Home | History | Annotate | Download | only in trees
      1 // Copyright 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "cc/trees/layer_sorter.h"
      6 
      7 #include <algorithm>
      8 #include <deque>
      9 #include <limits>
     10 #include <vector>
     11 
     12 #include "base/logging.h"
     13 #include "cc/base/math_util.h"
     14 #include "cc/layers/render_surface_impl.h"
     15 #include "ui/gfx/transform.h"
     16 
     17 namespace cc {
     18 
     19 // This epsilon is used to determine if two layers are too close to each other
     20 // to be able to tell which is in front of the other.  It's a relative epsilon
     21 // so it is robust to changes in scene scale.  This value was chosen by picking
     22 // a value near machine epsilon and then increasing it until the flickering on
     23 // the test scene went away.
     24 const float k_layer_epsilon = 1e-4f;
     25 
     26 inline static float PerpProduct(const gfx::Vector2dF& u,
     27                                 const gfx::Vector2dF& v) {
     28   return u.x() * v.y() - u.y() * v.x();
     29 }
     30 
     31 // Tests if two edges defined by their endpoints (a,b) and (c,d) intersect.
     32 // Returns true and the point of intersection if they do and false otherwise.
     33 static bool EdgeEdgeTest(const gfx::PointF& a,
     34                          const gfx::PointF& b,
     35                          const gfx::PointF& c,
     36                          const gfx::PointF& d,
     37                          gfx::PointF* r) {
     38   gfx::Vector2dF u = b - a;
     39   gfx::Vector2dF v = d - c;
     40   gfx::Vector2dF w = a - c;
     41 
     42   float denom = PerpProduct(u, v);
     43 
     44   // If denom == 0 then the edges are parallel. While they could be overlapping
     45   // we don't bother to check here as the we'll find their intersections from
     46   // the corner to quad tests.
     47   if (!denom)
     48     return false;
     49 
     50   float s = PerpProduct(v, w) / denom;
     51   if (s < 0.f || s > 1.f)
     52     return false;
     53 
     54   float t = PerpProduct(u, w) / denom;
     55   if (t < 0.f || t > 1.f)
     56     return false;
     57 
     58   u.Scale(s);
     59   *r = a + u;
     60   return true;
     61 }
     62 
     63 GraphNode::GraphNode(LayerImpl* layer_impl)
     64     : layer(layer_impl),
     65       incoming_edge_weight(0.f) {}
     66 
     67 GraphNode::~GraphNode() {}
     68 
     69 LayerSorter::LayerSorter()
     70     : z_range_(0.f) {}
     71 
     72 LayerSorter::~LayerSorter() {}
     73 
     74 static float CheckFloatingPointNumericAccuracy(float a, float b) {
     75   float abs_dif = std::abs(b - a);
     76   float abs_max = std::max(std::abs(b), std::abs(a));
     77   // Check to see if we've got a result with a reasonable amount of error.
     78   return abs_dif / abs_max;
     79 }
     80 
     81 // Checks whether layer "a" draws on top of layer "b". The weight value returned
     82 // is an indication of the maximum z-depth difference between the layers or zero
     83 // if the layers are found to be intesecting (some features are in front and
     84 // some are behind).
     85 LayerSorter::ABCompareResult LayerSorter::CheckOverlap(LayerShape* a,
     86                                                        LayerShape* b,
     87                                                        float z_threshold,
     88                                                        float* weight) {
     89   *weight = 0.f;
     90 
     91   // Early out if the projected bounds don't overlap.
     92   if (!a->projected_bounds.Intersects(b->projected_bounds))
     93     return None;
     94 
     95   gfx::PointF aPoints[4] = { a->projected_quad.p1(),
     96                              a->projected_quad.p2(),
     97                              a->projected_quad.p3(),
     98                              a->projected_quad.p4() };
     99   gfx::PointF bPoints[4] = { b->projected_quad.p1(),
    100                              b->projected_quad.p2(),
    101                              b->projected_quad.p3(),
    102                              b->projected_quad.p4() };
    103 
    104   // Make a list of points that inside both layer quad projections.
    105   std::vector<gfx::PointF> overlap_points;
    106 
    107   // Check all four corners of one layer against the other layer's quad.
    108   for (int i = 0; i < 4; ++i) {
    109     if (a->projected_quad.Contains(bPoints[i]))
    110       overlap_points.push_back(bPoints[i]);
    111     if (b->projected_quad.Contains(aPoints[i]))
    112       overlap_points.push_back(aPoints[i]);
    113   }
    114 
    115   // Check all the edges of one layer for intersection with the other layer's
    116   // edges.
