Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #include "src/accessors.h"
      8 #include "src/api.h"
      9 #include "src/base/platform/platform.h"
     10 #include "src/bootstrapper.h"
     11 #include "src/code-stubs.h"
     12 #include "src/deoptimizer.h"
     13 #include "src/execution.h"
     14 #include "src/global-handles.h"
     15 #include "src/ic/ic.h"
     16 #include "src/ic/stub-cache.h"
     17 #include "src/natives.h"
     18 #include "src/objects.h"
     19 #include "src/runtime.h"
     20 #include "src/serialize.h"
     21 #include "src/snapshot.h"
     22 #include "src/snapshot-source-sink.h"
     23 #include "src/v8threads.h"
     24 #include "src/version.h"
     25 
     26 namespace v8 {
     27 namespace internal {
     28 
     29 
     30 // -----------------------------------------------------------------------------
     31 // Coding of external references.
     32 
     33 // The encoding of an external reference. The type is in the high word.
     34 // The id is in the low word.
     35 static uint32_t EncodeExternal(TypeCode type, uint16_t id) {
     36   return static_cast<uint32_t>(type) << 16 | id;
     37 }
     38 
     39 
     40 static int* GetInternalPointer(StatsCounter* counter) {
     41   // All counters refer to dummy_counter, if deserializing happens without
     42   // setting up counters.
     43   static int dummy_counter = 0;
     44   return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter;
     45 }
     46 
     47 
     48 ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
     49   ExternalReferenceTable* external_reference_table =
     50       isolate->external_reference_table();
     51   if (external_reference_table == NULL) {
     52     external_reference_table = new ExternalReferenceTable(isolate);
     53     isolate->set_external_reference_table(external_reference_table);
     54   }
     55   return external_reference_table;
     56 }
     57 
     58 
     59 void ExternalReferenceTable::AddFromId(TypeCode type,
     60                                        uint16_t id,
     61                                        const char* name,
     62                                        Isolate* isolate) {
     63   Address address;
     64   switch (type) {
     65     case C_BUILTIN: {
     66       ExternalReference ref(static_cast<Builtins::CFunctionId>(id), isolate);
     67       address = ref.address();
     68       break;
     69     }
     70     case BUILTIN: {
     71       ExternalReference ref(static_cast<Builtins::Name>(id), isolate);
     72       address = ref.address();
     73       break;
     74     }
     75     case RUNTIME_FUNCTION: {
     76       ExternalReference ref(static_cast<Runtime::FunctionId>(id), isolate);
     77       address = ref.address();
     78       break;
     79     }
     80     case IC_UTILITY: {
     81       ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id)),
     82                             isolate);
     83       address = ref.address();
     84       break;
     85     }
     86     default:
     87       UNREACHABLE();
     88       return;
     89   }
     90   Add(address, type, id, name);
     91 }
     92 
     93 
     94 void ExternalReferenceTable::Add(Address address,
     95                                  TypeCode type,
     96                                  uint16_t id,
     97                                  const char* name) {
     98   DCHECK_NE(NULL, address);
     99   ExternalReferenceEntry entry;
    100   entry.address = address;
    101   entry.code = EncodeExternal(type, id);
    102   entry.name = name;
    103   DCHECK_NE(0, entry.code);
    104   // Assert that the code is added in ascending order to rule out duplicates.
    105   DCHECK((size() == 0) || (code(size() - 1) < entry.code));
    106   refs_.Add(entry);
    107   if (id > max_id_[type]) max_id_[type] = id;
    108 }
    109 
    110 
    111 void ExternalReferenceTable::PopulateTable(Isolate* isolate) {
    112   for (int type_code = 0; type_code < kTypeCodeCount; type_code++) {
    113     max_id_[type_code] = 0;
    114   }
    115 
    116   // Miscellaneous
    117   Add(ExternalReference::roots_array_start(isolate).address(),
    118       "Heap::roots_array_start()");
    119   Add(ExternalReference::address_of_stack_limit(isolate).address(),
    120       "StackGuard::address_of_jslimit()");
    121   Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
    122       "StackGuard::address_of_real_jslimit()");
    123   Add(ExternalReference::new_space_start(isolate).address(),
    124       "Heap::NewSpaceStart()");
    125   Add(ExternalReference::new_space_mask(isolate).address(),
    126       "Heap::NewSpaceMask()");
    127   Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
    128       "Heap::NewSpaceAllocationLimitAddress()");
    129   Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
    130       "Heap::NewSpaceAllocationTopAddress()");
    131   Add(ExternalReference::debug_break(isolate).address(), "Debug::Break()");
    132   Add(ExternalReference::debug_step_in_fp_address(isolate).address(),
    133       "Debug::step_in_fp_addr()");
    134   Add(ExternalReference::mod_two_doubles_operation(isolate).address(),
    135       "mod_two_doubles");
    136   // Keyed lookup cache.
    137   Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
    138       "KeyedLookupCache::keys()");
    139   Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
    140       "KeyedLookupCache::field_offsets()");
    141   Add(ExternalReference::handle_scope_next_address(isolate).address(),
    142       "HandleScope::next");
    143   Add(ExternalReference::handle_scope_limit_address(isolate).address(),
    144       "HandleScope::limit");
    145   Add(ExternalReference::handle_scope_level_address(isolate).address(),
    146       "HandleScope::level");
    147   Add(ExternalReference::new_deoptimizer_function(isolate).address(),
    148       "Deoptimizer::New()");
    149   Add(ExternalReference::compute_output_frames_function(isolate).address(),
    150       "Deoptimizer::ComputeOutputFrames()");
    151   Add(ExternalReference::address_of_min_int().address(),
    152       "LDoubleConstant::min_int");
    153   Add(ExternalReference::address_of_one_half().address(),
    154       "LDoubleConstant::one_half");
    155   Add(ExternalReference::isolate_address(isolate).address(), "isolate");
    156   Add(ExternalReference::address_of_negative_infinity().address(),
    157       "LDoubleConstant::negative_infinity");
    158   Add(ExternalReference::power_double_double_function(isolate).address(),
    159       "power_double_double_function");
    160   Add(ExternalReference::power_double_int_function(isolate).address(),
    161       "power_double_int_function");
    162   Add(ExternalReference::math_log_double_function(isolate).address(),
    163       "std::log");
    164   Add(ExternalReference::store_buffer_top(isolate).address(),
    165       "store_buffer_top");
    166   Add(ExternalReference::address_of_canonical_non_hole_nan().address(),
    167       "canonical_nan");
    168   Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan");
    169   Add(ExternalReference::get_date_field_function(isolate).address(),
    170       "JSDate::GetField");
    171   Add(ExternalReference::date_cache_stamp(isolate).address(),
    172       "date_cache_stamp");
    173   Add(ExternalReference::address_of_pending_message_obj(isolate).address(),
    174       "address_of_pending_message_obj");
    175   Add(ExternalReference::address_of_has_pending_message(isolate).address(),
    176       "address_of_has_pending_message");
    177   Add(ExternalReference::address_of_pending_message_script(isolate).address(),
    178       "pending_message_script");
    179   Add(ExternalReference::get_make_code_young_function(isolate).address(),
    180       "Code::MakeCodeYoung");
    181   Add(ExternalReference::cpu_features().address(), "cpu_features");
    182   Add(ExternalReference(Runtime::kAllocateInNewSpace, isolate).address(),
    183       "Runtime::AllocateInNewSpace");
    184   Add(ExternalReference(Runtime::kAllocateInTargetSpace, isolate).address(),
    185       "Runtime::AllocateInTargetSpace");
    186   Add(ExternalReference::old_pointer_space_allocation_top_address(isolate)
    187           .address(),
    188       "Heap::OldPointerSpaceAllocationTopAddress");
    189   Add(ExternalReference::old_pointer_space_allocation_limit_address(isolate)
    190           .address(),
    191       "Heap::OldPointerSpaceAllocationLimitAddress");
    192   Add(ExternalReference::old_data_space_allocation_top_address(isolate)
    193           .address(),
    194       "Heap::OldDataSpaceAllocationTopAddress");
    195   Add(ExternalReference::old_data_space_allocation_limit_address(isolate)
    196           .address(),
    197       "Heap::OldDataSpaceAllocationLimitAddress");
    198   Add(ExternalReference::allocation_sites_list_address(isolate).address(),
    199       "Heap::allocation_sites_list_address()");
    200   Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias");
    201   Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(),
    202       "Code::MarkCodeAsExecuted");
    203   Add(ExternalReference::is_profiling_address(isolate).address(),
    204       "CpuProfiler::is_profiling");
    205   Add(ExternalReference::scheduled_exception_address(isolate).address(),
    206       "Isolate::scheduled_exception");
    207   Add(ExternalReference::invoke_function_callback(isolate).address(),
    208       "InvokeFunctionCallback");
    209   Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(),
    210       "InvokeAccessorGetterCallback");
    211   Add(ExternalReference::flush_icache_function(isolate).address(),
    212       "CpuFeatures::FlushICache");
    213   Add(ExternalReference::log_enter_external_function(isolate).address(),
    214       "Logger::EnterExternal");
    215   Add(ExternalReference::log_leave_external_function(isolate).address(),
    216       "Logger::LeaveExternal");
    217   Add(ExternalReference::address_of_minus_one_half().address(),
    218       "double_constants.minus_one_half");
    219   Add(ExternalReference::stress_deopt_count(isolate).address(),
    220       "Isolate::stress_deopt_count_address()");
    221   Add(ExternalReference::incremental_marking_record_write_function(isolate)
    222           .address(),
    223       "IncrementalMarking::RecordWriteFromCode");
    224 
    225   // Debug addresses
    226   Add(ExternalReference::debug_after_break_target_address(isolate).address(),
    227       "Debug::after_break_target_address()");
    228   Add(ExternalReference::debug_restarter_frame_function_pointer_address(isolate)
    229           .address(),
    230       "Debug::restarter_frame_function_pointer_address()");
    231   Add(ExternalReference::debug_is_active_address(isolate).address(),
    232       "Debug::is_active_address()");
    233 
    234 #ifndef V8_INTERPRETED_REGEXP
    235   Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
    236       "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
    237   Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
    238       "RegExpMacroAssembler*::CheckStackGuardState()");
    239   Add(ExternalReference::re_grow_stack(isolate).address(),
    240       "NativeRegExpMacroAssembler::GrowStack()");
    241   Add(ExternalReference::re_word_character_map().address(),
    242       "NativeRegExpMacroAssembler::word_character_map");
    243   Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
    244       "RegExpStack::limit_address()");
    245   Add(ExternalReference::address_of_regexp_stack_memory_address(isolate)
    246           .address(),
    247       "RegExpStack::memory_address()");
    248   Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
    249       "RegExpStack::memory_size()");
    250   Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
    251       "OffsetsVector::static_offsets_vector");
    252 #endif  // V8_INTERPRETED_REGEXP
    253 
    254   // The following populates all of the different type of external references
    255   // into the ExternalReferenceTable.
