 } 681 682 683 684 /****************************************************************************** 685 ****************** Begin Unique File ID Utility Used By VxWorks *************** 686 ** 687 ** On most versions of unix, we can get a unique ID for a file by concatenating 688 ** the device number and the inode number. But this does not work on VxWorks. 689 ** On VxWorks, a unique file id must be based on the canonical filename. 690 ** 691 ** A pointer to an instance of the following structure can be used as a 692 ** unique file ID in VxWorks. Each instance of this structure contains 693 ** a copy of the canonical filename. There is also a reference count. 694 ** The structure is reclaimed when the number of pointers to it drops to 695 ** zero. 696 ** 697 ** There are never very many files open at one time and lookups are not 698 ** a performance-critical path, so it is sufficient to put these 699 ** structures on a linked list. 700 */ 701 struct vxworksFileId { 702 struct vxworksFileId *pNext; /* Next in a list of them all */ 703 int nRef; /* Number of references to this one */ 704 int nName; /* Length of the zCanonicalName[] string */ 705 char *zCanonicalName; /* Canonical filename */ 706 }; 707 708 #if OS_VXWORKS 709 /* 710 ** All unique filenames are held on a linked list headed by this 711 ** variable: 712 */ 713 static struct vxworksFileId *vxworksFileList = 0; 714 715 /* 716 ** Simplify a filename into its canonical form 717 ** by making the following changes: 718 ** 719 ** * removing any trailing and duplicate / 720 ** * convert /./ into just / 721 ** * convert /A/../ where A is any simple name into just / 722 ** 723 ** Changes are made in-place. Return the new name length. 724 ** 725 ** The original filename is in z[0..n-1]. Return the number of 726 ** characters in the simplified name. 727 */ 728 static int vxworksSimplifyName(char *z, int n){ 729 int i, j; 730 while( n>1 && z[n-1]=='/' ){ n--; } 731 for(i=j=0; i<n; i++){ 732 if( z[i]=='/' ){ 733 if( z[i+1]=='/' ) continue; 734 if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ 735 i += 1; 736 continue; 737 } 738 if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ 739 while( j>0 && z[j-1]!='/' ){ j--; } 740 if( j>0 ){ j--; } 741 i += 2; 742 continue; 743 } 744 } 745 z[j++] = z[i]; 746 } 747 z[j] = 0; 748 return j; 749 } 750 751 /* 752 ** Find a unique file ID for the given absolute pathname. Return 753 ** a pointer to the vxworksFileId object. This pointer is the unique 754 ** file ID. 755 ** 756 ** The nRef field of the vxworksFileId object is incremented before 757 ** the object is returned. A new vxworksFileId object is created 758 ** and added to the global list if necessary. 759 ** 760 ** If a memory allocation error occurs, return NULL. 761 */ 762 static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){ 763 struct vxworksFileId *pNew; /* search key and new file ID */ 764 struct vxworksFileId *pCandidate; /* For looping over existing file IDs */ 765 int n; /* Length of zAbsoluteName string */ 766 767 assert( zAbsoluteName[0]=='/' ); 768 n = (int)strlen(zAbsoluteName); 769 pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) ); 770 if( pNew==0 ) return 0; 771 pNew->zCanonicalName = (char*)&pNew[1]; 772 memcpy(pNew->zCanonicalName, zAbsoluteName, n+1); 773 n = vxworksSimplifyName(pNew->zCanonicalName, n); 774 775 /* Search for an existing entry that matching the canonical name. 776 ** If found, increment the reference count and return a pointer to 777 ** the existing file ID. 778 */ 779 unixEnterMutex(); 780 for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){ 781 if( pCandidate->nName==n 782 && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0 783 ){ 784 sqlite3_free(pNew); 785 pCandidate->nRef++; 786 unixLeaveMutex(); 787 return pCandidate; 788 } 789 } 790 791 /* No match was found. We will make a new file ID */ 792 pNew->nRef = 1; 793 pNew->nName = n; 794 pNew->pNext = vxworksFileList; 795 vxworksFileList = pNew; 796 unixLeaveMutex(); 797 return pNew; 798 } 799 800 /* 801 ** Decrement the reference count on a vxworksFileId object. Free 802 ** the object when the reference count reaches zero. 803 */ 804 static void vxworksReleaseFileId(struct vxworksFileId *pId){ 805 unixEnterMutex(); 806 assert( pId->nRef>0 ); 807 pId->nRef--; 808 if( pId->nRef==0 ){ 809 struct vxworksFileId **pp; 810 for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){} 811 assert( *pp==pId ); 812 *pp = pId->pNext; 813 sqlite3_free(pId); 814 } 815 unixLeaveMutex(); 816 } 817 #endif /* OS_VXWORKS */ 818 /*************** End of Unique File ID Utility Used By VxWorks **************** 819 ******************************************************************************/ 820 821 822 /****************************************************************************** 823 *************************** Posix Advisory Locking **************************** 824 ** 825 ** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996) 826 ** section 6.5.2.2 lines 483 through 490 specify that when a process 827 ** sets or clears a lock, that operation overrides any prior locks set 828 ** by the same process. It does not explicitly say so, but this implies 829 ** that it overrides locks set by the same process using a different 830 ** file descriptor. Consider this test case: 831 ** 832 ** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644); 833 ** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644); 834 ** 835 ** Suppose ./file1 and ./file2 are really the same file (because 836 ** one is a hard or symbolic link to the other) then if you set 837 ** an exclusive lock on fd1, then try to get an exclusive lock 838 ** on fd2, it works. I would have expected the second lock to 839 ** fail since there was already a lock on the file due to fd1. 840 ** But not so. Since both locks came from the same process, the 841 ** second overrides the first, even though they were on different 842 ** file descriptors opened on different file names. 843 ** 844 ** This means that we cannot use POSIX locks to synchronize file access 845 ** among competing threads of the same process. POSIX locks will work fine 846 ** to synchronize access for threads in separate processes, but not 847 ** threads within the same process. 848 ** 849 ** To work around the problem, SQLite has to manage file locks internally 850 ** on its own. Whenever a new database is opened, we have to find the 851 ** specific inode of the database file (the inode is determined by the 852 ** st_dev and st_ino fields of the stat structure that fstat() fills in) 853 ** and check for locks already existing on that inode. When locks are 854 ** created or removed, we have to look at our own internal record of the 855 ** locks to see if another thread has previously set a lock on that same 856 ** inode. 857 ** 858 ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks. 859 ** For VxWorks, we have to use the alternative unique ID system based on 860 ** canonical filename and implemented in the previous division.) 861 ** 862 ** The sqlite3_file structure for POSIX is no longer just an integer file 863 ** descriptor. It is now a structure that holds the integer file 864 ** descriptor and a pointer to a structure that describes the internal 865 ** locks on the corresponding inode. There is one locking structure 866 ** per inode, so if the same inode is opened twice, both unixFile structures 867 ** point to the same locking structure. The locking structure keeps 868 ** a reference count (so we will know when to delete it) and a "cnt" 869 ** field that tells us its internal lock status. cnt==0 means the 870 ** file is unlocked. cnt==-1 means the file has an exclusive lock. 871 ** cnt>0 means there are cnt shared locks on the file. 872 ** 873 ** Any attempt to lock or unlock a file first checks the locking 874 ** structure. The fcntl() system call is only invoked to set a 875 ** POSIX lock if the internal lock structure transitions between 876 ** a locked and an unlocked state. 877 ** 878 ** But wait: there are yet more problems with POSIX advisory locks. 879 ** 880 ** If you close a file descriptor that points to a file that has locks, 881 ** all locks on that file that are owned by the current process are 882 ** released. To work around this problem, each unixInodeInfo object 883 ** maintains a count of the number of pending locks on tha inode. 884 ** When an attempt is made to close an unixFile, if there are 885 ** other unixFile open on the same inode that are holding locks, the call 886 ** to close() the file descriptor is deferred until all of the locks clear. 887 ** The unixInodeInfo structure keeps a list of file descriptors that need to 888 ** be closed and that list is walked (and cleared) when the last lock 889 ** clears. 890 ** 891 ** Yet another problem: LinuxThreads do not play well with posix locks. 892 ** 893 ** Many older versions of linux use the LinuxThreads library which is 894 ** not posix compliant. Under LinuxThreads, a lock created by thread 895 ** A cannot be modified or overridden by a different thread B. 896 ** Only thread A can modify the lock. Locking behavior is correct 897 ** if the appliation uses the newer Native Posix Thread Library (NPTL) 898 ** on linux - with NPTL a lock created by thread A can override locks 899 ** in thread B. But there is no way to know at compile-time which 900 ** threading library is being used. So there is no way to know at 901 ** compile-time whether or not thread A can override locks on thread B. 902 ** One has to do a run-time check to discover the behavior of the 903 ** current process. 904 ** 905 ** SQLite used to support LinuxThreads. But support for LinuxThreads 906 ** was dropped beginning with version 3.7.0. SQLite will still work with 907 ** LinuxThreads provided that (1) there is no more than one connection 908 ** per database file in the same process and (2) database connections 909 ** do not move across threads. 910 */ 911 912 /* 913 ** An instance of the following structure serves as the key used 914 ** to locate a particular unixInodeInfo object. 915 */ 916 struct unixFileId { 917 dev_t dev; /* Device number */ 918 #if OS_VXWORKS 919 struct vxworksFileId *pId; /* Unique file ID for vxworks. */ 920 #else 921 ino_t ino; /* Inode number */ 922 #endif 923 }; 924 925 /* 926 ** An instance of the following structure is allocated for each open 927 ** inode. Or, on LinuxThreads, there is one of these structures for 928 ** each inode opened by each thread. 929 ** 930 ** A single inode can have multiple file descriptors, so each unixFile 931 ** structure contains a pointer to an instance of this object and this 932 ** object keeps a count of the number of unixFile pointing to it. 933 */ 934 struct unixInodeInfo { 935 struct unixFileId fileId; /* The lookup key */ 936 int nShared; /* Number of SHARED locks held */ 937 unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */ 938 unsigned char bProcessLock; /* An exclusive process lock is held */ 939 int nRef; /* Number of pointers to this structure */ 940 unixShmNode *pShmNode; /* Shared memory associated with this inode */ 941 int nLock; /* Number of outstanding file locks */ 942 UnixUnusedFd *pUnused; /* Unused file descriptors to close */ 943 unixInodeInfo *pNext; /* List of all unixInodeInfo objects */ 944 unixInodeInfo *pPrev; /* .... doubly linked */ 945 #if defined(SQLITE_ENABLE_LOCKING_STYLE) 946 unsigned long long sharedByte; /* for AFP simulated shared lock */ 947 #endif 948 #if OS_VXWORKS 949 sem_t *pSem; /* Named POSIX semaphore */ 950 char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */ 951 #endif 952 }; 953 954 /* 955 ** A lists of all unixInodeInfo objects. 956 */ 957 static unixInodeInfo *inodeList = 0; 958 959 /* 960 ** 961 ** This function - unixLogError_x(), is only ever called via the macro 962 ** unixLogError(). 963 ** 964 ** It is invoked after an error occurs in an OS function and errno has been 965 ** set. It logs a message using sqlite3_log() containing the current value of 966 ** errno and, if possible, the human-readable equivalent from strerror() or 967 ** strerror_r(). 968 ** 969 ** The first argument passed to the macro should be the error code that 970 ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). 971 ** The two subsequent arguments should be the name of the OS function that 972 ** failed (e.g. "unlink", "open") and the the associated file-system path, 973 ** if any. 974 */ 975 #define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__) 976 static int unixLogErrorAtLine( 977 int errcode, /* SQLite error code */ 978 const char *zFunc, /* Name of OS function that failed */ 979 const char *zPath, /* File path associated with error */ 980 int iLine /* Source line number where error occurred */ 981 ){ 982 char *zErr; /* Message from strerror() or equivalent */ 983 int iErrno = errno; /* Saved syscall error number */ 984 985 /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use 986 ** the strerror() function to obtain the human-readable error message 987 ** equivalent to errno. Otherwise, use strerror_r(). 988 */ 989 #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R) 990 char aErr[80]; 991 memset(aErr, 0, sizeof(aErr)); 992 zErr = aErr; 993 994 /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined, 995 ** assume that the system provides the the GNU version of strerror_r() that 996 ** returns a pointer to a buffer containing the error message. That pointer 997 ** may point to aErr[], or it may point to some static storage somewhere. 998 ** Otherwise, assume that the system provides the POSIX version of 999 ** strerror_r(), which always writes an error message into aErr[]. 1000 ** 1001 ** If the code incorrectly assumes that it is the POSIX version that is 1002 ** available, the error message will often be an empty string. Not a 1003 ** huge problem. Incorrectly concluding that the GNU version is available 1004 ** could lead to a segfault though. 1005 */ 1006 #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU) 1007 zErr = 1008 # endif 1009 strerror_r(iErrno, aErr, sizeof(aErr)-1); 1010 1011 #elif SQLITE_THREADSAFE 1012 /* This is a threadsafe build, but strerror_r() is not available. */ 1013 zErr = ""; 1014 #else 1015 /* Non-threadsafe build, use strerror(). */ 1016 zErr = strerror(iErrno); 1017 #endif 1018 1019 assert( errcode!=SQLITE_OK ); 1020 if( zPath==0 ) zPath = ""; 1021 sqlite3_log(errcode, 1022 "os_unix.c:%d: (%d) %s(%s) - %s", 1023 iLine, iErrno, zFunc, zPath, zErr 1024 ); 1025 1026 return errcode; 1027 } 1028 1029 /* 1030 ** Close a file descriptor. 1031 ** 1032 ** We assume that close() almost always works, since it is only in a 1033 ** very sick application or on a very sick platform that it might fail. 1034 ** If it does fail, simply leak the file descriptor, but do log the 1035 ** error. 1036 ** 1037 ** Note that it is not safe to retry close() after EINTR since the 1038 ** file descriptor might have already been reused by another thread. 1039 ** So we don't even try to recover from an EINTR. Just log the error 1040 ** and move on. 1041 */ 1042 static void robust_close(unixFile *pFile, int h, int lineno){ 1043 if( osClose(h) ){ 1044 unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close", 1045 pFile ? pFile->zPath : 0, lineno); 1046 } 1047 } 1048 1049 /* 1050 ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list. 1051 */ 1052 static void closePendingFds(unixFile *pFile){ 1053 unixInodeInfo *pInode = pFile->pInode; 1054 UnixUnusedFd *p; 1055 UnixUnusedFd *pNext; 1056 for(p=pInode->pUnused; p; p=pNext){ 1057 pNext = p->pNext; 1058 robust_close(pFile, p->fd, __LINE__); 1059 sqlite3_free(p); 1060 } 1061 pInode->pUnused = 0; 1062 } 1063 1064 /* 1065 ** Release a unixInodeInfo structure previously allocated by findInodeInfo(). 1066 ** 1067 ** The mutex entered using the unixEnterMutex() function must be held 1068 ** when this function is called. 1069 */ 1070 static void releaseInodeInfo(unixFile *pFile){ 1071 unixInodeInfo *pInode = pFile->pInode; 1072 assert( unixMutexHeld() ); 1073 if( ALWAYS(pInode) ){ 1074 pInode->nRef--; 1075 if( pInode->nRef==0 ){ 1076 assert( pInode->pShmNode==0 ); 1077 closePendingFds(pFile); 1078 if( pInode->pPrev ){ 1079 assert( pInode->pPrev->pNext==pInode ); 1080 pInode->pPrev->pNext = pInode->pNext; 1081 }else{ 1082 assert( inodeList==pInode ); 1083 inodeList = pInode->pNext; 1084 } 1085 if( pInode->pNext ){ 1086 assert( pInode->pNext->pPrev==pInode ); 1087 pInode->pNext->pPrev = pInode->pPrev; 1088 } 1089 sqlite3_free(pInode); 1090 } 1091 } 1092 } 1093 1094 /* 1095 ** Given a file descriptor, locate the unixInodeInfo object that 1096 ** describes that file descriptor. Create a new one if necessary. The 1097 ** return value might be uninitialized if an error occurs. 1098 ** 1099 ** The mutex entered using the unixEnterMutex() function must be held 1100 ** when this function is called. 1101 ** 1102 ** Return an appropriate error code. 1103 */ 1104 static int findInodeInfo( 1105 unixFile *pFile, /* Unix file with file desc used in the key */ 1106 unixInodeInfo **ppInode /* Return the unixInodeInfo object here */ 1107 ){ 1108 int rc; /* System call return code */ 1109 int fd; /* The file descriptor for pFile */ 1110 struct unixFileId fileId; /* Lookup key for the unixInodeInfo */ 1111 struct stat statbuf; /* Low-level file information */ 1112 unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */ 1113 1114 assert( unixMutexHeld() ); 1115 1116 /* Get low-level information about the file that we can used to 1117 ** create a unique name for the file. 1118 */ 1119 fd = pFile->h; 1120 rc = osFstat(fd, &statbuf); 1121 if( rc!=0 ){ 1122 pFile->lastErrno = errno; 1123 #ifdef EOVERFLOW 1124 if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS; 1125 #endif 1126 return SQLITE_IOERR; 1127 } 1128 1129 #ifdef __APPLE__ 1130 /* On OS X on an msdos filesystem, the inode number is reported 1131 ** incorrectly for zero-size files. See ticket #3260. To work 1132 ** around this problem (we consider it a bug in OS X, not SQLite) 1133 ** we always increase the file size to 1 by writing a single byte 1134 ** prior to accessing the inode number. The one byte written is 1135 ** an ASCII 'S' character which also happens to be the first byte 1136 ** in the header of every SQLite database. In this way, if there 1137 ** is a race condition such that another thread has already populated 1138 ** the first page of the database, no damage is done. 1139 */ 1140 if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){ 1141 do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR ); 1142 if( rc!=1 ){ 1143 pFile->lastErrno = errno; 1144 return SQLITE_IOERR; 1145 } 1146 rc = osFstat(fd, &statbuf); 1147 if( rc!=0 ){ 1148 pFile->lastErrno = errno; 1149 return SQLITE_IOERR; 1150 } 1151 } 1152 #endif 1153 1154 memset(&fileId, 0, sizeof(fileId)); 1155 fileId.dev = statbuf.st_dev; 1156 #if OS_VXWORKS 1157 fileId.pId = pFile->pId; 1158 #else 1159 fileId.ino = statbuf.st_ino; 1160 #endif 1161 pInode = inodeList; 1162 while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){ 1163 pInode = pInode->pNext; 1164 } 1165 if( pInode==0 ){ 1166 pInode = sqlite3_malloc( sizeof(*pInode) ); 1167 if( pInode==0 ){ 1168 return SQLITE_NOMEM; 1169 } 1170 memset(pInode, 0, sizeof(*pInode)); 1171 memcpy(&pInode->fileId, &fileId, sizeof(fileId)); 1172 pInode->nRef = 1; 1173 pInode->pNext = inodeList; 1174 pInode->pPrev = 0; 1175 if( inodeList ) inodeList->pPrev = pInode; 1176 inodeList = pInode; 1177 }else{ 1178 pInode->nRef++; 1179 } 1180 *ppInode = pInode; 1181 return SQLITE_OK; 1182 } 1183 1184 1185 /* 1186 ** This routine checks if there is a RESERVED lock held on the specified 1187 ** file by this or any other process. If such a lock is held, set *pResOut 1188 ** to a non-zero value otherwise *pResOut is set to zero. The return value 1189 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. 1190 */ 1191 static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){ 1192 int rc = SQLITE_OK; 1193 int reserved = 0; 1194 unixFile *pFile = (unixFile*)id; 1195 1196 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); 1197 1198 assert( pFile ); 1199 unixEnterMutex(); /* Because pFile->pInode is shared across threads */ 1200 1201 /* Check if a thread in this process holds such a lock */ 1202 if( pFile->pInode->eFileLock>SHARED_LOCK ){ 1203 reserved = 1; 1204 } 1205 1206 /* Otherwise see if some other process holds it. 1207 */ 1208 #ifndef __DJGPP__ 1209 if( !reserved && !pFile->pInode->bProcessLock ){ 1210 struct flock lock; 1211 lock.l_whence = SEEK_SET; 1212 lock.l_start = RESERVED_BYTE; 1213 lock.l_len = 1; 1214 lock.l_type = F_WRLCK; 1215 if( osFcntl(pFile->h, F_GETLK, &lock) ){ 1216 rc = SQLITE_IOERR_CHECKRESERVEDLOCK; 1217 pFile->lastErrno = errno; 1218 } else if( lock.l_type!=F_UNLCK ){ 1219 reserved = 1; 1220 } 1221 } 1222 #endif 1223 1224 unixLeaveMutex(); 1225 OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved)); 1226 1227 *pResOut = reserved; 1228 return rc; 1229 } 1230 1231 /* 1232 ** Attempt to set a system-lock on the file pFile. The lock is 1233 ** described by pLock. 1234 ** 1235 ** If the pFile was opened read/write from unix-excl, then the only lock 1236 ** ever obtained is an exclusive lock, and it is obtained exactly once 1237 ** the first time any lock is attempted. All subsequent system locking 1238 ** operations become no-ops. Locking operations still happen internally, 1239 ** in order to coordinate access between separate database connections 1240 ** within this process, but all of that is handled in memory and the 1241 ** operating system does not participate. 1242 ** 1243 ** This function is a pass-through to fcntl(F_SETLK) if pFile is using 1244 ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl" 1245 ** and is read-only. 1246 ** 1247 ** Zero is returned if the call completes successfully, or -1 if a call 1248 ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()). 1249 */ 1250 static int unixFileLock(unixFile *pFile, struct flock *pLock){ 1251 int rc; 1252 unixInodeInfo *pInode = pFile->pInode; 1253 assert( unixMutexHeld() ); 1254 assert( pInode!=0 ); 1255 if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock) 1256 && ((pFile->ctrlFlags & UNIXFILE_RDONLY)==0) 1257 ){ 1258 if( pInode->bProcessLock==0 ){ 1259 struct flock lock; 1260 assert( pInode->nLock==0 ); 1261 lock.l_whence = SEEK_SET; 1262 lock.l_start = SHARED_FIRST; 1263 lock.l_len = SHARED_SIZE; 1264 lock.l_type = F_WRLCK; 1265 rc = osFcntl(pFile->h, F_SETLK, &lock); 1266 if( rc<0 ) return rc; 1267 pInode->bProcessLock = 1; 1268 pInode->nLock++; 1269 }else{ 1270 rc = 0; 1271 } 1272 }else{ 1273 rc = osFcntl(pFile->h, F_SETLK, pLock); 1274 } 1275 return rc; 1276 } 1277 1278 /* 1279 ** Lock the file with the lock specified by parameter eFileLock - one 1280 ** of the following: 1281 ** 1282 ** (1) SHARED_LOCK 1283 ** (2) RESERVED_LOCK 1284 ** (3) PENDING_LOCK 1285 ** (4) EXCLUSIVE_LOCK 1286 ** 1287 ** Sometimes when requesting one lock state, additional lock states 1288 ** are inserted in between. The locking might fail on one of the later 1289 ** transitions leaving the lock state different from what it started but 1290 ** still short of its goal. The following chart shows the allowed 1291 ** transitions and the inserted intermediate states: 1292 ** 1293 ** UNLOCKED -> SHARED 1294 ** SHARED -> RESERVED 1295 ** SHARED -> (PENDING) -> EXCLUSIVE 1296 ** RESERVED -> (PENDING) -> EXCLUSIVE 1297 ** PENDING -> EXCLUSIVE 1298 ** 1299 ** This routine will only increase a lock. Use the sqlite3OsUnlock() 1300 ** routine to lower a locking level. 1301 */ 1302 static int unixLock(sqlite3_file *id, int eFileLock){ 1303 /* The following describes the implementation of the various locks and 1304 ** lock transitions in terms of the POSIX advisory shared and exclusive 1305 ** lock primitives (called read-locks and write-locks below, to avoid 1306 ** confusion with SQLite lock names). The algorithms are complicated 1307 ** slightly in order to be compatible with windows systems simultaneously 1308 ** accessing the same database file, in case that is ever required. 1309 ** 1310 ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved 1311 ** byte', each single bytes at well known offsets, and the 'shared byte 1312 ** range', a range of 510 bytes at a well known offset. 1313 ** 1314 ** To obtain a SHARED lock, a read-lock is obtained on the 'pending 1315 ** byte'. If this is successful, a random byte from the 'shared byte 1316 ** range' is read-locked and the lock on the 'pending byte' released. 1317 ** 1318 ** A process may only obtain a RESERVED lock after it has a SHARED lock. 1319 ** A RESERVED lock is implemented by grabbing a write-lock on the 1320 ** 'reserved byte'. 1321 ** 1322 ** A process may only obtain a PENDING lock after it has obtained a 1323 ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock 1324 ** on the 'pending byte'. This ensures that no new SHARED locks can be 1325 ** obtained, but existing SHARED locks are allowed to persist. A process 1326 ** does not have to obtain a RESERVED lock on the way to a PENDING lock. 1327 ** This property is used by the algorithm for rolling back a journal file 1328 ** after a crash. 1329 ** 1330 ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is 1331 ** implemented by obtaining a write-lock on the entire 'shared byte 1332 ** range'. Since all other locks require a read-lock on one of the bytes 1333 ** within this range, this ensures that no other locks are held on the 1334 ** database. 1335 ** 1336 ** The reason a single byte cannot be used instead of the 'shared byte 1337 ** range' is that some versions of windows do not support read-locks. By 1338 ** locking a random byte from a range, concurrent SHARED locks may exist 1339 ** even if the locking primitive used is always a write-lock. 1340 */ 1341 int rc = SQLITE_OK; 1342 unixFile *pFile = (unixFile*)id; 1343 unixInodeInfo *pInode = pFile->pInode; 1344 struct flock lock; 1345 int tErrno = 0; 1346 1347 assert( pFile ); 1348 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h, 1349 azFileLock(eFileLock), azFileLock(pFile->eFileLock), 1350 azFileLock(pInode->eFileLock), pInode->nShared , getpid())); 1351 1352 /* If there is already a lock of this type or more restrictive on the 1353 ** unixFile, do nothing. Don't use the end_lock: exit path, as 1354 ** unixEnterMutex() hasn't been called yet. 1355 */ 1356 if( pFile->eFileLock>=eFileLock ){ 1357 OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h, 1358 azFileLock(eFileLock))); 1359 return SQLITE_OK; 1360 } 1361 1362 /* Make sure the locking sequence is correct. 1363 ** (1) We never move from unlocked to anything higher than shared lock. 1364 ** (2) SQLite never explicitly requests a pendig lock. 1365 ** (3) A shared lock is always held when a reserve lock is requested. 