1 // Copyright 2011 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "cc/trees/layer_sorter.h" 6 7 #include <algorithm> 8 #include <deque> 9 #include <limits> 10 #include <vector> 11 12 #include "base/logging.h" 13 #include "cc/base/math_util.h" 14 #include "cc/layers/render_surface_impl.h" 15 #include "ui/gfx/transform.h" 16 17 namespace cc { 18 19 // This epsilon is used to determine if two layers are too close to each other 20 // to be able to tell which is in front of the other. It's a relative epsilon 21 // so it is robust to changes in scene scale. This value was chosen by picking 22 // a value near machine epsilon and then increasing it until the flickering on 23 // the test scene went away. 24 const float k_layer_epsilon = 1e-4f; 25 26 inline static float PerpProduct(const gfx::Vector2dF& u, 27 const gfx::Vector2dF& v) { 28 return u.x() * v.y() - u.y() * v.x(); 29 } 30 31 // Tests if two edges defined by their endpoints (a,b) and (c,d) intersect. 32 // Returns true and the point of intersection if they do and false otherwise. 33 static bool EdgeEdgeTest(const gfx::PointF& a, 34 const gfx::PointF& b, 35 const gfx::PointF& c, 36 const gfx::PointF& d, 37 gfx::PointF* r) { 38 gfx::Vector2dF u = b - a; 39 gfx::Vector2dF v = d - c; 40 gfx::Vector2dF w = a - c; 41 42 float denom = PerpProduct(u, v); 43 44 // If denom == 0 then the edges are parallel. While they could be overlapping 45 // we don't bother to check here as the we'll find their intersections from 46 // the corner to quad tests. 47 if (!denom) 48 return false; 49 50 float s = PerpProduct(v, w) / denom; 51 if (s < 0.f || s > 1.f) 52 return false; 53 54 float t = PerpProduct(u, w) / denom; 55 if (t < 0.f || t > 1.f) 56 return false; 57 58 u.Scale(s); 59 *r = a + u; 60 return true; 61 } 62 63 GraphNode::GraphNode(LayerImpl* layer_impl) 64 : layer(layer_impl), 65 incoming_edge_weight(0.f) {} 66 67 GraphNode::~GraphNode() {} 68 69 LayerSorter::LayerSorter() 70 : z_range_(0.f) {} 71 72 LayerSorter::~LayerSorter() {} 73 74 static float CheckFloatingPointNumericAccuracy(float a, float b) { 75 float abs_dif = std::abs(b - a); 76 float abs_max = std::max(std::abs(b), std::abs(a)); 77 // Check to see if we've got a result with a reasonable amount of error. 78 return abs_dif / abs_max; 79 } 80 81 // Checks whether layer "a" draws on top of layer "b". The weight value returned 82 // is an indication of the maximum z-depth difference between the layers or zero 83 // if the layers are found to be intesecting (some features are in front and 84 // some are behind). 85 LayerSorter::ABCompareResult LayerSorter::CheckOverlap(LayerShape* a, 86 LayerShape* b, 87 float z_threshold, 88 float* weight) { 89 *weight = 0.f; 90 91 // Early out if the projected bounds don't overlap. 92 if (!a->projected_bounds.Intersects(b->projected_bounds)) 93 return None; 94 95 gfx::PointF aPoints[4] = { a->projected_quad.p1(), 96 a->projected_quad.p2(), 97 a->projected_quad.p3(), 98 a->projected_quad.p4() }; 99 gfx::PointF bPoints[4] = { b->projected_quad.p1(), 100 b->projected_quad.p2(), 101 b->projected_quad.p3(), 102 b->projected_quad.p4() }; 103 104 // Make a list of points that inside both layer quad projections. 105 std::vector<gfx::PointF> overlap_points; 106 107 // Check all four corners of one layer against the other layer's quad. 108 for (int i = 0; i < 4; ++i) { 109 if (a->projected_quad.Contains(bPoints[i])) 110 overlap_points.push_back(bPoints[i]); 111 if (b->projected_quad.Contains(aPoints[i])) 112 overlap_points.push_back(aPoints[i]); 113 } 114 115 // Check all the edges of one layer for intersection with the other layer's 116 // edges. 117 gfx::PointF r; 118 for (int ea = 0; ea < 4; ++ea) 119 for (int eb = 0; eb < 4; ++eb) 120 if (EdgeEdgeTest(aPoints[ea], aPoints[(ea + 1) % 4], 121 bPoints[eb], bPoints[(eb + 1) % 4], 122 &r)) 123 overlap_points.push_back(r); 124 125 if (overlap_points.empty()) 126 return None; 127 128 // Check the corresponding layer depth value for all overlap points to 129 // determine which layer is in front. 130 float max_positive = 0.f; 131 float max_negative = 0.f; 132 133 // This flag tracks the existance of a numerically accurate seperation 134 // between two layers. If there is no accurate seperation, the layers 135 // cannot be effectively sorted. 