    256   //
    257   // NOTE: This function was originally 100k of code.  It has since been
    258   // rewritten to be mostly table driven, as the callback macro style tends to
    259   // very easily cause code bloat.  Please be careful in the future when adding
    260   // new references.
    261 
    262   struct RefTableEntry {
    263     TypeCode type;
    264     uint16_t id;
    265     const char* name;
    266   };
    267 
    268   static const RefTableEntry ref_table[] = {
    269   // Builtins
    270 #define DEF_ENTRY_C(name, ignored) \
    271   { C_BUILTIN, \
    272     Builtins::c_##name, \
    273     "Builtins::" #name },
    274 
    275   BUILTIN_LIST_C(DEF_ENTRY_C)
    276 #undef DEF_ENTRY_C
    277 
    278 #define DEF_ENTRY_C(name, ignored) \
    279   { BUILTIN, \
    280     Builtins::k##name, \
    281     "Builtins::" #name },
    282 #define DEF_ENTRY_A(name, kind, state, extra) DEF_ENTRY_C(name, ignored)
    283 
    284   BUILTIN_LIST_C(DEF_ENTRY_C)
    285   BUILTIN_LIST_A(DEF_ENTRY_A)
    286   BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
    287 #undef DEF_ENTRY_C
    288 #undef DEF_ENTRY_A
    289 
    290   // Runtime functions
    291 #define RUNTIME_ENTRY(name, nargs, ressize) \
    292   { RUNTIME_FUNCTION, \
    293     Runtime::k##name, \
    294     "Runtime::" #name },
    295 
    296   RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY)
    297   INLINE_OPTIMIZED_FUNCTION_LIST(RUNTIME_ENTRY)
    298 #undef RUNTIME_ENTRY
    299 
    300 #define INLINE_OPTIMIZED_ENTRY(name, nargs, ressize) \
    301   { RUNTIME_FUNCTION, \
    302     Runtime::kInlineOptimized##name, \
    303     "Runtime::" #name },
    304 
    305   INLINE_OPTIMIZED_FUNCTION_LIST(INLINE_OPTIMIZED_ENTRY)
    306 #undef INLINE_OPTIMIZED_ENTRY
    307 
    308   // IC utilities
    309 #define IC_ENTRY(name) \
    310   { IC_UTILITY, \
    311     IC::k##name, \
    312     "IC::" #name },
    313 
    314   IC_UTIL_LIST(IC_ENTRY)
    315 #undef IC_ENTRY
    316   };  // end of ref_table[].
    317 
    318   for (size_t i = 0; i < arraysize(ref_table); ++i) {
    319     AddFromId(ref_table[i].type,
    320               ref_table[i].id,
    321               ref_table[i].name,
    322               isolate);
    323   }
    324 
    325   // Stat counters
    326   struct StatsRefTableEntry {
    327     StatsCounter* (Counters::*counter)();
    328     uint16_t id;
    329     const char* name;
    330   };
    331 
    332   const StatsRefTableEntry stats_ref_table[] = {
    333 #define COUNTER_ENTRY(name, caption) \
    334   { &Counters::name,    \
    335     Counters::k_##name, \
    336     "Counters::" #name },
    337 
    338   STATS_COUNTER_LIST_1(COUNTER_ENTRY)
    339   STATS_COUNTER_LIST_2(COUNTER_ENTRY)
    340 #undef COUNTER_ENTRY
    341   };  // end of stats_ref_table[].
    342 
    343   Counters* counters = isolate->counters();
    344   for (size_t i = 0; i < arraysize(stats_ref_table); ++i) {
    345     Add(reinterpret_cast<Address>(GetInternalPointer(
    346             (counters->*(stats_ref_table[i].counter))())),
    347         STATS_COUNTER,
    348         stats_ref_table[i].id,
    349         stats_ref_table[i].name);
    350   }
    351 
    352   // Top addresses
    353 
    354   const char* AddressNames[] = {
    355 #define BUILD_NAME_LITERAL(CamelName, hacker_name)      \
    356     "Isolate::" #hacker_name "_address",
    357     FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL)
    358     NULL
    359 #undef BUILD_NAME_LITERAL
    360   };
    361 
    362   for (uint16_t i = 0; i < Isolate::kIsolateAddressCount; ++i) {
    363     Add(isolate->get_address_from_id((Isolate::AddressId)i),
    364         TOP_ADDRESS, i, AddressNames[i]);
    365   }
    366 
    367   // Accessors
    368 #define ACCESSOR_INFO_DECLARATION(name) \
    369   Add(FUNCTION_ADDR(&Accessors::name##Getter), \
    370       ACCESSOR, \
    371       Accessors::k##name##Getter, \
    372       "Accessors::" #name "Getter"); \
    373   Add(FUNCTION_ADDR(&Accessors::name##Setter), \
    374       ACCESSOR, \
    375       Accessors::k##name##Setter, \
    376       "Accessors::" #name "Setter");
    377   ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION)
    378 #undef ACCESSOR_INFO_DECLARATION
    379 
    380   StubCache* stub_cache = isolate->stub_cache();
    381 
    382   // Stub cache tables
    383   Add(stub_cache->key_reference(StubCache::kPrimary).address(),
    384       STUB_CACHE_TABLE, 1, "StubCache::primary_->key");
    385   Add(stub_cache->value_reference(StubCache::kPrimary).address(),
    386       STUB_CACHE_TABLE, 2, "StubCache::primary_->value");
    387   Add(stub_cache->map_reference(StubCache::kPrimary).address(),
    388       STUB_CACHE_TABLE, 3, "StubCache::primary_->map");
    389   Add(stub_cache->key_reference(StubCache::kSecondary).address(),
    390       STUB_CACHE_TABLE, 4, "StubCache::secondary_->key");
    391   Add(stub_cache->value_reference(StubCache::kSecondary).address(),
    392       STUB_CACHE_TABLE, 5, "StubCache::secondary_->value");
    393   Add(stub_cache->map_reference(StubCache::kSecondary).address(),
    394       STUB_CACHE_TABLE, 6, "StubCache::secondary_->map");
    395 
    396   // Runtime entries
    397   Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
    398       RUNTIME_ENTRY, 1, "HandleScope::DeleteExtensions");
    399   Add(ExternalReference::incremental_marking_record_write_function(isolate)
    400           .address(),
    401       RUNTIME_ENTRY, 2, "IncrementalMarking::RecordWrite");
    402   Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
    403       RUNTIME_ENTRY, 3, "StoreBuffer::StoreBufferOverflow");
    404 
    405   // Add a small set of deopt entry addresses to encoder without generating the
    406   // deopt table code, which isn't possible at deserialization time.
    407   HandleScope scope(isolate);
    408   for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) {
    409     Address address = Deoptimizer::GetDeoptimizationEntry(
    410         isolate,
    411         entry,
    412         Deoptimizer::LAZY,
    413         Deoptimizer::CALCULATE_ENTRY_ADDRESS);
    414     Add(address, LAZY_DEOPTIMIZATION, entry, "lazy_deopt");
    415   }
    416 }
    417 
    418 
    419 ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate)
    420     : encodings_(HashMap::PointersMatch),
    421       isolate_(isolate) {
    422   ExternalReferenceTable* external_references =
    423       ExternalReferenceTable::instance(isolate_);
    424   for (int i = 0; i < external_references->size(); ++i) {
    425     Put(external_references->address(i), i);
    426   }
    427 }
    428 
    429 
    430 uint32_t ExternalReferenceEncoder::Encode(Address key) const {
    431   int index = IndexOf(key);
    432   DCHECK(key == NULL || index >= 0);
    433   return index >= 0 ?
    434          ExternalReferenceTable::instance(isolate_)->code(index) : 0;
    435 }
    436 
    437 
    438 const char* ExternalReferenceEncoder::NameOfAddress(Address key) const {
    439   int index = IndexOf(key);
    440   return index >= 0 ? ExternalReferenceTable::instance(isolate_)->name(index)
    441                     : "<unknown>";
    442 }
    443 
    444 
    445 int ExternalReferenceEncoder::IndexOf(Address key) const {
    446   if (key == NULL) return -1;
    447   HashMap::Entry* entry =
    448       const_cast<HashMap&>(encodings_).Lookup(key, Hash(key), false);
    449   return entry == NULL
    450       ? -1
    451       : static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
    452 }
    453 
    454 
    455 void ExternalReferenceEncoder::Put(Address key, int index) {
    456   HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true);
    457   entry->value = reinterpret_cast<void*>(index);
    458 }
    459 
    460 
    461 ExternalReferenceDecoder::ExternalReferenceDecoder(Isolate* isolate)
    462     : encodings_(NewArray<Address*>(kTypeCodeCount)),
    463       isolate_(isolate) {
    464   ExternalReferenceTable* external_references =
    465       ExternalReferenceTable::instance(isolate_);
    466   for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
    467     int max = external_references->max_id(type) + 1;
    468     encodings_[type] = NewArray<Address>(max + 1);
    469   }
    470   for (int i = 0; i < external_references->size(); ++i) {
    471     Put(external_references->code(i), external_references->address(i));
    472   }
    473 }
    474 
    475 
    476 ExternalReferenceDecoder::~ExternalReferenceDecoder() {
    477   for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
    478     DeleteArray(encodings_[type]);
    479   }
    480   DeleteArray(encodings_);
    481 }
    482 
    483 
    484 class CodeAddressMap: public CodeEventLogger {
    485  public:
    486   explicit CodeAddressMap(Isolate* isolate)
    487       : isolate_(isolate) {
    488     isolate->logger()->addCodeEventListener(this);
    489   }
    490 
    491   virtual ~CodeAddressMap() {
    492     isolate_->logger()->removeCodeEventListener(this);
    493   }
    494 
    495   virtual void CodeMoveEvent(Address from, Address to) {
    496     address_to_name_map_.Move(from, to);
    497   }
    498 
    499   virtual void CodeDisableOptEvent(Code* code, SharedFunctionInfo* shared) {
    500   }
    501 
    502   virtual void CodeDeleteEvent(Address from) {
    503     address_to_name_map_.Remove(from);
    504   }
    505 
    506   const char* Lookup(Address address) {
    507     return address_to_name_map_.Lookup(address);
    508   }
    509 
    510  private:
    511   class NameMap {
    512    public:
    513     NameMap() : impl_(HashMap::PointersMatch) {}
    514 
    515     ~NameMap() {
    516       for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) {
    517         DeleteArray(static_cast<const char*>(p->value));
    518       }
    519     }
    520 
    521     void Insert(Address code_address, const char* name, int name_size) {
    522       HashMap::Entry* entry = FindOrCreateEntry(code_address);
    523       if (entry->value == NULL) {
    524         entry->value = CopyName(name, name_size);
    525       }
    526     }
    527 
    528     const char* Lookup(Address code_address) {
    529       HashMap::Entry* entry = FindEntry(code_address);
    530       return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL;
    531     }
    532 
    533     void Remove(Address code_address) {
    534       HashMap::Entry* entry = FindEntry(code_address);
    535       if (entry != NULL) {
    536         DeleteArray(static_cast<char*>(entry->value));
    537         RemoveEntry(entry);
    538       }
    539     }
    540 
    541     void Move(Address from, Address to) {
    542       if (from == to) return;
    543       HashMap::Entry* from_entry = FindEntry(from);
    544       DCHECK(from_entry != NULL);
    545       void* value = from_entry->value;
    546       RemoveEntry(from_entry);
    547       HashMap::Entry* to_entry = FindOrCreateEntry(to);
    548       DCHECK(to_entry->value == NULL);
    549       to_entry->value = value;
    550     }
    551 
    552    private:
    553     static char* CopyName(const char* name, int name_size) {
    554       char* result = NewArray<char>(name_size + 1);
    555       for (int i = 0; i < name_size; ++i) {
    556         char c = name[i];
    557         if (c == '\0') c = ' ';
    558         result[i] = c;
    559       }
    560       result[name_size] = '\0';
    561       return result;
    562     }
    563 
    564     HashMap::Entry* FindOrCreateEntry(Address code_address) {
    565       return impl_.Lookup(code_address, ComputePointerHash(code_address), true);
    566     }
    567 
    568     HashMap::Entry* FindEntry(Address code_address) {
    569       return impl_.Lookup(code_address,
    570                           ComputePointerHash(code_address),
    571                           false);
    572     }
    573 
    574     void RemoveEntry(HashMap::Entry* entry) {
    575       impl_.Remove(entry->key, entry->hash);
    576     }
    577 
    578     HashMap impl_;
    579 
    580     DISALLOW_COPY_AND_ASSIGN(NameMap);
    581   };
    582 
    583   virtual void LogRecordedBuffer(Code* code,
    584                                  SharedFunctionInfo*,
    585                                  const char* name,
    586                                  int length) {
    587     address_to_name_map_.Insert(code->address(), name, length);
    588   }
    589 
    590   NameMap address_to_name_map_;
    591   Isolate* isolate_;
    592 };
    593 
    594 
    595 Deserializer::Deserializer(SnapshotByteSource* source)
    596     : isolate_(NULL),
    597       attached_objects_(NULL),
    598       source_(source),
    599       external_reference_decoder_(NULL) {
    600   for (int i = 0; i < LAST_SPACE + 1; i++) {
    601     reservations_[i] = kUninitializedReservation;
    602   }
    603 }
    604 
    605 
    606 void Deserializer::FlushICacheForNewCodeObjects() {
    607   PageIterator it(isolate_->heap()->code_space());
    608   while (it.has_next()) {
    609     Page* p = it.next();
    610     CpuFeatures::FlushICache(p->area_start(), p->area_end() - p->area_start());
    611   }
    612 }
    613 
    614 
    615 void Deserializer::Deserialize(Isolate* isolate) {
    616   isolate_ = isolate;
    617   DCHECK(isolate_ != NULL);
    618   isolate_->heap()->ReserveSpace(reservations_, &high_water_[0]);
    619   // No active threads.