1366 */ 1367 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); 1368 assert( eFileLock!=PENDING_LOCK ); 1369 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); 1370 1371 /* This mutex is needed because pFile->pInode is shared across threads 1372 */ 1373 unixEnterMutex(); 1374 pInode = pFile->pInode; 1375 1376 /* If some thread using this PID has a lock via a different unixFile* 1377 ** handle that precludes the requested lock, return BUSY. 1378 */ 1379 if( (pFile->eFileLock!=pInode->eFileLock && 1380 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) 1381 ){ 1382 rc = SQLITE_BUSY; 1383 goto end_lock; 1384 } 1385 1386 /* If a SHARED lock is requested, and some thread using this PID already 1387 ** has a SHARED or RESERVED lock, then increment reference counts and 1388 ** return SQLITE_OK. 1389 */ 1390 if( eFileLock==SHARED_LOCK && 1391 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ 1392 assert( eFileLock==SHARED_LOCK ); 1393 assert( pFile->eFileLock==0 ); 1394 assert( pInode->nShared>0 ); 1395 pFile->eFileLock = SHARED_LOCK; 1396 pInode->nShared++; 1397 pInode->nLock++; 1398 goto end_lock; 1399 } 1400 1401 1402 /* A PENDING lock is needed before acquiring a SHARED lock and before 1403 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will 1404 ** be released. 1405 */ 1406 lock.l_len = 1L; 1407 lock.l_whence = SEEK_SET; 1408 if( eFileLock==SHARED_LOCK 1409 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK) 1410 ){ 1411 lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK); 1412 lock.l_start = PENDING_BYTE; 1413 if( unixFileLock(pFile, &lock) ){ 1414 tErrno = errno; 1415 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 1416 if( rc!=SQLITE_BUSY ){ 1417 pFile->lastErrno = tErrno; 1418 } 1419 goto end_lock; 1420 } 1421 } 1422 1423 1424 /* If control gets to this point, then actually go ahead and make 1425 ** operating system calls for the specified lock. 1426 */ 1427 if( eFileLock==SHARED_LOCK ){ 1428 assert( pInode->nShared==0 ); 1429 assert( pInode->eFileLock==0 ); 1430 assert( rc==SQLITE_OK ); 1431 1432 /* Now get the read-lock */ 1433 lock.l_start = SHARED_FIRST; 1434 lock.l_len = SHARED_SIZE; 1435 if( unixFileLock(pFile, &lock) ){ 1436 tErrno = errno; 1437 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 1438 } 1439 1440 /* Drop the temporary PENDING lock */ 1441 lock.l_start = PENDING_BYTE; 1442 lock.l_len = 1L; 1443 lock.l_type = F_UNLCK; 1444 if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){ 1445 /* This could happen with a network mount */ 1446 tErrno = errno; 1447 rc = SQLITE_IOERR_UNLOCK; 1448 } 1449 1450 if( rc ){ 1451 if( rc!=SQLITE_BUSY ){ 1452 pFile->lastErrno = tErrno; 1453 } 1454 goto end_lock; 1455 }else{ 1456 pFile->eFileLock = SHARED_LOCK; 1457 pInode->nLock++; 1458 pInode->nShared = 1; 1459 } 1460 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ 1461 /* We are trying for an exclusive lock but another thread in this 1462 ** same process is still holding a shared lock. */ 1463 rc = SQLITE_BUSY; 1464 }else{ 1465 /* The request was for a RESERVED or EXCLUSIVE lock. It is 1466 ** assumed that there is a SHARED or greater lock on the file 1467 ** already. 1468 */ 1469 assert( 0!=pFile->eFileLock ); 1470 lock.l_type = F_WRLCK; 1471 1472 assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK ); 1473 if( eFileLock==RESERVED_LOCK ){ 1474 lock.l_start = RESERVED_BYTE; 1475 lock.l_len = 1L; 1476 }else{ 1477 lock.l_start = SHARED_FIRST; 1478 lock.l_len = SHARED_SIZE; 1479 } 1480 1481 if( unixFileLock(pFile, &lock) ){ 1482 tErrno = errno; 1483 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 1484 if( rc!=SQLITE_BUSY ){ 1485 pFile->lastErrno = tErrno; 1486 } 1487 } 1488 } 1489 1490 1491 #ifndef NDEBUG 1492 /* Set up the transaction-counter change checking flags when 1493 ** transitioning from a SHARED to a RESERVED lock. The change 1494 ** from SHARED to RESERVED marks the beginning of a normal 1495 ** write operation (not a hot journal rollback). 1496 */ 1497 if( rc==SQLITE_OK 1498 && pFile->eFileLock<=SHARED_LOCK 1499 && eFileLock==RESERVED_LOCK 1500 ){ 1501 pFile->transCntrChng = 0; 1502 pFile->dbUpdate = 0; 1503 pFile->inNormalWrite = 1; 1504 } 1505 #endif 1506 1507 1508 if( rc==SQLITE_OK ){ 1509 pFile->eFileLock = eFileLock; 1510 pInode->eFileLock = eFileLock; 1511 }else if( eFileLock==EXCLUSIVE_LOCK ){ 1512 pFile->eFileLock = PENDING_LOCK; 1513 pInode->eFileLock = PENDING_LOCK; 1514 } 1515 1516 end_lock: 1517 unixLeaveMutex(); 1518 OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock), 1519 rc==SQLITE_OK ? "ok" : "failed")); 1520 return rc; 1521 } 1522 1523 /* 1524 ** Add the file descriptor used by file handle pFile to the corresponding 1525 ** pUnused list. 1526 */ 1527 static void setPendingFd(unixFile *pFile){ 1528 unixInodeInfo *pInode = pFile->pInode; 1529 UnixUnusedFd *p = pFile->pUnused; 1530 p->pNext = pInode->pUnused; 1531 pInode->pUnused = p; 1532 pFile->h = -1; 1533 pFile->pUnused = 0; 1534 } 1535 1536 /* 1537 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock 1538 ** must be either NO_LOCK or SHARED_LOCK. 1539 ** 1540 ** If the locking level of the file descriptor is already at or below 1541 ** the requested locking level, this routine is a no-op. 1542 ** 1543 ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED 1544 ** the byte range is divided into 2 parts and the first part is unlocked then 1545 ** set to a read lock, then the other part is simply unlocked. This works 1546 ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to 1547 ** remove the write lock on a region when a read lock is set. 1548 */ 1549 static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){ 1550 unixFile *pFile = (unixFile*)id; 1551 unixInodeInfo *pInode; 1552 struct flock lock; 1553 int rc = SQLITE_OK; 1554 int h; 1555 1556 assert( pFile ); 1557 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock, 1558 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, 1559 getpid())); 1560 1561 assert( eFileLock<=SHARED_LOCK ); 1562 if( pFile->eFileLock<=eFileLock ){ 1563 return SQLITE_OK; 1564 } 1565 unixEnterMutex(); 1566 h = pFile->h; 1567 pInode = pFile->pInode; 1568 assert( pInode->nShared!=0 ); 1569 if( pFile->eFileLock>SHARED_LOCK ){ 1570 assert( pInode->eFileLock==pFile->eFileLock ); 1571 SimulateIOErrorBenign(1); 1572 SimulateIOError( h=(-1) ) 1573 SimulateIOErrorBenign(0); 1574 1575 #ifndef NDEBUG 1576 /* When reducing a lock such that other processes can start 1577 ** reading the database file again, make sure that the 1578 ** transaction counter was updated if any part of the database 1579 ** file changed. If the transaction counter is not updated, 1580 ** other connections to the same file might not realize that 1581 ** the file has changed and hence might not know to flush their 1582 ** cache. The use of a stale cache can lead to database corruption. 1583 */ 1584 #if 0 1585 assert( pFile->inNormalWrite==0 1586 || pFile->dbUpdate==0 1587 || pFile->transCntrChng==1 ); 1588 #endif 1589 pFile->inNormalWrite = 0; 1590 #endif 1591 1592 /* downgrading to a shared lock on NFS involves clearing the write lock 1593 ** before establishing the readlock - to avoid a race condition we downgrade 1594 ** the lock in 2 blocks, so that part of the range will be covered by a 1595 ** write lock until the rest is covered by a read lock: 1596 ** 1: [WWWWW] 1597 ** 2: [....W] 1598 ** 3: [RRRRW] 1599 ** 4: [RRRR.] 1600 */ 1601 if( eFileLock==SHARED_LOCK ){ 1602 1603 #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE 1604 (void)handleNFSUnlock; 1605 assert( handleNFSUnlock==0 ); 1606 #endif 1607 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE 1608 if( handleNFSUnlock ){ 1609 int tErrno; /* Error code from system call errors */ 1610 off_t divSize = SHARED_SIZE - 1; 1611 1612 lock.l_type = F_UNLCK; 1613 lock.l_whence = SEEK_SET; 1614 lock.l_start = SHARED_FIRST; 1615 lock.l_len = divSize; 1616 if( unixFileLock(pFile, &lock)==(-1) ){ 1617 tErrno = errno; 1618 rc = SQLITE_IOERR_UNLOCK; 1619 if( IS_LOCK_ERROR(rc) ){ 1620 pFile->lastErrno = tErrno; 1621 } 1622 goto end_unlock; 1623 } 1624 lock.l_type = F_RDLCK; 1625 lock.l_whence = SEEK_SET; 1626 lock.l_start = SHARED_FIRST; 1627 lock.l_len = divSize; 1628 if( unixFileLock(pFile, &lock)==(-1) ){ 1629 tErrno = errno; 1630 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK); 1631 if( IS_LOCK_ERROR(rc) ){ 1632 pFile->lastErrno = tErrno; 1633 } 1634 goto end_unlock; 1635 } 1636 lock.l_type = F_UNLCK; 1637 lock.l_whence = SEEK_SET; 1638 lock.l_start = SHARED_FIRST+divSize; 1639 lock.l_len = SHARED_SIZE-divSize; 1640 if( unixFileLock(pFile, &lock)==(-1) ){ 1641 tErrno = errno; 1642 rc = SQLITE_IOERR_UNLOCK; 1643 if( IS_LOCK_ERROR(rc) ){ 1644 pFile->lastErrno = tErrno; 1645 } 1646 goto end_unlock; 1647 } 1648 }else 1649 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ 1650 { 1651 lock.l_type = F_RDLCK; 1652 lock.l_whence = SEEK_SET; 1653 lock.l_start = SHARED_FIRST; 1654 lock.l_len = SHARED_SIZE; 1655 if( unixFileLock(pFile, &lock) ){ 1656 /* In theory, the call to unixFileLock() cannot fail because another 1657 ** process is holding an incompatible lock. If it does, this 1658 ** indicates that the other process is not following the locking 1659 ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning 1660 ** SQLITE_BUSY would confuse the upper layer (in practice it causes 1661 ** an assert to fail). */ 1662 rc = SQLITE_IOERR_RDLOCK; 1663 pFile->lastErrno = errno; 1664 goto end_unlock; 1665 } 1666 } 1667 } 1668 lock.l_type = F_UNLCK; 1669 lock.l_whence = SEEK_SET; 1670 lock.l_start = PENDING_BYTE; 1671 lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); 1672 if( unixFileLock(pFile, &lock)==0 ){ 1673 pInode->eFileLock = SHARED_LOCK; 1674 }else{ 1675 rc = SQLITE_IOERR_UNLOCK; 1676 pFile->lastErrno = errno; 1677 goto end_unlock; 1678 } 1679 } 1680 if( eFileLock==NO_LOCK ){ 1681 /* Decrement the shared lock counter. Release the lock using an 1682 ** OS call only when all threads in this same process have released 1683 ** the lock. 1684 */ 1685 pInode->nShared--; 1686 if( pInode->nShared==0 ){ 1687 lock.l_type = F_UNLCK; 1688 lock.l_whence = SEEK_SET; 1689 lock.l_start = lock.l_len = 0L; 1690 SimulateIOErrorBenign(1); 1691 SimulateIOError( h=(-1) ) 1692 SimulateIOErrorBenign(0); 1693 if( unixFileLock(pFile, &lock)==0 ){ 1694 pInode->eFileLock = NO_LOCK; 1695 }else{ 1696 rc = SQLITE_IOERR_UNLOCK; 1697 pFile->lastErrno = errno; 1698 pInode->eFileLock = NO_LOCK; 1699 pFile->eFileLock = NO_LOCK; 1700 } 1701 } 1702 1703 /* Decrement the count of locks against this same file. When the 1704 ** count reaches zero, close any other file descriptors whose close 1705 ** was deferred because of outstanding locks. 1706 */ 1707 pInode->nLock--; 1708 assert( pInode->nLock>=0 ); 1709 if( pInode->nLock==0 ){ 1710 closePendingFds(pFile); 1711 } 1712 } 1713 1714 end_unlock: 1715 unixLeaveMutex(); 1716 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock; 1717 return rc; 1718 } 1719 1720 /* 1721 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock 1722 ** must be either NO_LOCK or SHARED_LOCK. 1723 ** 1724 ** If the locking level of the file descriptor is already at or below 1725 ** the requested locking level, this routine is a no-op. 1726 */ 1727 static int unixUnlock(sqlite3_file *id, int eFileLock){ 1728 return posixUnlock(id, eFileLock, 0); 1729 } 1730 1731 /* 1732 ** This function performs the parts of the "close file" operation 1733 ** common to all locking schemes. It closes the directory and file 1734 ** handles, if they are valid, and sets all fields of the unixFile 1735 ** structure to 0. 1736 ** 1737 ** It is *not* necessary to hold the mutex when this routine is called, 1738 ** even on VxWorks. A mutex will be acquired on VxWorks by the 1739 ** vxworksReleaseFileId() routine. 1740 */ 1741 static int closeUnixFile(sqlite3_file *id){ 1742 unixFile *pFile = (unixFile*)id; 1743 if( pFile->h>=0 ){ 1744 robust_close(pFile, pFile->h, __LINE__); 1745 pFile->h = -1; 1746 } 1747 #if OS_VXWORKS 1748 if( pFile->pId ){ 1749 if( pFile->isDelete ){ 1750 osUnlink(pFile->pId->zCanonicalName); 1751 } 1752 vxworksReleaseFileId(pFile->pId); 1753 pFile->pId = 0; 1754 } 1755 #endif 1756 OSTRACE(("CLOSE %-3d\n", pFile->h)); 1757 OpenCounter(-1); 1758 sqlite3_free(pFile->pUnused); 1759 memset(pFile, 0, sizeof(unixFile)); 1760 return SQLITE_OK; 1761 } 1762 1763 /* 1764 ** Close a file. 1765 */ 1766 static int unixClose(sqlite3_file *id){ 1767 int rc = SQLITE_OK; 1768 unixFile *pFile = (unixFile *)id; 1769 unixUnlock(id, NO_LOCK); 1770 unixEnterMutex(); 1771 1772 /* unixFile.pInode is always valid here. Otherwise, a different close 1773 ** routine (e.g. nolockClose()) would be called instead. 1774 */ 1775 assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 ); 1776 if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){ 1777 /* If there are outstanding locks, do not actually close the file just 1778 ** yet because that would clear those locks. Instead, add the file 1779 ** descriptor to pInode->pUnused list. It will be automatically closed 1780 ** when the last lock is cleared. 1781 */ 1782 setPendingFd(pFile); 1783 } 1784 releaseInodeInfo(pFile); 1785 rc = closeUnixFile(id); 1786 unixLeaveMutex(); 1787 return rc; 1788 } 1789 1790 /************** End of the posix advisory lock implementation ***************** 1791 ******************************************************************************/ 1792 1793 /****************************************************************************** 1794 ****************************** No-op Locking ********************************** 1795 ** 1796 ** Of the various locking implementations available, this is by far the 1797 ** simplest: locking is ignored. No attempt is made to lock the database 1798 ** file for reading or writing. 1799 ** 1800 ** This locking mode is appropriate for use on read-only databases 1801 ** (ex: databases that are burned into CD-ROM, for example.) It can 1802 ** also be used if the application employs some external mechanism to 1803 ** prevent simultaneous access of the same database by two or more 1804 ** database connections. But there is a serious risk of database 1805 ** corruption if this locking mode is used in situations where multiple 1806 ** database connections are accessing the same database file at the same 1807 ** time and one or more of those connections are writing. 1808 */ 1809 1810 static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){ 1811 UNUSED_PARAMETER(NotUsed); 1812 *pResOut = 0; 1813 return SQLITE_OK; 1814 } 1815 static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){ 1816 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1817 return SQLITE_OK; 1818 } 1819 static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){ 1820 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1821 return SQLITE_OK; 1822 } 1823 1824 /* 1825 ** Close the file. 1826 */ 1827 static int nolockClose(sqlite3_file *id) { 1828 return closeUnixFile(id); 1829 } 1830 1831 /******************* End of the no-op lock implementation ********************* 1832 ******************************************************************************/ 1833 1834 /****************************************************************************** 1835 ************************* Begin dot-file Locking ****************************** 1836 ** 1837 ** The dotfile locking implementation uses the existance of separate lock 1838 ** files in order to control access to the database. This works on just 1839 ** about every filesystem imaginable. But there are serious downsides: 1840 ** 1841 ** (1) There is zero concurrency. A single reader blocks all other 1842 ** connections from reading or writing the database. 1843 ** 1844 ** (2) An application crash or power loss can leave stale lock files 1845 ** sitting around that need to be cleared manually. 1846 ** 1847 ** Nevertheless, a dotlock is an appropriate locking mode for use if no 1848 ** other locking strategy is available. 1849 ** 1850 ** Dotfile locking works by creating a file in the same directory as the 1851 ** database and with the same name but with a ".lock" extension added. 1852 ** The existance of a lock file implies an EXCLUSIVE lock. All other lock 1853 ** types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE. 1854 */ 1855 1856 /* 1857 ** The file suffix added to the data base filename in order to create the 1858 ** lock file. 1859 */ 1860 #define DOTLOCK_SUFFIX ".lock" 1861 1862 /* 1863 ** This routine checks if there is a RESERVED lock held on the specified 1864 ** file by this or any other process. If such a lock is held, set *pResOut 1865 ** to a non-zero value otherwise *pResOut is set to zero. The return value 1866 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. 1867 ** 1868 ** In dotfile locking, either a lock exists or it does not. So in this 1869 ** variation of CheckReservedLock(), *pResOut is set to true if any lock 1870 ** is held on the file and false if the file is unlocked. 1871 */ 1872 static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) { 1873 int rc = SQLITE_OK; 1874 int reserved = 0; 1875 unixFile *pFile = (unixFile*)id; 1876 1877 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); 1878 1879 assert( pFile ); 1880 1881 /* Check if a thread in this process holds such a lock */ 1882 if( pFile->eFileLock>SHARED_LOCK ){ 1883 /* Either this connection or some other connection in the same process 1884 ** holds a lock on the file. No need to check further. */ 1885 reserved = 1; 1886 }else{ 1887 /* The lock is held if and only if the lockfile exists */ 1888 const char *zLockFile = (const char*)pFile->lockingContext; 1889 reserved = osAccess(zLockFile, 0)==0; 1890 } 1891 OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved)); 1892 *pResOut = reserved; 1893 return rc; 1894 } 1895 1896 /* 1897 ** Lock the file with the lock specified by parameter eFileLock - one 1898 ** of the following: 1899 ** 1900 ** (1) SHARED_LOCK 1901 ** (2) RESERVED_LOCK 1902 ** (3) PENDING_LOCK 1903 ** (4) EXCLUSIVE_LOCK 1904 ** 1905 ** Sometimes when requesting one lock state, additional lock states 1906 ** are inserted in between. The locking might fail on one of the later 1907 ** transitions leaving the lock state different from what it started but 1908 ** still short of its goal. The following chart shows the allowed 1909 ** transitions and the inserted intermediate states: 1910 ** 1911 ** UNLOCKED -> SHARED 1912 ** SHARED -> RESERVED 1913 ** SHARED -> (PENDING) -> EXCLUSIVE 1914 ** RESERVED -> (PENDING) -> EXCLUSIVE 1915 ** PENDING -> EXCLUSIVE 1916 ** 1917 ** This routine will only increase a lock. Use the sqlite3OsUnlock() 1918 ** routine to lower a locking level. 1919 ** 1920 ** With dotfile locking, we really only support state (4): EXCLUSIVE. 1921 ** But we track the other locking levels internally. 1922 */ 1923 static int dotlockLock(sqlite3_file *id, int eFileLock) { 1924 unixFile *pFile = (unixFile*)id; 1925 int fd; 1926 char *zLockFile = (char *)pFile->lockingContext; 1927 int rc = SQLITE_OK; 1928 1929 1930 /* If we have any lock, then the lock file already exists. All we have 1931 ** to do is adjust our internal record of the lock level. 1932 */ 1933 if( pFile->eFileLock > NO_LOCK ){ 1934 pFile->eFileLock = eFileLock; 1935 #if !OS_VXWORKS 1936 /* Always update the timestamp on the old file */ 1937 utimes(zLockFile, NULL); 1938 #endif 1939 return SQLITE_OK; 1940 } 1941 1942 /* grab an exclusive lock */ 1943 fd = robust_open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600); 1944 if( fd<0 ){ 1945 /* failed to open/create the file, someone else may have stolen the lock */ 1946 int tErrno = errno; 1947 if( EEXIST == tErrno ){ 1948 rc = SQLITE_BUSY; 1949 } else { 1950 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 1951 if( IS_LOCK_ERROR(rc) ){ 1952 pFile->lastErrno = tErrno; 1953 } 1954 } 1955 return rc; 1956 } 1957 robust_close(pFile, fd, __LINE__); 1958 1959 /* got it, set the type and return ok */ 1960 pFile->eFileLock = eFileLock; 1961 return rc; 1962 } 1963 1964 /* 1965 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock 1966 ** must be either NO_LOCK or SHARED_LOCK. 1967 ** 1968 ** If the locking level of the file descriptor is already at or below 1969 ** the requested locking level, this routine is a no-op. 1970 ** 1971 ** When the locking level reaches NO_LOCK, delete the lock file. 1972 */ 1973 static int dotlockUnlock(sqlite3_file *id, int eFileLock) { 1974 unixFile *pFile = (unixFile*)id; 1975 char *zLockFile = (char *)pFile->lockingContext; 1976 1977 assert( pFile ); 1978 OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock, 1979 pFile->eFileLock, getpid())); 1980 assert( eFileLock<=SHARED_LOCK ); 1981 1982 /* no-op if possible */ 1983 if( pFile->eFileLock==eFileLock ){ 1984 return SQLITE_OK; 1985 } 1986 1987 /* To downgrade to shared, simply update our internal notion of the 1988 ** lock state. No need to mess with the file on disk. 1989 */ 1990 if( eFileLock==SHARED_LOCK ){ 1991 pFile->eFileLock = SHARED_LOCK; 1992 return SQLITE_OK; 1993 } 1994 1995 /* To fully unlock the database, delete the lock file */ 1996 assert( eFileLock==NO_LOCK ); 1997 if( osUnlink(zLockFile) ){ 1998 int rc = 0; 1999 int tErrno = errno; 2000 if( ENOENT != tErrno ){ 2001 rc = SQLITE_IOERR_UNLOCK; 2002 } 2003 if( IS_LOCK_ERROR(rc) ){ 2004 pFile->lastErrno = tErrno; 2005 } 2006 return rc; 2007 } 2008 pFile->eFileLock = NO_LOCK; 2009 return SQLITE_OK; 2010 } 2011 2012 /* 2013 ** Close a file. Make sure the lock has been released before closing. 2014 */ 2015 static int dotlockClose(sqlite3_file *id) { 2016 int rc; 2017 if( id ){ 2018 unixFile *pFile = (unixFile*)id; 2019 dotlockUnlock(id, NO_LOCK); 2020 sqlite3_free(pFile->lockingContext); 2021 } 2022 rc = closeUnixFile(id); 2023 return rc; 2024 } 2025 /****************** End of the dot-file lock implementation ******************* 2026 ******************************************************************************/ 2027 2028 /****************************************************************************** 2029 ************************** Begin flock Locking ******************************** 2030 ** 2031 ** Use the flock() system call to do file locking. 2032 ** 2033 ** flock() locking is like dot-file locking in that the various 2034 ** fine-grain locking levels supported by SQLite are collapsed into 2035 ** a single exclusive lock. In other words, SHARED, RESERVED, and 2036 ** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite 2037 ** still works when you do this, but concurrency is reduced since 2038 ** only a single process can be reading the database at a time. 2039 ** 2040 ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if 2041 ** compiling for VXWORKS. 2042 */ 2043 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS 2044 2045 /* 2046 ** Retry flock() calls that fail with EINTR 2047 */ 2048 #ifdef EINTR 2049 static int robust_flock(int fd, int op){ 2050 int rc; 2051 do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR ); 2052 return rc; 2053 } 2054 #else 2055 # define robust_flock(a,b) flock(a,b) 2056 #endif 2057 2058 2059 /* 2060 ** This routine checks if there is a RESERVED lock held on the specified 2061 ** file by this or any other process. If such a lock is held, set *pResOut 2062 ** to a non-zero value otherwise *pResOut is set to zero. The return value 2063 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. 2064 */ 2065 static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){ 2066 int rc = SQLITE_OK; 2067 int reserved = 0; 2068 unixFile *pFile = (unixFile*)id; 2069 2070 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); 2071 2072 assert( pFile ); 2073 2074 /* Check if a thread in this process holds such a lock */ 2075 if( pFile->eFileLock>SHARED_LOCK ){ 2076 reserved = 1; 2077 } 2078 2079 /* Otherwise see if some other process holds it. */ 2080 if( !reserved ){ 2081 /* attempt to get the lock */ 2082 int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB); 2083 if( !lrc ){ 2084 /* got the lock, unlock it */ 2085 lrc = robust_flock(pFile->h, LOCK_UN); 2086 if ( lrc ) { 2087 int tErrno = errno; 2088 /* unlock failed with an error */ 2089 lrc = SQLITE_IOERR_UNLOCK; 2090 if( IS_LOCK_ERROR(lrc) ){ 2091 pFile->lastErrno = tErrno; 2092 rc = lrc; 2093 } 2094 } 2095 } else { 2096 int tErrno = errno; 2097 reserved = 1; 2098 /* someone else might have it reserved */ 2099 lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 2100 if( IS_LOCK_ERROR(lrc) ){ 2101 pFile->lastErrno = tErrno; 2102 rc = lrc; 2103 } 2104 } 2105 } 2106 OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved)); 2107 2108 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS 2109 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){ 2110 rc = SQLITE_OK; 2111 reserved=1; 2112 } 2113 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ 2114 *pResOut = reserved; 2115 return rc; 2116 } 2117 2118 /* 2119 ** Lock the file with the lock specified by parameter eFileLock - one 2120 ** of the following: 2121 ** 2122 ** (1) SHARED_LOCK 2123 ** (2) RESERVED_LOCK 2124 ** (3) PENDING_LOCK 2125 ** (4) EXCLUSIVE_LOCK 2126 ** 2127 ** Sometimes when requesting one lock state, additional lock states 2128 ** are inserted in between. The locking might fail on one of the later 2129 ** transitions leaving the lock state different from what it started but 2130 ** still short of its goal. The following chart shows the allowed 2131 ** transitions and the inserted intermediate states: 2132 ** 2133 ** UNLOCKED -> SHARED 2134 ** SHARED -> RESERVED 2135 ** SHARED -> (PENDING) -> EXCLUSIVE 2136 ** RESERVED -> (PENDING) -> EXCLUSIVE 2137 ** PENDING -> EXCLUSIVE 2138 ** 2139 ** flock() only really support EXCLUSIVE locks. We track intermediate 2140 ** lock states in the sqlite3_file structure, but all locks SHARED or 2141 ** above are really EXCLUSIVE locks and exclude all other processes from 2142 ** access the file. 2143 ** 2144 ** This routine will only increase a lock. Use the sqlite3OsUnlock() 2145 ** routine to lower a locking level. 2146 */ 2147 static int flockLock(sqlite3_file *id, int eFileLock) { 2148 int rc = SQLITE_OK; 2149 unixFile *pFile = (unixFile*)id; 2150 2151 assert( pFile ); 2152 2153 /* if we already have a lock, it is exclusive. 