    117   gfx::PointF r;
    118   for (int ea = 0; ea < 4; ++ea)
    119     for (int eb = 0; eb < 4; ++eb)
    120       if (EdgeEdgeTest(aPoints[ea], aPoints[(ea + 1) % 4],
    121                        bPoints[eb], bPoints[(eb + 1) % 4],
    122                        &r))
    123         overlap_points.push_back(r);
    124 
    125   if (overlap_points.empty())
    126     return None;
    127 
    128   // Check the corresponding layer depth value for all overlap points to
    129   // determine which layer is in front.
    130   float max_positive = 0.f;
    131   float max_negative = 0.f;
    132 
    133   // This flag tracks the existance of a numerically accurate seperation
    134   // between two layers.  If there is no accurate seperation, the layers
    135   // cannot be effectively sorted.
    136   bool accurate = false;
    137 
    138   for (size_t o = 0; o < overlap_points.size(); o++) {
    139     float za = a->LayerZFromProjectedPoint(overlap_points[o]);
    140     float zb = b->LayerZFromProjectedPoint(overlap_points[o]);
    141 
    142     // Here we attempt to avoid numeric issues with layers that are too
    143     // close together.  If we have 2-sided quads that are very close
    144     // together then we will draw them in document order to avoid
    145     // flickering.  The correct solution is for the content maker to turn
    146     // on back-face culling or move the quads apart (if they're not two
    147     // sides of one object).
    148     if (CheckFloatingPointNumericAccuracy(za, zb) > k_layer_epsilon)
    149       accurate = true;
    150 
    151     float diff = za - zb;
    152     if (diff > max_positive)
    153       max_positive = diff;
    154     if (diff < max_negative)
    155       max_negative = diff;
    156   }
    157 
    158   // If we can't tell which should come first, we use document order.
    159   if (!accurate)
    160     return ABeforeB;
    161 
    162   float max_diff =
    163       std::abs(max_positive) > std::abs(max_negative) ?
    164           max_positive : max_negative;
    165 
    166   // If the results are inconsistent (and the z difference substantial to rule
    167   // out numerical errors) then the layers are intersecting. We will still
    168   // return an order based on the maximum depth difference but with an edge
    169   // weight of zero these layers will get priority if a graph cycle is present
    170   // and needs to be broken.
    171   if (max_positive > z_threshold && max_negative < -z_threshold)
    172     *weight = 0.f;
    173   else
    174     *weight = std::abs(max_diff);
    175 
    176   // Maintain relative order if the layers have the same depth at all
    177   // intersection points.
    178   if (max_diff <= 0.f)
    179     return ABeforeB;
    180 
    181   return BBeforeA;
    182 }
    183 
    184 LayerShape::LayerShape() {}
    185 
    186 LayerShape::LayerShape(float width,
    187                        float height,
    188                        const gfx::Transform& draw_transform) {
    189   gfx::QuadF layer_quad(gfx::RectF(0.f, 0.f, width, height));
    190 
    191   // Compute the projection of the layer quad onto the z = 0 plane.
    192 
    193   gfx::PointF clipped_quad[8];
    194   int num_vertices_in_clipped_quad;
    195   MathUtil::MapClippedQuad(draw_transform,
    196                            layer_quad,
    197                            clipped_quad,
    198                            &num_vertices_in_clipped_quad);
    199 
    200   if (num_vertices_in_clipped_quad < 3) {
    201     projected_bounds = gfx::RectF();
    202     return;
    203   }
    204 
    205   projected_bounds =
    206       MathUtil::ComputeEnclosingRectOfVertices(clipped_quad,
    207                                                num_vertices_in_clipped_quad);
    208 
    209   // NOTE: it will require very significant refactoring and overhead to deal
    210   // with generalized polygons or multiple quads per layer here. For the sake of
    211   // layer sorting it is equally correct to take a subsection of the polygon
    212   // that can be made into a quad. This will only be incorrect in the case of
    213   // intersecting layers, which are not supported yet anyway.
    214   projected_quad.set_p1(clipped_quad[0]);
    215   projected_quad.set_p2(clipped_quad[1]);
    216   projected_quad.set_p3(clipped_quad[2]);
    217   if (num_vertices_in_clipped_quad >= 4) {
    218     projected_quad.set_p4(clipped_quad[3]);
    219   } else {
    220     // This will be a degenerate quad that is actually a triangle.
    221     projected_quad.set_p4(clipped_quad[2]);
    222   }
    223 
    224   // Compute the normal of the layer's plane.
    225   bool clipped = false;
    226   gfx::Point3F c1 =
    227       MathUtil::MapPoint(draw_transform, gfx::Point3F(0.f, 0.f, 0.f), &clipped);
    228   gfx::Point3F c2 =
    229       MathUtil::MapPoint(draw_transform, gfx::Point3F(0.f, 1.f, 0.f), &clipped);
    230   gfx::Point3F c3 =
    231       MathUtil::MapPoint(draw_transform, gfx::Point3F(1.f, 0.f, 0.f), &clipped);
    232   // TODO(shawnsingh): Deal with clipping.