    620   DCHECK_EQ(NULL, isolate_->thread_manager()->FirstThreadStateInUse());
    621   // No active handles.
    622   DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty());
    623   DCHECK_EQ(NULL, external_reference_decoder_);
    624   external_reference_decoder_ = new ExternalReferenceDecoder(isolate);
    625   isolate_->heap()->IterateSmiRoots(this);
    626   isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
    627   isolate_->heap()->RepairFreeListsAfterBoot();
    628   isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
    629 
    630   isolate_->heap()->set_native_contexts_list(
    631       isolate_->heap()->undefined_value());
    632   isolate_->heap()->set_array_buffers_list(
    633       isolate_->heap()->undefined_value());
    634 
    635   // The allocation site list is build during root iteration, but if no sites
    636   // were encountered then it needs to be initialized to undefined.
    637   if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
    638     isolate_->heap()->set_allocation_sites_list(
    639         isolate_->heap()->undefined_value());
    640   }
    641 
    642   isolate_->heap()->InitializeWeakObjectToCodeTable();
    643 
    644   // Update data pointers to the external strings containing natives sources.
    645   for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
    646     Object* source = isolate_->heap()->natives_source_cache()->get(i);
    647     if (!source->IsUndefined()) {
    648       ExternalOneByteString::cast(source)->update_data_cache();
    649     }
    650   }
    651 
    652   FlushICacheForNewCodeObjects();
    653 
    654   // Issue code events for newly deserialized code objects.
    655   LOG_CODE_EVENT(isolate_, LogCodeObjects());
    656   LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
    657 }
    658 
    659 
    660 void Deserializer::DeserializePartial(Isolate* isolate, Object** root) {
    661   isolate_ = isolate;
    662   for (int i = NEW_SPACE; i < kNumberOfSpaces; i++) {
    663     DCHECK(reservations_[i] != kUninitializedReservation);
    664   }
    665   isolate_->heap()->ReserveSpace(reservations_, &high_water_[0]);
    666   if (external_reference_decoder_ == NULL) {
    667     external_reference_decoder_ = new ExternalReferenceDecoder(isolate);
    668   }
    669 
    670   DisallowHeapAllocation no_gc;
    671 
    672   // Keep track of the code space start and end pointers in case new
    673   // code objects were unserialized
    674   OldSpace* code_space = isolate_->heap()->code_space();
    675   Address start_address = code_space->top();
    676   VisitPointer(root);
    677 
    678   // There's no code deserialized here. If this assert fires
    679   // then that's changed and logging should be added to notify
    680   // the profiler et al of the new code.
    681   CHECK_EQ(start_address, code_space->top());
    682 }
    683 
    684 
    685 Deserializer::~Deserializer() {
    686   // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed.
    687   // DCHECK(source_->AtEOF());
    688   if (external_reference_decoder_) {
    689     delete external_reference_decoder_;
    690     external_reference_decoder_ = NULL;
    691   }
    692   if (attached_objects_) attached_objects_->Dispose();
    693 }
    694 
    695 
    696 // This is called on the roots.  It is the driver of the deserialization
    697 // process.  It is also called on the body of each function.
    698 void Deserializer::VisitPointers(Object** start, Object** end) {
    699   // The space must be new space.  Any other space would cause ReadChunk to try
    700   // to update the remembered using NULL as the address.
    701   ReadChunk(start, end, NEW_SPACE, NULL);
    702 }
    703 
    704 
    705 void Deserializer::RelinkAllocationSite(AllocationSite* site) {
    706   if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
    707     site->set_weak_next(isolate_->heap()->undefined_value());
    708   } else {
    709     site->set_weak_next(isolate_->heap()->allocation_sites_list());
    710   }
    711   isolate_->heap()->set_allocation_sites_list(site);
    712 }
    713 
    714 
    715 // Used to insert a deserialized internalized string into the string table.
    716 class StringTableInsertionKey : public HashTableKey {
    717  public:
    718   explicit StringTableInsertionKey(String* string)
    719       : string_(string), hash_(HashForObject(string)) {
    720     DCHECK(string->IsInternalizedString());
    721   }
    722 
    723   virtual bool IsMatch(Object* string) {
    724     // We know that all entries in a hash table had their hash keys created.
    725     // Use that knowledge to have fast failure.
    726     if (hash_ != HashForObject(string)) return false;
    727     // We want to compare the content of two internalized strings here.
    728     return string_->SlowEquals(String::cast(string));
    729   }
    730 
    731   virtual uint32_t Hash() OVERRIDE { return hash_; }
    732 
    733   virtual uint32_t HashForObject(Object* key) OVERRIDE {
    734     return String::cast(key)->Hash();
    735   }
    736 
    737   MUST_USE_RESULT virtual Handle<Object> AsHandle(Isolate* isolate)
    738       OVERRIDE {
    739     return handle(string_, isolate);
    740   }
    741 
    742   String* string_;
    743   uint32_t hash_;
    744 };
    745 
    746 
    747 HeapObject* Deserializer::ProcessNewObjectFromSerializedCode(HeapObject* obj) {
    748   if (obj->IsString()) {
    749     String* string = String::cast(obj);
    750     // Uninitialize hash field as the hash seed may have changed.
    751     string->set_hash_field(String::kEmptyHashField);
    752     if (string->IsInternalizedString()) {
    753       DisallowHeapAllocation no_gc;
    754       HandleScope scope(isolate_);
    755       StringTableInsertionKey key(string);
    756       String* canonical = *StringTable::LookupKey(isolate_, &key);
    757       string->SetForwardedInternalizedString(canonical);
    758       return canonical;
    759     }
    760   }
    761   return obj;
    762 }
    763 
    764 
    765 Object* Deserializer::ProcessBackRefInSerializedCode(Object* obj) {
    766   if (obj->IsInternalizedString()) {
    767     return String::cast(obj)->GetForwardedInternalizedString();
    768   }
    769   return obj;
    770 }
    771 
    772 
    773 // This routine writes the new object into the pointer provided and then
    774 // returns true if the new object was in young space and false otherwise.
    775 // The reason for this strange interface is that otherwise the object is
    776 // written very late, which means the FreeSpace map is not set up by the
    777 // time we need to use it to mark the space at the end of a page free.
    778 void Deserializer::ReadObject(int space_number,
    779                               Object** write_back) {
    780   int size = source_->GetInt() << kObjectAlignmentBits;
    781   Address address = Allocate(space_number, size);
    782   HeapObject* obj = HeapObject::FromAddress(address);
    783   isolate_->heap()->OnAllocationEvent(obj, size);
    784   Object** current = reinterpret_cast<Object**>(address);
    785   Object** limit = current + (size >> kPointerSizeLog2);
    786   if (FLAG_log_snapshot_positions) {
    787     LOG(isolate_, SnapshotPositionEvent(address, source_->position()));
    788   }
    789   ReadChunk(current, limit, space_number, address);
    790 
    791   // TODO(mvstanton): consider treating the heap()->allocation_sites_list()
    792   // as a (weak) root. If this root is relocated correctly,
    793   // RelinkAllocationSite() isn't necessary.
    794   if (obj->IsAllocationSite()) RelinkAllocationSite(AllocationSite::cast(obj));
    795 
    796   // Fix up strings from serialized user code.
    797   if (deserializing_user_code()) obj = ProcessNewObjectFromSerializedCode(obj);
    798 
    799   *write_back = obj;
    800 #ifdef DEBUG
    801   bool is_codespace = (space_number == CODE_SPACE);
    802   DCHECK(obj->IsCode() == is_codespace);
    803 #endif
    804 }
    805 
    806 void Deserializer::ReadChunk(Object** current,
    807                              Object** limit,
    808                              int source_space,
    809                              Address current_object_address) {
    810   Isolate* const isolate = isolate_;
    811   // Write barrier support costs around 1% in startup time.  In fact there
    812   // are no new space objects in current boot snapshots, so it's not needed,
    813   // but that may change.