2154 ** Just adjust level and punt on outta here. */ 2155 if (pFile->eFileLock > NO_LOCK) { 2156 pFile->eFileLock = eFileLock; 2157 return SQLITE_OK; 2158 } 2159 2160 /* grab an exclusive lock */ 2161 2162 if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) { 2163 int tErrno = errno; 2164 /* didn't get, must be busy */ 2165 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 2166 if( IS_LOCK_ERROR(rc) ){ 2167 pFile->lastErrno = tErrno; 2168 } 2169 } else { 2170 /* got it, set the type and return ok */ 2171 pFile->eFileLock = eFileLock; 2172 } 2173 OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock), 2174 rc==SQLITE_OK ? "ok" : "failed")); 2175 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS 2176 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){ 2177 rc = SQLITE_BUSY; 2178 } 2179 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ 2180 return rc; 2181 } 2182 2183 2184 /* 2185 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock 2186 ** must be either NO_LOCK or SHARED_LOCK. 2187 ** 2188 ** If the locking level of the file descriptor is already at or below 2189 ** the requested locking level, this routine is a no-op. 2190 */ 2191 static int flockUnlock(sqlite3_file *id, int eFileLock) { 2192 unixFile *pFile = (unixFile*)id; 2193 2194 assert( pFile ); 2195 OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock, 2196 pFile->eFileLock, getpid())); 2197 assert( eFileLock<=SHARED_LOCK ); 2198 2199 /* no-op if possible */ 2200 if( pFile->eFileLock==eFileLock ){ 2201 return SQLITE_OK; 2202 } 2203 2204 /* shared can just be set because we always have an exclusive */ 2205 if (eFileLock==SHARED_LOCK) { 2206 pFile->eFileLock = eFileLock; 2207 return SQLITE_OK; 2208 } 2209 2210 /* no, really, unlock. */ 2211 if( robust_flock(pFile->h, LOCK_UN) ){ 2212 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS 2213 return SQLITE_OK; 2214 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ 2215 return SQLITE_IOERR_UNLOCK; 2216 }else{ 2217 pFile->eFileLock = NO_LOCK; 2218 return SQLITE_OK; 2219 } 2220 } 2221 2222 /* 2223 ** Close a file. 2224 */ 2225 static int flockClose(sqlite3_file *id) { 2226 if( id ){ 2227 flockUnlock(id, NO_LOCK); 2228 } 2229 return closeUnixFile(id); 2230 } 2231 2232 #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */ 2233 2234 /******************* End of the flock lock implementation ********************* 2235 ******************************************************************************/ 2236 2237 /****************************************************************************** 2238 ************************ Begin Named Semaphore Locking ************************ 2239 ** 2240 ** Named semaphore locking is only supported on VxWorks. 2241 ** 2242 ** Semaphore locking is like dot-lock and flock in that it really only 2243 ** supports EXCLUSIVE locking. Only a single process can read or write 2244 ** the database file at a time. This reduces potential concurrency, but 2245 ** makes the lock implementation much easier. 2246 */ 2247 #if OS_VXWORKS 2248 2249 /* 2250 ** This routine checks if there is a RESERVED lock held on the specified 2251 ** file by this or any other process. If such a lock is held, set *pResOut 2252 ** to a non-zero value otherwise *pResOut is set to zero. The return value 2253 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. 2254 */ 2255 static int semCheckReservedLock(sqlite3_file *id, int *pResOut) { 2256 int rc = SQLITE_OK; 2257 int reserved = 0; 2258 unixFile *pFile = (unixFile*)id; 2259 2260 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); 2261 2262 assert( pFile ); 2263 2264 /* Check if a thread in this process holds such a lock */ 2265 if( pFile->eFileLock>SHARED_LOCK ){ 2266 reserved = 1; 2267 } 2268 2269 /* Otherwise see if some other process holds it. */ 2270 if( !reserved ){ 2271 sem_t *pSem = pFile->pInode->pSem; 2272 struct stat statBuf; 2273 2274 if( sem_trywait(pSem)==-1 ){ 2275 int tErrno = errno; 2276 if( EAGAIN != tErrno ){ 2277 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK); 2278 pFile->lastErrno = tErrno; 2279 } else { 2280 /* someone else has the lock when we are in NO_LOCK */ 2281 reserved = (pFile->eFileLock < SHARED_LOCK); 2282 } 2283 }else{ 2284 /* we could have it if we want it */ 2285 sem_post(pSem); 2286 } 2287 } 2288 OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved)); 2289 2290 *pResOut = reserved; 2291 return rc; 2292 } 2293 2294 /* 2295 ** Lock the file with the lock specified by parameter eFileLock - one 2296 ** of the following: 2297 ** 2298 ** (1) SHARED_LOCK 2299 ** (2) RESERVED_LOCK 2300 ** (3) PENDING_LOCK 2301 ** (4) EXCLUSIVE_LOCK 2302 ** 2303 ** Sometimes when requesting one lock state, additional lock states 2304 ** are inserted in between. The locking might fail on one of the later 2305 ** transitions leaving the lock state different from what it started but 2306 ** still short of its goal. The following chart shows the allowed 2307 ** transitions and the inserted intermediate states: 2308 ** 2309 ** UNLOCKED -> SHARED 2310 ** SHARED -> RESERVED 2311 ** SHARED -> (PENDING) -> EXCLUSIVE 2312 ** RESERVED -> (PENDING) -> EXCLUSIVE 2313 ** PENDING -> EXCLUSIVE 2314 ** 2315 ** Semaphore locks only really support EXCLUSIVE locks. We track intermediate 2316 ** lock states in the sqlite3_file structure, but all locks SHARED or 2317 ** above are really EXCLUSIVE locks and exclude all other processes from 2318 ** access the file. 2319 ** 2320 ** This routine will only increase a lock. Use the sqlite3OsUnlock() 2321 ** routine to lower a locking level. 2322 */ 2323 static int semLock(sqlite3_file *id, int eFileLock) { 2324 unixFile *pFile = (unixFile*)id; 2325 int fd; 2326 sem_t *pSem = pFile->pInode->pSem; 2327 int rc = SQLITE_OK; 2328 2329 /* if we already have a lock, it is exclusive. 2330 ** Just adjust level and punt on outta here. */ 2331 if (pFile->eFileLock > NO_LOCK) { 2332 pFile->eFileLock = eFileLock; 2333 rc = SQLITE_OK; 2334 goto sem_end_lock; 2335 } 2336 2337 /* lock semaphore now but bail out when already locked. */ 2338 if( sem_trywait(pSem)==-1 ){ 2339 rc = SQLITE_BUSY; 2340 goto sem_end_lock; 2341 } 2342 2343 /* got it, set the type and return ok */ 2344 pFile->eFileLock = eFileLock; 2345 2346 sem_end_lock: 2347 return rc; 2348 } 2349 2350 /* 2351 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock 2352 ** must be either NO_LOCK or SHARED_LOCK. 2353 ** 2354 ** If the locking level of the file descriptor is already at or below 2355 ** the requested locking level, this routine is a no-op. 2356 */ 2357 static int semUnlock(sqlite3_file *id, int eFileLock) { 2358 unixFile *pFile = (unixFile*)id; 2359 sem_t *pSem = pFile->pInode->pSem; 2360 2361 assert( pFile ); 2362 assert( pSem ); 2363 OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock, 2364 pFile->eFileLock, getpid())); 2365 assert( eFileLock<=SHARED_LOCK ); 2366 2367 /* no-op if possible */ 2368 if( pFile->eFileLock==eFileLock ){ 2369 return SQLITE_OK; 2370 } 2371 2372 /* shared can just be set because we always have an exclusive */ 2373 if (eFileLock==SHARED_LOCK) { 2374 pFile->eFileLock = eFileLock; 2375 return SQLITE_OK; 2376 } 2377 2378 /* no, really unlock. */ 2379 if ( sem_post(pSem)==-1 ) { 2380 int rc, tErrno = errno; 2381 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); 2382 if( IS_LOCK_ERROR(rc) ){ 2383 pFile->lastErrno = tErrno; 2384 } 2385 return rc; 2386 } 2387 pFile->eFileLock = NO_LOCK; 2388 return SQLITE_OK; 2389 } 2390 2391 /* 2392 ** Close a file. 2393 */ 2394 static int semClose(sqlite3_file *id) { 2395 if( id ){ 2396 unixFile *pFile = (unixFile*)id; 2397 semUnlock(id, NO_LOCK); 2398 assert( pFile ); 2399 unixEnterMutex(); 2400 releaseInodeInfo(pFile); 2401 unixLeaveMutex(); 2402 closeUnixFile(id); 2403 } 2404 return SQLITE_OK; 2405 } 2406 2407 #endif /* OS_VXWORKS */ 2408 /* 2409 ** Named semaphore locking is only available on VxWorks. 2410 ** 2411 *************** End of the named semaphore lock implementation **************** 2412 ******************************************************************************/ 2413 2414 2415 /****************************************************************************** 2416 *************************** Begin AFP Locking ********************************* 2417 ** 2418 ** AFP is the Apple Filing Protocol. AFP is a network filesystem found 2419 ** on Apple Macintosh computers - both OS9 and OSX. 2420 ** 2421 ** Third-party implementations of AFP are available. But this code here 2422 ** only works on OSX. 2423 */ 2424 2425 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE 2426 /* 2427 ** The afpLockingContext structure contains all afp lock specific state 2428 */ 2429 typedef struct afpLockingContext afpLockingContext; 2430 struct afpLockingContext { 2431 int reserved; 2432 const char *dbPath; /* Name of the open file */ 2433 }; 2434 2435 struct ByteRangeLockPB2 2436 { 2437 unsigned long long offset; /* offset to first byte to lock */ 2438 unsigned long long length; /* nbr of bytes to lock */ 2439 unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */ 2440 unsigned char unLockFlag; /* 1 = unlock, 0 = lock */ 2441 unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */ 2442 int fd; /* file desc to assoc this lock with */ 2443 }; 2444 2445 #define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2) 2446 2447 /* 2448 ** This is a utility for setting or clearing a bit-range lock on an 2449 ** AFP filesystem. 2450 ** 2451 ** Return SQLITE_OK on success, SQLITE_BUSY on failure. 2452 */ 2453 static int afpSetLock( 2454 const char *path, /* Name of the file to be locked or unlocked */ 2455 unixFile *pFile, /* Open file descriptor on path */ 2456 unsigned long long offset, /* First byte to be locked */ 2457 unsigned long long length, /* Number of bytes to lock */ 2458 int setLockFlag /* True to set lock. False to clear lock */ 2459 ){ 2460 struct ByteRangeLockPB2 pb; 2461 int err; 2462 2463 pb.unLockFlag = setLockFlag ? 0 : 1; 2464 pb.startEndFlag = 0; 2465 pb.offset = offset; 2466 pb.length = length; 2467 pb.fd = pFile->h; 2468 2469 OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n", 2470 (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""), 2471 offset, length)); 2472 err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0); 2473 if ( err==-1 ) { 2474 int rc; 2475 int tErrno = errno; 2476 OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n", 2477 path, tErrno, strerror(tErrno))); 2478 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS 2479 rc = SQLITE_BUSY; 2480 #else 2481 rc = sqliteErrorFromPosixError(tErrno, 2482 setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK); 2483 #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */ 2484 if( IS_LOCK_ERROR(rc) ){ 2485 pFile->lastErrno = tErrno; 2486 } 2487 return rc; 2488 } else { 2489 return SQLITE_OK; 2490 } 2491 } 2492 2493 /* 2494 ** This routine checks if there is a RESERVED lock held on the specified 2495 ** file by this or any other process. If such a lock is held, set *pResOut 2496 ** to a non-zero value otherwise *pResOut is set to zero. The return value 2497 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. 2498 */ 2499 static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){ 2500 int rc = SQLITE_OK; 2501 int reserved = 0; 2502 unixFile *pFile = (unixFile*)id; 2503 2504 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); 2505 2506 assert( pFile ); 2507 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; 2508 if( context->reserved ){ 2509 *pResOut = 1; 2510 return SQLITE_OK; 2511 } 2512 unixEnterMutex(); /* Because pFile->pInode is shared across threads */ 2513 2514 /* Check if a thread in this process holds such a lock */ 2515 if( pFile->pInode->eFileLock>SHARED_LOCK ){ 2516 reserved = 1; 2517 } 2518 2519 /* Otherwise see if some other process holds it. 2520 */ 2521 if( !reserved ){ 2522 /* lock the RESERVED byte */ 2523 int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); 2524 if( SQLITE_OK==lrc ){ 2525 /* if we succeeded in taking the reserved lock, unlock it to restore 2526 ** the original state */ 2527 lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); 2528 } else { 2529 /* if we failed to get the lock then someone else must have it */ 2530 reserved = 1; 2531 } 2532 if( IS_LOCK_ERROR(lrc) ){ 2533 rc=lrc; 2534 } 2535 } 2536 2537 unixLeaveMutex(); 2538 OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved)); 2539 2540 *pResOut = reserved; 2541 return rc; 2542 } 2543 2544 /* 2545 ** Lock the file with the lock specified by parameter eFileLock - one 2546 ** of the following: 2547 ** 2548 ** (1) SHARED_LOCK 2549 ** (2) RESERVED_LOCK 2550 ** (3) PENDING_LOCK 2551 ** (4) EXCLUSIVE_LOCK 2552 ** 2553 ** Sometimes when requesting one lock state, additional lock states 2554 ** are inserted in between. The locking might fail on one of the later 2555 ** transitions leaving the lock state different from what it started but 2556 ** still short of its goal. The following chart shows the allowed 2557 ** transitions and the inserted intermediate states: 2558 ** 2559 ** UNLOCKED -> SHARED 2560 ** SHARED -> RESERVED 2561 ** SHARED -> (PENDING) -> EXCLUSIVE 2562 ** RESERVED -> (PENDING) -> EXCLUSIVE 2563 ** PENDING -> EXCLUSIVE 2564 ** 2565 ** This routine will only increase a lock. Use the sqlite3OsUnlock() 2566 ** routine to lower a locking level. 2567 */ 2568 static int afpLock(sqlite3_file *id, int eFileLock){ 2569 int rc = SQLITE_OK; 2570 unixFile *pFile = (unixFile*)id; 2571 unixInodeInfo *pInode = pFile->pInode; 2572 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; 2573 2574 assert( pFile ); 2575 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h, 2576 azFileLock(eFileLock), azFileLock(pFile->eFileLock), 2577 azFileLock(pInode->eFileLock), pInode->nShared , getpid())); 2578 2579 /* If there is already a lock of this type or more restrictive on the 2580 ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as 2581 ** unixEnterMutex() hasn't been called yet. 2582 */ 2583 if( pFile->eFileLock>=eFileLock ){ 2584 OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h, 2585 azFileLock(eFileLock))); 2586 return SQLITE_OK; 2587 } 2588 2589 /* Make sure the locking sequence is correct 2590 ** (1) We never move from unlocked to anything higher than shared lock. 2591 ** (2) SQLite never explicitly requests a pendig lock. 2592 ** (3) A shared lock is always held when a reserve lock is requested. 2593 */ 2594 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); 2595 assert( eFileLock!=PENDING_LOCK ); 2596 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); 2597 2598 /* This mutex is needed because pFile->pInode is shared across threads 2599 */ 2600 unixEnterMutex(); 2601 pInode = pFile->pInode; 2602 2603 /* If some thread using this PID has a lock via a different unixFile* 2604 ** handle that precludes the requested lock, return BUSY. 2605 */ 2606 if( (pFile->eFileLock!=pInode->eFileLock && 2607 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) 2608 ){ 2609 rc = SQLITE_BUSY; 2610 goto afp_end_lock; 2611 } 2612 2613 /* If a SHARED lock is requested, and some thread using this PID already 2614 ** has a SHARED or RESERVED lock, then increment reference counts and 2615 ** return SQLITE_OK. 2616 */ 2617 if( eFileLock==SHARED_LOCK && 2618 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ 2619 assert( eFileLock==SHARED_LOCK ); 2620 assert( pFile->eFileLock==0 ); 2621 assert( pInode->nShared>0 ); 2622 pFile->eFileLock = SHARED_LOCK; 2623 pInode->nShared++; 2624 pInode->nLock++; 2625 goto afp_end_lock; 2626 } 2627 2628 /* A PENDING lock is needed before acquiring a SHARED lock and before 2629 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will 2630 ** be released. 2631 */ 2632 if( eFileLock==SHARED_LOCK 2633 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK) 2634 ){ 2635 int failed; 2636 failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1); 2637 if (failed) { 2638 rc = failed; 2639 goto afp_end_lock; 2640 } 2641 } 2642 2643 /* If control gets to this point, then actually go ahead and make 2644 ** operating system calls for the specified lock. 2645 */ 2646 if( eFileLock==SHARED_LOCK ){ 2647 int lrc1, lrc2, lrc1Errno; 2648 long lk, mask; 2649 2650 assert( pInode->nShared==0 ); 2651 assert( pInode->eFileLock==0 ); 2652 2653 mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff; 2654 /* Now get the read-lock SHARED_LOCK */ 2655 /* note that the quality of the randomness doesn't matter that much */ 2656 lk = random(); 2657 pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1); 2658 lrc1 = afpSetLock(context->dbPath, pFile, 2659 SHARED_FIRST+pInode->sharedByte, 1, 1); 2660 if( IS_LOCK_ERROR(lrc1) ){ 2661 lrc1Errno = pFile->lastErrno; 2662 } 2663 /* Drop the temporary PENDING lock */ 2664 lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); 2665 2666 if( IS_LOCK_ERROR(lrc1) ) { 2667 pFile->lastErrno = lrc1Errno; 2668 rc = lrc1; 2669 goto afp_end_lock; 2670 } else if( IS_LOCK_ERROR(lrc2) ){ 2671 rc = lrc2; 2672 goto afp_end_lock; 2673 } else if( lrc1 != SQLITE_OK ) { 2674 rc = lrc1; 2675 } else { 2676 pFile->eFileLock = SHARED_LOCK; 2677 pInode->nLock++; 2678 pInode->nShared = 1; 2679 } 2680 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ 2681 /* We are trying for an exclusive lock but another thread in this 2682 ** same process is still holding a shared lock. */ 2683 rc = SQLITE_BUSY; 2684 }else{ 2685 /* The request was for a RESERVED or EXCLUSIVE lock. It is 2686 ** assumed that there is a SHARED or greater lock on the file 2687 ** already. 2688 */ 2689 int failed = 0; 2690 assert( 0!=pFile->eFileLock ); 2691 if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) { 2692 /* Acquire a RESERVED lock */ 2693 failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); 2694 if( !failed ){ 2695 context->reserved = 1; 2696 } 2697 } 2698 if (!failed && eFileLock == EXCLUSIVE_LOCK) { 2699 /* Acquire an EXCLUSIVE lock */ 2700 2701 /* Remove the shared lock before trying the range. we'll need to 2702 ** reestablish the shared lock if we can't get the afpUnlock 2703 */ 2704 if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST + 2705 pInode->sharedByte, 1, 0)) ){ 2706 int failed2 = SQLITE_OK; 2707 /* now attemmpt to get the exclusive lock range */ 2708 failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST, 2709 SHARED_SIZE, 1); 2710 if( failed && (failed2 = afpSetLock(context->dbPath, pFile, 2711 SHARED_FIRST + pInode->sharedByte, 1, 1)) ){ 2712 /* Can't reestablish the shared lock. Sqlite can't deal, this is 2713 ** a critical I/O error 2714 */ 2715 rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 : 2716 SQLITE_IOERR_LOCK; 2717 goto afp_end_lock; 2718 } 2719 }else{ 2720 rc = failed; 2721 } 2722 } 2723 if( failed ){ 2724 rc = failed; 2725 } 2726 } 2727 2728 if( rc==SQLITE_OK ){ 2729 pFile->eFileLock = eFileLock; 2730 pInode->eFileLock = eFileLock; 2731 }else if( eFileLock==EXCLUSIVE_LOCK ){ 2732 pFile->eFileLock = PENDING_LOCK; 2733 pInode->eFileLock = PENDING_LOCK; 2734 } 2735 2736 afp_end_lock: 2737 unixLeaveMutex(); 2738 OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock), 2739 rc==SQLITE_OK ? "ok" : "failed")); 2740 return rc; 2741 } 2742 2743 /* 2744 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock 2745 ** must be either NO_LOCK or SHARED_LOCK. 2746 ** 2747 ** If the locking level of the file descriptor is already at or below 2748 ** the requested locking level, this routine is a no-op. 2749 */ 2750 static int afpUnlock(sqlite3_file *id, int eFileLock) { 2751 int rc = SQLITE_OK; 2752 unixFile *pFile = (unixFile*)id; 2753 unixInodeInfo *pInode; 2754 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; 2755 int skipShared = 0; 2756 #ifdef SQLITE_TEST 2757 int h = pFile->h; 2758 #endif 2759 2760 assert( pFile ); 2761 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock, 2762 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, 2763 getpid())); 2764 2765 assert( eFileLock<=SHARED_LOCK ); 2766 if( pFile->eFileLock<=eFileLock ){ 2767 return SQLITE_OK; 2768 } 2769 unixEnterMutex(); 2770 pInode = pFile->pInode; 2771 assert( pInode->nShared!=0 ); 2772 if( pFile->eFileLock>SHARED_LOCK ){ 2773 assert( pInode->eFileLock==pFile->eFileLock ); 2774 SimulateIOErrorBenign(1); 2775 SimulateIOError( h=(-1) ) 2776 SimulateIOErrorBenign(0); 2777 2778 #ifndef NDEBUG 2779 /* When reducing a lock such that other processes can start 2780 ** reading the database file again, make sure that the 2781 ** transaction counter was updated if any part of the database 2782 ** file changed. If the transaction counter is not updated, 2783 ** other connections to the same file might not realize that 2784 ** the file has changed and hence might not know to flush their 2785 ** cache. The use of a stale cache can lead to database corruption. 2786 */ 2787 assert( pFile->inNormalWrite==0 2788 || pFile->dbUpdate==0 2789 || pFile->transCntrChng==1 ); 2790 pFile->inNormalWrite = 0; 2791 #endif 2792 2793 if( pFile->eFileLock==EXCLUSIVE_LOCK ){ 2794 rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0); 2795 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){ 2796 /* only re-establish the shared lock if necessary */ 2797 int sharedLockByte = SHARED_FIRST+pInode->sharedByte; 2798 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1); 2799 } else { 2800 skipShared = 1; 2801 } 2802 } 2803 if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){ 2804 rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); 2805 } 2806 if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){ 2807 rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); 2808 if( !rc ){ 2809 context->reserved = 0; 2810 } 2811 } 2812 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){ 2813 pInode->eFileLock = SHARED_LOCK; 2814 } 2815 } 2816 if( rc==SQLITE_OK && eFileLock==NO_LOCK ){ 2817 2818 /* Decrement the shared lock counter. Release the lock using an 2819 ** OS call only when all threads in this same process have released 2820 ** the lock. 2821 */ 2822 unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte; 2823 pInode->nShared--; 2824 if( pInode->nShared==0 ){ 2825 SimulateIOErrorBenign(1); 2826 SimulateIOError( h=(-1) ) 2827 SimulateIOErrorBenign(0); 2828 if( !skipShared ){ 2829 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0); 2830 } 2831 if( !rc ){ 2832 pInode->eFileLock = NO_LOCK; 2833 pFile->eFileLock = NO_LOCK; 2834 } 2835 } 2836 if( rc==SQLITE_OK ){ 2837 pInode->nLock--; 2838 assert( pInode->nLock>=0 ); 2839 if( pInode->nLock==0 ){ 2840 closePendingFds(pFile); 2841 } 2842 } 2843 } 2844 2845 unixLeaveMutex(); 2846 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock; 2847 return rc; 2848 } 2849 2850 /* 2851 ** Close a file & cleanup AFP specific locking context 2852 */ 2853 static int afpClose(sqlite3_file *id) { 2854 int rc = SQLITE_OK; 2855 if( id ){ 2856 unixFile *pFile = (unixFile*)id; 2857 afpUnlock(id, NO_LOCK); 2858 unixEnterMutex(); 2859 if( pFile->pInode && pFile->pInode->nLock ){ 2860 /* If there are outstanding locks, do not actually close the file just 2861 ** yet because that would clear those locks. Instead, add the file 2862 ** descriptor to pInode->aPending. It will be automatically closed when 2863 ** the last lock is cleared. 2864 */ 2865 setPendingFd(pFile); 2866 } 2867 releaseInodeInfo(pFile); 2868 sqlite3_free(pFile->lockingContext); 2869 rc = closeUnixFile(id); 2870 unixLeaveMutex(); 2871 } 2872 return rc; 2873 } 2874 2875 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ 2876 /* 2877 ** The code above is the AFP lock implementation. The code is specific 2878 ** to MacOSX and does not work on other unix platforms. No alternative 2879 ** is available. If you don't compile for a mac, then the "unix-afp" 2880 ** VFS is not available. 2881 ** 2882 ********************* End of the AFP lock implementation ********************** 2883 ******************************************************************************/ 2884 2885 /****************************************************************************** 2886 *************************** Begin NFS Locking ********************************/ 2887 2888 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE 2889 /* 2890 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock 2891 ** must be either NO_LOCK or SHARED_LOCK. 2892 ** 2893 ** If the locking level of the file descriptor is already at or below 2894 ** the requested locking level, this routine is a no-op. 2895 */ 2896 static int nfsUnlock(sqlite3_file *id, int eFileLock){ 2897 return posixUnlock(id, eFileLock, 1); 2898 } 2899 2900 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ 2901 /* 2902 ** The code above is the NFS lock implementation. The code is specific 2903 ** to MacOSX and does not work on other unix platforms. No alternative 2904 ** is available. 2905 ** 2906 ********************* End of the NFS lock implementation ********************** 2907 ******************************************************************************/ 2908 2909 /****************************************************************************** 2910 **************** Non-locking sqlite3_file methods ***************************** 2911 ** 2912 ** The next division contains implementations for all methods of the 2913 ** sqlite3_file object other than the locking methods. The locking 2914 ** methods were defined in divisions above (one locking method per 2915 ** division). Those methods that are common to all locking modes 2916 ** are gather together into this division. 2917 */ 2918 2919 /* 2920 ** Seek to the offset passed as the second argument, then read cnt 2921 ** bytes into pBuf. Return the number of bytes actually read. 2922 ** 2923 ** NB: If you define USE_PREAD or USE_PREAD64, then it might also 2924 ** be necessary to define _XOPEN_SOURCE to be 500. This varies from 2925 ** one system to another. Since SQLite does not define USE_PREAD 2926 ** any any form by default, we will not attempt to define _XOPEN_SOURCE. 2927 ** See tickets #2741 and #2681. 2928 ** 2929 ** To avoid stomping the errno value on a failed read the lastErrno value 2930 ** is set before returning. 2931 */ 2932 static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){ 2933 int got; 2934 #if (!defined(USE_PREAD) && !defined(USE_PREAD64)) 2935 i64 newOffset; 2936 #endif 2937 TIMER_START; 2938 #if defined(USE_PREAD) 2939 do{ got = osPread(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR ); 2940 SimulateIOError( got = -1 ); 2941 #elif defined(USE_PREAD64) 2942 do{ got = osPread64(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR); 2943 SimulateIOError( got = -1 ); 2944 #else 2945 newOffset = lseek(id->h, offset, SEEK_SET); 2946 SimulateIOError( newOffset-- ); 2947 if( newOffset!=offset ){ 2948 if( newOffset == -1 ){ 2949 ((unixFile*)id)->lastErrno = errno; 2950 }else{ 2951 ((unixFile*)id)->lastErrno = 0; 2952 } 2953 return -1; 2954 } 2955 do{ got = osRead(id->h, pBuf, cnt); }while( got<0 && errno==EINTR ); 2956 #endif 2957 TIMER_END; 2958 if( got<0 ){ 2959 ((unixFile*)id)->lastErrno = errno; 2960 } 2961 OSTRACE(("READ %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED)); 2962 return got; 2963 } 2964 2965 /* 2966 ** Read data from a file into a buffer. Return SQLITE_OK if all 2967 ** bytes were read successfully and SQLITE_IOERR if anything goes 2968 ** wrong. 