136 bool accurate = false; 137 138 for (size_t o = 0; o < overlap_points.size(); o++) { 139 float za = a->LayerZFromProjectedPoint(overlap_points[o]); 140 float zb = b->LayerZFromProjectedPoint(overlap_points[o]); 141 142 // Here we attempt to avoid numeric issues with layers that are too 143 // close together. If we have 2-sided quads that are very close 144 // together then we will draw them in document order to avoid 145 // flickering. The correct solution is for the content maker to turn 146 // on back-face culling or move the quads apart (if they're not two 147 // sides of one object). 148 if (CheckFloatingPointNumericAccuracy(za, zb) > k_layer_epsilon) 149 accurate = true; 150 151 float diff = za - zb; 152 if (diff > max_positive) 153 max_positive = diff; 154 if (diff < max_negative) 155 max_negative = diff; 156 } 157 158 // If we can't tell which should come first, we use document order. 159 if (!accurate) 160 return ABeforeB; 161 162 float max_diff = 163 std::abs(max_positive) > std::abs(max_negative) ? 164 max_positive : max_negative; 165 166 // If the results are inconsistent (and the z difference substantial to rule 167 // out numerical errors) then the layers are intersecting. We will still 168 // return an order based on the maximum depth difference but with an edge 169 // weight of zero these layers will get priority if a graph cycle is present 170 // and needs to be broken. 171 if (max_positive > z_threshold && max_negative < -z_threshold) 172 *weight = 0.f; 173 else 174 *weight = std::abs(max_diff); 175 176 // Maintain relative order if the layers have the same depth at all 177 // intersection points. 178 if (max_diff <= 0.f) 179 return ABeforeB; 180 181 return BBeforeA; 182 } 183 184 LayerShape::LayerShape() {} 185 186 LayerShape::LayerShape(float width, 187 float height, 188 const gfx::Transform& draw_transform) { 189 gfx::QuadF layer_quad(gfx::RectF(0.f, 0.f, width, height)); 190 191 // Compute the projection of the layer quad onto the z = 0 plane. 192 193 gfx::PointF clipped_quad[8]; 194 int num_vertices_in_clipped_quad; 195 MathUtil::MapClippedQuad(draw_transform, 196 layer_quad, 197 clipped_quad, 198 &num_vertices_in_clipped_quad); 199 200 if (num_vertices_in_clipped_quad < 3) { 201 projected_bounds = gfx::RectF(); 202 return; 203 } 204 205 projected_bounds = 206 MathUtil::ComputeEnclosingRectOfVertices(clipped_quad, 207 num_vertices_in_clipped_quad); 208 209 // NOTE: it will require very significant refactoring and overhead to deal 210 // with generalized polygons or multiple quads per layer here. For the sake of 211 // layer sorting it is equally correct to take a subsection of the polygon 212 // that can be made into a quad. This will only be incorrect in the case of 213 // intersecting layers, which are not supported yet anyway. 214 projected_quad.set_p1(clipped_quad[0]); 215 projected_quad.set_p2(clipped_quad[1]); 216 projected_quad.set_p3(clipped_quad[2]); 217 if (num_vertices_in_clipped_quad >= 4) { 218 projected_quad.set_p4(clipped_quad[3]); 219 } else { 220 // This will be a degenerate quad that is actually a triangle. 221 projected_quad.set_p4(clipped_quad[2]); 222 } 223 224 // Compute the normal of the layer's plane. 225 bool clipped = false; 226 gfx::Point3F c1 = 227 MathUtil::MapPoint(draw_transform, gfx::Point3F(0.f, 0.f, 0.f), &clipped); 228 gfx::Point3F c2 = 229 MathUtil::MapPoint(draw_transform, gfx::Point3F(0.f, 1.f, 0.f), &clipped); 230 gfx::Point3F c3 = 231 MathUtil::MapPoint(draw_transform, gfx::Point3F(1.f, 0.f, 0.f), &clipped); 232 // TODO(shawnsingh): Deal with clipping. 233 gfx::Vector3dF c12 = c2 - c1; 234 gfx::Vector3dF c13 = c3 - c1; 235 layer_normal = gfx::CrossProduct(c13, c12); 236 237 transform_origin = c1; 238 } 239 240 LayerShape::~LayerShape() {} 241 242 // Returns the Z coordinate of a point on the layer that projects 243 // to point p which lies on the z = 0 plane. It does it by computing the 244 // intersection of a line starting from p along the Z axis and the plane 245 // of the layer. 