    814   bool write_barrier_needed = (current_object_address != NULL &&
    815                                source_space != NEW_SPACE &&
    816                                source_space != CELL_SPACE &&
    817                                source_space != PROPERTY_CELL_SPACE &&
    818                                source_space != CODE_SPACE &&
    819                                source_space != OLD_DATA_SPACE);
    820   while (current < limit) {
    821     int data = source_->Get();
    822     switch (data) {
    823 #define CASE_STATEMENT(where, how, within, space_number) \
    824   case where + how + within + space_number:              \
    825     STATIC_ASSERT((where & ~kPointedToMask) == 0);       \
    826     STATIC_ASSERT((how & ~kHowToCodeMask) == 0);         \
    827     STATIC_ASSERT((within & ~kWhereToPointMask) == 0);   \
    828     STATIC_ASSERT((space_number & ~kSpaceMask) == 0);
    829 
    830 #define CASE_BODY(where, how, within, space_number_if_any)                     \
    831   {                                                                            \
    832     bool emit_write_barrier = false;                                           \
    833     bool current_was_incremented = false;                                      \
    834     int space_number = space_number_if_any == kAnyOldSpace                     \
    835                            ? (data & kSpaceMask)                               \
    836                            : space_number_if_any;                              \
    837     if (where == kNewObject && how == kPlain && within == kStartOfObject) {    \
    838       ReadObject(space_number, current);                                       \
    839       emit_write_barrier = (space_number == NEW_SPACE);                        \
    840     } else {                                                                   \
    841       Object* new_object = NULL; /* May not be a real Object pointer. */       \
    842       if (where == kNewObject) {                                               \
    843         ReadObject(space_number, &new_object);                                 \
    844       } else if (where == kRootArray) {                                        \
    845         int root_id = source_->GetInt();                                       \
    846         new_object = isolate->heap()->roots_array_start()[root_id];            \
    847         emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
    848       } else if (where == kPartialSnapshotCache) {                             \
    849         int cache_index = source_->GetInt();                                   \
    850         new_object = isolate->serialize_partial_snapshot_cache()[cache_index]; \
    851         emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
    852       } else if (where == kExternalReference) {                                \
    853         int skip = source_->GetInt();                                          \
    854         current = reinterpret_cast<Object**>(                                  \
    855             reinterpret_cast<Address>(current) + skip);                        \
    856         int reference_id = source_->GetInt();                                  \
    857         Address address = external_reference_decoder_->Decode(reference_id);   \
    858         new_object = reinterpret_cast<Object*>(address);                       \
    859       } else if (where == kBackref) {                                          \
    860         emit_write_barrier = (space_number == NEW_SPACE);                      \
    861         new_object = GetAddressFromEnd(data & kSpaceMask);                     \
    862         if (deserializing_user_code()) {                                       \
    863           new_object = ProcessBackRefInSerializedCode(new_object);             \
    864         }                                                                      \
    865       } else if (where == kBuiltin) {                                          \
    866         DCHECK(deserializing_user_code());                                     \
    867         int builtin_id = source_->GetInt();                                    \
    868         DCHECK_LE(0, builtin_id);                                              \
    869         DCHECK_LT(builtin_id, Builtins::builtin_count);                        \
    870         Builtins::Name name = static_cast<Builtins::Name>(builtin_id);         \
    871         new_object = isolate->builtins()->builtin(name);                       \
    872         emit_write_barrier = false;                                            \
    873       } else if (where == kAttachedReference) {                                \
    874         DCHECK(deserializing_user_code());                                     \
    875         int index = source_->GetInt();                                         \
    876         new_object = *attached_objects_->at(index);                            \
    877         emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
    878       } else {                                                                 \
    879         DCHECK(where == kBackrefWithSkip);                                     \
    880         int skip = source_->GetInt();                                          \
    881         current = reinterpret_cast<Object**>(                                  \
    882             reinterpret_cast<Address>(current) + skip);                        \
    883         emit_write_barrier = (space_number == NEW_SPACE);                      \
    884         new_object = GetAddressFromEnd(data & kSpaceMask);                     \
    885         if (deserializing_user_code()) {                                       \
    886           new_object = ProcessBackRefInSerializedCode(new_object);             \
    887         }                                                                      \
    888       }                                                                        \
    889       if (within == kInnerPointer) {                                           \
    890         if (space_number != CODE_SPACE || new_object->IsCode()) {              \
    891           Code* new_code_object = reinterpret_cast<Code*>(new_object);         \
    892           new_object =                                                         \
    893               reinterpret_cast<Object*>(new_code_object->instruction_start()); \
    894         } else {                                                               \
    895           DCHECK(space_number == CODE_SPACE);                                  \
    896           Cell* cell = Cell::cast(new_object);                                 \
    897           new_object = reinterpret_cast<Object*>(cell->ValueAddress());        \
    898         }                                                                      \
    899       }                                                                        \
    900       if (how == kFromCode) {                                                  \
    901         Address location_of_branch_data = reinterpret_cast<Address>(current);  \
    902         Assembler::deserialization_set_special_target_at(                      \
    903             location_of_branch_data,                                           \
    904             Code::cast(HeapObject::FromAddress(current_object_address)),       \
    905             reinterpret_cast<Address>(new_object));                            \
    906         location_of_branch_data += Assembler::kSpecialTargetSize;              \
    907         current = reinterpret_cast<Object**>(location_of_branch_data);         \
    908         current_was_incremented = true;                                        \
    909       } else {                                                                 \
    910         *current = new_object;                                                 \
    911       }                                                                        \
    912     }                                                                          \
    913     if (emit_write_barrier && write_barrier_needed) {                          \
    914       Address current_address = reinterpret_cast<Address>(current);            \
    915       isolate->heap()->RecordWrite(                                            \
    916           current_object_address,                                              \
    917           static_cast<int>(current_address - current_object_address));         \
    918     }                                                                          \
    919     if (!current_was_incremented) {                                            \
    920       current++;                                                               \
    921     }                                                                          \
    922     break;                                                                     \
    923   }
    924 
    925 // This generates a case and a body for the new space (which has to do extra
    926 // write barrier handling) and handles the other spaces with 8 fall-through
    927 // cases and one body.
    928 #define ALL_SPACES(where, how, within)                                         \
    929   CASE_STATEMENT(where, how, within, NEW_SPACE)                                \
    930   CASE_BODY(where, how, within, NEW_SPACE)                                     \
    931   CASE_STATEMENT(where, how, within, OLD_DATA_SPACE)                           \
    932   CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE)                        \
    933   CASE_STATEMENT(where, how, within, CODE_SPACE)                               \
    934   CASE_STATEMENT(where, how, within, CELL_SPACE)                               \
    935   CASE_STATEMENT(where, how, within, PROPERTY_CELL_SPACE)                      \
    936   CASE_STATEMENT(where, how, within, MAP_SPACE)                                \
    937   CASE_BODY(where, how, within, kAnyOldSpace)
    938 
    939 #define FOUR_CASES(byte_code)             \
    940   case byte_code:                         \
    941   case byte_code + 1:                     \
    942   case byte_code + 2:                     \
    943   case byte_code + 3:
    944 
    945 #define SIXTEEN_CASES(byte_code)          \
    946   FOUR_CASES(byte_code)                   \
    947   FOUR_CASES(byte_code + 4)               \
    948   FOUR_CASES(byte_code + 8)               \
    949   FOUR_CASES(byte_code + 12)
    950 
    951 #define COMMON_RAW_LENGTHS(f)        \
    952   f(1)  \
    953   f(2)  \
    954   f(3)  \
    955   f(4)  \
    956   f(5)  \
    957   f(6)  \
    958   f(7)  \
    959   f(8)  \
    960   f(9)  \
    961   f(10) \
    962   f(11) \
    963   f(12) \
    964   f(13) \
    965   f(14) \
    966   f(15) \
    967   f(16) \
    968   f(17) \
    969   f(18) \
    970   f(19) \
    971   f(20) \
    972   f(21) \
    973   f(22) \
    974   f(23) \
    975   f(24) \
    976   f(25) \
    977   f(26) \
    978   f(27) \
    979   f(28) \
    980   f(29) \
    981   f(30) \
    982   f(31)
    983 
    984       // We generate 15 cases and bodies that process special tags that combine
    985       // the raw data tag and the length into one byte.
    986 #define RAW_CASE(index)                                                      \
    987       case kRawData + index: {                                               \
    988         byte* raw_data_out = reinterpret_cast<byte*>(current);               \
    989         source_->CopyRaw(raw_data_out, index * kPointerSize);                \
    990         current =                                                            \
    991             reinterpret_cast<Object**>(raw_data_out + index * kPointerSize); \
    992         break;                                                               \
    993       }
    994       COMMON_RAW_LENGTHS(RAW_CASE)
    995 #undef RAW_CASE
    996 
    997       // Deserialize a chunk of raw data that doesn't have one of the popular
    998       // lengths.
    999       case kRawData: {
   1000         int size = source_->GetInt();
   1001         byte* raw_data_out = reinterpret_cast<byte*>(current);
   1002         source_->CopyRaw(raw_data_out, size);
   1003         break;
   1004       }
   1005 
   1006       SIXTEEN_CASES(kRootArrayConstants + kNoSkipDistance)
   1007       SIXTEEN_CASES(kRootArrayConstants + kNoSkipDistance + 16) {
   1008         int root_id = RootArrayConstantFromByteCode(data);
   1009         Object* object = isolate->heap()->roots_array_start()[root_id];
   1010         DCHECK(!isolate->heap()->InNewSpace(object));
   1011         *current++ = object;
   1012         break;
   1013       }
   1014 
   1015       SIXTEEN_CASES(kRootArrayConstants + kHasSkipDistance)
   1016       SIXTEEN_CASES(kRootArrayConstants + kHasSkipDistance + 16) {
   1017         int root_id = RootArrayConstantFromByteCode(data);
   1018         int skip = source_->GetInt();
   1019         current = reinterpret_cast<Object**>(
   1020             reinterpret_cast<intptr_t>(current) + skip);
   1021         Object* object = isolate->heap()->roots_array_start()[root_id];
   1022         DCHECK(!isolate->heap()->InNewSpace(object));
   1023         *current++ = object;
   1024         break;
   1025       }
   1026 
   1027       case kRepeat: {
   1028         int repeats = source_->GetInt();
   1029         Object* object = current[-1];
   1030         DCHECK(!isolate->heap()->InNewSpace(object));
   1031         for (int i = 0; i < repeats; i++) current[i] = object;
   1032         current += repeats;
   1033         break;
   1034       }
   1035 
   1036       STATIC_ASSERT(kRootArrayNumberOfConstantEncodings ==
   1037                     Heap::kOldSpaceRoots);
   1038       STATIC_ASSERT(kMaxRepeats == 13);
   1039       case kConstantRepeat:
   1040       FOUR_CASES(kConstantRepeat + 1)
   1041       FOUR_CASES(kConstantRepeat + 5)
   1042       FOUR_CASES(kConstantRepeat + 9) {
   1043         int repeats = RepeatsForCode(data);
   1044         Object* object = current[-1];
   1045         DCHECK(!isolate->heap()->InNewSpace(object));
   1046         for (int i = 0; i < repeats; i++) current[i] = object;
   1047         current += repeats;
   1048         break;
   1049       }
   1050 
   1051       // Deserialize a new object and write a pointer to it to the current
   1052       // object.