2969 */ 2970 static int unixRead( 2971 sqlite3_file *id, 2972 void *pBuf, 2973 int amt, 2974 sqlite3_int64 offset 2975 ){ 2976 unixFile *pFile = (unixFile *)id; 2977 int got; 2978 assert( id ); 2979 2980 /* If this is a database file (not a journal, master-journal or temp 2981 ** file), the bytes in the locking range should never be read or written. */ 2982 #if 0 2983 assert( pFile->pUnused==0 2984 || offset>=PENDING_BYTE+512 2985 || offset+amt<=PENDING_BYTE 2986 ); 2987 #endif 2988 2989 got = seekAndRead(pFile, offset, pBuf, amt); 2990 if( got==amt ){ 2991 return SQLITE_OK; 2992 }else if( got<0 ){ 2993 /* lastErrno set by seekAndRead */ 2994 return SQLITE_IOERR_READ; 2995 }else{ 2996 pFile->lastErrno = 0; /* not a system error */ 2997 /* Unread parts of the buffer must be zero-filled */ 2998 memset(&((char*)pBuf)[got], 0, amt-got); 2999 return SQLITE_IOERR_SHORT_READ; 3000 } 3001 } 3002 3003 /* 3004 ** Seek to the offset in id->offset then read cnt bytes into pBuf. 3005 ** Return the number of bytes actually read. Update the offset. 3006 ** 3007 ** To avoid stomping the errno value on a failed write the lastErrno value 3008 ** is set before returning. 3009 */ 3010 static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){ 3011 int got; 3012 #if (!defined(USE_PREAD) && !defined(USE_PREAD64)) 3013 i64 newOffset; 3014 #endif 3015 TIMER_START; 3016 #if defined(USE_PREAD) 3017 do{ got = osPwrite(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR ); 3018 #elif defined(USE_PREAD64) 3019 do{ got = osPwrite64(id->h, pBuf, cnt, offset);}while( got<0 && errno==EINTR); 3020 #else 3021 newOffset = lseek(id->h, offset, SEEK_SET); 3022 SimulateIOError( newOffset-- ); 3023 if( newOffset!=offset ){ 3024 if( newOffset == -1 ){ 3025 ((unixFile*)id)->lastErrno = errno; 3026 }else{ 3027 ((unixFile*)id)->lastErrno = 0; 3028 } 3029 return -1; 3030 } 3031 do{ got = osWrite(id->h, pBuf, cnt); }while( got<0 && errno==EINTR ); 3032 #endif 3033 TIMER_END; 3034 if( got<0 ){ 3035 ((unixFile*)id)->lastErrno = errno; 3036 } 3037 3038 OSTRACE(("WRITE %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED)); 3039 return got; 3040 } 3041 3042 3043 /* 3044 ** Write data from a buffer into a file. Return SQLITE_OK on success 3045 ** or some other error code on failure. 3046 */ 3047 static int unixWrite( 3048 sqlite3_file *id, 3049 const void *pBuf, 3050 int amt, 3051 sqlite3_int64 offset 3052 ){ 3053 unixFile *pFile = (unixFile*)id; 3054 int wrote = 0; 3055 assert( id ); 3056 assert( amt>0 ); 3057 3058 /* If this is a database file (not a journal, master-journal or temp 3059 ** file), the bytes in the locking range should never be read or written. */ 3060 #if 0 3061 assert( pFile->pUnused==0 3062 || offset>=PENDING_BYTE+512 3063 || offset+amt<=PENDING_BYTE 3064 ); 3065 #endif 3066 3067 #ifndef NDEBUG 3068 /* If we are doing a normal write to a database file (as opposed to 3069 ** doing a hot-journal rollback or a write to some file other than a 3070 ** normal database file) then record the fact that the database 3071 ** has changed. If the transaction counter is modified, record that 3072 ** fact too. 3073 */ 3074 if( pFile->inNormalWrite ){ 3075 pFile->dbUpdate = 1; /* The database has been modified */ 3076 if( offset<=24 && offset+amt>=27 ){ 3077 int rc; 3078 char oldCntr[4]; 3079 SimulateIOErrorBenign(1); 3080 rc = seekAndRead(pFile, 24, oldCntr, 4); 3081 SimulateIOErrorBenign(0); 3082 if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){ 3083 pFile->transCntrChng = 1; /* The transaction counter has changed */ 3084 } 3085 } 3086 } 3087 #endif 3088 3089 while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){ 3090 amt -= wrote; 3091 offset += wrote; 3092 pBuf = &((char*)pBuf)[wrote]; 3093 } 3094 SimulateIOError(( wrote=(-1), amt=1 )); 3095 SimulateDiskfullError(( wrote=0, amt=1 )); 3096 3097 if( amt>0 ){ 3098 if( wrote<0 ){ 3099 /* lastErrno set by seekAndWrite */ 3100 return SQLITE_IOERR_WRITE; 3101 }else{ 3102 pFile->lastErrno = 0; /* not a system error */ 3103 return SQLITE_FULL; 3104 } 3105 } 3106 3107 return SQLITE_OK; 3108 } 3109 3110 #ifdef SQLITE_TEST 3111 /* 3112 ** Count the number of fullsyncs and normal syncs. This is used to test 3113 ** that syncs and fullsyncs are occurring at the right times. 3114 */ 3115 int sqlite3_sync_count = 0; 3116 int sqlite3_fullsync_count = 0; 3117 #endif 3118 3119 /* 3120 ** We do not trust systems to provide a working fdatasync(). Some do. 3121 ** Others do no. To be safe, we will stick with the (slower) fsync(). 3122 ** If you know that your system does support fdatasync() correctly, 3123 ** then simply compile with -Dfdatasync=fdatasync 3124 */ 3125 #if !defined(fdatasync) && !defined(__linux__) 3126 # define fdatasync fsync 3127 #endif 3128 3129 /* 3130 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not 3131 ** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently 3132 ** only available on Mac OS X. But that could change. 3133 */ 3134 #ifdef F_FULLFSYNC 3135 # define HAVE_FULLFSYNC 1 3136 #else 3137 # define HAVE_FULLFSYNC 0 3138 #endif 3139 3140 3141 /* 3142 ** The fsync() system call does not work as advertised on many 3143 ** unix systems. The following procedure is an attempt to make 3144 ** it work better. 3145 ** 3146 ** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful 3147 ** for testing when we want to run through the test suite quickly. 3148 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC 3149 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash 3150 ** or power failure will likely corrupt the database file. 3151 ** 3152 ** SQLite sets the dataOnly flag if the size of the file is unchanged. 3153 ** The idea behind dataOnly is that it should only write the file content 3154 ** to disk, not the inode. We only set dataOnly if the file size is 3155 ** unchanged since the file size is part of the inode. However, 3156 ** Ted Ts'o tells us that fdatasync() will also write the inode if the 3157 ** file size has changed. The only real difference between fdatasync() 3158 ** and fsync(), Ted tells us, is that fdatasync() will not flush the 3159 ** inode if the mtime or owner or other inode attributes have changed. 3160 ** We only care about the file size, not the other file attributes, so 3161 ** as far as SQLite is concerned, an fdatasync() is always adequate. 3162 ** So, we always use fdatasync() if it is available, regardless of 3163 ** the value of the dataOnly flag. 3164 */ 3165 static int full_fsync(int fd, int fullSync, int dataOnly){ 3166 int rc; 3167 3168 /* The following "ifdef/elif/else/" block has the same structure as 3169 ** the one below. It is replicated here solely to avoid cluttering 3170 ** up the real code with the UNUSED_PARAMETER() macros. 3171 */ 3172 #ifdef SQLITE_NO_SYNC 3173 UNUSED_PARAMETER(fd); 3174 UNUSED_PARAMETER(fullSync); 3175 UNUSED_PARAMETER(dataOnly); 3176 #elif HAVE_FULLFSYNC 3177 UNUSED_PARAMETER(dataOnly); 3178 #else 3179 UNUSED_PARAMETER(fullSync); 3180 UNUSED_PARAMETER(dataOnly); 3181 #endif 3182 3183 /* Record the number of times that we do a normal fsync() and 3184 ** FULLSYNC. This is used during testing to verify that this procedure 3185 ** gets called with the correct arguments. 3186 */ 3187 #ifdef SQLITE_TEST 3188 if( fullSync ) sqlite3_fullsync_count++; 3189 sqlite3_sync_count++; 3190 #endif 3191 3192 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a 3193 ** no-op 3194 */ 3195 #ifdef SQLITE_NO_SYNC 3196 rc = SQLITE_OK; 3197 #elif HAVE_FULLFSYNC 3198 if( fullSync ){ 3199 rc = osFcntl(fd, F_FULLFSYNC, 0); 3200 }else{ 3201 rc = 1; 3202 } 3203 /* If the FULLFSYNC failed, fall back to attempting an fsync(). 3204 ** It shouldn't be possible for fullfsync to fail on the local 3205 ** file system (on OSX), so failure indicates that FULLFSYNC 3206 ** isn't supported for this file system. So, attempt an fsync 3207 ** and (for now) ignore the overhead of a superfluous fcntl call. 3208 ** It'd be better to detect fullfsync support once and avoid 3209 ** the fcntl call every time sync is called. 3210 */ 3211 if( rc ) rc = fsync(fd); 3212 3213 #elif defined(__APPLE__) 3214 /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly 3215 ** so currently we default to the macro that redefines fdatasync to fsync 3216 */ 3217 rc = fsync(fd); 3218 #else 3219 rc = fdatasync(fd); 3220 #if OS_VXWORKS 3221 if( rc==-1 && errno==ENOTSUP ){ 3222 rc = fsync(fd); 3223 } 3224 #endif /* OS_VXWORKS */ 3225 #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */ 3226 3227 if( OS_VXWORKS && rc!= -1 ){ 3228 rc = 0; 3229 } 3230 return rc; 3231 } 3232 3233 /* 3234 ** Open a file descriptor to the directory containing file zFilename. 3235 ** If successful, *pFd is set to the opened file descriptor and 3236 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM 3237 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined 3238 ** value. 3239 ** 3240 ** The directory file descriptor is used for only one thing - to 3241 ** fsync() a directory to make sure file creation and deletion events 3242 ** are flushed to disk. Such fsyncs are not needed on newer 3243 ** journaling filesystems, but are required on older filesystems. 3244 ** 3245 ** This routine can be overridden using the xSetSysCall interface. 3246 ** The ability to override this routine was added in support of the 3247 ** chromium sandbox. Opening a directory is a security risk (we are 3248 ** told) so making it overrideable allows the chromium sandbox to 3249 ** replace this routine with a harmless no-op. To make this routine 3250 ** a no-op, replace it with a stub that returns SQLITE_OK but leaves 3251 ** *pFd set to a negative number. 3252 ** 3253 ** If SQLITE_OK is returned, the caller is responsible for closing 3254 ** the file descriptor *pFd using close(). 3255 */ 3256 static int openDirectory(const char *zFilename, int *pFd){ 3257 int ii; 3258 int fd = -1; 3259 char zDirname[MAX_PATHNAME+1]; 3260 3261 sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename); 3262 for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--); 3263 if( ii>0 ){ 3264 zDirname[ii] = '\0'; 3265 fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0); 3266 if( fd>=0 ){ 3267 #ifdef FD_CLOEXEC 3268 osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC); 3269 #endif 3270 OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname)); 3271 } 3272 } 3273 *pFd = fd; 3274 return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname)); 3275 } 3276 3277 /* 3278 ** Make sure all writes to a particular file are committed to disk. 3279 ** 3280 ** If dataOnly==0 then both the file itself and its metadata (file 3281 ** size, access time, etc) are synced. If dataOnly!=0 then only the 3282 ** file data is synced. 3283 ** 3284 ** Under Unix, also make sure that the directory entry for the file 3285 ** has been created by fsync-ing the directory that contains the file. 3286 ** If we do not do this and we encounter a power failure, the directory 3287 ** entry for the journal might not exist after we reboot. The next 3288 ** SQLite to access the file will not know that the journal exists (because 3289 ** the directory entry for the journal was never created) and the transaction 3290 ** will not roll back - possibly leading to database corruption. 3291 */ 3292 static int unixSync(sqlite3_file *id, int flags){ 3293 int rc; 3294 unixFile *pFile = (unixFile*)id; 3295 3296 int isDataOnly = (flags&SQLITE_SYNC_DATAONLY); 3297 int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL; 3298 3299 /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ 3300 assert((flags&0x0F)==SQLITE_SYNC_NORMAL 3301 || (flags&0x0F)==SQLITE_SYNC_FULL 3302 ); 3303 3304 /* Unix cannot, but some systems may return SQLITE_FULL from here. This 3305 ** line is to test that doing so does not cause any problems. 3306 */ 3307 SimulateDiskfullError( return SQLITE_FULL ); 3308 3309 assert( pFile ); 3310 OSTRACE(("SYNC %-3d\n", pFile->h)); 3311 rc = full_fsync(pFile->h, isFullsync, isDataOnly); 3312 SimulateIOError( rc=1 ); 3313 if( rc ){ 3314 pFile->lastErrno = errno; 3315 return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath); 3316 } 3317 3318 /* Also fsync the directory containing the file if the DIRSYNC flag 3319 ** is set. This is a one-time occurrance. Many systems (examples: AIX) 3320 ** are unable to fsync a directory, so ignore errors on the fsync. 3321 */ 3322 if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){ 3323 int dirfd; 3324 OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath, 3325 HAVE_FULLFSYNC, isFullsync)); 3326 rc = osOpenDirectory(pFile->zPath, &dirfd); 3327 if( rc==SQLITE_OK && dirfd>=0 ){ 3328 full_fsync(dirfd, 0, 0); 3329 robust_close(pFile, dirfd, __LINE__); 3330 }else if( rc==SQLITE_CANTOPEN ){ 3331 rc = SQLITE_OK; 3332 } 3333 pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC; 3334 } 3335 return rc; 3336 } 3337 3338 /* 3339 ** Truncate an open file to a specified size 3340 */ 3341 static int unixTruncate(sqlite3_file *id, i64 nByte){ 3342 unixFile *pFile = (unixFile *)id; 3343 int rc; 3344 assert( pFile ); 3345 SimulateIOError( return SQLITE_IOERR_TRUNCATE ); 3346 3347 /* If the user has configured a chunk-size for this file, truncate the 3348 ** file so that it consists of an integer number of chunks (i.e. the 3349 ** actual file size after the operation may be larger than the requested 3350 ** size). 3351 */ 3352 if( pFile->szChunk ){ 3353 nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; 3354 } 3355 3356 rc = robust_ftruncate(pFile->h, (off_t)nByte); 3357 if( rc ){ 3358 pFile->lastErrno = errno; 3359 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); 3360 }else{ 3361 #ifndef NDEBUG 3362 /* If we are doing a normal write to a database file (as opposed to 3363 ** doing a hot-journal rollback or a write to some file other than a 3364 ** normal database file) and we truncate the file to zero length, 3365 ** that effectively updates the change counter. This might happen 3366 ** when restoring a database using the backup API from a zero-length 3367 ** source. 3368 */ 3369 if( pFile->inNormalWrite && nByte==0 ){ 3370 pFile->transCntrChng = 1; 3371 } 3372 #endif 3373 3374 return SQLITE_OK; 3375 } 3376 } 3377 3378 /* 3379 ** Determine the current size of a file in bytes 3380 */ 3381 static int unixFileSize(sqlite3_file *id, i64 *pSize){ 3382 int rc; 3383 struct stat buf; 3384 assert( id ); 3385 rc = osFstat(((unixFile*)id)->h, &buf); 3386 SimulateIOError( rc=1 ); 3387 if( rc!=0 ){ 3388 ((unixFile*)id)->lastErrno = errno; 3389 return SQLITE_IOERR_FSTAT; 3390 } 3391 *pSize = buf.st_size; 3392 3393 /* When opening a zero-size database, the findInodeInfo() procedure 3394 ** writes a single byte into that file in order to work around a bug 3395 ** in the OS-X msdos filesystem. In order to avoid problems with upper 3396 ** layers, we need to report this file size as zero even though it is 3397 ** really 1. Ticket #3260. 3398 */ 3399 if( *pSize==1 ) *pSize = 0; 3400 3401 3402 return SQLITE_OK; 3403 } 3404 3405 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) 3406 /* 3407 ** Handler for proxy-locking file-control verbs. Defined below in the 3408 ** proxying locking division. 3409 */ 3410 static int proxyFileControl(sqlite3_file*,int,void*); 3411 #endif 3412 3413 /* 3414 ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT 3415 ** file-control operation. 3416 ** 3417 ** If the user has configured a chunk-size for this file, it could be 3418 ** that the file needs to be extended at this point. Otherwise, the 3419 ** SQLITE_FCNTL_SIZE_HINT operation is a no-op for Unix. 3420 */ 3421 static int fcntlSizeHint(unixFile *pFile, i64 nByte){ 3422 if( pFile->szChunk ){ 3423 i64 nSize; /* Required file size */ 3424 struct stat buf; /* Used to hold return values of fstat() */ 3425 3426 if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT; 3427 3428 nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk; 3429 if( nSize>(i64)buf.st_size ){ 3430 3431 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE 3432 /* The code below is handling the return value of osFallocate() 3433 ** correctly. posix_fallocate() is defined to "returns zero on success, 3434 ** or an error number on failure". See the manpage for details. */ 3435 int err; 3436 do{ 3437 err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size); 3438 }while( err==EINTR ); 3439 if( err ) return SQLITE_IOERR_WRITE; 3440 #else 3441 /* If the OS does not have posix_fallocate(), fake it. First use 3442 ** ftruncate() to set the file size, then write a single byte to 3443 ** the last byte in each block within the extended region. This 3444 ** is the same technique used by glibc to implement posix_fallocate() 3445 ** on systems that do not have a real fallocate() system call. 3446 */ 3447 int nBlk = buf.st_blksize; /* File-system block size */ 3448 i64 iWrite; /* Next offset to write to */ 3449 3450 if( robust_ftruncate(pFile->h, nSize) ){ 3451 pFile->lastErrno = errno; 3452 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); 3453 } 3454 iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1; 3455 while( iWrite<nSize ){ 3456 int nWrite = seekAndWrite(pFile, iWrite, "", 1); 3457 if( nWrite!=1 ) return SQLITE_IOERR_WRITE; 3458 iWrite += nBlk; 3459 } 3460 #endif 3461 } 3462 } 3463 3464 return SQLITE_OK; 3465 } 3466 3467 /* 3468 ** Information and control of an open file handle. 3469 */ 3470 static int unixFileControl(sqlite3_file *id, int op, void *pArg){ 3471 switch( op ){ 3472 case SQLITE_FCNTL_LOCKSTATE: { 3473 *(int*)pArg = ((unixFile*)id)->eFileLock; 3474 return SQLITE_OK; 3475 } 3476 case SQLITE_LAST_ERRNO: { 3477 *(int*)pArg = ((unixFile*)id)->lastErrno; 3478 return SQLITE_OK; 3479 } 3480 case SQLITE_FCNTL_CHUNK_SIZE: { 3481 ((unixFile*)id)->szChunk = *(int *)pArg; 3482 return SQLITE_OK; 3483 } 3484 case SQLITE_FCNTL_SIZE_HINT: { 3485 return fcntlSizeHint((unixFile *)id, *(i64 *)pArg); 3486 } 3487 #ifndef NDEBUG 3488 /* The pager calls this method to signal that it has done 3489 ** a rollback and that the database is therefore unchanged and 3490 ** it hence it is OK for the transaction change counter to be 3491 ** unchanged. 3492 */ 3493 case SQLITE_FCNTL_DB_UNCHANGED: { 3494 ((unixFile*)id)->dbUpdate = 0; 3495 return SQLITE_OK; 3496 } 3497 #endif 3498 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) 3499 case SQLITE_SET_LOCKPROXYFILE: 3500 case SQLITE_GET_LOCKPROXYFILE: { 3501 return proxyFileControl(id,op,pArg); 3502 } 3503 #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */ 3504 case SQLITE_FCNTL_SYNC_OMITTED: { 3505 return SQLITE_OK; /* A no-op */ 3506 } 3507 } 3508 return SQLITE_NOTFOUND; 3509 } 3510 3511 /* 3512 ** Return the sector size in bytes of the underlying block device for 3513 ** the specified file. This is almost always 512 bytes, but may be 3514 ** larger for some devices. 3515 ** 3516 ** SQLite code assumes this function cannot fail. It also assumes that 3517 ** if two files are created in the same file-system directory (i.e. 3518 ** a database and its journal file) that the sector size will be the 3519 ** same for both. 3520 */ 3521 static int unixSectorSize(sqlite3_file *NotUsed){ 3522 UNUSED_PARAMETER(NotUsed); 3523 return SQLITE_DEFAULT_SECTOR_SIZE; 3524 } 3525 3526 /* 3527 ** Return the device characteristics for the file. This is always 0 for unix. 3528 */ 3529 static int unixDeviceCharacteristics(sqlite3_file *NotUsed){ 3530 UNUSED_PARAMETER(NotUsed); 3531 return 0; 3532 } 3533 3534 #ifndef SQLITE_OMIT_WAL 3535 3536 3537 /* 3538 ** Object used to represent an shared memory buffer. 3539 ** 3540 ** When multiple threads all reference the same wal-index, each thread 3541 ** has its own unixShm object, but they all point to a single instance 3542 ** of this unixShmNode object. In other words, each wal-index is opened 3543 ** only once per process. 3544 ** 3545 ** Each unixShmNode object is connected to a single unixInodeInfo object. 3546 ** We could coalesce this object into unixInodeInfo, but that would mean 3547 ** every open file that does not use shared memory (in other words, most 3548 ** open files) would have to carry around this extra information. So 3549 ** the unixInodeInfo object contains a pointer to this unixShmNode object 3550 ** and the unixShmNode object is created only when needed. 3551 ** 3552 ** unixMutexHeld() must be true when creating or destroying 3553 ** this object or while reading or writing the following fields: 3554 ** 3555 ** nRef 3556 ** 3557 ** The following fields are read-only after the object is created: 3558 ** 3559 ** fid 3560 ** zFilename 3561 ** 3562 ** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and 3563 ** unixMutexHeld() is true when reading or writing any other field 3564 ** in this structure. 3565 */ 3566 struct unixShmNode { 3567 unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */ 3568 sqlite3_mutex *mutex; /* Mutex to access this object */ 3569 char *zFilename; /* Name of the mmapped file */ 3570 int h; /* Open file descriptor */ 3571 int szRegion; /* Size of shared-memory regions */ 3572 int nRegion; /* Size of array apRegion */ 3573 char **apRegion; /* Array of mapped shared-memory regions */ 3574 int nRef; /* Number of unixShm objects pointing to this */ 3575 unixShm *pFirst; /* All unixShm objects pointing to this */ 3576 #ifdef SQLITE_DEBUG 3577 u8 exclMask; /* Mask of exclusive locks held */ 3578 u8 sharedMask; /* Mask of shared locks held */ 3579 u8 nextShmId; /* Next available unixShm.id value */ 3580 #endif 3581 }; 3582 3583 /* 3584 ** Structure used internally by this VFS to record the state of an 3585 ** open shared memory connection. 3586 ** 3587 ** The following fields are initialized when this object is created and 3588 ** are read-only thereafter: 3589 ** 3590 ** unixShm.pFile 3591 ** unixShm.id 3592 ** 3593 ** All other fields are read/write. The unixShm.pFile->mutex must be held 3594 ** while accessing any read/write fields. 3595 */ 3596 struct unixShm { 3597 unixShmNode *pShmNode; /* The underlying unixShmNode object */ 3598 unixShm *pNext; /* Next unixShm with the same unixShmNode */ 3599 u8 hasMutex; /* True if holding the unixShmNode mutex */ 3600 u16 sharedMask; /* Mask of shared locks held */ 3601 u16 exclMask; /* Mask of exclusive locks held */ 3602 #ifdef SQLITE_DEBUG 3603 u8 id; /* Id of this connection within its unixShmNode */ 3604 #endif 3605 }; 3606 3607 /* 3608 ** Constants used for locking 3609 */ 3610 #define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */ 3611 #define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */ 3612 3613 /* 3614 ** Apply posix advisory locks for all bytes from ofst through ofst+n-1. 3615 ** 3616 ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking 3617 ** otherwise. 3618 */ 3619 static int unixShmSystemLock( 3620 unixShmNode *pShmNode, /* Apply locks to this open shared-memory segment */ 3621 int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */ 3622 int ofst, /* First byte of the locking range */ 3623 int n /* Number of bytes to lock */ 3624 ){ 3625 struct flock f; /* The posix advisory locking structure */ 3626 int rc = SQLITE_OK; /* Result code form fcntl() */ 3627 3628 /* Access to the unixShmNode object is serialized by the caller */ 3629 assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 ); 3630 3631 /* Shared locks never span more than one byte */ 3632 assert( n==1 || lockType!=F_RDLCK ); 3633 3634 /* Locks are within range */ 3635 assert( n>=1 && n<SQLITE_SHM_NLOCK ); 3636 3637 if( pShmNode->h>=0 ){ 3638 /* Initialize the locking parameters */ 3639 memset(&f, 0, sizeof(f)); 3640 f.l_type = lockType; 3641 f.l_whence = SEEK_SET; 3642 f.l_start = ofst; 3643 f.l_len = n; 3644 3645 rc = osFcntl(pShmNode->h, F_SETLK, &f); 3646 rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY; 3647 } 3648 3649 /* Update the global lock state and do debug tracing */ 3650 #ifdef SQLITE_DEBUG 3651 { u16 mask; 3652 OSTRACE(("SHM-LOCK ")); 3653 mask = (1<<(ofst+n)) - (1<<ofst); 3654 if( rc==SQLITE_OK ){ 3655 if( lockType==F_UNLCK ){ 3656 OSTRACE(("unlock %d ok", ofst)); 3657 pShmNode->exclMask &= ~mask; 3658 pShmNode->sharedMask &= ~mask; 3659 }else if( lockType==F_RDLCK ){ 3660 OSTRACE(("read-lock %d ok", ofst)); 3661 pShmNode->exclMask &= ~mask; 3662 pShmNode->sharedMask |= mask; 3663 }else{ 3664 assert( lockType==F_WRLCK ); 3665 OSTRACE(("write-lock %d ok", ofst)); 3666 pShmNode->exclMask |= mask; 3667 pShmNode->sharedMask &= ~mask; 3668 } 3669 }else{ 3670 if( lockType==F_UNLCK ){ 3671 OSTRACE(("unlock %d failed", ofst)); 3672 }else if( lockType==F_RDLCK ){ 3673 OSTRACE(("read-lock failed")); 3674 }else{ 3675 assert( lockType==F_WRLCK ); 3676 OSTRACE(("write-lock %d failed", ofst)); 3677 } 3678 } 3679 OSTRACE((" - afterwards %03x,%03x\n", 3680 pShmNode->sharedMask, pShmNode->exclMask)); 3681 } 3682 #endif 3683 3684 return rc; 3685 } 3686 3687 3688 /* 3689 ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0. 3690 ** 3691 ** This is not a VFS shared-memory method; it is a utility function called 3692 ** by VFS shared-memory methods. 3693 */ 3694 static void unixShmPurge(unixFile *pFd){ 3695 unixShmNode *p = pFd->pInode->pShmNode; 3696 assert( unixMutexHeld() ); 3697 if( p && p->nRef==0 ){ 3698 int i; 3699 assert( p->pInode==pFd->pInode ); 3700 if( p->mutex ) sqlite3_mutex_free(p->mutex); 3701 for(i=0; i<p->nRegion; i++){ 3702 if( p->h>=0 ){ 3703 munmap(p->apRegion[i], p->szRegion); 3704 }else{ 3705 sqlite3_free(p->apRegion[i]); 3706 } 3707 } 3708 sqlite3_free(p->apRegion); 3709 if( p->h>=0 ){ 3710 robust_close(pFd, p->h, __LINE__); 3711 p->h = -1; 3712 } 3713 p->pInode->pShmNode = 0; 3714 sqlite3_free(p); 3715 } 3716 } 3717 3718 /* 3719 ** Open a shared-memory area associated with open database file pDbFd. 3720 ** This particular implementation uses mmapped files. 3721 ** 3722 ** The file used to implement shared-memory is in the same directory 3723 ** as the open database file and has the same name as the open database 3724 ** file with the "-shm" suffix added. For example, if the database file 3725 ** is "/home/user1/config.db" then the file that is created and mmapped 3726 ** for shared memory will be called "/home/user1/config.db-shm". 3727 ** 3728 ** Another approach to is to use files in /dev/shm or /dev/tmp or an 3729 ** some other tmpfs mount. But if a file in a different directory 3730 ** from the database file is used, then differing access permissions 3731 ** or a chroot() might cause two different processes on the same 3732 ** database to end up using different files for shared memory - 3733 ** meaning that their memory would not really be shared - resulting 3734 ** in database corruption. Nevertheless, this tmpfs file usage 3735 ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm" 3736 ** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time 3737 ** option results in an incompatible build of SQLite; builds of SQLite 3738 ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the 3739 ** same database file at the same time, database corruption will likely 3740 ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered 3741 ** "unsupported" and may go away in a future SQLite release. 