    233   gfx::Vector3dF c12 = c2 - c1;
    234   gfx::Vector3dF c13 = c3 - c1;
    235   layer_normal = gfx::CrossProduct(c13, c12);
    236 
    237   transform_origin = c1;
    238 }
    239 
    240 LayerShape::~LayerShape() {}
    241 
    242 // Returns the Z coordinate of a point on the layer that projects
    243 // to point p which lies on the z = 0 plane. It does it by computing the
    244 // intersection of a line starting from p along the Z axis and the plane
    245 // of the layer.
    246 float LayerShape::LayerZFromProjectedPoint(const gfx::PointF& p) const {
    247   gfx::Vector3dF z_axis(0.f, 0.f, 1.f);
    248   gfx::Vector3dF w = gfx::Point3F(p) - transform_origin;
    249 
    250   float d = gfx::DotProduct(layer_normal, z_axis);
    251   float n = -gfx::DotProduct(layer_normal, w);
    252 
    253   // Check if layer is parallel to the z = 0 axis which will make it
    254   // invisible and hence returning zero is fine.
    255   if (!d)
    256     return 0.f;
    257 
    258   // The intersection point would be given by:
    259   // p + (n / d) * u  but since we are only interested in the
    260   // z coordinate and p's z coord is zero, all we need is the value of n/d.
    261   return n / d;
    262 }
    263 
    264 void LayerSorter::CreateGraphNodes(LayerImplList::iterator first,
    265                                    LayerImplList::iterator last) {
    266   DVLOG(2) << "Creating graph nodes:";
    267   float min_z = FLT_MAX;
    268   float max_z = -FLT_MAX;
    269   for (LayerImplList::const_iterator it = first; it < last; it++) {
    270     nodes_.push_back(GraphNode(*it));
    271     GraphNode& node = nodes_.at(nodes_.size() - 1);
    272     RenderSurfaceImpl* render_surface = node.layer->render_surface();
    273     if (!node.layer->DrawsContent() && !render_surface)
    274       continue;
    275 
    276     DVLOG(2) << "Layer " << node.layer->id() <<
    277         " (" << node.layer->bounds().width() <<
    278         " x " << node.layer->bounds().height() << ")";
    279 
    280     gfx::Transform draw_transform;
    281     float layer_width, layer_height;
    282     if (render_surface) {
    283       draw_transform = render_surface->draw_transform();
    284       layer_width = render_surface->content_rect().width();
    285       layer_height = render_surface->content_rect().height();
    286     } else {
    287       draw_transform = node.layer->draw_transform();
    288       layer_width = node.layer->content_bounds().width();
    289       layer_height = node.layer->content_bounds().height();
    290     }
    291 
    292     node.shape = LayerShape(layer_width, layer_height, draw_transform);
    293 
    294     max_z = std::max(max_z, node.shape.transform_origin.z());
    295     min_z = std::min(min_z, node.shape.transform_origin.z());
    296   }
    297 
    298   z_range_ = std::abs(max_z - min_z);
    299 }
    300 
    301 void LayerSorter::CreateGraphEdges() {
    302   DVLOG(2) << "Edges:";
    303   // Fraction of the total z_range below which z differences
    304   // are not considered reliable.
    305   const float z_threshold_factor = 0.01f;
    306   float z_threshold = z_range_ * z_threshold_factor;
    307 
    308   for (size_t na = 0; na < nodes_.size(); na++) {
    309     GraphNode& node_a = nodes_[na];
    310     if (!node_a.layer->DrawsContent() && !node_a.layer->render_surface())
    311       continue;
    312     for (size_t nb = na + 1; nb < nodes_.size(); nb++) {
    313       GraphNode& node_b = nodes_[nb];
    314       if (!node_b.layer->DrawsContent() && !node_b.layer->render_surface())
    315         continue;
    316       float weight = 0.f;
    317       ABCompareResult overlap_result = CheckOverlap(&node_a.shape,
    318                                                     &node_b.shape,
    319                                                     z_threshold,
    320                                                     &weight);
    321       GraphNode* start_node = NULL;
    322       GraphNode* end_node = NULL;
    323       if (overlap_result == ABeforeB) {
    324         start_node = &node_a;
    325         end_node = &node_b;
    326       } else if (overlap_result == BBeforeA) {
    327         start_node = &node_b;
    328         end_node = &node_a;
    329       }
    330 
    331       if (start_node) {
    332         DVLOG(2) << start_node->layer->id() << " -> " << end_node->layer->id();
    333         edges_.push_back(GraphEdge(start_node, end_node, weight));
    334       }
    335     }
    336   }
    337 
    338   for (size_t i = 0; i < edges_.size(); i++) {
    339     GraphEdge& edge = edges_[i];
    340     active_edges_[&edge] = &edge;
    341     edge.from->outgoing.push_back(&edge);
    342     edge.to->incoming.push_back(&edge);
    343     edge.to->incoming_edge_weight += edge.weight;
    344   }
    345 }
    346 
    347 // Finds and removes an edge from the list by doing a swap with the
    348 // last element of the list.