   1053       ALL_SPACES(kNewObject, kPlain, kStartOfObject)
   1054       // Support for direct instruction pointers in functions.  It's an inner
   1055       // pointer because it points at the entry point, not at the start of the
   1056       // code object.
   1057       CASE_STATEMENT(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
   1058       CASE_BODY(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
   1059       // Deserialize a new code object and write a pointer to its first
   1060       // instruction to the current code object.
   1061       ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
   1062       // Find a recently deserialized object using its offset from the current
   1063       // allocation point and write a pointer to it to the current object.
   1064       ALL_SPACES(kBackref, kPlain, kStartOfObject)
   1065       ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject)
   1066 #if defined(V8_TARGET_ARCH_MIPS) || V8_OOL_CONSTANT_POOL || \
   1067     defined(V8_TARGET_ARCH_MIPS64)
   1068       // Deserialize a new object from pointer found in code and write
   1069       // a pointer to it to the current object. Required only for MIPS or ARM
   1070       // with ool constant pool, and omitted on the other architectures because
   1071       // it is fully unrolled and would cause bloat.
   1072       ALL_SPACES(kNewObject, kFromCode, kStartOfObject)
   1073       // Find a recently deserialized code object using its offset from the
   1074       // current allocation point and write a pointer to it to the current
   1075       // object. Required only for MIPS or ARM with ool constant pool.
   1076       ALL_SPACES(kBackref, kFromCode, kStartOfObject)
   1077       ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject)
   1078 #endif
   1079       // Find a recently deserialized code object using its offset from the
   1080       // current allocation point and write a pointer to its first instruction
   1081       // to the current code object or the instruction pointer in a function
   1082       // object.
   1083       ALL_SPACES(kBackref, kFromCode, kInnerPointer)
   1084       ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer)
   1085       ALL_SPACES(kBackref, kPlain, kInnerPointer)
   1086       ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer)
   1087       // Find an object in the roots array and write a pointer to it to the
   1088       // current object.
   1089       CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0)
   1090       CASE_BODY(kRootArray, kPlain, kStartOfObject, 0)
   1091 #if defined(V8_TARGET_ARCH_MIPS) || V8_OOL_CONSTANT_POOL || \
   1092     defined(V8_TARGET_ARCH_MIPS64)
   1093       // Find an object in the roots array and write a pointer to it to in code.
   1094       CASE_STATEMENT(kRootArray, kFromCode, kStartOfObject, 0)
   1095       CASE_BODY(kRootArray, kFromCode, kStartOfObject, 0)
   1096 #endif
   1097       // Find an object in the partial snapshots cache and write a pointer to it
   1098       // to the current object.
   1099       CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
   1100       CASE_BODY(kPartialSnapshotCache,
   1101                 kPlain,
   1102                 kStartOfObject,
   1103                 0)
   1104       // Find an code entry in the partial snapshots cache and
   1105       // write a pointer to it to the current object.
   1106       CASE_STATEMENT(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
   1107       CASE_BODY(kPartialSnapshotCache,
   1108                 kPlain,
   1109                 kInnerPointer,
   1110                 0)
   1111       // Find an external reference and write a pointer to it to the current
   1112       // object.
   1113       CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0)
   1114       CASE_BODY(kExternalReference,
   1115                 kPlain,
   1116                 kStartOfObject,
   1117                 0)
   1118       // Find an external reference and write a pointer to it in the current
   1119       // code object.
   1120       CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0)
   1121       CASE_BODY(kExternalReference,
   1122                 kFromCode,
   1123                 kStartOfObject,
   1124                 0)
   1125       // Find a builtin and write a pointer to it to the current object.
   1126       CASE_STATEMENT(kBuiltin, kPlain, kStartOfObject, 0)
   1127       CASE_BODY(kBuiltin, kPlain, kStartOfObject, 0)
   1128 #if V8_OOL_CONSTANT_POOL
   1129       // Find a builtin code entry and write a pointer to it to the current
   1130       // object.
   1131       CASE_STATEMENT(kBuiltin, kPlain, kInnerPointer, 0)
   1132       CASE_BODY(kBuiltin, kPlain, kInnerPointer, 0)
   1133 #endif
   1134       // Find a builtin and write a pointer to it in the current code object.
   1135       CASE_STATEMENT(kBuiltin, kFromCode, kInnerPointer, 0)
   1136       CASE_BODY(kBuiltin, kFromCode, kInnerPointer, 0)
   1137       // Find an object in the attached references and write a pointer to it to
   1138       // the current object.
   1139       CASE_STATEMENT(kAttachedReference, kPlain, kStartOfObject, 0)
   1140       CASE_BODY(kAttachedReference, kPlain, kStartOfObject, 0)
   1141       CASE_STATEMENT(kAttachedReference, kPlain, kInnerPointer, 0)
   1142       CASE_BODY(kAttachedReference, kPlain, kInnerPointer, 0)
   1143       CASE_STATEMENT(kAttachedReference, kFromCode, kInnerPointer, 0)
   1144       CASE_BODY(kAttachedReference, kFromCode, kInnerPointer, 0)
   1145 
   1146 #undef CASE_STATEMENT
   1147 #undef CASE_BODY
   1148 #undef ALL_SPACES
   1149 
   1150       case kSkip: {
   1151         int size = source_->GetInt();
   1152         current = reinterpret_cast<Object**>(
   1153             reinterpret_cast<intptr_t>(current) + size);
   1154         break;
   1155       }
   1156 
   1157       case kNativesStringResource: {
   1158         int index = source_->Get();
   1159         Vector<const char> source_vector = Natives::GetRawScriptSource(index);
   1160         NativesExternalStringResource* resource =
   1161             new NativesExternalStringResource(isolate->bootstrapper(),
   1162                                               source_vector.start(),
   1163                                               source_vector.length());
   1164         *current++ = reinterpret_cast<Object*>(resource);
   1165         break;
   1166       }
   1167 
   1168       case kSynchronize: {
   1169         // If we get here then that indicates that you have a mismatch between
   1170         // the number of GC roots when serializing and deserializing.
   1171         UNREACHABLE();
   1172       }
   1173 
   1174       default:
   1175         UNREACHABLE();
   1176     }
   1177   }
   1178   DCHECK_EQ(limit, current);
   1179 }
   1180 
   1181 
   1182 Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
   1183     : isolate_(isolate),
   1184       sink_(sink),
   1185       external_reference_encoder_(new ExternalReferenceEncoder(isolate)),
   1186       root_index_wave_front_(0),
   1187       code_address_map_(NULL) {
   1188   // The serializer is meant to be used only to generate initial heap images
   1189   // from a context in which there is only one isolate.
   1190   for (int i = 0; i <= LAST_SPACE; i++) {
   1191     fullness_[i] = 0;
   1192   }
   1193 }
   1194 
   1195 
   1196 Serializer::~Serializer() {
   1197   delete external_reference_encoder_;
   1198   if (code_address_map_ != NULL) delete code_address_map_;
   1199 }
   1200 
   1201 
   1202 void StartupSerializer::SerializeStrongReferences() {
   1203   Isolate* isolate = this->isolate();
   1204   // No active threads.
   1205   CHECK_EQ(NULL, isolate->thread_manager()->FirstThreadStateInUse());
   1206   // No active or weak handles.
   1207   CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
   1208   CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
   1209   CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles());
   1210   // We don't support serializing installed extensions.
   1211   CHECK(!isolate->has_installed_extensions());
   1212   isolate->heap()->IterateSmiRoots(this);
   1213   isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
   1214 }
   1215 
   1216 
   1217 void PartialSerializer::Serialize(Object** object) {
   1218   this->VisitPointer(object);
   1219   Pad();
   1220 }
   1221 
   1222 
   1223 bool Serializer::ShouldBeSkipped(Object** current) {
   1224   Object** roots = isolate()->heap()->roots_array_start();
   1225   return current == &roots[Heap::kStoreBufferTopRootIndex]
   1226       || current == &roots[Heap::kStackLimitRootIndex]
   1227       || current == &roots[Heap::kRealStackLimitRootIndex];
   1228 }
   1229 
   1230 
   1231 void Serializer::VisitPointers(Object** start, Object** end) {
   1232   Isolate* isolate = this->isolate();;
   1233 
   1234   for (Object** current = start; current < end; current++) {
   1235     if (start == isolate->heap()->roots_array_start()) {
   1236       root_index_wave_front_ =
   1237           Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
   1238     }
   1239     if (ShouldBeSkipped(current)) {
   1240       sink_->Put(kSkip, "Skip");
   1241       sink_->PutInt(kPointerSize, "SkipOneWord");
   1242     } else if ((*current)->IsSmi()) {
   1243       sink_->Put(kRawData + 1, "Smi");
   1244       for (int i = 0; i < kPointerSize; i++) {
   1245         sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
   1246       }
   1247     } else {
   1248       SerializeObject(*current, kPlain, kStartOfObject, 0);
   1249     }
   1250   }
   1251 }
   1252 
   1253 
   1254 // This ensures that the partial snapshot cache keeps things alive during GC and
   1255 // tracks their movement.  When it is called during serialization of the startup
   1256 // snapshot nothing happens.  When the partial (context) snapshot is created,
   1257 // this array is populated with the pointers that the partial snapshot will
   1258 // need. As that happens we emit serialized objects to the startup snapshot
   1259 // that correspond to the elements of this cache array.  On deserialization we
   1260 // therefore need to visit the cache array.  This fills it up with pointers to
   1261 // deserialized objects.
   1262 void SerializerDeserializer::Iterate(Isolate* isolate,
   1263                                      ObjectVisitor* visitor) {
   1264   if (isolate->serializer_enabled()) return;
   1265   for (int i = 0; ; i++) {
   1266     if (isolate->serialize_partial_snapshot_cache_length() <= i) {
   1267       // Extend the array ready to get a value from the visitor when
   1268       // deserializing.
   1269       isolate->PushToPartialSnapshotCache(Smi::FromInt(0));
   1270     }
   1271     Object** cache = isolate->serialize_partial_snapshot_cache();
   1272     visitor->VisitPointers(&cache[i], &cache[i + 1]);
   1273     // Sentinel is the undefined object, which is a root so it will not normally
   1274     // be found in the cache.