3742 ** 3743 ** When opening a new shared-memory file, if no other instances of that 3744 ** file are currently open, in this process or in other processes, then 3745 ** the file must be truncated to zero length or have its header cleared. 3746 ** 3747 ** If the original database file (pDbFd) is using the "unix-excl" VFS 3748 ** that means that an exclusive lock is held on the database file and 3749 ** that no other processes are able to read or write the database. In 3750 ** that case, we do not really need shared memory. No shared memory 3751 ** file is created. The shared memory will be simulated with heap memory. 3752 */ 3753 static int unixOpenSharedMemory(unixFile *pDbFd){ 3754 struct unixShm *p = 0; /* The connection to be opened */ 3755 struct unixShmNode *pShmNode; /* The underlying mmapped file */ 3756 int rc; /* Result code */ 3757 unixInodeInfo *pInode; /* The inode of fd */ 3758 char *zShmFilename; /* Name of the file used for SHM */ 3759 int nShmFilename; /* Size of the SHM filename in bytes */ 3760 3761 /* Allocate space for the new unixShm object. */ 3762 p = sqlite3_malloc( sizeof(*p) ); 3763 if( p==0 ) return SQLITE_NOMEM; 3764 memset(p, 0, sizeof(*p)); 3765 assert( pDbFd->pShm==0 ); 3766 3767 /* Check to see if a unixShmNode object already exists. Reuse an existing 3768 ** one if present. Create a new one if necessary. 3769 */ 3770 unixEnterMutex(); 3771 pInode = pDbFd->pInode; 3772 pShmNode = pInode->pShmNode; 3773 if( pShmNode==0 ){ 3774 struct stat sStat; /* fstat() info for database file */ 3775 3776 /* Call fstat() to figure out the permissions on the database file. If 3777 ** a new *-shm file is created, an attempt will be made to create it 3778 ** with the same permissions. The actual permissions the file is created 3779 ** with are subject to the current umask setting. 3780 */ 3781 if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){ 3782 rc = SQLITE_IOERR_FSTAT; 3783 goto shm_open_err; 3784 } 3785 3786 #ifdef SQLITE_SHM_DIRECTORY 3787 nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 30; 3788 #else 3789 nShmFilename = 5 + (int)strlen(pDbFd->zPath); 3790 #endif 3791 pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename ); 3792 if( pShmNode==0 ){ 3793 rc = SQLITE_NOMEM; 3794 goto shm_open_err; 3795 } 3796 memset(pShmNode, 0, sizeof(*pShmNode)); 3797 zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1]; 3798 #ifdef SQLITE_SHM_DIRECTORY 3799 sqlite3_snprintf(nShmFilename, zShmFilename, 3800 SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x", 3801 (u32)sStat.st_ino, (u32)sStat.st_dev); 3802 #else 3803 sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", pDbFd->zPath); 3804 #endif 3805 pShmNode->h = -1; 3806 pDbFd->pInode->pShmNode = pShmNode; 3807 pShmNode->pInode = pDbFd->pInode; 3808 pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); 3809 if( pShmNode->mutex==0 ){ 3810 rc = SQLITE_NOMEM; 3811 goto shm_open_err; 3812 } 3813 3814 if( pInode->bProcessLock==0 ){ 3815 pShmNode->h = robust_open(zShmFilename, O_RDWR|O_CREAT, 3816 (sStat.st_mode & 0777)); 3817 if( pShmNode->h<0 ){ 3818 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename); 3819 goto shm_open_err; 3820 } 3821 3822 /* Check to see if another process is holding the dead-man switch. 3823 ** If not, truncate the file to zero length. 3824 */ 3825 rc = SQLITE_OK; 3826 if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){ 3827 if( robust_ftruncate(pShmNode->h, 0) ){ 3828 rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename); 3829 } 3830 } 3831 if( rc==SQLITE_OK ){ 3832 rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1); 3833 } 3834 if( rc ) goto shm_open_err; 3835 } 3836 } 3837 3838 /* Make the new connection a child of the unixShmNode */ 3839 p->pShmNode = pShmNode; 3840 #ifdef SQLITE_DEBUG 3841 p->id = pShmNode->nextShmId++; 3842 #endif 3843 pShmNode->nRef++; 3844 pDbFd->pShm = p; 3845 unixLeaveMutex(); 3846 3847 /* The reference count on pShmNode has already been incremented under 3848 ** the cover of the unixEnterMutex() mutex and the pointer from the 3849 ** new (struct unixShm) object to the pShmNode has been set. All that is 3850 ** left to do is to link the new object into the linked list starting 3851 ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex 3852 ** mutex. 3853 */ 3854 sqlite3_mutex_enter(pShmNode->mutex); 3855 p->pNext = pShmNode->pFirst; 3856 pShmNode->pFirst = p; 3857 sqlite3_mutex_leave(pShmNode->mutex); 3858 return SQLITE_OK; 3859 3860 /* Jump here on any error */ 3861 shm_open_err: 3862 unixShmPurge(pDbFd); /* This call frees pShmNode if required */ 3863 sqlite3_free(p); 3864 unixLeaveMutex(); 3865 return rc; 3866 } 3867 3868 /* 3869 ** This function is called to obtain a pointer to region iRegion of the 3870 ** shared-memory associated with the database file fd. Shared-memory regions 3871 ** are numbered starting from zero. Each shared-memory region is szRegion 3872 ** bytes in size. 3873 ** 3874 ** If an error occurs, an error code is returned and *pp is set to NULL. 3875 ** 3876 ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory 3877 ** region has not been allocated (by any client, including one running in a 3878 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If 3879 ** bExtend is non-zero and the requested shared-memory region has not yet 3880 ** been allocated, it is allocated by this function. 3881 ** 3882 ** If the shared-memory region has already been allocated or is allocated by 3883 ** this call as described above, then it is mapped into this processes 3884 ** address space (if it is not already), *pp is set to point to the mapped 3885 ** memory and SQLITE_OK returned. 3886 */ 3887 static int unixShmMap( 3888 sqlite3_file *fd, /* Handle open on database file */ 3889 int iRegion, /* Region to retrieve */ 3890 int szRegion, /* Size of regions */ 3891 int bExtend, /* True to extend file if necessary */ 3892 void volatile **pp /* OUT: Mapped memory */ 3893 ){ 3894 unixFile *pDbFd = (unixFile*)fd; 3895 unixShm *p; 3896 unixShmNode *pShmNode; 3897 int rc = SQLITE_OK; 3898 3899 /* If the shared-memory file has not yet been opened, open it now. */ 3900 if( pDbFd->pShm==0 ){ 3901 rc = unixOpenSharedMemory(pDbFd); 3902 if( rc!=SQLITE_OK ) return rc; 3903 } 3904 3905 p = pDbFd->pShm; 3906 pShmNode = p->pShmNode; 3907 sqlite3_mutex_enter(pShmNode->mutex); 3908 assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); 3909 assert( pShmNode->pInode==pDbFd->pInode ); 3910 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 ); 3911 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 ); 3912 3913 if( pShmNode->nRegion<=iRegion ){ 3914 char **apNew; /* New apRegion[] array */ 3915 int nByte = (iRegion+1)*szRegion; /* Minimum required file size */ 3916 struct stat sStat; /* Used by fstat() */ 3917 3918 pShmNode->szRegion = szRegion; 3919 3920 if( pShmNode->h>=0 ){ 3921 /* The requested region is not mapped into this processes address space. 3922 ** Check to see if it has been allocated (i.e. if the wal-index file is 3923 ** large enough to contain the requested region). 3924 */ 3925 if( osFstat(pShmNode->h, &sStat) ){ 3926 rc = SQLITE_IOERR_SHMSIZE; 3927 goto shmpage_out; 3928 } 3929 3930 if( sStat.st_size<nByte ){ 3931 /* The requested memory region does not exist. If bExtend is set to 3932 ** false, exit early. *pp will be set to NULL and SQLITE_OK returned. 3933 ** 3934 ** Alternatively, if bExtend is true, use ftruncate() to allocate 3935 ** the requested memory region. 3936 */ 3937 if( !bExtend ) goto shmpage_out; 3938 if( robust_ftruncate(pShmNode->h, nByte) ){ 3939 rc = unixLogError(SQLITE_IOERR_SHMSIZE, "ftruncate", 3940 pShmNode->zFilename); 3941 goto shmpage_out; 3942 } 3943 } 3944 } 3945 3946 /* Map the requested memory region into this processes address space. */ 3947 apNew = (char **)sqlite3_realloc( 3948 pShmNode->apRegion, (iRegion+1)*sizeof(char *) 3949 ); 3950 if( !apNew ){ 3951 rc = SQLITE_IOERR_NOMEM; 3952 goto shmpage_out; 3953 } 3954 pShmNode->apRegion = apNew; 3955 while(pShmNode->nRegion<=iRegion){ 3956 void *pMem; 3957 if( pShmNode->h>=0 ){ 3958 pMem = mmap(0, szRegion, PROT_READ|PROT_WRITE, 3959 MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion 3960 ); 3961 if( pMem==MAP_FAILED ){ 3962 rc = SQLITE_IOERR; 3963 goto shmpage_out; 3964 } 3965 }else{ 3966 pMem = sqlite3_malloc(szRegion); 3967 if( pMem==0 ){ 3968 rc = SQLITE_NOMEM; 3969 goto shmpage_out; 3970 } 3971 memset(pMem, 0, szRegion); 3972 } 3973 pShmNode->apRegion[pShmNode->nRegion] = pMem; 3974 pShmNode->nRegion++; 3975 } 3976 } 3977 3978 shmpage_out: 3979 if( pShmNode->nRegion>iRegion ){ 3980 *pp = pShmNode->apRegion[iRegion]; 3981 }else{ 3982 *pp = 0; 3983 } 3984 sqlite3_mutex_leave(pShmNode->mutex); 3985 return rc; 3986 } 3987 3988 /* 3989 ** Change the lock state for a shared-memory segment. 3990 ** 3991 ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little 3992 ** different here than in posix. In xShmLock(), one can go from unlocked 3993 ** to shared and back or from unlocked to exclusive and back. But one may 3994 ** not go from shared to exclusive or from exclusive to shared. 3995 */ 3996 static int unixShmLock( 3997 sqlite3_file *fd, /* Database file holding the shared memory */ 3998 int ofst, /* First lock to acquire or release */ 3999 int n, /* Number of locks to acquire or release */ 4000 int flags /* What to do with the lock */ 4001 ){ 4002 unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */ 4003 unixShm *p = pDbFd->pShm; /* The shared memory being locked */ 4004 unixShm *pX; /* For looping over all siblings */ 4005 unixShmNode *pShmNode = p->pShmNode; /* The underlying file iNode */ 4006 int rc = SQLITE_OK; /* Result code */ 4007 u16 mask; /* Mask of locks to take or release */ 4008 4009 assert( pShmNode==pDbFd->pInode->pShmNode ); 4010 assert( pShmNode->pInode==pDbFd->pInode ); 4011 assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); 4012 assert( n>=1 ); 4013 assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) 4014 || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) 4015 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) 4016 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); 4017 assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); 4018 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 ); 4019 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 ); 4020 4021 mask = (1<<(ofst+n)) - (1<<ofst); 4022 assert( n>1 || mask==(1<<ofst) ); 4023 sqlite3_mutex_enter(pShmNode->mutex); 4024 if( flags & SQLITE_SHM_UNLOCK ){ 4025 u16 allMask = 0; /* Mask of locks held by siblings */ 4026 4027 /* See if any siblings hold this same lock */ 4028 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ 4029 if( pX==p ) continue; 4030 assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 ); 4031 allMask |= pX->sharedMask; 4032 } 4033 4034 /* Unlock the system-level locks */ 4035 if( (mask & allMask)==0 ){ 4036 rc = unixShmSystemLock(pShmNode, F_UNLCK, ofst+UNIX_SHM_BASE, n); 4037 }else{ 4038 rc = SQLITE_OK; 4039 } 4040 4041 /* Undo the local locks */ 4042 if( rc==SQLITE_OK ){ 4043 p->exclMask &= ~mask; 4044 p->sharedMask &= ~mask; 4045 } 4046 }else if( flags & SQLITE_SHM_SHARED ){ 4047 u16 allShared = 0; /* Union of locks held by connections other than "p" */ 4048 4049 /* Find out which shared locks are already held by sibling connections. 4050 ** If any sibling already holds an exclusive lock, go ahead and return 4051 ** SQLITE_BUSY. 4052 */ 4053 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ 4054 if( (pX->exclMask & mask)!=0 ){ 4055 rc = SQLITE_BUSY; 4056 break; 4057 } 4058 allShared |= pX->sharedMask; 4059 } 4060 4061 /* Get shared locks at the system level, if necessary */ 4062 if( rc==SQLITE_OK ){ 4063 if( (allShared & mask)==0 ){ 4064 rc = unixShmSystemLock(pShmNode, F_RDLCK, ofst+UNIX_SHM_BASE, n); 4065 }else{ 4066 rc = SQLITE_OK; 4067 } 4068 } 4069 4070 /* Get the local shared locks */ 4071 if( rc==SQLITE_OK ){ 4072 p->sharedMask |= mask; 4073 } 4074 }else{ 4075 /* Make sure no sibling connections hold locks that will block this 4076 ** lock. If any do, return SQLITE_BUSY right away. 4077 */ 4078 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ 4079 if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){ 4080 rc = SQLITE_BUSY; 4081 break; 4082 } 4083 } 4084 4085 /* Get the exclusive locks at the system level. Then if successful 4086 ** also mark the local connection as being locked. 4087 */ 4088 if( rc==SQLITE_OK ){ 4089 rc = unixShmSystemLock(pShmNode, F_WRLCK, ofst+UNIX_SHM_BASE, n); 4090 if( rc==SQLITE_OK ){ 4091 assert( (p->sharedMask & mask)==0 ); 4092 p->exclMask |= mask; 4093 } 4094 } 4095 } 4096 sqlite3_mutex_leave(pShmNode->mutex); 4097 OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n", 4098 p->id, getpid(), p->sharedMask, p->exclMask)); 4099 return rc; 4100 } 4101 4102 /* 4103 ** Implement a memory barrier or memory fence on shared memory. 4104 ** 4105 ** All loads and stores begun before the barrier must complete before 4106 ** any load or store begun after the barrier. 4107 */ 4108 static void unixShmBarrier( 4109 sqlite3_file *fd /* Database file holding the shared memory */ 4110 ){ 4111 UNUSED_PARAMETER(fd); 4112 unixEnterMutex(); 4113 unixLeaveMutex(); 4114 } 4115 4116 /* 4117 ** Close a connection to shared-memory. Delete the underlying 4118 ** storage if deleteFlag is true. 4119 ** 4120 ** If there is no shared memory associated with the connection then this 4121 ** routine is a harmless no-op. 4122 */ 4123 static int unixShmUnmap( 4124 sqlite3_file *fd, /* The underlying database file */ 4125 int deleteFlag /* Delete shared-memory if true */ 4126 ){ 4127 unixShm *p; /* The connection to be closed */ 4128 unixShmNode *pShmNode; /* The underlying shared-memory file */ 4129 unixShm **pp; /* For looping over sibling connections */ 4130 unixFile *pDbFd; /* The underlying database file */ 4131 4132 pDbFd = (unixFile*)fd; 4133 p = pDbFd->pShm; 4134 if( p==0 ) return SQLITE_OK; 4135 pShmNode = p->pShmNode; 4136 4137 assert( pShmNode==pDbFd->pInode->pShmNode ); 4138 assert( pShmNode->pInode==pDbFd->pInode ); 4139 4140 /* Remove connection p from the set of connections associated 4141 ** with pShmNode */ 4142 sqlite3_mutex_enter(pShmNode->mutex); 4143 for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){} 4144 *pp = p->pNext; 4145 4146 /* Free the connection p */ 4147 sqlite3_free(p); 4148 pDbFd->pShm = 0; 4149 sqlite3_mutex_leave(pShmNode->mutex); 4150 4151 /* If pShmNode->nRef has reached 0, then close the underlying 4152 ** shared-memory file, too */ 4153 unixEnterMutex(); 4154 assert( pShmNode->nRef>0 ); 4155 pShmNode->nRef--; 4156 if( pShmNode->nRef==0 ){ 4157 if( deleteFlag && pShmNode->h>=0 ) osUnlink(pShmNode->zFilename); 4158 unixShmPurge(pDbFd); 4159 } 4160 unixLeaveMutex(); 4161 4162 return SQLITE_OK; 4163 } 4164 4165 4166 #else 4167 # define unixShmMap 0 4168 # define unixShmLock 0 4169 # define unixShmBarrier 0 4170 # define unixShmUnmap 0 4171 #endif /* #ifndef SQLITE_OMIT_WAL */ 4172 4173 /* 4174 ** Here ends the implementation of all sqlite3_file methods. 4175 ** 4176 ********************** End sqlite3_file Methods ******************************* 4177 ******************************************************************************/ 4178 4179 /* 4180 ** This division contains definitions of sqlite3_io_methods objects that 4181 ** implement various file locking strategies. It also contains definitions 4182 ** of "finder" functions. A finder-function is used to locate the appropriate 4183 ** sqlite3_io_methods object for a particular database file. The pAppData 4184 ** field of the sqlite3_vfs VFS objects are initialized to be pointers to 4185 ** the correct finder-function for that VFS. 4186 ** 4187 ** Most finder functions return a pointer to a fixed sqlite3_io_methods 4188 ** object. The only interesting finder-function is autolockIoFinder, which 4189 ** looks at the filesystem type and tries to guess the best locking 4190 ** strategy from that. 4191 ** 4192 ** For finder-funtion F, two objects are created: 4193 ** 4194 ** (1) The real finder-function named "FImpt()". 4195 ** 4196 ** (2) A constant pointer to this function named just "F". 4197 ** 4198 ** 4199 ** A pointer to the F pointer is used as the pAppData value for VFS 4200 ** objects. We have to do this instead of letting pAppData point 4201 ** directly at the finder-function since C90 rules prevent a void* 4202 ** from be cast into a function pointer. 4203 ** 4204 ** 4205 ** Each instance of this macro generates two objects: 4206 ** 4207 ** * A constant sqlite3_io_methods object call METHOD that has locking 4208 ** methods CLOSE, LOCK, UNLOCK, CKRESLOCK. 4209 ** 4210 ** * An I/O method finder function called FINDER that returns a pointer 4211 ** to the METHOD object in the previous bullet. 4212 */ 4213 #define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK) \ 4214 static const sqlite3_io_methods METHOD = { \ 4215 VERSION, /* iVersion */ \ 4216 CLOSE, /* xClose */ \ 4217 unixRead, /* xRead */ \ 4218 unixWrite, /* xWrite */ \ 4219 unixTruncate, /* xTruncate */ \ 4220 unixSync, /* xSync */ \ 4221 unixFileSize, /* xFileSize */ \ 4222 LOCK, /* xLock */ \ 4223 UNLOCK, /* xUnlock */ \ 4224 CKLOCK, /* xCheckReservedLock */ \ 4225 unixFileControl, /* xFileControl */ \ 4226 unixSectorSize, /* xSectorSize */ \ 4227 unixDeviceCharacteristics, /* xDeviceCapabilities */ \ 4228 unixShmMap, /* xShmMap */ \ 4229 unixShmLock, /* xShmLock */ \ 4230 unixShmBarrier, /* xShmBarrier */ \ 4231 unixShmUnmap /* xShmUnmap */ \ 4232 }; \ 4233 static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \ 4234 UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \ 4235 return &METHOD; \ 4236 } \ 4237 static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \ 4238 = FINDER##Impl; 4239 4240 /* 4241 ** Here are all of the sqlite3_io_methods objects for each of the 4242 ** locking strategies. Functions that return pointers to these methods 4243 ** are also created. 4244 */ 4245 IOMETHODS( 4246 posixIoFinder, /* Finder function name */ 4247 posixIoMethods, /* sqlite3_io_methods object name */ 4248 2, /* shared memory is enabled */ 4249 unixClose, /* xClose method */ 4250 unixLock, /* xLock method */ 4251 unixUnlock, /* xUnlock method */ 4252 unixCheckReservedLock /* xCheckReservedLock method */ 4253 ) 4254 IOMETHODS( 4255 nolockIoFinder, /* Finder function name */ 4256 nolockIoMethods, /* sqlite3_io_methods object name */ 4257 1, /* shared memory is disabled */ 4258 nolockClose, /* xClose method */ 4259 nolockLock, /* xLock method */ 4260 nolockUnlock, /* xUnlock method */ 4261 nolockCheckReservedLock /* xCheckReservedLock method */ 4262 ) 4263 IOMETHODS( 4264 dotlockIoFinder, /* Finder function name */ 4265 dotlockIoMethods, /* sqlite3_io_methods object name */ 4266 1, /* shared memory is disabled */ 4267 dotlockClose, /* xClose method */ 4268 dotlockLock, /* xLock method */ 4269 dotlockUnlock, /* xUnlock method */ 4270 dotlockCheckReservedLock /* xCheckReservedLock method */ 4271 ) 4272 4273 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS 4274 IOMETHODS( 4275 flockIoFinder, /* Finder function name */ 4276 flockIoMethods, /* sqlite3_io_methods object name */ 4277 1, /* shared memory is disabled */ 4278 flockClose, /* xClose method */ 4279 flockLock, /* xLock method */ 4280 flockUnlock, /* xUnlock method */ 4281 flockCheckReservedLock /* xCheckReservedLock method */ 4282 ) 4283 #endif 4284 4285 #if OS_VXWORKS 4286 IOMETHODS( 4287 semIoFinder, /* Finder function name */ 4288 semIoMethods, /* sqlite3_io_methods object name */ 4289 1, /* shared memory is disabled */ 4290 semClose, /* xClose method */ 4291 semLock, /* xLock method */ 4292 semUnlock, /* xUnlock method */ 4293 semCheckReservedLock /* xCheckReservedLock method */ 4294 ) 4295 #endif 4296 4297 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE 4298 IOMETHODS( 4299 afpIoFinder, /* Finder function name */ 4300 afpIoMethods, /* sqlite3_io_methods object name */ 4301 1, /* shared memory is disabled */ 4302 afpClose, /* xClose method */ 4303 afpLock, /* xLock method */ 4304 afpUnlock, /* xUnlock method */ 4305 afpCheckReservedLock /* xCheckReservedLock method */ 4306 ) 4307 #endif 4308 4309 /* 4310 ** The proxy locking method is a "super-method" in the sense that it 4311 ** opens secondary file descriptors for the conch and lock files and 4312 ** it uses proxy, dot-file, AFP, and flock() locking methods on those 4313 ** secondary files. For this reason, the division that implements 4314 ** proxy locking is located much further down in the file. But we need 4315 ** to go ahead and define the sqlite3_io_methods and finder function 4316 ** for proxy locking here. So we forward declare the I/O methods. 4317 */ 4318 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE 4319 static int proxyClose(sqlite3_file*); 4320 static int proxyLock(sqlite3_file*, int); 4321 static int proxyUnlock(sqlite3_file*, int); 4322 static int proxyCheckReservedLock(sqlite3_file*, int*); 4323 IOMETHODS( 4324 proxyIoFinder, /* Finder function name */ 4325 proxyIoMethods, /* sqlite3_io_methods object name */ 4326 1, /* shared memory is disabled */ 4327 proxyClose, /* xClose method */ 4328 proxyLock, /* xLock method */ 4329 proxyUnlock, /* xUnlock method */ 4330 proxyCheckReservedLock /* xCheckReservedLock method */ 4331 ) 4332 #endif 4333 4334 /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */ 4335 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE 4336 IOMETHODS( 4337 nfsIoFinder, /* Finder function name */ 4338 nfsIoMethods, /* sqlite3_io_methods object name */ 4339 1, /* shared memory is disabled */ 4340 unixClose, /* xClose method */ 4341 unixLock, /* xLock method */ 4342 nfsUnlock, /* xUnlock method */ 4343 unixCheckReservedLock /* xCheckReservedLock method */ 4344 ) 4345 #endif 4346 4347 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE 4348 /* 4349 ** This "finder" function attempts to determine the best locking strategy 4350 ** for the database file "filePath". It then returns the sqlite3_io_methods 4351 ** object that implements that strategy. 4352 ** 4353 ** This is for MacOSX only. 4354 */ 4355 static const sqlite3_io_methods *autolockIoFinderImpl( 4356 const char *filePath, /* name of the database file */ 4357 unixFile *pNew /* open file object for the database file */ 4358 ){ 4359 static const struct Mapping { 4360 const char *zFilesystem; /* Filesystem type name */ 4361 const sqlite3_io_methods *pMethods; /* Appropriate locking method */ 4362 } aMap[] = { 4363 { "hfs", &posixIoMethods }, 4364 { "ufs", &posixIoMethods }, 4365 { "afpfs", &afpIoMethods }, 4366 { "smbfs", &afpIoMethods }, 4367 { "webdav", &nolockIoMethods }, 4368 { 0, 0 } 4369 }; 4370 int i; 4371 struct statfs fsInfo; 4372 struct flock lockInfo; 4373 4374 if( !filePath ){ 4375 /* If filePath==NULL that means we are dealing with a transient file 4376 ** that does not need to be locked. */ 4377 return &nolockIoMethods; 4378 } 4379 if( statfs(filePath, &fsInfo) != -1 ){ 4380 if( fsInfo.f_flags & MNT_RDONLY ){ 4381 return &nolockIoMethods; 4382 } 4383 for(i=0; aMap[i].zFilesystem; i++){ 4384 if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){ 4385 return aMap[i].pMethods; 4386 } 4387 } 4388 } 4389 4390 /* Default case. Handles, amongst others, "nfs". 4391 ** Test byte-range lock using fcntl(). If the call succeeds, 4392 ** assume that the file-system supports POSIX style locks. 4393 */ 4394 lockInfo.l_len = 1; 4395 lockInfo.l_start = 0; 4396 lockInfo.l_whence = SEEK_SET; 4397 lockInfo.l_type = F_RDLCK; 4398 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { 4399 if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){ 4400 return &nfsIoMethods; 4401 } else { 4402 return &posixIoMethods; 4403 } 4404 }else{ 4405 return &dotlockIoMethods; 4406 } 4407 } 4408 static const sqlite3_io_methods 4409 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; 4410 4411 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ 4412 4413 #if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE 4414 /* 4415 ** This "finder" function attempts to determine the best locking strategy 4416 ** for the database file "filePath". It then returns the sqlite3_io_methods 4417 ** object that implements that strategy. 4418 ** 4419 ** This is for VXWorks only. 4420 */ 4421 static const sqlite3_io_methods *autolockIoFinderImpl( 4422 const char *filePath, /* name of the database file */ 4423 unixFile *pNew /* the open file object */ 4424 ){ 4425 struct flock lockInfo; 4426 4427 if( !filePath ){ 4428 /* If filePath==NULL that means we are dealing with a transient file 4429 ** that does not need to be locked. */ 4430 return &nolockIoMethods; 4431 } 4432 4433 /* Test if fcntl() is supported and use POSIX style locks. 4434 ** Otherwise fall back to the named semaphore method. 4435 */ 4436 lockInfo.l_len = 1; 4437 lockInfo.l_start = 0; 4438 lockInfo.l_whence = SEEK_SET; 4439 lockInfo.l_type = F_RDLCK; 4440 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { 4441 return &posixIoMethods; 4442 }else{ 4443 return &semIoMethods; 4444 } 4445 } 4446 static const sqlite3_io_methods 4447 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; 4448 4449 #endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */ 4450 4451 /* 4452 ** An abstract type for a pointer to a IO method finder function: 4453 */ 4454 typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*); 4455 4456 4457 /**************************************************************************** 4458 **************************** sqlite3_vfs methods **************************** 4459 ** 4460 ** This division contains the implementation of methods on the 4461 ** sqlite3_vfs object. 4462 */ 4463 4464 /* 4465 ** Initializes a unixFile structure with zeros. 4466 */ 4467 void initUnixFile(sqlite3_file* file) { 4468 memset(file, 0, sizeof(unixFile)); 4469 } 4470 4471 /* 4472 ** Initialize the contents of the unixFile structure pointed to by pId. 4473 */ 4474 int fillInUnixFile( 4475 sqlite3_vfs *pVfs, /* Pointer to vfs object */ 4476 int h, /* Open file descriptor of file being opened */ 4477 int syncDir, /* True to sync directory on first sync */ 4478 sqlite3_file *pId, /* Write to the unixFile structure here */ 4479 const char *zFilename, /* Name of the file being opened */ 4480 int noLock, /* Omit locking if true */ 4481 int isDelete, /* Delete on close if true */ 4482 int isReadOnly /* True if the file is opened read-only */ 4483 ){ 4484 const sqlite3_io_methods *pLockingStyle; 4485 unixFile *pNew = (unixFile *)pId; 4486 int rc = SQLITE_OK; 4487 4488 assert( pNew->pInode==NULL ); 4489 4490 /* Parameter isDelete is only used on vxworks. Express this explicitly 4491 ** here to prevent compiler warnings about unused parameters. 