246 float LayerShape::LayerZFromProjectedPoint(const gfx::PointF& p) const { 247 gfx::Vector3dF z_axis(0.f, 0.f, 1.f); 248 gfx::Vector3dF w = gfx::Point3F(p) - transform_origin; 249 250 float d = gfx::DotProduct(layer_normal, z_axis); 251 float n = -gfx::DotProduct(layer_normal, w); 252 253 // Check if layer is parallel to the z = 0 axis which will make it 254 // invisible and hence returning zero is fine. 255 if (!d) 256 return 0.f; 257 258 // The intersection point would be given by: 259 // p + (n / d) * u but since we are only interested in the 260 // z coordinate and p's z coord is zero, all we need is the value of n/d. 261 return n / d; 262 } 263 264 void LayerSorter::CreateGraphNodes(LayerImplList::iterator first, 265 LayerImplList::iterator last) { 266 DVLOG(2) << "Creating graph nodes:"; 267 float min_z = FLT_MAX; 268 float max_z = -FLT_MAX; 269 for (LayerImplList::const_iterator it = first; it < last; it++) { 270 nodes_.push_back(GraphNode(*it)); 271 GraphNode& node = nodes_.at(nodes_.size() - 1); 272 RenderSurfaceImpl* render_surface = node.layer->render_surface(); 273 if (!node.layer->DrawsContent() && !render_surface) 274 continue; 275 276 DVLOG(2) << "Layer " << node.layer->id() << 277 " (" << node.layer->bounds().width() << 278 " x " << node.layer->bounds().height() << ")"; 279 280 gfx::Transform draw_transform; 281 float layer_width, layer_height; 282 if (render_surface) { 283 draw_transform = render_surface->draw_transform(); 284 layer_width = render_surface->content_rect().width(); 285 layer_height = render_surface->content_rect().height(); 286 } else { 287 draw_transform = node.layer->draw_transform(); 288 layer_width = node.layer->content_bounds().width(); 289 layer_height = node.layer->content_bounds().height(); 290 } 291 292 node.shape = LayerShape(layer_width, layer_height, draw_transform); 293 294 max_z = std::max(max_z, node.shape.transform_origin.z()); 295 min_z = std::min(min_z, node.shape.transform_origin.z()); 296 } 297 298 z_range_ = std::abs(max_z - min_z); 299 } 300 301 void LayerSorter::CreateGraphEdges() { 302 DVLOG(2) << "Edges:"; 303 // Fraction of the total z_range below which z differences 304 // are not considered reliable. 305 const float z_threshold_factor = 0.01f; 306 float z_threshold = z_range_ * z_threshold_factor; 307 308 for (size_t na = 0; na < nodes_.size(); na++) { 309 GraphNode& node_a = nodes_[na]; 310 if (!node_a.layer->DrawsContent() && !node_a.layer->render_surface()) 311 continue; 312 for (size_t nb = na + 1; nb < nodes_.size(); nb++) { 313 GraphNode& node_b = nodes_[nb]; 314 if (!node_b.layer->DrawsContent() && !node_b.layer->render_surface()) 315 continue; 316 float weight = 0.f; 317 ABCompareResult overlap_result = CheckOverlap(&node_a.shape, 318 &node_b.shape, 319 z_threshold, 320 &weight); 321 GraphNode* start_node = NULL; 322 GraphNode* end_node = NULL; 323 if (overlap_result == ABeforeB) { 324 start_node = &node_a; 325 end_node = &node_b; 326 } else if (overlap_result == BBeforeA) { 327 start_node = &node_b; 328 end_node = &node_a; 329 } 330 331 if (start_node) { 332 DVLOG(2) << start_node->layer->id() << " -> " << end_node->layer->id(); 333 edges_.push_back(GraphEdge(start_node, end_node, weight)); 334 } 335 } 336 } 337 338 for (size_t i = 0; i < edges_.size(); i++) { 339 GraphEdge& edge = edges_[i]; 340 active_edges_[&edge] = &edge; 341 edge.from->outgoing.push_back(&edge); 342 edge.to->incoming.push_back(&edge); 343 edge.to->incoming_edge_weight += edge.weight; 344 } 345 } 346 347 // Finds and removes an edge from the list by doing a swap with the 348 // last element of the list. 349 void LayerSorter::RemoveEdgeFromList(GraphEdge* edge, 350 std::vector<GraphEdge*>* list) { 351 std::vector<GraphEdge*>::iterator iter = 352 std::find(list->begin(), list->end(), edge); 353 DCHECK(iter != list->end()); 354 list->erase(iter); 355 } 356 357 // Sorts the given list of layers such that they can be painted in a 358 // back-to-front order. Sorting produces correct results for non-intersecting 359 // layers that don't have cyclical order dependencies. Cycles and intersections 360 // are broken (somewhat) aribtrarily. Sorting of layers is done via a 361 // topological sort of a directed graph whose nodes are the layers themselves. 