   1275     if (cache[i] == isolate->heap()->undefined_value()) {
   1276       break;
   1277     }
   1278   }
   1279 }
   1280 
   1281 
   1282 int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
   1283   Isolate* isolate = this->isolate();
   1284 
   1285   for (int i = 0;
   1286        i < isolate->serialize_partial_snapshot_cache_length();
   1287        i++) {
   1288     Object* entry = isolate->serialize_partial_snapshot_cache()[i];
   1289     if (entry == heap_object) return i;
   1290   }
   1291 
   1292   // We didn't find the object in the cache.  So we add it to the cache and
   1293   // then visit the pointer so that it becomes part of the startup snapshot
   1294   // and we can refer to it from the partial snapshot.
   1295   int length = isolate->serialize_partial_snapshot_cache_length();
   1296   isolate->PushToPartialSnapshotCache(heap_object);
   1297   startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object));
   1298   // We don't recurse from the startup snapshot generator into the partial
   1299   // snapshot generator.
   1300   DCHECK(length == isolate->serialize_partial_snapshot_cache_length() - 1);
   1301   return length;
   1302 }
   1303 
   1304 
   1305 int Serializer::RootIndex(HeapObject* heap_object, HowToCode from) {
   1306   Heap* heap = isolate()->heap();
   1307   if (heap->InNewSpace(heap_object)) return kInvalidRootIndex;
   1308   for (int i = 0; i < root_index_wave_front_; i++) {
   1309     Object* root = heap->roots_array_start()[i];
   1310     if (!root->IsSmi() && root == heap_object) {
   1311       return i;
   1312     }
   1313   }
   1314   return kInvalidRootIndex;
   1315 }
   1316 
   1317 
   1318 // Encode the location of an already deserialized object in order to write its
   1319 // location into a later object.  We can encode the location as an offset from
   1320 // the start of the deserialized objects or as an offset backwards from the
   1321 // current allocation pointer.
   1322 void Serializer::SerializeReferenceToPreviousObject(HeapObject* heap_object,
   1323                                                     HowToCode how_to_code,
   1324                                                     WhereToPoint where_to_point,
   1325                                                     int skip) {
   1326   int space = SpaceOfObject(heap_object);
   1327   int address = address_mapper_.MappedTo(heap_object);
   1328   int offset = CurrentAllocationAddress(space) - address;
   1329   // Shift out the bits that are always 0.
   1330   offset >>= kObjectAlignmentBits;
   1331   if (skip == 0) {
   1332     sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRefSer");
   1333   } else {
   1334     sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space,
   1335                "BackRefSerWithSkip");
   1336     sink_->PutInt(skip, "BackRefSkipDistance");
   1337   }
   1338   sink_->PutInt(offset, "offset");
   1339 }
   1340 
   1341 
   1342 void StartupSerializer::SerializeObject(
   1343     Object* o,
   1344     HowToCode how_to_code,
   1345     WhereToPoint where_to_point,
   1346     int skip) {
   1347   CHECK(o->IsHeapObject());
   1348   HeapObject* heap_object = HeapObject::cast(o);
   1349   DCHECK(!heap_object->IsJSFunction());
   1350 
   1351   int root_index;
   1352   if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) {
   1353     PutRoot(root_index, heap_object, how_to_code, where_to_point, skip);
   1354     return;
   1355   }
   1356 
   1357   if (address_mapper_.IsMapped(heap_object)) {
   1358     SerializeReferenceToPreviousObject(heap_object, how_to_code, where_to_point,
   1359                                        skip);
   1360   } else {
   1361     if (skip != 0) {
   1362       sink_->Put(kSkip, "FlushPendingSkip");
   1363       sink_->PutInt(skip, "SkipDistance");
   1364     }
   1365 
   1366     // Object has not yet been serialized.  Serialize it here.
   1367     ObjectSerializer object_serializer(this,
   1368                                        heap_object,
   1369                                        sink_,
   1370                                        how_to_code,
   1371                                        where_to_point);
   1372     object_serializer.Serialize();
   1373   }
   1374 }
   1375 
   1376 
   1377 void StartupSerializer::SerializeWeakReferences() {
   1378   // This phase comes right after the partial serialization (of the snapshot).
   1379   // After we have done the partial serialization the partial snapshot cache
   1380   // will contain some references needed to decode the partial snapshot.  We
   1381   // add one entry with 'undefined' which is the sentinel that the deserializer
   1382   // uses to know it is done deserializing the array.
   1383   Object* undefined = isolate()->heap()->undefined_value();
   1384   VisitPointer(&undefined);
   1385   isolate()->heap()->IterateWeakRoots(this, VISIT_ALL);
   1386   Pad();
   1387 }
   1388 
   1389 
   1390 void Serializer::PutRoot(int root_index,
   1391                          HeapObject* object,
   1392                          SerializerDeserializer::HowToCode how_to_code,
   1393                          SerializerDeserializer::WhereToPoint where_to_point,
   1394                          int skip) {
   1395   if (how_to_code == kPlain &&
   1396       where_to_point == kStartOfObject &&
   1397       root_index < kRootArrayNumberOfConstantEncodings &&
   1398       !isolate()->heap()->InNewSpace(object)) {
   1399     if (skip == 0) {
   1400       sink_->Put(kRootArrayConstants + kNoSkipDistance + root_index,
   1401                  "RootConstant");
   1402     } else {
   1403       sink_->Put(kRootArrayConstants + kHasSkipDistance + root_index,
   1404                  "RootConstant");
   1405       sink_->PutInt(skip, "SkipInPutRoot");
   1406     }
   1407   } else {
   1408     if (skip != 0) {
   1409       sink_->Put(kSkip, "SkipFromPutRoot");
   1410       sink_->PutInt(skip, "SkipFromPutRootDistance");
   1411     }
   1412     sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
   1413     sink_->PutInt(root_index, "root_index");
   1414   }
   1415 }
   1416 
   1417 
   1418 void PartialSerializer::SerializeObject(
   1419     Object* o,
   1420     HowToCode how_to_code,
   1421     WhereToPoint where_to_point,
   1422     int skip) {
   1423   CHECK(o->IsHeapObject());
   1424   HeapObject* heap_object = HeapObject::cast(o);
   1425 
   1426   if (heap_object->IsMap()) {
   1427     // The code-caches link to context-specific code objects, which
   1428     // the startup and context serializes cannot currently handle.
   1429     DCHECK(Map::cast(heap_object)->code_cache() ==
   1430            heap_object->GetHeap()->empty_fixed_array());
   1431   }
   1432 
   1433   int root_index;
   1434   if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) {
   1435     PutRoot(root_index, heap_object, how_to_code, where_to_point, skip);
   1436     return;
   1437   }
   1438 
   1439   if (ShouldBeInThePartialSnapshotCache(heap_object)) {
   1440     if (skip != 0) {
   1441       sink_->Put(kSkip, "SkipFromSerializeObject");
   1442       sink_->PutInt(skip, "SkipDistanceFromSerializeObject");
   1443     }
   1444 
   1445     int cache_index = PartialSnapshotCacheIndex(heap_object);
   1446     sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
   1447                "PartialSnapshotCache");
   1448     sink_->PutInt(cache_index, "partial_snapshot_cache_index");
   1449     return;
   1450   }
   1451 
   1452   // Pointers from the partial snapshot to the objects in the startup snapshot
   1453   // should go through the root array or through the partial snapshot cache.
   1454   // If this is not the case you may have to add something to the root array.
   1455   DCHECK(!startup_serializer_->address_mapper()->IsMapped(heap_object));
   1456   // All the internalized strings that the partial snapshot needs should be
   1457   // either in the root table or in the partial snapshot cache.
   1458   DCHECK(!heap_object->IsInternalizedString());
   1459 
   1460   if (address_mapper_.IsMapped(heap_object)) {
   1461     SerializeReferenceToPreviousObject(heap_object, how_to_code, where_to_point,
   1462                                        skip);
   1463   } else {
   1464     if (skip != 0) {
   1465       sink_->Put(kSkip, "SkipFromSerializeObject");
   1466       sink_->PutInt(skip, "SkipDistanceFromSerializeObject");
   1467     }
   1468     // Object has not yet been serialized.  Serialize it here.
   1469     ObjectSerializer serializer(this,
   1470                                 heap_object,
   1471                                 sink_,
   1472                                 how_to_code,
   1473                                 where_to_point);
   1474     serializer.Serialize();
   1475   }
   1476 }
   1477 
   1478 
   1479 void Serializer::ObjectSerializer::Serialize() {
   1480   int space = Serializer::SpaceOfObject(object_);
   1481   int size = object_->Size();
   1482 
   1483   sink_->Put(kNewObject + reference_representation_ + space,
   1484              "ObjectSerialization");
   1485   sink_->PutInt(size >> kObjectAlignmentBits, "Size in words");
   1486 
   1487   if (serializer_->code_address_map_) {
   1488     const char* code_name =
   1489         serializer_->code_address_map_->Lookup(object_->address());
   1490     LOG(serializer_->isolate_,
   1491         CodeNameEvent(object_->address(), sink_->Position(), code_name));
   1492     LOG(serializer_->isolate_,
   1493         SnapshotPositionEvent(object_->address(), sink_->Position()));
   1494   }
   1495 
   1496   // Mark this object as already serialized.
   1497   int offset = serializer_->Allocate(space, size);
   1498   serializer_->address_mapper()->AddMapping(object_, offset);
   1499 
   1500   // Serialize the map (first word of the object).
   1501   serializer_->SerializeObject(object_->map(), kPlain, kStartOfObject, 0);
   1502 
   1503   // Serialize the rest of the object.
   1504   CHECK_EQ(0, bytes_processed_so_far_);
   1505   bytes_processed_so_far_ = kPointerSize;
   1506   object_->IterateBody(object_->map()->instance_type(), size, this);
   1507   OutputRawData(object_->address() + size);
   1508 }
   1509 
   1510 
   1511 void Serializer::ObjectSerializer::VisitPointers(Object** start,
   1512                                                  Object** end) {
   1513   Object** current = start;
   1514   while (current < end) {
   1515     while (current < end && (*current)->IsSmi()) current++;
   1516     if (current < end) OutputRawData(reinterpret_cast<Address>(current));
   1517 
   1518     while (current < end && !(*current)->IsSmi()) {
   1519       HeapObject* current_contents = HeapObject::cast(*current);
   1520       int root_index = serializer_->RootIndex(current_contents, kPlain);
   1521       // Repeats are not subject to the write barrier so there are only some
   1522       // objects that can be used in a repeat encoding.  These are the early
   1523       // ones in the root array that are never in new space.
   1524       if (current != start &&
   1525           root_index != kInvalidRootIndex &&
   1526           root_index < kRootArrayNumberOfConstantEncodings &&
   1527           current_contents == current[-1]) {
   1528         DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents));
   1529         int repeat_count = 1;
   1530         while (&current[repeat_count] < end - 1 &&
   1531                current[repeat_count] == current_contents) {
   1532           repeat_count++;
   1533         }
   1534         current += repeat_count;
   1535         bytes_processed_so_far_ += repeat_count * kPointerSize;
   1536         if (repeat_count > kMaxRepeats) {
   1537           sink_->Put(kRepeat, "SerializeRepeats");
   1538           sink_->PutInt(repeat_count, "SerializeRepeats");
   1539         } else {
   1540           sink_->Put(CodeForRepeats(repeat_count), "SerializeRepeats");
   1541         }
   1542       } else {
   1543         serializer_->SerializeObject(
   1544                 current_contents, kPlain, kStartOfObject, 0);
   1545         bytes_processed_so_far_ += kPointerSize;
   1546         current++;
   1547       }
   1548     }
   1549   }
   1550 }
   1551 
   1552 
   1553 void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
   1554   // Out-of-line constant pool entries will be visited by the ConstantPoolArray.