4492 */ 4493 UNUSED_PARAMETER(isDelete); 4494 4495 /* Usually the path zFilename should not be a relative pathname. The 4496 ** exception is when opening the proxy "conch" file in builds that 4497 ** include the special Apple locking styles. 4498 */ 4499 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE 4500 assert( zFilename==0 || zFilename[0]=='/' 4501 || pVfs->pAppData==(void*)&autolockIoFinder ); 4502 #else 4503 assert( zFilename==0 || zFilename[0]=='/' ); 4504 #endif 4505 4506 OSTRACE(("OPEN %-3d %s\n", h, zFilename)); 4507 pNew->h = h; 4508 pNew->zPath = zFilename; 4509 if( strcmp(pVfs->zName,"unix-excl")==0 ){ 4510 pNew->ctrlFlags = UNIXFILE_EXCL; 4511 }else{ 4512 pNew->ctrlFlags = 0; 4513 } 4514 if( isReadOnly ){ 4515 pNew->ctrlFlags |= UNIXFILE_RDONLY; 4516 } 4517 if( syncDir ){ 4518 pNew->ctrlFlags |= UNIXFILE_DIRSYNC; 4519 } 4520 4521 #if OS_VXWORKS 4522 pNew->pId = vxworksFindFileId(zFilename); 4523 if( pNew->pId==0 ){ 4524 noLock = 1; 4525 rc = SQLITE_NOMEM; 4526 } 4527 #endif 4528 4529 if( noLock ){ 4530 pLockingStyle = &nolockIoMethods; 4531 }else{ 4532 pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew); 4533 #if SQLITE_ENABLE_LOCKING_STYLE 4534 /* Cache zFilename in the locking context (AFP and dotlock override) for 4535 ** proxyLock activation is possible (remote proxy is based on db name) 4536 ** zFilename remains valid until file is closed, to support */ 4537 pNew->lockingContext = (void*)zFilename; 4538 #endif 4539 } 4540 4541 if( pLockingStyle == &posixIoMethods 4542 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE 4543 || pLockingStyle == &nfsIoMethods 4544 #endif 4545 ){ 4546 unixEnterMutex(); 4547 rc = findInodeInfo(pNew, &pNew->pInode); 4548 if( rc!=SQLITE_OK ){ 4549 /* If an error occured in findInodeInfo(), close the file descriptor 4550 ** immediately, before releasing the mutex. findInodeInfo() may fail 4551 ** in two scenarios: 4552 ** 4553 ** (a) A call to fstat() failed. 4554 ** (b) A malloc failed. 4555 ** 4556 ** Scenario (b) may only occur if the process is holding no other 4557 ** file descriptors open on the same file. If there were other file 4558 ** descriptors on this file, then no malloc would be required by 4559 ** findInodeInfo(). If this is the case, it is quite safe to close 4560 ** handle h - as it is guaranteed that no posix locks will be released 4561 ** by doing so. 4562 ** 4563 ** If scenario (a) caused the error then things are not so safe. The 4564 ** implicit assumption here is that if fstat() fails, things are in 4565 ** such bad shape that dropping a lock or two doesn't matter much. 4566 */ 4567 robust_close(pNew, h, __LINE__); 4568 h = -1; 4569 } 4570 unixLeaveMutex(); 4571 } 4572 4573 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) 4574 else if( pLockingStyle == &afpIoMethods ){ 4575 /* AFP locking uses the file path so it needs to be included in 4576 ** the afpLockingContext. 4577 */ 4578 afpLockingContext *pCtx; 4579 pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) ); 4580 if( pCtx==0 ){ 4581 rc = SQLITE_NOMEM; 4582 }else{ 4583 /* NB: zFilename exists and remains valid until the file is closed 4584 ** according to requirement F11141. So we do not need to make a 4585 ** copy of the filename. */ 4586 pCtx->dbPath = zFilename; 4587 pCtx->reserved = 0; 4588 srandomdev(); 4589 unixEnterMutex(); 4590 rc = findInodeInfo(pNew, &pNew->pInode); 4591 if( rc!=SQLITE_OK ){ 4592 sqlite3_free(pNew->lockingContext); 4593 robust_close(pNew, h, __LINE__); 4594 h = -1; 4595 } 4596 unixLeaveMutex(); 4597 } 4598 } 4599 #endif 4600 4601 else if( pLockingStyle == &dotlockIoMethods ){ 4602 /* Dotfile locking uses the file path so it needs to be included in 4603 ** the dotlockLockingContext 4604 */ 4605 char *zLockFile; 4606 int nFilename; 4607 nFilename = (int)strlen(zFilename) + 6; 4608 zLockFile = (char *)sqlite3_malloc(nFilename); 4609 if( zLockFile==0 ){ 4610 rc = SQLITE_NOMEM; 4611 }else{ 4612 sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename); 4613 } 4614 pNew->lockingContext = zLockFile; 4615 } 4616 4617 #if OS_VXWORKS 4618 else if( pLockingStyle == &semIoMethods ){ 4619 /* Named semaphore locking uses the file path so it needs to be 4620 ** included in the semLockingContext 4621 */ 4622 unixEnterMutex(); 4623 rc = findInodeInfo(pNew, &pNew->pInode); 4624 if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){ 4625 char *zSemName = pNew->pInode->aSemName; 4626 int n; 4627 sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem", 4628 pNew->pId->zCanonicalName); 4629 for( n=1; zSemName[n]; n++ ) 4630 if( zSemName[n]=='/' ) zSemName[n] = '_'; 4631 pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1); 4632 if( pNew->pInode->pSem == SEM_FAILED ){ 4633 rc = SQLITE_NOMEM; 4634 pNew->pInode->aSemName[0] = '\0'; 4635 } 4636 } 4637 unixLeaveMutex(); 4638 } 4639 #endif 4640 4641 pNew->lastErrno = 0; 4642 #if OS_VXWORKS 4643 if( rc!=SQLITE_OK ){ 4644 if( h>=0 ) robust_close(pNew, h, __LINE__); 4645 h = -1; 4646 osUnlink(zFilename); 4647 isDelete = 0; 4648 } 4649 pNew->isDelete = isDelete; 4650 #endif 4651 if( rc!=SQLITE_OK ){ 4652 if( h>=0 ) robust_close(pNew, h, __LINE__); 4653 }else{ 4654 pNew->pMethod = pLockingStyle; 4655 OpenCounter(+1); 4656 } 4657 return rc; 4658 } 4659 4660 /* 4661 ** Return the name of a directory in which to put temporary files. 4662 ** If no suitable temporary file directory can be found, return NULL. 4663 */ 4664 static const char *unixTempFileDir(void){ 4665 static const char *azDirs[] = { 4666 0, 4667 0, 4668 "/var/tmp", 4669 "/usr/tmp", 4670 "/tmp", 4671 0 /* List terminator */ 4672 }; 4673 unsigned int i; 4674 struct stat buf; 4675 const char *zDir = 0; 4676 4677 azDirs[0] = sqlite3_temp_directory; 4678 if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR"); 4679 for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){ 4680 if( zDir==0 ) continue; 4681 if( osStat(zDir, &buf) ) continue; 4682 if( !S_ISDIR(buf.st_mode) ) continue; 4683 if( osAccess(zDir, 07) ) continue; 4684 break; 4685 } 4686 return zDir; 4687 } 4688 4689 /* 4690 ** Create a temporary file name in zBuf. zBuf must be allocated 4691 ** by the calling process and must be big enough to hold at least 4692 ** pVfs->mxPathname bytes. 4693 */ 4694 static int unixGetTempname(int nBuf, char *zBuf){ 4695 static const unsigned char zChars[] = 4696 "abcdefghijklmnopqrstuvwxyz" 4697 "ABCDEFGHIJKLMNOPQRSTUVWXYZ" 4698 "0123456789"; 4699 unsigned int i, j; 4700 const char *zDir; 4701 4702 /* It's odd to simulate an io-error here, but really this is just 4703 ** using the io-error infrastructure to test that SQLite handles this 4704 ** function failing. 4705 */ 4706 SimulateIOError( return SQLITE_IOERR ); 4707 4708 zDir = unixTempFileDir(); 4709 if( zDir==0 ) zDir = "."; 4710 4711 /* Check that the output buffer is large enough for the temporary file 4712 ** name. If it is not, return SQLITE_ERROR. 4713 */ 4714 if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= (size_t)nBuf ){ 4715 return SQLITE_ERROR; 4716 } 4717 4718 do{ 4719 sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir); 4720 j = (int)strlen(zBuf); 4721 sqlite3_randomness(15, &zBuf[j]); 4722 for(i=0; i<15; i++, j++){ 4723 zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; 4724 } 4725 zBuf[j] = 0; 4726 }while( osAccess(zBuf,0)==0 ); 4727 return SQLITE_OK; 4728 } 4729 4730 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) 4731 /* 4732 ** Routine to transform a unixFile into a proxy-locking unixFile. 4733 ** Implementation in the proxy-lock division, but used by unixOpen() 4734 ** if SQLITE_PREFER_PROXY_LOCKING is defined. 4735 */ 4736 static int proxyTransformUnixFile(unixFile*, const char*); 4737 #endif 4738 4739 /* 4740 ** Search for an unused file descriptor that was opened on the database 4741 ** file (not a journal or master-journal file) identified by pathname 4742 ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second 4743 ** argument to this function. 4744 ** 4745 ** Such a file descriptor may exist if a database connection was closed 4746 ** but the associated file descriptor could not be closed because some 4747 ** other file descriptor open on the same file is holding a file-lock. 4748 ** Refer to comments in the unixClose() function and the lengthy comment 4749 ** describing "Posix Advisory Locking" at the start of this file for 4750 ** further details. Also, ticket #4018. 4751 ** 4752 ** If a suitable file descriptor is found, then it is returned. If no 4753 ** such file descriptor is located, -1 is returned. 4754 */ 4755 static UnixUnusedFd *findReusableFd(const char *zPath, int flags){ 4756 UnixUnusedFd *pUnused = 0; 4757 4758 /* Do not search for an unused file descriptor on vxworks. Not because 4759 ** vxworks would not benefit from the change (it might, we're not sure), 4760 ** but because no way to test it is currently available. It is better 4761 ** not to risk breaking vxworks support for the sake of such an obscure 4762 ** feature. */ 4763 #if !OS_VXWORKS 4764 struct stat sStat; /* Results of stat() call */ 4765 4766 /* A stat() call may fail for various reasons. If this happens, it is 4767 ** almost certain that an open() call on the same path will also fail. 4768 ** For this reason, if an error occurs in the stat() call here, it is 4769 ** ignored and -1 is returned. The caller will try to open a new file 4770 ** descriptor on the same path, fail, and return an error to SQLite. 4771 ** 4772 ** Even if a subsequent open() call does succeed, the consequences of 4773 ** not searching for a resusable file descriptor are not dire. */ 4774 if( 0==osStat(zPath, &sStat) ){ 4775 unixInodeInfo *pInode; 4776 4777 unixEnterMutex(); 4778 pInode = inodeList; 4779 while( pInode && (pInode->fileId.dev!=sStat.st_dev 4780 || pInode->fileId.ino!=sStat.st_ino) ){ 4781 pInode = pInode->pNext; 4782 } 4783 if( pInode ){ 4784 UnixUnusedFd **pp; 4785 for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext)); 4786 pUnused = *pp; 4787 if( pUnused ){ 4788 *pp = pUnused->pNext; 4789 } 4790 } 4791 unixLeaveMutex(); 4792 } 4793 #endif /* if !OS_VXWORKS */ 4794 return pUnused; 4795 } 4796 4797 /* 4798 ** This function is called by unixOpen() to determine the unix permissions 4799 ** to create new files with. If no error occurs, then SQLITE_OK is returned 4800 ** and a value suitable for passing as the third argument to open(2) is 4801 ** written to *pMode. If an IO error occurs, an SQLite error code is 4802 ** returned and the value of *pMode is not modified. 4803 ** 4804 ** If the file being opened is a temporary file, it is always created with 4805 ** the octal permissions 0600 (read/writable by owner only). If the file 4806 ** is a database or master journal file, it is created with the permissions 4807 ** mask SQLITE_DEFAULT_FILE_PERMISSIONS. 4808 ** 4809 ** Finally, if the file being opened is a WAL or regular journal file, then 4810 ** this function queries the file-system for the permissions on the 4811 ** corresponding database file and sets *pMode to this value. Whenever 4812 ** possible, WAL and journal files are created using the same permissions 4813 ** as the associated database file. 4814 */ 4815 static int findCreateFileMode( 4816 const char *zPath, /* Path of file (possibly) being created */ 4817 int flags, /* Flags passed as 4th argument to xOpen() */ 4818 mode_t *pMode /* OUT: Permissions to open file with */ 4819 ){ 4820 int rc = SQLITE_OK; /* Return Code */ 4821 if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){ 4822 char zDb[MAX_PATHNAME+1]; /* Database file path */ 4823 int nDb; /* Number of valid bytes in zDb */ 4824 struct stat sStat; /* Output of stat() on database file */ 4825 4826 /* zPath is a path to a WAL or journal file. The following block derives 4827 ** the path to the associated database file from zPath. This block handles 4828 ** the following naming conventions: 4829 ** 4830 ** "<path to db>-journal" 4831 ** "<path to db>-wal" 4832 ** "<path to db>-journal-NNNN" 4833 ** "<path to db>-wal-NNNN" 4834 ** 4835 ** where NNNN is a 4 digit decimal number. The NNNN naming schemes are 4836 ** used by the test_multiplex.c module. 4837 */ 4838 nDb = sqlite3Strlen30(zPath) - 1; 4839 while( nDb>0 && zPath[nDb]!='l' ) nDb--; 4840 nDb -= ((flags & SQLITE_OPEN_WAL) ? 3 : 7); 4841 memcpy(zDb, zPath, nDb); 4842 zDb[nDb] = '\0'; 4843 4844 if( 0==osStat(zDb, &sStat) ){ 4845 *pMode = sStat.st_mode & 0777; 4846 }else{ 4847 rc = SQLITE_IOERR_FSTAT; 4848 } 4849 }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){ 4850 *pMode = 0600; 4851 }else{ 4852 *pMode = SQLITE_DEFAULT_FILE_PERMISSIONS; 4853 } 4854 return rc; 4855 } 4856 4857 /* 4858 ** Initializes a unixFile structure with zeros. 4859 */ 4860 void chromium_sqlite3_initialize_unix_sqlite3_file(sqlite3_file* file) { 4861 memset(file, 0, sizeof(unixFile)); 4862 } 4863 4864 int chromium_sqlite3_fill_in_unix_sqlite3_file(sqlite3_vfs* vfs, 4865 int fd, 4866 int dirfd, 4867 sqlite3_file* file, 4868 const char* fileName, 4869 int noLock, 4870 int isDelete) { 4871 return fillInUnixFile(vfs, fd, dirfd, file, fileName, noLock, isDelete, 0); 4872 } 4873 4874 /* 4875 ** Search for an unused file descriptor that was opened on the database file. 4876 ** If a suitable file descriptor if found, then it is stored in *fd; otherwise, 4877 ** *fd is not modified. 4878 ** 4879 ** If a reusable file descriptor is not found, and a new UnixUnusedFd cannot 4880 ** be allocated, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK is returned. 4881 */ 4882 int chromium_sqlite3_get_reusable_file_handle(sqlite3_file* file, 4883 const char* fileName, 4884 int flags, 4885 int* fd) { 4886 unixFile* unixSQLite3File = (unixFile*)file; 4887 int fileType = flags & 0xFFFFFF00; 4888 if (fileType == SQLITE_OPEN_MAIN_DB) { 4889 UnixUnusedFd *unusedFd = findReusableFd(fileName, flags); 4890 if (unusedFd) { 4891 *fd = unusedFd->fd; 4892 } else { 4893 unusedFd = sqlite3_malloc(sizeof(*unusedFd)); 4894 if (!unusedFd) { 4895 return SQLITE_NOMEM; 4896 } 4897 } 4898 unixSQLite3File->pUnused = unusedFd; 4899 } 4900 return SQLITE_OK; 4901 } 4902 4903 /* 4904 ** Marks 'fd' as the unused file descriptor for 'pFile'. 4905 */ 4906 void chromium_sqlite3_update_reusable_file_handle(sqlite3_file* file, 4907 int fd, 4908 int flags) { 4909 unixFile* unixSQLite3File = (unixFile*)file; 4910 if (unixSQLite3File->pUnused) { 4911 unixSQLite3File->pUnused->fd = fd; 4912 unixSQLite3File->pUnused->flags = flags; 4913 } 4914 } 4915 4916 /* 4917 ** Destroys pFile's field that keeps track of the unused file descriptor. 4918 */ 4919 void chromium_sqlite3_destroy_reusable_file_handle(sqlite3_file* file) { 4920 unixFile* unixSQLite3File = (unixFile*)file; 4921 sqlite3_free(unixSQLite3File->pUnused); 4922 } 4923 4924 /* 4925 ** Open the file zPath. 4926 ** 4927 ** Previously, the SQLite OS layer used three functions in place of this 4928 ** one: 4929 ** 4930 ** sqlite3OsOpenReadWrite(); 4931 ** sqlite3OsOpenReadOnly(); 4932 ** sqlite3OsOpenExclusive(); 4933 ** 4934 ** These calls correspond to the following combinations of flags: 4935 ** 4936 ** ReadWrite() -> (READWRITE | CREATE) 4937 ** ReadOnly() -> (READONLY) 4938 ** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE) 4939 ** 4940 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If 4941 ** true, the file was configured to be automatically deleted when the 4942 ** file handle closed. To achieve the same effect using this new 4943 ** interface, add the DELETEONCLOSE flag to those specified above for 4944 ** OpenExclusive(). 4945 */ 4946 static int unixOpen( 4947 sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */ 4948 const char *zPath, /* Pathname of file to be opened */ 4949 sqlite3_file *pFile, /* The file descriptor to be filled in */ 4950 int flags, /* Input flags to control the opening */ 4951 int *pOutFlags /* Output flags returned to SQLite core */ 4952 ){ 4953 unixFile *p = (unixFile *)pFile; 4954 int fd = -1; /* File descriptor returned by open() */ 4955 int openFlags = 0; /* Flags to pass to open() */ 4956 int eType = flags&0xFFFFFF00; /* Type of file to open */ 4957 int noLock; /* True to omit locking primitives */ 4958 int rc = SQLITE_OK; /* Function Return Code */ 4959 4960 int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); 4961 int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); 4962 int isCreate = (flags & SQLITE_OPEN_CREATE); 4963 int isReadonly = (flags & SQLITE_OPEN_READONLY); 4964 int isReadWrite = (flags & SQLITE_OPEN_READWRITE); 4965 #if SQLITE_ENABLE_LOCKING_STYLE 4966 int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY); 4967 #endif 4968 4969 /* If creating a master or main-file journal, this function will open 4970 ** a file-descriptor on the directory too. The first time unixSync() 4971 ** is called the directory file descriptor will be fsync()ed and close()d. 4972 */ 4973 int syncDir = (isCreate && ( 4974 eType==SQLITE_OPEN_MASTER_JOURNAL 4975 || eType==SQLITE_OPEN_MAIN_JOURNAL 4976 || eType==SQLITE_OPEN_WAL 4977 )); 4978 4979 /* If argument zPath is a NULL pointer, this function is required to open 4980 ** a temporary file. Use this buffer to store the file name in. 4981 */ 4982 char zTmpname[MAX_PATHNAME+1]; 4983 const char *zName = zPath; 4984 4985 /* Check the following statements are true: 4986 ** 4987 ** (a) Exactly one of the READWRITE and READONLY flags must be set, and 4988 ** (b) if CREATE is set, then READWRITE must also be set, and 4989 ** (c) if EXCLUSIVE is set, then CREATE must also be set. 4990 ** (d) if DELETEONCLOSE is set, then CREATE must also be set. 4991 */ 4992 assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); 4993 assert(isCreate==0 || isReadWrite); 4994 assert(isExclusive==0 || isCreate); 4995 assert(isDelete==0 || isCreate); 4996 4997 /* The main DB, main journal, WAL file and master journal are never 4998 ** automatically deleted. Nor are they ever temporary files. */ 4999 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB ); 5000 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL ); 5001 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL ); 5002 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL ); 5003 5004 /* Assert that the upper layer has set one of the "file-type" flags. */ 5005 assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB 5006 || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL 5007 || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL 5008 || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL 5009 ); 5010 5011 chromium_sqlite3_initialize_unix_sqlite3_file(pFile); 5012 5013 if( eType==SQLITE_OPEN_MAIN_DB ){ 5014 rc = chromium_sqlite3_get_reusable_file_handle(pFile, zName, flags, &fd); 5015 if( rc!=SQLITE_OK ){ 5016 return rc; 5017 } 5018 }else if( !zName ){ 5019 /* If zName is NULL, the upper layer is requesting a temp file. */ 5020 assert(isDelete && !syncDir); 5021 rc = unixGetTempname(MAX_PATHNAME+1, zTmpname); 5022 if( rc!=SQLITE_OK ){ 5023 return rc; 5024 } 5025 zName = zTmpname; 5026 } 5027 5028 /* Determine the value of the flags parameter passed to POSIX function 5029 ** open(). These must be calculated even if open() is not called, as 5030 ** they may be stored as part of the file handle and used by the 5031 ** 'conch file' locking functions later on. */ 5032 if( isReadonly ) openFlags |= O_RDONLY; 5033 if( isReadWrite ) openFlags |= O_RDWR; 5034 if( isCreate ) openFlags |= O_CREAT; 5035 if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW); 5036 openFlags |= (O_LARGEFILE|O_BINARY); 5037 5038 if( fd<0 ){ 5039 mode_t openMode; /* Permissions to create file with */ 5040 rc = findCreateFileMode(zName, flags, &openMode); 5041 if( rc!=SQLITE_OK ){ 5042 assert( !p->pUnused ); 5043 assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL ); 5044 return rc; 5045 } 5046 fd = robust_open(zName, openFlags, openMode); 5047 OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags)); 5048 if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){ 5049 /* Failed to open the file for read/write access. Try read-only. */ 5050 flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE); 5051 openFlags &= ~(O_RDWR|O_CREAT); 5052 flags |= SQLITE_OPEN_READONLY; 5053 openFlags |= O_RDONLY; 5054 isReadonly = 1; 5055 fd = robust_open(zName, openFlags, openMode); 5056 } 5057 if( fd<0 ){ 5058 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName); 5059 goto open_finished; 5060 } 5061 } 5062 assert( fd>=0 ); 5063 if( pOutFlags ){ 5064 *pOutFlags = flags; 5065 } 5066 5067 chromium_sqlite3_update_reusable_file_handle(pFile, fd, flags); 5068 5069 if( isDelete ){ 5070 #if OS_VXWORKS 5071 zPath = zName; 5072 #else 5073 osUnlink(zName); 5074 #endif 5075 } 5076 #if SQLITE_ENABLE_LOCKING_STYLE 5077 else{ 5078 p->openFlags = openFlags; 5079 } 5080 #endif 5081 5082 #ifdef FD_CLOEXEC 5083 osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC); 5084 #endif 5085 5086 noLock = eType!=SQLITE_OPEN_MAIN_DB; 5087 5088 5089 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE 5090 struct statfs fsInfo; 5091 if( fstatfs(fd, &fsInfo) == -1 ){ 5092 ((unixFile*)pFile)->lastErrno = errno; 5093 robust_close(p, fd, __LINE__); 5094 return SQLITE_IOERR_ACCESS; 5095 } 5096 if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) { 5097 ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS; 5098 } 5099 #endif 5100 5101 #if SQLITE_ENABLE_LOCKING_STYLE 5102 #if SQLITE_PREFER_PROXY_LOCKING 5103 isAutoProxy = 1; 5104 #endif 5105 if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){ 5106 char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING"); 5107 int useProxy = 0; 5108 5109 /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means 5110 ** never use proxy, NULL means use proxy for non-local files only. */ 5111 if( envforce!=NULL ){ 5112 useProxy = atoi(envforce)>0; 5113 }else{ 5114 struct statfs fsInfo; 5115 if( statfs(zPath, &fsInfo) == -1 ){ 5116 /* In theory, the close(fd) call is sub-optimal. If the file opened 5117 ** with fd is a database file, and there are other connections open 5118 ** on that file that are currently holding advisory locks on it, 5119 ** then the call to close() will cancel those locks. In practice, 5120 ** we're assuming that statfs() doesn't fail very often. At least 5121 ** not while other file descriptors opened by the same process on 5122 ** the same file are working. */ 5123 p->lastErrno = errno; 5124 robust_close(p, fd, __LINE__); 5125 rc = SQLITE_IOERR_ACCESS; 5126 goto open_finished; 5127 } 5128 useProxy = !(fsInfo.f_flags&MNT_LOCAL); 5129 } 5130 if( useProxy ){ 5131 rc = fillInUnixFile(pVfs, fd, syncDir, pFile, zPath, noLock, 5132 isDelete, isReadonly); 5133 if( rc==SQLITE_OK ){ 5134 rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:"); 5135 if( rc!=SQLITE_OK ){ 5136 /* Use unixClose to clean up the resources added in fillInUnixFile 5137 ** and clear all the structure's references. Specifically, 5138 ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op 5139 */ 5140 unixClose(pFile); 5141 return rc; 5142 } 5143 } 5144 goto open_finished; 5145 } 5146 } 5147 #endif 5148 5149 rc = fillInUnixFile(pVfs, fd, syncDir, pFile, zPath, noLock, 5150 isDelete, isReadonly); 5151 open_finished: 5152 if( rc!=SQLITE_OK ){ 5153 chromium_sqlite3_destroy_reusable_file_handle(pFile); 5154 } 5155 return rc; 5156 } 5157 5158 5159 /* 5160 ** Delete the file at zPath. If the dirSync argument is true, fsync() 5161 ** the directory after deleting the file. 5162 */ 5163 static int unixDelete( 5164 sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */ 5165 const char *zPath, /* Name of file to be deleted */ 5166 int dirSync /* If true, fsync() directory after deleting file */ 5167 ){ 5168 int rc = SQLITE_OK; 5169 UNUSED_PARAMETER(NotUsed); 5170 SimulateIOError(return SQLITE_IOERR_DELETE); 5171 if( osUnlink(zPath)==(-1) && errno!=ENOENT ){ 5172 return unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath); 5173 } 5174 #ifndef SQLITE_DISABLE_DIRSYNC 5175 if( dirSync ){ 5176 int fd; 5177 rc = osOpenDirectory(zPath, &fd); 5178 if( rc==SQLITE_OK ){ 5179 #if OS_VXWORKS 5180 if( fsync(fd)==-1 ) 5181 #else 5182 if( fsync(fd) ) 5183 #endif 5184 { 5185 rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath); 5186 } 5187 robust_close(0, fd, __LINE__); 5188 }else if( rc==SQLITE_CANTOPEN ){ 5189 rc = SQLITE_OK; 5190 } 5191 } 5192 #endif 5193 return rc; 5194 } 5195 5196 /* 5197 ** Test the existance of or access permissions of file zPath. The 5198 ** test performed depends on the value of flags: 5199 ** 5200 ** SQLITE_ACCESS_EXISTS: Return 1 if the file exists 5201 ** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable. 5202 ** SQLITE_ACCESS_READONLY: Return 1 if the file is readable. 5203 ** 5204 ** Otherwise return 0. 5205 */ 5206 static int unixAccess( 5207 sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */ 5208 const char *zPath, /* Path of the file to examine */ 5209 int flags, /* What do we want to learn about the zPath file? */ 5210 int *pResOut /* Write result boolean here */ 5211 ){ 5212 int amode = 0; 5213 UNUSED_PARAMETER(NotUsed); 5214 SimulateIOError( return SQLITE_IOERR_ACCESS; ); 5215 switch( flags ){ 5216 case SQLITE_ACCESS_EXISTS: 5217 amode = F_OK; 5218 break; 5219 case SQLITE_ACCESS_READWRITE: 5220 amode = W_OK|R_OK; 5221 break; 5222 case SQLITE_ACCESS_READ: 5223 amode = R_OK; 5224 break; 5225 5226 default: 5227 assert(!"Invalid flags argument"); 5228 } 5229 *pResOut = (osAccess(zPath, amode)==0); 5230 if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){ 5231 struct stat buf; 5232 if( 0==osStat(zPath, &buf) && buf.st_size==0 ){ 5233 *pResOut = 0; 5234 } 5235 } 5236 return SQLITE_OK; 5237 } 5238 5239 5240 /* 5241 ** Turn a relative pathname into a full pathname. The relative path 5242 ** is stored as a nul-terminated string in the buffer pointed to by 5243 ** zPath. 5244 ** 5245 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes 5246 ** (in this case, MAX_PATHNAME bytes). The full-path is written to 5247 ** this buffer before returning. 5248 */ 5249 static int unixFullPathname( 5250 sqlite3_vfs *pVfs, /* Pointer to vfs object */ 5251 const char *zPath, /* Possibly relative input path */ 5252 int nOut, /* Size of output buffer in bytes */ 5253 char *zOut /* Output buffer */ 5254 ){ 5255 5256 /* It's odd to simulate an io-error here, but really this is just 5257 ** using the io-error infrastructure to test that SQLite handles this 5258 ** function failing. This function could fail if, for example, the 5259 ** current working directory has been unlinked. 