362 // An edge from node A to node B signifies that layer A needs to be drawn before 363 // layer B. If A and B have no dependency between each other, then we preserve 364 // the ordering of those layers as they were in the original list. 365 // 366 // The draw order between two layers is determined by projecting the two 367 // triangles making up each layer quad to the Z = 0 plane, finding points of 368 // intersection between the triangles and backprojecting those points to the 369 // plane of the layer to determine the corresponding Z coordinate. The layer 370 // with the lower Z coordinate (farther from the eye) needs to be rendered 371 // first. 372 // 373 // If the layer projections don't intersect, then no edges (dependencies) are 374 // created between them in the graph. HOWEVER, in this case we still need to 375 // preserve the ordering of the original list of layers, since that list should 376 // already have proper z-index ordering of layers. 377 // 378 void LayerSorter::Sort(LayerImplList::iterator first, 379 LayerImplList::iterator last) { 380 DVLOG(2) << "Sorting start ----"; 381 CreateGraphNodes(first, last); 382 383 CreateGraphEdges(); 384 385 std::vector<GraphNode*> sorted_list; 386 std::deque<GraphNode*> no_incoming_edge_node_list; 387 388 // Find all the nodes that don't have incoming edges. 389 for (NodeList::iterator la = nodes_.begin(); la < nodes_.end(); la++) { 390 if (!la->incoming.size()) 391 no_incoming_edge_node_list.push_back(&(*la)); 392 } 393 394 DVLOG(2) << "Sorted list: "; 395 while (active_edges_.size() || no_incoming_edge_node_list.size()) { 396 while (no_incoming_edge_node_list.size()) { 397 // It is necessary to preserve the existing ordering of layers, when there 398 // are no explicit dependencies (because this existing ordering has 399 // correct z-index/layout ordering). To preserve this ordering, we process 400 // Nodes in the same order that they were added to the list. 401 GraphNode* from_node = no_incoming_edge_node_list.front(); 402 no_incoming_edge_node_list.pop_front(); 403 404 // Add it to the final list. 405 sorted_list.push_back(from_node); 406 407 DVLOG(2) << from_node->layer->id() << ", "; 408 409 // Remove all its outgoing edges from the graph. 410 for (size_t i = 0; i < from_node->outgoing.size(); i++) { 411 GraphEdge* outgoing_edge = from_node->outgoing[i]; 412 413 active_edges_.erase(outgoing_edge); 414 RemoveEdgeFromList(outgoing_edge, &outgoing_edge->to->incoming); 415 outgoing_edge->to->incoming_edge_weight -= outgoing_edge->weight; 416 417 if (!outgoing_edge->to->incoming.size()) 418 no_incoming_edge_node_list.push_back(outgoing_edge->to); 419 } 420 from_node->outgoing.clear(); 421 } 422 423 if (!active_edges_.size()) 424 break; 425 426 // If there are still active edges but the list of nodes without incoming 427 // edges is empty then we have run into a cycle. Break the cycle by finding 428 // the node with the smallest overall incoming edge weight and use it. This 429 // will favor nodes that have zero-weight incoming edges i.e. layers that 430 // are being occluded by a layer that intersects them. 431 float min_incoming_edge_weight = FLT_MAX; 432 GraphNode* next_node = NULL; 433 for (size_t i = 0; i < nodes_.size(); i++) { 434 if (nodes_[i].incoming.size() && 435 nodes_[i].incoming_edge_weight < min_incoming_edge_weight) { 436 min_incoming_edge_weight = nodes_[i].incoming_edge_weight; 437 next_node = &nodes_[i]; 438 } 439 } 440 DCHECK(next_node); 441 // Remove all its incoming edges. 442 for (size_t e = 0; e < next_node->incoming.size(); e++) { 443 GraphEdge* incoming_edge = next_node->incoming[e]; 444 445 active_edges_.erase(incoming_edge); 446 RemoveEdgeFromList(incoming_edge, &incoming_edge->from->outgoing); 447 } 448 next_node->incoming.clear(); 449 next_node->incoming_edge_weight = 0.f; 450 no_incoming_edge_node_list.push_back(next_node); 451 DVLOG(2) << "Breaking cycle by cleaning up incoming edges from " << 452 next_node->layer->id() << 453 " (weight = " << min_incoming_edge_weight << ")"; 454 } 455 456 // Note: The original elements of the list are in no danger of having their 457 // ref count go to zero here as they are all nodes of the layer hierarchy and 458 // are kept alive by their parent nodes. 459 int count = 0; 460 for (LayerImplList::iterator it = first; it < last; it++) 461 *it = sorted_list[count++]->layer; 462 463 DVLOG(2) << "Sorting end ----"; 464 465 nodes_.clear(); 466 edges_.clear(); 467 active_edges_.clear(); 468 } 469 470 } // namespace cc 471