   1555   if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
   1556 
   1557   int skip = OutputRawData(rinfo->target_address_address(),
   1558                            kCanReturnSkipInsteadOfSkipping);
   1559   HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
   1560   Object* object = rinfo->target_object();
   1561   serializer_->SerializeObject(object, how_to_code, kStartOfObject, skip);
   1562   bytes_processed_so_far_ += rinfo->target_address_size();
   1563 }
   1564 
   1565 
   1566 void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
   1567   int skip = OutputRawData(reinterpret_cast<Address>(p),
   1568                            kCanReturnSkipInsteadOfSkipping);
   1569   sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
   1570   sink_->PutInt(skip, "SkipB4ExternalRef");
   1571   Address target = *p;
   1572   sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
   1573   bytes_processed_so_far_ += kPointerSize;
   1574 }
   1575 
   1576 
   1577 void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
   1578   int skip = OutputRawData(rinfo->target_address_address(),
   1579                            kCanReturnSkipInsteadOfSkipping);
   1580   HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
   1581   sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
   1582   sink_->PutInt(skip, "SkipB4ExternalRef");
   1583   Address target = rinfo->target_reference();
   1584   sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
   1585   bytes_processed_so_far_ += rinfo->target_address_size();
   1586 }
   1587 
   1588 
   1589 void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
   1590   int skip = OutputRawData(rinfo->target_address_address(),
   1591                            kCanReturnSkipInsteadOfSkipping);
   1592   HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
   1593   sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
   1594   sink_->PutInt(skip, "SkipB4ExternalRef");
   1595   Address target = rinfo->target_address();
   1596   sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
   1597   bytes_processed_so_far_ += rinfo->target_address_size();
   1598 }
   1599 
   1600 
   1601 void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
   1602   // Out-of-line constant pool entries will be visited by the ConstantPoolArray.
   1603   if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
   1604 
   1605   int skip = OutputRawData(rinfo->target_address_address(),
   1606                            kCanReturnSkipInsteadOfSkipping);
   1607   Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
   1608   serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
   1609   bytes_processed_so_far_ += rinfo->target_address_size();
   1610 }
   1611 
   1612 
   1613 void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
   1614   int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
   1615   Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
   1616   serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
   1617   bytes_processed_so_far_ += kPointerSize;
   1618 }
   1619 
   1620 
   1621 void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
   1622   // Out-of-line constant pool entries will be visited by the ConstantPoolArray.
   1623   if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
   1624 
   1625   int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
   1626   Cell* object = Cell::cast(rinfo->target_cell());
   1627   serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
   1628   bytes_processed_so_far_ += kPointerSize;
   1629 }
   1630 
   1631 
   1632 void Serializer::ObjectSerializer::VisitExternalOneByteString(
   1633     v8::String::ExternalOneByteStringResource** resource_pointer) {
   1634   Address references_start = reinterpret_cast<Address>(resource_pointer);
   1635   OutputRawData(references_start);
   1636   for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
   1637     Object* source =
   1638         serializer_->isolate()->heap()->natives_source_cache()->get(i);
   1639     if (!source->IsUndefined()) {
   1640       ExternalOneByteString* string = ExternalOneByteString::cast(source);
   1641       typedef v8::String::ExternalOneByteStringResource Resource;
   1642       const Resource* resource = string->resource();
   1643       if (resource == *resource_pointer) {
   1644         sink_->Put(kNativesStringResource, "NativesStringResource");
   1645         sink_->PutSection(i, "NativesStringResourceEnd");
   1646         bytes_processed_so_far_ += sizeof(resource);
   1647         return;
   1648       }
   1649     }
   1650   }
   1651   // One of the strings in the natives cache should match the resource.  We
   1652   // can't serialize any other kinds of external strings.
   1653   UNREACHABLE();
   1654 }
   1655 
   1656 
   1657 static Code* CloneCodeObject(HeapObject* code) {
   1658   Address copy = new byte[code->Size()];
   1659   MemCopy(copy, code->address(), code->Size());
   1660   return Code::cast(HeapObject::FromAddress(copy));
   1661 }
   1662 
   1663 
   1664 static void WipeOutRelocations(Code* code) {
   1665   int mode_mask =
   1666       RelocInfo::kCodeTargetMask |
   1667       RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
   1668       RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
   1669       RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY);
   1670   for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
   1671     if (!(FLAG_enable_ool_constant_pool && it.rinfo()->IsInConstantPool())) {
   1672       it.rinfo()->WipeOut();
   1673     }
   1674   }
   1675 }
   1676 
   1677 
   1678 int Serializer::ObjectSerializer::OutputRawData(
   1679     Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
   1680   Address object_start = object_->address();
   1681   int base = bytes_processed_so_far_;
   1682   int up_to_offset = static_cast<int>(up_to - object_start);
   1683   int to_skip = up_to_offset - bytes_processed_so_far_;
   1684   int bytes_to_output = to_skip;
   1685   bytes_processed_so_far_ += to_skip;
   1686   // This assert will fail if the reloc info gives us the target_address_address
   1687   // locations in a non-ascending order.  Luckily that doesn't happen.
   1688   DCHECK(to_skip >= 0);
   1689   bool outputting_code = false;
   1690   if (to_skip != 0 && code_object_ && !code_has_been_output_) {
   1691     // Output the code all at once and fix later.
   1692     bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
   1693     outputting_code = true;
   1694     code_has_been_output_ = true;
   1695   }
   1696   if (bytes_to_output != 0 &&
   1697       (!code_object_ || outputting_code)) {
   1698 #define RAW_CASE(index)                                                        \
   1699     if (!outputting_code && bytes_to_output == index * kPointerSize &&         \
   1700         index * kPointerSize == to_skip) {                                     \
   1701       sink_->PutSection(kRawData + index, "RawDataFixed");                     \
   1702       to_skip = 0;  /* This insn already skips. */                             \
   1703     } else  /* NOLINT */
   1704     COMMON_RAW_LENGTHS(RAW_CASE)
   1705 #undef RAW_CASE
   1706     {  /* NOLINT */
   1707       // We always end up here if we are outputting the code of a code object.
   1708       sink_->Put(kRawData, "RawData");
   1709       sink_->PutInt(bytes_to_output, "length");
   1710     }
   1711 
   1712     // To make snapshots reproducible, we need to wipe out all pointers in code.
   1713     if (code_object_) {
   1714       Code* code = CloneCodeObject(object_);
   1715       WipeOutRelocations(code);
   1716       // We need to wipe out the header fields *after* wiping out the
   1717       // relocations, because some of these fields are needed for the latter.
   1718       code->WipeOutHeader();
   1719       object_start = code->address();
   1720     }
   1721 
   1722     const char* description = code_object_ ? "Code" : "Byte";
   1723     for (int i = 0; i < bytes_to_output; i++) {
   1724       sink_->PutSection(object_start[base + i], description);
   1725     }
   1726     if (code_object_) delete[] object_start;
   1727   }
   1728   if (to_skip != 0 && return_skip == kIgnoringReturn) {
   1729     sink_->Put(kSkip, "Skip");
   1730     sink_->PutInt(to_skip, "SkipDistance");
   1731     to_skip = 0;
   1732   }
   1733   return to_skip;
   1734 }
   1735 
   1736 
   1737 int Serializer::SpaceOfObject(HeapObject* object) {
   1738   for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
   1739     AllocationSpace s = static_cast<AllocationSpace>(i);
   1740     if (object->GetHeap()->InSpace(object, s)) {
   1741       DCHECK(i < kNumberOfSpaces);
   1742       return i;
   1743     }
   1744   }
   1745   UNREACHABLE();
   1746   return 0;
   1747 }
   1748 
   1749 
   1750 int Serializer::Allocate(int space, int size) {
   1751   CHECK(space >= 0 && space < kNumberOfSpaces);
   1752   int allocation_address = fullness_[space];
   1753   fullness_[space] = allocation_address + size;
   1754   return allocation_address;
   1755 }
   1756 
   1757 
   1758 int Serializer::SpaceAreaSize(int space) {
   1759   if (space == CODE_SPACE) {
   1760     return isolate_->memory_allocator()->CodePageAreaSize();
   1761   } else {
   1762     return Page::kPageSize - Page::kObjectStartOffset;
   1763   }
   1764 }
   1765 
   1766 
   1767 void Serializer::Pad() {
   1768   // The non-branching GetInt will read up to 3 bytes too far, so we need
   1769   // to pad the snapshot to make sure we don't read over the end.
   1770   for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
   1771     sink_->Put(kNop, "Padding");
   1772   }
   1773 }
   1774 
   1775 
   1776 void Serializer::InitializeCodeAddressMap() {
   1777   isolate_->InitializeLoggingAndCounters();
   1778   code_address_map_ = new CodeAddressMap(isolate_);
   1779 }
   1780 
   1781 
   1782 ScriptData* CodeSerializer::Serialize(Isolate* isolate,
   1783                                       Handle<SharedFunctionInfo> info,
   1784                                       Handle<String> source) {
   1785   base::ElapsedTimer timer;
   1786   if (FLAG_profile_deserialization) timer.Start();
   1787 
   1788   // Serialize code object.
   1789   List<byte> payload;
   1790   ListSnapshotSink list_sink(&payload);
   1791   DebugSnapshotSink debug_sink(&list_sink);
   1792   SnapshotByteSink* sink = FLAG_trace_code_serializer
   1793                                ? static_cast<SnapshotByteSink*>(&debug_sink)
   1794                                : static_cast<SnapshotByteSink*>(&list_sink);
   1795   CodeSerializer cs(isolate, sink, *source);
   1796   DisallowHeapAllocation no_gc;
   1797   Object** location = Handle<Object>::cast(info).location();
   1798   cs.VisitPointer(location);
   1799   cs.Pad();
   1800 
   1801   SerializedCodeData data(&payload, &cs);
   1802   ScriptData* script_data = data.GetScriptData();
   1803 
   1804   if (FLAG_profile_deserialization) {
   1805     double ms = timer.Elapsed().InMillisecondsF();
   1806     int length = script_data->length();
   1807     PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms);
   1808   }
   1809 
   1810   return script_data;
   1811 }
   1812 
   1813 
   1814 void CodeSerializer::SerializeObject(Object* o, HowToCode how_to_code,
   1815                                      WhereToPoint where_to_point, int skip) {
   1816   CHECK(o->IsHeapObject());
   1817   HeapObject* heap_object = HeapObject::cast(o);
   1818 
   1819   // The code-caches link to context-specific code objects, which
   1820   // the startup and context serializes cannot currently handle.