5260 */ 5261 SimulateIOError( return SQLITE_ERROR ); 5262 5263 assert( pVfs->mxPathname==MAX_PATHNAME ); 5264 UNUSED_PARAMETER(pVfs); 5265 5266 zOut[nOut-1] = '\0'; 5267 if( zPath[0]=='/' ){ 5268 sqlite3_snprintf(nOut, zOut, "%s", zPath); 5269 }else{ 5270 int nCwd; 5271 if( osGetcwd(zOut, nOut-1)==0 ){ 5272 return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath); 5273 } 5274 nCwd = (int)strlen(zOut); 5275 sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath); 5276 } 5277 return SQLITE_OK; 5278 } 5279 5280 5281 #ifndef SQLITE_OMIT_LOAD_EXTENSION 5282 /* 5283 ** Interfaces for opening a shared library, finding entry points 5284 ** within the shared library, and closing the shared library. 5285 */ 5286 #include <dlfcn.h> 5287 static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){ 5288 UNUSED_PARAMETER(NotUsed); 5289 return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL); 5290 } 5291 5292 /* 5293 ** SQLite calls this function immediately after a call to unixDlSym() or 5294 ** unixDlOpen() fails (returns a null pointer). If a more detailed error 5295 ** message is available, it is written to zBufOut. If no error message 5296 ** is available, zBufOut is left unmodified and SQLite uses a default 5297 ** error message. 5298 */ 5299 static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){ 5300 const char *zErr; 5301 UNUSED_PARAMETER(NotUsed); 5302 unixEnterMutex(); 5303 zErr = dlerror(); 5304 if( zErr ){ 5305 sqlite3_snprintf(nBuf, zBufOut, "%s", zErr); 5306 } 5307 unixLeaveMutex(); 5308 } 5309 static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){ 5310 /* 5311 ** GCC with -pedantic-errors says that C90 does not allow a void* to be 5312 ** cast into a pointer to a function. And yet the library dlsym() routine 5313 ** returns a void* which is really a pointer to a function. So how do we 5314 ** use dlsym() with -pedantic-errors? 5315 ** 5316 ** Variable x below is defined to be a pointer to a function taking 5317 ** parameters void* and const char* and returning a pointer to a function. 5318 ** We initialize x by assigning it a pointer to the dlsym() function. 5319 ** (That assignment requires a cast.) Then we call the function that 5320 ** x points to. 5321 ** 5322 ** This work-around is unlikely to work correctly on any system where 5323 ** you really cannot cast a function pointer into void*. But then, on the 5324 ** other hand, dlsym() will not work on such a system either, so we have 5325 ** not really lost anything. 5326 */ 5327 void (*(*x)(void*,const char*))(void); 5328 UNUSED_PARAMETER(NotUsed); 5329 x = (void(*(*)(void*,const char*))(void))dlsym; 5330 return (*x)(p, zSym); 5331 } 5332 static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){ 5333 UNUSED_PARAMETER(NotUsed); 5334 dlclose(pHandle); 5335 } 5336 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ 5337 #define unixDlOpen 0 5338 #define unixDlError 0 5339 #define unixDlSym 0 5340 #define unixDlClose 0 5341 #endif 5342 5343 /* 5344 ** Write nBuf bytes of random data to the supplied buffer zBuf. 5345 */ 5346 static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){ 5347 UNUSED_PARAMETER(NotUsed); 5348 assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int))); 5349 5350 /* We have to initialize zBuf to prevent valgrind from reporting 5351 ** errors. The reports issued by valgrind are incorrect - we would 5352 ** prefer that the randomness be increased by making use of the 5353 ** uninitialized space in zBuf - but valgrind errors tend to worry 5354 ** some users. Rather than argue, it seems easier just to initialize 5355 ** the whole array and silence valgrind, even if that means less randomness 5356 ** in the random seed. 5357 ** 5358 ** When testing, initializing zBuf[] to zero is all we do. That means 5359 ** that we always use the same random number sequence. This makes the 5360 ** tests repeatable. 5361 */ 5362 memset(zBuf, 0, nBuf); 5363 #if !defined(SQLITE_TEST) 5364 { 5365 int pid, fd; 5366 fd = robust_open("/dev/urandom", O_RDONLY, 0); 5367 if( fd<0 ){ 5368 time_t t; 5369 time(&t); 5370 memcpy(zBuf, &t, sizeof(t)); 5371 pid = getpid(); 5372 memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid)); 5373 assert( sizeof(t)+sizeof(pid)<=(size_t)nBuf ); 5374 nBuf = sizeof(t) + sizeof(pid); 5375 }else{ 5376 do{ nBuf = osRead(fd, zBuf, nBuf); }while( nBuf<0 && errno==EINTR ); 5377 robust_close(0, fd, __LINE__); 5378 } 5379 } 5380 #endif 5381 return nBuf; 5382 } 5383 5384 5385 /* 5386 ** Sleep for a little while. Return the amount of time slept. 5387 ** The argument is the number of microseconds we want to sleep. 5388 ** The return value is the number of microseconds of sleep actually 5389 ** requested from the underlying operating system, a number which 5390 ** might be greater than or equal to the argument, but not less 5391 ** than the argument. 5392 */ 5393 static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){ 5394 #if OS_VXWORKS 5395 struct timespec sp; 5396 5397 sp.tv_sec = microseconds / 1000000; 5398 sp.tv_nsec = (microseconds % 1000000) * 1000; 5399 nanosleep(&sp, NULL); 5400 UNUSED_PARAMETER(NotUsed); 5401 return microseconds; 5402 #elif defined(HAVE_USLEEP) && HAVE_USLEEP 5403 usleep(microseconds); 5404 UNUSED_PARAMETER(NotUsed); 5405 return microseconds; 5406 #else 5407 int seconds = (microseconds+999999)/1000000; 5408 sleep(seconds); 5409 UNUSED_PARAMETER(NotUsed); 5410 return seconds*1000000; 5411 #endif 5412 } 5413 5414 /* 5415 ** The following variable, if set to a non-zero value, is interpreted as 5416 ** the number of seconds since 1970 and is used to set the result of 5417 ** sqlite3OsCurrentTime() during testing. 5418 */ 5419 #ifdef SQLITE_TEST 5420 int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */ 5421 #endif 5422 5423 /* 5424 ** Find the current time (in Universal Coordinated Time). Write into *piNow 5425 ** the current time and date as a Julian Day number times 86_400_000. In 5426 ** other words, write into *piNow the number of milliseconds since the Julian 5427 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the 5428 ** proleptic Gregorian calendar. 5429 ** 5430 ** On success, return 0. Return 1 if the time and date cannot be found. 5431 */ 5432 static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){ 5433 static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; 5434 #if defined(NO_GETTOD) 5435 time_t t; 5436 time(&t); 5437 *piNow = ((sqlite3_int64)t)*1000 + unixEpoch; 5438 #elif OS_VXWORKS 5439 struct timespec sNow; 5440 clock_gettime(CLOCK_REALTIME, &sNow); 5441 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000; 5442 #else 5443 struct timeval sNow; 5444 gettimeofday(&sNow, 0); 5445 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000; 5446 #endif 5447 5448 #ifdef SQLITE_TEST 5449 if( sqlite3_current_time ){ 5450 *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch; 5451 } 5452 #endif 5453 UNUSED_PARAMETER(NotUsed); 5454 return 0; 5455 } 5456 5457 /* 5458 ** Find the current time (in Universal Coordinated Time). Write the 5459 ** current time and date as a Julian Day number into *prNow and 5460 ** return 0. Return 1 if the time and date cannot be found. 5461 */ 5462 static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){ 5463 sqlite3_int64 i; 5464 UNUSED_PARAMETER(NotUsed); 5465 unixCurrentTimeInt64(0, &i); 5466 *prNow = i/86400000.0; 5467 return 0; 5468 } 5469 5470 /* 5471 ** We added the xGetLastError() method with the intention of providing 5472 ** better low-level error messages when operating-system problems come up 5473 ** during SQLite operation. But so far, none of that has been implemented 5474 ** in the core. So this routine is never called. For now, it is merely 5475 ** a place-holder. 5476 */ 5477 static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){ 5478 UNUSED_PARAMETER(NotUsed); 5479 UNUSED_PARAMETER(NotUsed2); 5480 UNUSED_PARAMETER(NotUsed3); 5481 return 0; 5482 } 5483 5484 5485 /* 5486 ************************ End of sqlite3_vfs methods *************************** 5487 ******************************************************************************/ 5488 5489 /****************************************************************************** 5490 ************************** Begin Proxy Locking ******************************** 5491 ** 5492 ** Proxy locking is a "uber-locking-method" in this sense: It uses the 5493 ** other locking methods on secondary lock files. Proxy locking is a 5494 ** meta-layer over top of the primitive locking implemented above. For 5495 ** this reason, the division that implements of proxy locking is deferred 5496 ** until late in the file (here) after all of the other I/O methods have 5497 ** been defined - so that the primitive locking methods are available 5498 ** as services to help with the implementation of proxy locking. 5499 ** 5500 **** 5501 ** 5502 ** The default locking schemes in SQLite use byte-range locks on the 5503 ** database file to coordinate safe, concurrent access by multiple readers 5504 ** and writers [http://sqlite.org/lockingv3.html]. The five file locking 5505 ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented 5506 ** as POSIX read & write locks over fixed set of locations (via fsctl), 5507 ** on AFP and SMB only exclusive byte-range locks are available via fsctl 5508 ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states. 5509 ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected 5510 ** address in the shared range is taken for a SHARED lock, the entire 5511 ** shared range is taken for an EXCLUSIVE lock): 5512 ** 5513 ** PENDING_BYTE 0x40000000 5514 ** RESERVED_BYTE 0x40000001 5515 ** SHARED_RANGE 0x40000002 -> 0x40000200 5516 ** 5517 ** This works well on the local file system, but shows a nearly 100x 5518 ** slowdown in read performance on AFP because the AFP client disables 5519 ** the read cache when byte-range locks are present. Enabling the read 5520 ** cache exposes a cache coherency problem that is present on all OS X 5521 ** supported network file systems. NFS and AFP both observe the 5522 ** close-to-open semantics for ensuring cache coherency 5523 ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively 5524 ** address the requirements for concurrent database access by multiple 5525 ** readers and writers 5526 ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html]. 5527 ** 5528 ** To address the performance and cache coherency issues, proxy file locking 5529 ** changes the way database access is controlled by limiting access to a 5530 ** single host at a time and moving file locks off of the database file 5531 ** and onto a proxy file on the local file system. 5532 ** 5533 ** 5534 ** Using proxy locks 5535 ** ----------------- 5536 ** 5537 ** C APIs 5538 ** 5539 ** sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE, 5540 ** <proxy_path> | ":auto:"); 5541 ** sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>); 5542 ** 5543 ** 5544 ** SQL pragmas 5545 ** 5546 ** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto: 5547 ** PRAGMA [database.]lock_proxy_file 5548 ** 5549 ** Specifying ":auto:" means that if there is a conch file with a matching 5550 ** host ID in it, the proxy path in the conch file will be used, otherwise 5551 ** a proxy path based on the user's temp dir 5552 ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the 5553 ** actual proxy file name is generated from the name and path of the 5554 ** database file. For example: 5555 ** 5556 ** For database path "/Users/me/foo.db" 5557 ** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:") 5558 ** 5559 ** Once a lock proxy is configured for a database connection, it can not 5560 ** be removed, however it may be switched to a different proxy path via 5561 ** the above APIs (assuming the conch file is not being held by another 5562 ** connection or process). 5563 ** 5564 ** 5565 ** How proxy locking works 5566 ** ----------------------- 5567 ** 5568 ** Proxy file locking relies primarily on two new supporting files: 5569 ** 5570 ** * conch file to limit access to the database file to a single host 5571 ** at a time 5572 ** 5573 ** * proxy file to act as a proxy for the advisory locks normally 5574 ** taken on the database 5575 ** 5576 ** The conch file - to use a proxy file, sqlite must first "hold the conch" 5577 ** by taking an sqlite-style shared lock on the conch file, reading the 5578 ** contents and comparing the host's unique host ID (see below) and lock 5579 ** proxy path against the values stored in the conch. The conch file is 5580 ** stored in the same directory as the database file and the file name 5581 ** is patterned after the database file name as ".<databasename>-conch". 5582 ** If the conch file does not exist, or it's contents do not match the 5583 ** host ID and/or proxy path, then the lock is escalated to an exclusive 5584 ** lock and the conch file contents is updated with the host ID and proxy 5585 ** path and the lock is downgraded to a shared lock again. If the conch 5586 ** is held by another process (with a shared lock), the exclusive lock 5587 ** will fail and SQLITE_BUSY is returned. 5588 ** 5589 ** The proxy file - a single-byte file used for all advisory file locks 5590 ** normally taken on the database file. This allows for safe sharing 5591 ** of the database file for multiple readers and writers on the same 5592 ** host (the conch ensures that they all use the same local lock file). 5593 ** 5594 ** Requesting the lock proxy does not immediately take the conch, it is 5595 ** only taken when the first request to lock database file is made. 5596 ** This matches the semantics of the traditional locking behavior, where 5597 ** opening a connection to a database file does not take a lock on it. 5598 ** The shared lock and an open file descriptor are maintained until 5599 ** the connection to the database is closed. 5600 ** 5601 ** The proxy file and the lock file are never deleted so they only need 5602 ** to be created the first time they are used. 5603 ** 5604 ** Configuration options 5605 ** --------------------- 5606 ** 5607 ** SQLITE_PREFER_PROXY_LOCKING 5608 ** 5609 ** Database files accessed on non-local file systems are 5610 ** automatically configured for proxy locking, lock files are 5611 ** named automatically using the same logic as 5612 ** PRAGMA lock_proxy_file=":auto:" 5613 ** 5614 ** SQLITE_PROXY_DEBUG 5615 ** 5616 ** Enables the logging of error messages during host id file 5617 ** retrieval and creation 5618 ** 5619 ** LOCKPROXYDIR 5620 ** 5621 ** Overrides the default directory used for lock proxy files that 5622 ** are named automatically via the ":auto:" setting 5623 ** 5624 ** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 5625 ** 5626 ** Permissions to use when creating a directory for storing the 5627 ** lock proxy files, only used when LOCKPROXYDIR is not set. 5628 ** 5629 ** 5630 ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING, 5631 ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will 5632 ** force proxy locking to be used for every database file opened, and 0 5633 ** will force automatic proxy locking to be disabled for all database 5634 ** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or 5635 ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING). 5636 */ 5637 5638 /* 5639 ** Proxy locking is only available on MacOSX 5640 */ 5641 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE 5642 5643 /* 5644 ** The proxyLockingContext has the path and file structures for the remote 5645 ** and local proxy files in it 5646 */ 5647 typedef struct proxyLockingContext proxyLockingContext; 5648 struct proxyLockingContext { 5649 unixFile *conchFile; /* Open conch file */ 5650 char *conchFilePath; /* Name of the conch file */ 5651 unixFile *lockProxy; /* Open proxy lock file */ 5652 char *lockProxyPath; /* Name of the proxy lock file */ 5653 char *dbPath; /* Name of the open file */ 5654 int conchHeld; /* 1 if the conch is held, -1 if lockless */ 5655 void *oldLockingContext; /* Original lockingcontext to restore on close */ 5656 sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */ 5657 }; 5658 5659 /* 5660 ** The proxy lock file path for the database at dbPath is written into lPath, 5661 ** which must point to valid, writable memory large enough for a maxLen length 5662 ** file path. 5663 */ 5664 static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){ 5665 int len; 5666 int dbLen; 5667 int i; 5668 5669 #ifdef LOCKPROXYDIR 5670 len = strlcpy(lPath, LOCKPROXYDIR, maxLen); 5671 #else 5672 # ifdef _CS_DARWIN_USER_TEMP_DIR 5673 { 5674 if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){ 5675 OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n", 5676 lPath, errno, getpid())); 5677 return SQLITE_IOERR_LOCK; 5678 } 5679 len = strlcat(lPath, "sqliteplocks", maxLen); 5680 } 5681 # else 5682 len = strlcpy(lPath, "/tmp/", maxLen); 5683 # endif 5684 #endif 5685 5686 if( lPath[len-1]!='/' ){ 5687 len = strlcat(lPath, "/", maxLen); 5688 } 5689 5690 /* transform the db path to a unique cache name */ 5691 dbLen = (int)strlen(dbPath); 5692 for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){ 5693 char c = dbPath[i]; 5694 lPath[i+len] = (c=='/')?'_':c; 5695 } 5696 lPath[i+len]='\0'; 5697 strlcat(lPath, ":auto:", maxLen); 5698 OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, getpid())); 5699 return SQLITE_OK; 5700 } 5701 5702 /* 5703 ** Creates the lock file and any missing directories in lockPath 5704 */ 5705 static int proxyCreateLockPath(const char *lockPath){ 5706 int i, len; 5707 char buf[MAXPATHLEN]; 5708 int start = 0; 5709 5710 assert(lockPath!=NULL); 5711 /* try to create all the intermediate directories */ 5712 len = (int)strlen(lockPath); 5713 buf[0] = lockPath[0]; 5714 for( i=1; i<len; i++ ){ 5715 if( lockPath[i] == '/' && (i - start > 0) ){ 5716 /* only mkdir if leaf dir != "." or "/" or ".." */ 5717 if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/') 5718 || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){ 5719 buf[i]='\0'; 5720 if( mkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){ 5721 int err=errno; 5722 if( err!=EEXIST ) { 5723 OSTRACE(("CREATELOCKPATH FAILED creating %s, " 5724 "'%s' proxy lock path=%s pid=%d\n", 5725 buf, strerror(err), lockPath, getpid())); 5726 return err; 5727 } 5728 } 5729 } 5730 start=i+1; 5731 } 5732 buf[i] = lockPath[i]; 5733 } 5734 OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n", lockPath, getpid())); 5735 return 0; 5736 } 5737 5738 /* 5739 ** Create a new VFS file descriptor (stored in memory obtained from 5740 ** sqlite3_malloc) and open the file named "path" in the file descriptor. 5741 ** 5742 ** The caller is responsible not only for closing the file descriptor 5743 ** but also for freeing the memory associated with the file descriptor. 5744 */ 5745 static int proxyCreateUnixFile( 5746 const char *path, /* path for the new unixFile */ 5747 unixFile **ppFile, /* unixFile created and returned by ref */ 5748 int islockfile /* if non zero missing dirs will be created */ 5749 ) { 5750 int fd = -1; 5751 unixFile *pNew; 5752 int rc = SQLITE_OK; 5753 int openFlags = O_RDWR | O_CREAT; 5754 sqlite3_vfs dummyVfs; 5755 int terrno = 0; 5756 UnixUnusedFd *pUnused = NULL; 5757 5758 /* 1. first try to open/create the file 5759 ** 2. if that fails, and this is a lock file (not-conch), try creating 5760 ** the parent directories and then try again. 5761 ** 3. if that fails, try to open the file read-only 5762 ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file 5763 */ 5764 pUnused = findReusableFd(path, openFlags); 5765 if( pUnused ){ 5766 fd = pUnused->fd; 5767 }else{ 5768 pUnused = sqlite3_malloc(sizeof(*pUnused)); 5769 if( !pUnused ){ 5770 return SQLITE_NOMEM; 5771 } 5772 } 5773 if( fd<0 ){ 5774 fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS); 5775 terrno = errno; 5776 if( fd<0 && errno==ENOENT && islockfile ){ 5777 if( proxyCreateLockPath(path) == SQLITE_OK ){ 5778 fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS); 5779 } 5780 } 5781 } 5782 if( fd<0 ){ 5783 openFlags = O_RDONLY; 5784 fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS); 5785 terrno = errno; 5786 } 5787 if( fd<0 ){ 5788 if( islockfile ){ 5789 return SQLITE_BUSY; 5790 } 5791 switch (terrno) { 5792 case EACCES: 5793 return SQLITE_PERM; 5794 case EIO: 5795 return SQLITE_IOERR_LOCK; /* even though it is the conch */ 5796 default: 5797 return SQLITE_CANTOPEN_BKPT; 5798 } 5799 } 5800 5801 pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew)); 5802 if( pNew==NULL ){ 5803 rc = SQLITE_NOMEM; 5804 goto end_create_proxy; 5805 } 5806 memset(pNew, 0, sizeof(unixFile)); 5807 pNew->openFlags = openFlags; 5808 memset(&dummyVfs, 0, sizeof(dummyVfs)); 5809 dummyVfs.pAppData = (void*)&autolockIoFinder; 5810 dummyVfs.zName = "dummy"; 5811 pUnused->fd = fd; 5812 pUnused->flags = openFlags; 5813 pNew->pUnused = pUnused; 5814 5815 rc = fillInUnixFile(&dummyVfs, fd, 0, (sqlite3_file*)pNew, path, 0, 0, 0); 5816 if( rc==SQLITE_OK ){ 5817 *ppFile = pNew; 5818 return SQLITE_OK; 5819 } 5820 end_create_proxy: 5821 robust_close(pNew, fd, __LINE__); 5822 sqlite3_free(pNew); 5823 sqlite3_free(pUnused); 5824 return rc; 5825 } 5826 5827 #ifdef SQLITE_TEST 5828 /* simulate multiple hosts by creating unique hostid file paths */ 5829 int sqlite3_hostid_num = 0; 5830 #endif 5831 5832 #define PROXY_HOSTIDLEN 16 /* conch file host id length */ 5833 5834 /* Not always defined in the headers as it ought to be */ 5835 extern int gethostuuid(uuid_t id, const struct timespec *wait); 5836 5837 /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN 5838 ** bytes of writable memory. 5839 */ 5840 static int proxyGetHostID(unsigned char *pHostID, int *pError){ 5841 assert(PROXY_HOSTIDLEN == sizeof(uuid_t)); 5842 memset(pHostID, 0, PROXY_HOSTIDLEN); 5843 #if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\ 5844 && __MAC_OS_X_VERSION_MIN_REQUIRED<1050 5845 { 5846 static const struct timespec timeout = {1, 0}; /* 1 sec timeout */ 5847 if( gethostuuid(pHostID, &timeout) ){ 5848 int err = errno; 5849 if( pError ){ 5850 *pError = err; 5851 } 5852 return SQLITE_IOERR; 5853 } 5854 } 5855 #endif 5856 #ifdef SQLITE_TEST 5857 /* simulate multiple hosts by creating unique hostid file paths */ 5858 if( sqlite3_hostid_num != 0){ 5859 pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF)); 5860 } 5861 #endif 5862 5863 return SQLITE_OK; 5864 } 5865 5866 /* The conch file contains the header, host id and lock file path 5867 */ 5868 #define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */ 5869 #define PROXY_HEADERLEN 1 /* conch file header length */ 5870 #define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN) 5871 #define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN) 5872 5873 /* 5874 ** Takes an open conch file, copies the contents to a new path and then moves 5875 ** it back. The newly created file's file descriptor is assigned to the 5876 ** conch file structure and finally the original conch file descriptor is 5877 ** closed. Returns zero if successful. 5878 */ 5879 static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){ 5880 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 5881 unixFile *conchFile = pCtx->conchFile; 5882 char tPath[MAXPATHLEN]; 5883 char buf[PROXY_MAXCONCHLEN]; 5884 char *cPath = pCtx->conchFilePath; 5885 size_t readLen = 0; 5886 size_t pathLen = 0; 5887 char errmsg[64] = ""; 5888 int fd = -1; 5889 int rc = -1; 5890 UNUSED_PARAMETER(myHostID); 5891 5892 /* create a new path by replace the trailing '-conch' with '-break' */ 5893 pathLen = strlcpy(tPath, cPath, MAXPATHLEN); 5894 if( pathLen>MAXPATHLEN || pathLen<6 || 5895 (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){ 5896 sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen); 5897 goto end_breaklock; 5898 } 5899 /* read the conch content */ 5900 readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0); 5901 if( readLen<PROXY_PATHINDEX ){ 5902 sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen); 5903 goto end_breaklock; 5904 } 5905 /* write it out to the temporary break file */ 5906 fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL), 5907 SQLITE_DEFAULT_FILE_PERMISSIONS); 5908 if( fd<0 ){ 5909 sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno); 5910 goto end_breaklock; 5911 } 5912 if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){ 5913 sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno); 5914 goto end_breaklock; 5915 } 5916 if( rename(tPath, cPath) ){ 5917 sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno); 5918 goto end_breaklock; 5919 } 5920 rc = 0; 5921 fprintf(stderr, "broke stale lock on %s\n", cPath); 5922 robust_close(pFile, conchFile->h, __LINE__); 5923 conchFile->h = fd; 5924 conchFile->openFlags = O_RDWR | O_CREAT; 5925 5926 end_breaklock: 5927 if( rc ){ 5928 if( fd>=0 ){ 5929 osUnlink(tPath); 5930 robust_close(pFile, fd, __LINE__); 5931 } 5932 fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg); 5933 } 5934 return rc; 5935 } 5936 5937 /* Take the requested lock on the conch file and break a stale lock if the 5938 ** host id matches. 5939 */ 5940 static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){ 5941 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 5942 unixFile *conchFile = pCtx->conchFile; 5943 int rc = SQLITE_OK; 5944 int nTries = 0; 5945 struct timespec conchModTime; 5946 5947 do { 5948 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); 5949 nTries ++; 5950 if( rc==SQLITE_BUSY ){ 5951 /* If the lock failed (busy): 5952 * 1st try: get the mod time of the conch, wait 0.5s and try again. 5953 * 2nd try: fail if the mod time changed or host id is different, wait 5954 * 10 sec and try again 5955 * 3rd try: break the lock unless the mod time has changed. 5956 */ 5957 struct stat buf; 5958 if( osFstat(conchFile->h, &buf) ){ 5959 pFile->lastErrno = errno; 5960 return SQLITE_IOERR_LOCK; 5961 } 5962 5963 if( nTries==1 ){ 5964 conchModTime = buf.st_mtimespec; 5965 usleep(500000); /* wait 0.5 sec and try the lock again*/ 5966 continue; 5967 } 5968 5969 assert( nTries>1 ); 5970 if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec || 5971 conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){ 5972 return SQLITE_BUSY; 5973 } 5974 5975 if( nTries==2 ){ 5976 char tBuf[PROXY_MAXCONCHLEN]; 5977 int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0); 5978 if( len<0 ){ 5979 pFile->lastErrno = errno; 5980 return SQLITE_IOERR_LOCK; 5981 } 5982 if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){ 5983 /* don't break the lock if the host id doesn't match */ 5984 if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){ 5985 return SQLITE_BUSY; 5986 } 5987 }else{ 5988 /* don't break the lock on short read or a version mismatch */ 5989 return SQLITE_BUSY; 5990 } 5991 usleep(10000000); /* wait 10 sec and try the lock again */ 5992 continue; 5993 } 5994 5995 assert( nTries==3 ); 5996 if( 0==proxyBreakConchLock(pFile, myHostID) ){ 5997 rc = SQLITE_OK; 5998 if( lockType==EXCLUSIVE_LOCK ){ 5999 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK); 6000 } 6001 if( !rc ){ 6002 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); 6003 } 6004 } 6005 } 6006 } while( rc==SQLITE_BUSY && nTries<3 ); 6007 6008 return rc; 6009 } 6010 6011 /* Takes the conch by taking a shared lock and read the contents conch, if 6012 ** lockPath is non-NULL, the host ID and lock file path must match. A NULL 6013 ** lockPath means that the lockPath in the conch file will be used if the 6014 ** host IDs match, or a new lock path will be generated automatically 6015 ** and written to the conch file. 6016 */ 6017 static int proxyTakeConch(unixFile *pFile){ 6018 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 6019 6020 if( pCtx->conchHeld!