   1821   DCHECK(!heap_object->IsMap() ||
   1822          Map::cast(heap_object)->code_cache() ==
   1823              heap_object->GetHeap()->empty_fixed_array());
   1824 
   1825   int root_index;
   1826   if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) {
   1827     PutRoot(root_index, heap_object, how_to_code, where_to_point, skip);
   1828     return;
   1829   }
   1830 
   1831   // TODO(yangguo) wire up global object.
   1832   // TODO(yangguo) We cannot deal with different hash seeds yet.
   1833   DCHECK(!heap_object->IsHashTable());
   1834 
   1835   if (address_mapper_.IsMapped(heap_object)) {
   1836     SerializeReferenceToPreviousObject(heap_object, how_to_code, where_to_point,
   1837                                        skip);
   1838     return;
   1839   }
   1840 
   1841   if (heap_object->IsCode()) {
   1842     Code* code_object = Code::cast(heap_object);
   1843     if (code_object->kind() == Code::BUILTIN) {
   1844       SerializeBuiltin(code_object, how_to_code, where_to_point, skip);
   1845       return;
   1846     }
   1847     if (code_object->IsCodeStubOrIC()) {
   1848       SerializeCodeStub(code_object, how_to_code, where_to_point, skip);
   1849       return;
   1850     }
   1851     code_object->ClearInlineCaches();
   1852   }
   1853 
   1854   if (heap_object == source_) {
   1855     SerializeSourceObject(how_to_code, where_to_point, skip);
   1856     return;
   1857   }
   1858 
   1859   SerializeHeapObject(heap_object, how_to_code, where_to_point, skip);
   1860 }
   1861 
   1862 
   1863 void CodeSerializer::SerializeHeapObject(HeapObject* heap_object,
   1864                                          HowToCode how_to_code,
   1865                                          WhereToPoint where_to_point,
   1866                                          int skip) {
   1867   if (heap_object->IsScript()) {
   1868     // The wrapper cache uses a Foreign object to point to a global handle.
   1869     // However, the object visitor expects foreign objects to point to external
   1870     // references.  Clear the cache to avoid this issue.
   1871     Script::cast(heap_object)->ClearWrapperCache();
   1872   }
   1873 
   1874   if (skip != 0) {
   1875     sink_->Put(kSkip, "SkipFromSerializeObject");
   1876     sink_->PutInt(skip, "SkipDistanceFromSerializeObject");
   1877   }
   1878 
   1879   if (FLAG_trace_code_serializer) {
   1880     PrintF("Encoding heap object: ");
   1881     heap_object->ShortPrint();
   1882     PrintF("\n");
   1883   }
   1884 
   1885   // Object has not yet been serialized.  Serialize it here.
   1886   ObjectSerializer serializer(this, heap_object, sink_, how_to_code,
   1887                               where_to_point);
   1888   serializer.Serialize();
   1889 }
   1890 
   1891 
   1892 void CodeSerializer::SerializeBuiltin(Code* builtin, HowToCode how_to_code,
   1893                                       WhereToPoint where_to_point, int skip) {
   1894   if (skip != 0) {
   1895     sink_->Put(kSkip, "SkipFromSerializeBuiltin");
   1896     sink_->PutInt(skip, "SkipDistanceFromSerializeBuiltin");
   1897   }
   1898 
   1899   DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
   1900          (how_to_code == kPlain && where_to_point == kInnerPointer) ||
   1901          (how_to_code == kFromCode && where_to_point == kInnerPointer));
   1902   int builtin_index = builtin->builtin_index();
   1903   DCHECK_LT(builtin_index, Builtins::builtin_count);
   1904   DCHECK_LE(0, builtin_index);
   1905 
   1906   if (FLAG_trace_code_serializer) {
   1907     PrintF("Encoding builtin: %s\n",
   1908            isolate()->builtins()->name(builtin_index));
   1909   }
   1910 
   1911   sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin");
   1912   sink_->PutInt(builtin_index, "builtin_index");
   1913 }
   1914 
   1915 
   1916 void CodeSerializer::SerializeCodeStub(Code* code, HowToCode how_to_code,
   1917                                        WhereToPoint where_to_point, int skip) {
   1918   DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
   1919          (how_to_code == kPlain && where_to_point == kInnerPointer) ||
   1920          (how_to_code == kFromCode && where_to_point == kInnerPointer));
   1921   uint32_t stub_key = code->stub_key();
   1922 
   1923   if (stub_key == CodeStub::NoCacheKey()) {
   1924     if (FLAG_trace_code_serializer) {
   1925       PrintF("Encoding uncacheable code stub as heap object\n");
   1926     }
   1927     SerializeHeapObject(code, how_to_code, where_to_point, skip);
   1928     return;
   1929   }
   1930 
   1931   if (skip != 0) {
   1932     sink_->Put(kSkip, "SkipFromSerializeCodeStub");
   1933     sink_->PutInt(skip, "SkipDistanceFromSerializeCodeStub");
   1934   }
   1935 
   1936   int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex;
   1937 
   1938   if (FLAG_trace_code_serializer) {
   1939     PrintF("Encoding code stub %s as %d\n",
   1940            CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key), false),
   1941            index);
   1942   }
   1943 
   1944   sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub");
   1945   sink_->PutInt(index, "CodeStub key");
   1946 }
   1947 
   1948 
   1949 int CodeSerializer::AddCodeStubKey(uint32_t stub_key) {
   1950   // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2).
   1951   int index = 0;
   1952   while (index < stub_keys_.length()) {
   1953     if (stub_keys_[index] == stub_key) return index;
   1954     index++;
   1955   }
   1956   stub_keys_.Add(stub_key);
   1957   return index;
   1958 }
   1959 
   1960 
   1961 void CodeSerializer::SerializeSourceObject(HowToCode how_to_code,
   1962                                            WhereToPoint where_to_point,
   1963                                            int skip) {
   1964   if (skip != 0) {
   1965     sink_->Put(kSkip, "SkipFromSerializeSourceObject");
   1966     sink_->PutInt(skip, "SkipDistanceFromSerializeSourceObject");
   1967   }
   1968 
   1969   if (FLAG_trace_code_serializer) {
   1970     PrintF("Encoding source object\n");
   1971   }
   1972 
   1973   DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
   1974   sink_->Put(kAttachedReference + how_to_code + where_to_point, "Source");
   1975   sink_->PutInt(kSourceObjectIndex, "kSourceObjectIndex");
   1976 }
   1977 
   1978 
   1979 Handle<SharedFunctionInfo> CodeSerializer::Deserialize(Isolate* isolate,
   1980                                                        ScriptData* data,
   1981                                                        Handle<String> source) {
   1982   base::ElapsedTimer timer;
   1983   if (FLAG_profile_deserialization) timer.Start();
   1984 
   1985   Object* root;
   1986 
   1987   {
   1988     HandleScope scope(isolate);
   1989 
   1990     SerializedCodeData scd(data, *source);
   1991     SnapshotByteSource payload(scd.Payload(), scd.PayloadLength());
   1992     Deserializer deserializer(&payload);
   1993     STATIC_ASSERT(NEW_SPACE == 0);
   1994     for (int i = NEW_SPACE; i <= PROPERTY_CELL_SPACE; i++) {
   1995       deserializer.set_reservation(i, scd.GetReservation(i));
   1996     }
   1997 
   1998     // Prepare and register list of attached objects.
   1999     Vector<const uint32_t> code_stub_keys = scd.CodeStubKeys();
   2000     Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(
   2001         code_stub_keys.length() + kCodeStubsBaseIndex);
   2002     attached_objects[kSourceObjectIndex] = source;
   2003     for (int i = 0; i < code_stub_keys.length(); i++) {
   2004       attached_objects[i + kCodeStubsBaseIndex] =
   2005           CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked();
   2006     }
   2007     deserializer.SetAttachedObjects(&attached_objects);
   2008 
   2009     // Deserialize.
   2010     deserializer.DeserializePartial(isolate, &root);
   2011     deserializer.FlushICacheForNewCodeObjects();
   2012   }
   2013 
   2014   if (FLAG_profile_deserialization) {
   2015     double ms = timer.Elapsed().InMillisecondsF();
   2016     int length = data->length();
   2017     PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms);
   2018   }
   2019   return Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root), isolate);
   2020 }
   2021 
   2022 
   2023 SerializedCodeData::SerializedCodeData(List<byte>* payload, CodeSerializer* cs)
   2024     : owns_script_data_(true) {
   2025   DisallowHeapAllocation no_gc;
   2026   List<uint32_t>* stub_keys = cs->stub_keys();
   2027 
   2028   // Calculate sizes.
   2029   int num_stub_keys = stub_keys->length();
   2030   int stub_keys_size = stub_keys->length() * kInt32Size;
   2031   int data_length = kHeaderSize + stub_keys_size + payload->length();
   2032 
   2033   // Allocate backing store and create result data.
   2034   byte* data = NewArray<byte>(data_length);
   2035   DCHECK(IsAligned(reinterpret_cast<intptr_t>(data), kPointerAlignment));
   2036   script_data_ = new ScriptData(data, data_length);
   2037   script_data_->AcquireDataOwnership();
   2038 
   2039   // Set header values.
   2040   SetHeaderValue(kCheckSumOffset, CheckSum(cs->source()));
   2041   SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys);
   2042   SetHeaderValue(kPayloadLengthOffset, payload->length());
   2043   STATIC_ASSERT(NEW_SPACE == 0);
   2044   for (int i = NEW_SPACE; i <= PROPERTY_CELL_SPACE; i++) {
   2045     SetHeaderValue(kReservationsOffset + i, cs->CurrentAllocationAddress(i));
   2046   }
   2047 
   2048   // Copy code stub keys.
   2049   CopyBytes(data + kHeaderSize, reinterpret_cast<byte*>(stub_keys->begin()),
   2050             stub_keys_size);
   2051 
   2052   // Copy serialized data.
   2053   CopyBytes(data + kHeaderSize + stub_keys_size, payload->begin(),
   2054             static_cast<size_t>(payload->length()));
   2055 }
   2056 
   2057 
   2058 bool SerializedCodeData::IsSane(String* source) {
   2059   return GetHeaderValue(kCheckSumOffset) == CheckSum(source) &&
   2060          PayloadLength() >= SharedFunctionInfo::kSize;
   2061 }
   2062 
   2063 
   2064 int SerializedCodeData::CheckSum(String* string) {
   2065   int checksum = Version::Hash();
   2066 #ifdef DEBUG
   2067   uint32_t seed = static_cast<uint32_t>(checksum);
   2068   checksum = static_cast<int>(IteratingStringHasher::Hash(string, seed));
   2069 #endif  // DEBUG
   2070   return checksum;
   2071 }
   2072 } }  // namespace v8::internal
   2073