=0 ){ 6021 return SQLITE_OK; 6022 }else{ 6023 unixFile *conchFile = pCtx->conchFile; 6024 uuid_t myHostID; 6025 int pError = 0; 6026 char readBuf[PROXY_MAXCONCHLEN]; 6027 char lockPath[MAXPATHLEN]; 6028 char *tempLockPath = NULL; 6029 int rc = SQLITE_OK; 6030 int createConch = 0; 6031 int hostIdMatch = 0; 6032 int readLen = 0; 6033 int tryOldLockPath = 0; 6034 int forceNewLockPath = 0; 6035 6036 OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h, 6037 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid())); 6038 6039 rc = proxyGetHostID(myHostID, &pError); 6040 if( (rc&0xff)==SQLITE_IOERR ){ 6041 pFile->lastErrno = pError; 6042 goto end_takeconch; 6043 } 6044 rc = proxyConchLock(pFile, myHostID, SHARED_LOCK); 6045 if( rc!=SQLITE_OK ){ 6046 goto end_takeconch; 6047 } 6048 /* read the existing conch file */ 6049 readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN); 6050 if( readLen<0 ){ 6051 /* I/O error: lastErrno set by seekAndRead */ 6052 pFile->lastErrno = conchFile->lastErrno; 6053 rc = SQLITE_IOERR_READ; 6054 goto end_takeconch; 6055 }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) || 6056 readBuf[0]!=(char)PROXY_CONCHVERSION ){ 6057 /* a short read or version format mismatch means we need to create a new 6058 ** conch file. 6059 */ 6060 createConch = 1; 6061 } 6062 /* if the host id matches and the lock path already exists in the conch 6063 ** we'll try to use the path there, if we can't open that path, we'll 6064 ** retry with a new auto-generated path 6065 */ 6066 do { /* in case we need to try again for an :auto: named lock file */ 6067 6068 if( !createConch && !forceNewLockPath ){ 6069 hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID, 6070 PROXY_HOSTIDLEN); 6071 /* if the conch has data compare the contents */ 6072 if( !pCtx->lockProxyPath ){ 6073 /* for auto-named local lock file, just check the host ID and we'll 6074 ** use the local lock file path that's already in there 6075 */ 6076 if( hostIdMatch ){ 6077 size_t pathLen = (readLen - PROXY_PATHINDEX); 6078 6079 if( pathLen>=MAXPATHLEN ){ 6080 pathLen=MAXPATHLEN-1; 6081 } 6082 memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen); 6083 lockPath[pathLen] = 0; 6084 tempLockPath = lockPath; 6085 tryOldLockPath = 1; 6086 /* create a copy of the lock path if the conch is taken */ 6087 goto end_takeconch; 6088 } 6089 }else if( hostIdMatch 6090 && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX], 6091 readLen-PROXY_PATHINDEX) 6092 ){ 6093 /* conch host and lock path match */ 6094 goto end_takeconch; 6095 } 6096 } 6097 6098 /* if the conch isn't writable and doesn't match, we can't take it */ 6099 if( (conchFile->openFlags&O_RDWR) == 0 ){ 6100 rc = SQLITE_BUSY; 6101 goto end_takeconch; 6102 } 6103 6104 /* either the conch didn't match or we need to create a new one */ 6105 if( !pCtx->lockProxyPath ){ 6106 proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN); 6107 tempLockPath = lockPath; 6108 /* create a copy of the lock path _only_ if the conch is taken */ 6109 } 6110 6111 /* update conch with host and path (this will fail if other process 6112 ** has a shared lock already), if the host id matches, use the big 6113 ** stick. 6114 */ 6115 futimes(conchFile->h, NULL); 6116 if( hostIdMatch && !createConch ){ 6117 if( conchFile->pInode && conchFile->pInode->nShared>1 ){ 6118 /* We are trying for an exclusive lock but another thread in this 6119 ** same process is still holding a shared lock. */ 6120 rc = SQLITE_BUSY; 6121 } else { 6122 rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK); 6123 } 6124 }else{ 6125 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK); 6126 } 6127 if( rc==SQLITE_OK ){ 6128 char writeBuffer[PROXY_MAXCONCHLEN]; 6129 int writeSize = 0; 6130 6131 writeBuffer[0] = (char)PROXY_CONCHVERSION; 6132 memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN); 6133 if( pCtx->lockProxyPath!=NULL ){ 6134 strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN); 6135 }else{ 6136 strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN); 6137 } 6138 writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]); 6139 robust_ftruncate(conchFile->h, writeSize); 6140 rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0); 6141 fsync(conchFile->h); 6142 /* If we created a new conch file (not just updated the contents of a 6143 ** valid conch file), try to match the permissions of the database 6144 */ 6145 if( rc==SQLITE_OK && createConch ){ 6146 struct stat buf; 6147 int err = osFstat(pFile->h, &buf); 6148 if( err==0 ){ 6149 mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP | 6150 S_IROTH|S_IWOTH); 6151 /* try to match the database file R/W permissions, ignore failure */ 6152 #ifndef SQLITE_PROXY_DEBUG 6153 osFchmod(conchFile->h, cmode); 6154 #else 6155 do{ 6156 rc = osFchmod(conchFile->h, cmode); 6157 }while( rc==(-1) && errno==EINTR ); 6158 if( rc!=0 ){ 6159 int code = errno; 6160 fprintf(stderr, "fchmod %o FAILED with %d %s\n", 6161 cmode, code, strerror(code)); 6162 } else { 6163 fprintf(stderr, "fchmod %o SUCCEDED\n",cmode); 6164 } 6165 }else{ 6166 int code = errno; 6167 fprintf(stderr, "STAT FAILED[%d] with %d %s\n", 6168 err, code, strerror(code)); 6169 #endif 6170 } 6171 } 6172 } 6173 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK); 6174 6175 end_takeconch: 6176 OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h)); 6177 if( rc==SQLITE_OK && pFile->openFlags ){ 6178 if( pFile->h>=0 ){ 6179 robust_close(pFile, pFile->h, __LINE__); 6180 } 6181 pFile->h = -1; 6182 int fd = robust_open(pCtx->dbPath, pFile->openFlags, 6183 SQLITE_DEFAULT_FILE_PERMISSIONS); 6184 OSTRACE(("TRANSPROXY: OPEN %d\n", fd)); 6185 if( fd>=0 ){ 6186 pFile->h = fd; 6187 }else{ 6188 rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called 6189 during locking */ 6190 } 6191 } 6192 if( rc==SQLITE_OK && !pCtx->lockProxy ){ 6193 char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath; 6194 rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1); 6195 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){ 6196 /* we couldn't create the proxy lock file with the old lock file path 6197 ** so try again via auto-naming 6198 */ 6199 forceNewLockPath = 1; 6200 tryOldLockPath = 0; 6201 continue; /* go back to the do {} while start point, try again */ 6202 } 6203 } 6204 if( rc==SQLITE_OK ){ 6205 /* Need to make a copy of path if we extracted the value 6206 ** from the conch file or the path was allocated on the stack 6207 */ 6208 if( tempLockPath ){ 6209 pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath); 6210 if( !pCtx->lockProxyPath ){ 6211 rc = SQLITE_NOMEM; 6212 } 6213 } 6214 } 6215 if( rc==SQLITE_OK ){ 6216 pCtx->conchHeld = 1; 6217 6218 if( pCtx->lockProxy->pMethod == &afpIoMethods ){ 6219 afpLockingContext *afpCtx; 6220 afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext; 6221 afpCtx->dbPath = pCtx->lockProxyPath; 6222 } 6223 } else { 6224 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); 6225 } 6226 OSTRACE(("TAKECONCH %d %s\n", conchFile->h, 6227 rc==SQLITE_OK?"ok":"failed")); 6228 return rc; 6229 } while (1); /* in case we need to retry the :auto: lock file - 6230 ** we should never get here except via the 'continue' call. */ 6231 } 6232 } 6233 6234 /* 6235 ** If pFile holds a lock on a conch file, then release that lock. 6236 */ 6237 static int proxyReleaseConch(unixFile *pFile){ 6238 int rc = SQLITE_OK; /* Subroutine return code */ 6239 proxyLockingContext *pCtx; /* The locking context for the proxy lock */ 6240 unixFile *conchFile; /* Name of the conch file */ 6241 6242 pCtx = (proxyLockingContext *)pFile->lockingContext; 6243 conchFile = pCtx->conchFile; 6244 OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h, 6245 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), 6246 getpid())); 6247 if( pCtx->conchHeld>0 ){ 6248 rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); 6249 } 6250 pCtx->conchHeld = 0; 6251 OSTRACE(("RELEASECONCH %d %s\n", conchFile->h, 6252 (rc==SQLITE_OK ? "ok" : "failed"))); 6253 return rc; 6254 } 6255 6256 /* 6257 ** Given the name of a database file, compute the name of its conch file. 6258 ** Store the conch filename in memory obtained from sqlite3_malloc(). 6259 ** Make *pConchPath point to the new name. Return SQLITE_OK on success 6260 ** or SQLITE_NOMEM if unable to obtain memory. 6261 ** 6262 ** The caller is responsible for ensuring that the allocated memory 6263 ** space is eventually freed. 6264 ** 6265 ** *pConchPath is set to NULL if a memory allocation error occurs. 6266 */ 6267 static int proxyCreateConchPathname(char *dbPath, char **pConchPath){ 6268 int i; /* Loop counter */ 6269 int len = (int)strlen(dbPath); /* Length of database filename - dbPath */ 6270 char *conchPath; /* buffer in which to construct conch name */ 6271 6272 /* Allocate space for the conch filename and initialize the name to 6273 ** the name of the original database file. */ 6274 *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8); 6275 if( conchPath==0 ){ 6276 return SQLITE_NOMEM; 6277 } 6278 memcpy(conchPath, dbPath, len+1); 6279 6280 /* now insert a "." before the last / character */ 6281 for( i=(len-1); i>=0; i-- ){ 6282 if( conchPath[i]=='/' ){ 6283 i++; 6284 break; 6285 } 6286 } 6287 conchPath[i]='.'; 6288 while ( i<len ){ 6289 conchPath[i+1]=dbPath[i]; 6290 i++; 6291 } 6292 6293 /* append the "-conch" suffix to the file */ 6294 memcpy(&conchPath[i+1], "-conch", 7); 6295 assert( (int)strlen(conchPath) == len+7 ); 6296 6297 return SQLITE_OK; 6298 } 6299 6300 6301 /* Takes a fully configured proxy locking-style unix file and switches 6302 ** the local lock file path 6303 */ 6304 static int switchLockProxyPath(unixFile *pFile, const char *path) { 6305 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; 6306 char *oldPath = pCtx->lockProxyPath; 6307 int rc = SQLITE_OK; 6308 6309 if( pFile->eFileLock!=NO_LOCK ){ 6310 return SQLITE_BUSY; 6311 } 6312 6313 /* nothing to do if the path is NULL, :auto: or matches the existing path */ 6314 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") || 6315 (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){ 6316 return SQLITE_OK; 6317 }else{ 6318 unixFile *lockProxy = pCtx->lockProxy; 6319 pCtx->lockProxy=NULL; 6320 pCtx->conchHeld = 0; 6321 if( lockProxy!=NULL ){ 6322 rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy); 6323 if( rc ) return rc; 6324 sqlite3_free(lockProxy); 6325 } 6326 sqlite3_free(oldPath); 6327 pCtx->lockProxyPath = sqlite3DbStrDup(0, path); 6328 } 6329 6330 return rc; 6331 } 6332 6333 /* 6334 ** pFile is a file that has been opened by a prior xOpen call. dbPath 6335 ** is a string buffer at least MAXPATHLEN+1 characters in size. 6336 ** 6337 ** This routine find the filename associated with pFile and writes it 6338 ** int dbPath. 6339 */ 6340 static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){ 6341 #if defined(__APPLE__) 6342 if( pFile->pMethod == &afpIoMethods ){ 6343 /* afp style keeps a reference to the db path in the filePath field 6344 ** of the struct */ 6345 assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); 6346 strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPATHLEN); 6347 } else 6348 #endif 6349 if( pFile->pMethod == &dotlockIoMethods ){ 6350 /* dot lock style uses the locking context to store the dot lock 6351 ** file path */ 6352 int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX); 6353 memcpy(dbPath, (char *)pFile->lockingContext, len + 1); 6354 }else{ 6355 /* all other styles use the locking context to store the db file path */ 6356 assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); 6357 strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN); 6358 } 6359 return SQLITE_OK; 6360 } 6361 6362 /* 6363 ** Takes an already filled in unix file and alters it so all file locking 6364 ** will be performed on the local proxy lock file. The following fields 6365 ** are preserved in the locking context so that they can be restored and 6366 ** the unix structure properly cleaned up at close time: 6367 ** ->lockingContext 6368 ** ->pMethod 6369 */ 6370 static int proxyTransformUnixFile(unixFile *pFile, const char *path) { 6371 proxyLockingContext *pCtx; 6372 char dbPath[MAXPATHLEN+1]; /* Name of the database file */ 6373 char *lockPath=NULL; 6374 int rc = SQLITE_OK; 6375 6376 if( pFile->eFileLock!=NO_LOCK ){ 6377 return SQLITE_BUSY; 6378 } 6379 proxyGetDbPathForUnixFile(pFile, dbPath); 6380 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){ 6381 lockPath=NULL; 6382 }else{ 6383 lockPath=(char *)path; 6384 } 6385 6386 OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h, 6387 (lockPath ? lockPath : ":auto:"), getpid())); 6388 6389 pCtx = sqlite3_malloc( sizeof(*pCtx) ); 6390 if( pCtx==0 ){ 6391 return SQLITE_NOMEM; 6392 } 6393 memset(pCtx, 0, sizeof(*pCtx)); 6394 6395 rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath); 6396 if( rc==SQLITE_OK ){ 6397 rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0); 6398 if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){ 6399 /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and 6400 ** (c) the file system is read-only, then enable no-locking access. 6401 ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts 6402 ** that openFlags will have only one of O_RDONLY or O_RDWR. 6403 */ 6404 struct statfs fsInfo; 6405 struct stat conchInfo; 6406 int goLockless = 0; 6407 6408 if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) { 6409 int err = errno; 6410 if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){ 6411 goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY; 6412 } 6413 } 6414 if( goLockless ){ 6415 pCtx->conchHeld = -1; /* read only FS/ lockless */ 6416 rc = SQLITE_OK; 6417 } 6418 } 6419 } 6420 if( rc==SQLITE_OK && lockPath ){ 6421 pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath); 6422 } 6423 6424 if( rc==SQLITE_OK ){ 6425 pCtx->dbPath = sqlite3DbStrDup(0, dbPath); 6426 if( pCtx->dbPath==NULL ){ 6427 rc = SQLITE_NOMEM; 6428 } 6429 } 6430 if( rc==SQLITE_OK ){ 6431 /* all memory is allocated, proxys are created and assigned, 6432 ** switch the locking context and pMethod then return. 6433 */ 6434 pCtx->oldLockingContext = pFile->lockingContext; 6435 pFile->lockingContext = pCtx; 6436 pCtx->pOldMethod = pFile->pMethod; 6437 pFile->pMethod = &proxyIoMethods; 6438 }else{ 6439 if( pCtx->conchFile ){ 6440 pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile); 6441 sqlite3_free(pCtx->conchFile); 6442 } 6443 sqlite3DbFree(0, pCtx->lockProxyPath); 6444 sqlite3_free(pCtx->conchFilePath); 6445 sqlite3_free(pCtx); 6446 } 6447 OSTRACE(("TRANSPROXY %d %s\n", pFile->h, 6448 (rc==SQLITE_OK ? "ok" : "failed"))); 6449 return rc; 6450 } 6451 6452 6453 /* 6454 ** This routine handles sqlite3_file_control() calls that are specific 6455 ** to proxy locking. 6456 */ 6457 static int proxyFileControl(sqlite3_file *id, int op, void *pArg){ 6458 switch( op ){ 6459 case SQLITE_GET_LOCKPROXYFILE: { 6460 unixFile *pFile = (unixFile*)id; 6461 if( pFile->pMethod == &proxyIoMethods ){ 6462 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; 6463 proxyTakeConch(pFile); 6464 if( pCtx->lockProxyPath ){ 6465 *(const char **)pArg = pCtx->lockProxyPath; 6466 }else{ 6467 *(const char **)pArg = ":auto: (not held)"; 6468 } 6469 } else { 6470 *(const char **)pArg = NULL; 6471 } 6472 return SQLITE_OK; 6473 } 6474 case SQLITE_SET_LOCKPROXYFILE: { 6475 unixFile *pFile = (unixFile*)id; 6476 int rc = SQLITE_OK; 6477 int isProxyStyle = (pFile->pMethod == &proxyIoMethods); 6478 if( pArg==NULL || (const char *)pArg==0 ){ 6479 if( isProxyStyle ){ 6480 /* turn off proxy locking - not supported */ 6481 rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/; 6482 }else{ 6483 /* turn off proxy locking - already off - NOOP */ 6484 rc = SQLITE_OK; 6485 } 6486 }else{ 6487 const char *proxyPath = (const char *)pArg; 6488 if( isProxyStyle ){ 6489 proxyLockingContext *pCtx = 6490 (proxyLockingContext*)pFile->lockingContext; 6491 if( !strcmp(pArg, ":auto:") 6492 || (pCtx->lockProxyPath && 6493 !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN)) 6494 ){ 6495 rc = SQLITE_OK; 6496 }else{ 6497 rc = switchLockProxyPath(pFile, proxyPath); 6498 } 6499 }else{ 6500 /* turn on proxy file locking */ 6501 rc = proxyTransformUnixFile(pFile, proxyPath); 6502 } 6503 } 6504 return rc; 6505 } 6506 default: { 6507 assert( 0 ); /* The call assures that only valid opcodes are sent */ 6508 } 6509 } 6510 /*NOTREACHED*/ 6511 return SQLITE_ERROR; 6512 } 6513 6514 /* 6515 ** Within this division (the proxying locking implementation) the procedures 6516 ** above this point are all utilities. The lock-related methods of the 6517 ** proxy-locking sqlite3_io_method object follow. 6518 */ 6519 6520 6521 /* 6522 ** This routine checks if there is a RESERVED lock held on the specified 6523 ** file by this or any other process. If such a lock is held, set *pResOut 6524 ** to a non-zero value otherwise *pResOut is set to zero. The return value 6525 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. 6526 */ 6527 static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) { 6528 unixFile *pFile = (unixFile*)id; 6529 int rc = proxyTakeConch(pFile); 6530 if( rc==SQLITE_OK ){ 6531 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 6532 if( pCtx->conchHeld>0 ){ 6533 unixFile *proxy = pCtx->lockProxy; 6534 return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut); 6535 }else{ /* conchHeld < 0 is lockless */ 6536 pResOut=0; 6537 } 6538 } 6539 return rc; 6540 } 6541 6542 /* 6543 ** Lock the file with the lock specified by parameter eFileLock - one 6544 ** of the following: 6545 ** 6546 ** (1) SHARED_LOCK 6547 ** (2) RESERVED_LOCK 6548 ** (3) PENDING_LOCK 6549 ** (4) EXCLUSIVE_LOCK 6550 ** 6551 ** Sometimes when requesting one lock state, additional lock states 6552 ** are inserted in between. The locking might fail on one of the later 6553 ** transitions leaving the lock state different from what it started but 6554 ** still short of its goal. The following chart shows the allowed 6555 ** transitions and the inserted intermediate states: 6556 ** 6557 ** UNLOCKED -> SHARED 6558 ** SHARED -> RESERVED 6559 ** SHARED -> (PENDING) -> EXCLUSIVE 6560 ** RESERVED -> (PENDING) -> EXCLUSIVE 6561 ** PENDING -> EXCLUSIVE 6562 ** 6563 ** This routine will only increase a lock. Use the sqlite3OsUnlock() 6564 ** routine to lower a locking level. 6565 */ 6566 static int proxyLock(sqlite3_file *id, int eFileLock) { 6567 unixFile *pFile = (unixFile*)id; 6568 int rc = proxyTakeConch(pFile); 6569 if( rc==SQLITE_OK ){ 6570 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 6571 if( pCtx->conchHeld>0 ){ 6572 unixFile *proxy = pCtx->lockProxy; 6573 rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock); 6574 pFile->eFileLock = proxy->eFileLock; 6575 }else{ 6576 /* conchHeld < 0 is lockless */ 6577 } 6578 } 6579 return rc; 6580 } 6581 6582 6583 /* 6584 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock 6585 ** must be either NO_LOCK or SHARED_LOCK. 6586 ** 6587 ** If the locking level of the file descriptor is already at or below 6588 ** the requested locking level, this routine is a no-op. 6589 */ 6590 static int proxyUnlock(sqlite3_file *id, int eFileLock) { 6591 unixFile *pFile = (unixFile*)id; 6592 int rc = proxyTakeConch(pFile); 6593 if( rc==SQLITE_OK ){ 6594 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 6595 if( pCtx->conchHeld>0 ){ 6596 unixFile *proxy = pCtx->lockProxy; 6597 rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock); 6598 pFile->eFileLock = proxy->eFileLock; 6599 }else{ 6600 /* conchHeld < 0 is lockless */ 6601 } 6602 } 6603 return rc; 6604 } 6605 6606 /* 6607 ** Close a file that uses proxy locks. 6608 */ 6609 static int proxyClose(sqlite3_file *id) { 6610 if( id ){ 6611 unixFile *pFile = (unixFile*)id; 6612 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 6613 unixFile *lockProxy = pCtx->lockProxy; 6614 unixFile *conchFile = pCtx->conchFile; 6615 int rc = SQLITE_OK; 6616 6617 if( lockProxy ){ 6618 rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK); 6619 if( rc ) return rc; 6620 rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy); 6621 if( rc ) return rc; 6622 sqlite3_free(lockProxy); 6623 pCtx->lockProxy = 0; 6624 } 6625 if( conchFile ){ 6626 if( pCtx->conchHeld ){ 6627 rc = proxyReleaseConch(pFile); 6628 if( rc ) return rc; 6629 } 6630 rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile); 6631 if( rc ) return rc; 6632 sqlite3_free(conchFile); 6633 } 6634 sqlite3DbFree(0, pCtx->lockProxyPath); 6635 sqlite3_free(pCtx->conchFilePath); 6636 sqlite3DbFree(0, pCtx->dbPath); 6637 /* restore the original locking context and pMethod then close it */ 6638 pFile->lockingContext = pCtx->oldLockingContext; 6639 pFile->pMethod = pCtx->pOldMethod; 6640 sqlite3_free(pCtx); 6641 return pFile->pMethod->xClose(id); 6642 } 6643 return SQLITE_OK; 6644 } 6645 6646 6647 6648 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ 6649 /* 6650 ** The proxy locking style is intended for use with AFP filesystems. 6651 ** And since AFP is only supported on MacOSX, the proxy locking is also 6652 ** restricted to MacOSX. 6653 ** 6654 ** 6655 ******************* End of the proxy lock implementation ********************** 6656 ******************************************************************************/ 6657 6658 /* 6659 ** Initialize the operating system interface. 6660 ** 6661 ** This routine registers all VFS implementations for unix-like operating 6662 ** systems. This routine, and the sqlite3_os_end() routine that follows, 6663 ** should be the only routines in this file that are visible from other 6664 ** files. 6665 ** 6666 ** This routine is called once during SQLite initialization and by a 6667 ** single thread. The memory allocation and mutex subsystems have not 6668 ** necessarily been initialized when this routine is called, and so they 6669 ** should not be used. 6670 */ 6671 int sqlite3_os_init(void){ 6672 /* 6673 ** The following macro defines an initializer for an sqlite3_vfs object. 6674 ** The name of the VFS is NAME. The pAppData is a pointer to a pointer 6675 ** to the "finder" function. (pAppData is a pointer to a pointer because 6676 ** silly C90 rules prohibit a void* from being cast to a function pointer 6677 ** and so we have to go through the intermediate pointer to avoid problems 6678 ** when compiling with -pedantic-errors on GCC.) 6679 ** 6680 ** The FINDER parameter to this macro is the name of the pointer to the 6681 ** finder-function. The finder-function returns a pointer to the 6682 ** sqlite_io_methods object that implements the desired locking 6683 ** behaviors. See the division above that contains the IOMETHODS 6684 ** macro for addition information on finder-functions. 6685 ** 6686 ** Most finders simply return a pointer to a fixed sqlite3_io_methods 6687 ** object. But the "autolockIoFinder" available on MacOSX does a little 6688 ** more than that; it looks at the filesystem type that hosts the 6689 ** database file and tries to choose an locking method appropriate for 6690 ** that filesystem time. 6691 */ 6692 #define UNIXVFS(VFSNAME, FINDER) { \ 6693 3, /* iVersion */ \ 6694 sizeof(unixFile), /* szOsFile */ \ 6695 MAX_PATHNAME, /* mxPathname */ \ 6696 0, /* pNext */ \ 6697 VFSNAME, /* zName */ \ 6698 (void*)&FINDER, /* pAppData */ \ 6699 unixOpen, /* xOpen */ \ 6700 unixDelete, /* xDelete */ \ 6701 unixAccess, /* xAccess */ \ 6702 unixFullPathname, /* xFullPathname */ \ 6703 unixDlOpen, /* xDlOpen */ \ 6704 unixDlError, /* xDlError */ \ 6705 unixDlSym, /* xDlSym */ \ 6706 unixDlClose, /* xDlClose */ \ 6707 unixRandomness, /* xRandomness */ \ 6708 unixSleep, /* xSleep */ \ 6709 unixCurrentTime, /* xCurrentTime */ \ 6710 unixGetLastError, /* xGetLastError */ \ 6711 unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \ 6712 unixSetSystemCall, /* xSetSystemCall */ \ 6713 unixGetSystemCall, /* xGetSystemCall */ \ 6714 unixNextSystemCall, /* xNextSystemCall */ \ 6715 } 6716 6717 /* 6718 ** All default VFSes for unix are contained in the following array. 6719 ** 6720 ** Note that the sqlite3_vfs.pNext field of the VFS object is modified 6721 ** by the SQLite core when the VFS is registered. So the following 6722 ** array cannot be const. 6723 */ 6724 static sqlite3_vfs aVfs[] = { 6725 #if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__)) 6726 UNIXVFS("unix", autolockIoFinder ), 6727 #else 6728 UNIXVFS("unix", posixIoFinder ), 6729 #endif 6730 UNIXVFS("unix-none", nolockIoFinder ), 6731 UNIXVFS("unix-dotfile", dotlockIoFinder ), 6732 UNIXVFS("unix-excl", posixIoFinder ), 6733 #if OS_VXWORKS 6734 UNIXVFS("unix-namedsem", semIoFinder ), 6735 #endif 6736 #if SQLITE_ENABLE_LOCKING_STYLE 6737 UNIXVFS("unix-posix", posixIoFinder ), 6738 #if !OS_VXWORKS 6739 UNIXVFS("unix-flock", flockIoFinder ), 6740 #endif 6741 #endif 6742 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) 6743 UNIXVFS("unix-afp", afpIoFinder ), 6744 UNIXVFS("unix-nfs", nfsIoFinder ), 6745 UNIXVFS("unix-proxy", proxyIoFinder ), 6746 #endif 6747 }; 6748 unsigned int i; /* Loop counter */ 6749 6750 /* Double-check that the aSyscall[] array has been constructed 6751 ** correctly. See ticket [bb3a86e890c8e96ab] */ 6752 assert( ArraySize(aSyscall)==18 ); 6753 6754 /* Register all VFSes defined in the aVfs[] array */ 6755 for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){ 6756 sqlite3_vfs_register(&aVfs[i], i==0); 6757 } 6758 return SQLITE_OK; 6759 } 6760 6761 /* 6762 ** Shutdown the operating system interface. 6763 ** 6764 ** Some operating systems might need to do some cleanup in this routine, 6765 ** to release dynamically allocated objects. But not on unix. 6766 ** This routine is a no-op for unix. 6767 */ 6768 int sqlite3_os_end(void){ 6769 return SQLITE_OK; 6770 } 6771 6772 #endif /* SQLITE_OS_UNIX */ 6773