    349 void LayerSorter::RemoveEdgeFromList(GraphEdge* edge,
    350                                      std::vector<GraphEdge*>* list) {
    351   std::vector<GraphEdge*>::iterator iter =
    352       std::find(list->begin(), list->end(), edge);
    353   DCHECK(iter != list->end());
    354   list->erase(iter);
    355 }
    356 
    357 // Sorts the given list of layers such that they can be painted in a
    358 // back-to-front order. Sorting produces correct results for non-intersecting
    359 // layers that don't have cyclical order dependencies. Cycles and intersections
    360 // are broken (somewhat) aribtrarily. Sorting of layers is done via a
    361 // topological sort of a directed graph whose nodes are the layers themselves.
    362 // An edge from node A to node B signifies that layer A needs to be drawn before
    363 // layer B. If A and B have no dependency between each other, then we preserve
    364 // the ordering of those layers as they were in the original list.
    365 //
    366 // The draw order between two layers is determined by projecting the two
    367 // triangles making up each layer quad to the Z = 0 plane, finding points of
    368 // intersection between the triangles and backprojecting those points to the
    369 // plane of the layer to determine the corresponding Z coordinate. The layer
    370 // with the lower Z coordinate (farther from the eye) needs to be rendered
    371 // first.
    372 //
    373 // If the layer projections don't intersect, then no edges (dependencies) are
    374 // created between them in the graph. HOWEVER, in this case we still need to
    375 // preserve the ordering of the original list of layers, since that list should
    376 // already have proper z-index ordering of layers.
    377 //
    378 void LayerSorter::Sort(LayerImplList::iterator first,
    379                        LayerImplList::iterator last) {
    380   DVLOG(2) << "Sorting start ----";
    381   CreateGraphNodes(first, last);
    382 
    383   CreateGraphEdges();
    384 
    385   std::vector<GraphNode*> sorted_list;
    386   std::deque<GraphNode*> no_incoming_edge_node_list;
    387 
    388   // Find all the nodes that don't have incoming edges.
    389   for (NodeList::iterator la = nodes_.begin(); la < nodes_.end(); la++) {
    390     if (!la->incoming.size())
    391       no_incoming_edge_node_list.push_back(&(*la));
    392   }
    393 
    394   DVLOG(2) << "Sorted list: ";
    395   while (active_edges_.size() || no_incoming_edge_node_list.size()) {
    396     while (no_incoming_edge_node_list.size()) {
    397       // It is necessary to preserve the existing ordering of layers, when there
    398       // are no explicit dependencies (because this existing ordering has
    399       // correct z-index/layout ordering). To preserve this ordering, we process
    400       // Nodes in the same order that they were added to the list.
    401       GraphNode* from_node = no_incoming_edge_node_list.front();
    402       no_incoming_edge_node_list.pop_front();
    403 
    404       // Add it to the final list.
    405       sorted_list.push_back(from_node);
    406 
    407       DVLOG(2) << from_node->layer->id() << ", ";
    408 
    409       // Remove all its outgoing edges from the graph.
    410       for (size_t i = 0; i < from_node->outgoing.size(); i++) {
    411         GraphEdge* outgoing_edge = from_node->outgoing[i];
    412 
    413         active_edges_.erase(outgoing_edge);
    414         RemoveEdgeFromList(outgoing_edge, &outgoing_edge->to->incoming);
    415         outgoing_edge->to->incoming_edge_weight -= outgoing_edge->weight;
    416 
    417         if (!outgoing_edge->to->incoming.size())
    418           no_incoming_edge_node_list.push_back(outgoing_edge->to);
    419       }
    420       from_node->outgoing.clear();
    421     }
    422 
    423     if (!active_edges_.size())
    424       break;
    425 
    426     // If there are still active edges but the list of nodes without incoming
    427     // edges is empty then we have run into a cycle. Break the cycle by finding
    428     // the node with the smallest overall incoming edge weight and use it. This
    429     // will favor nodes that have zero-weight incoming edges i.e. layers that
    430     // are being occluded by a layer that intersects them.
    431     float min_incoming_edge_weight = FLT_MAX;
    432     GraphNode* next_node = NULL;
    433     for (size_t i = 0; i < nodes_.size(); i++) {
    434       if (nodes_[i].incoming.size() &&
    435           nodes_[i].incoming_edge_weight < min_incoming_edge_weight) {
    436         min_incoming_edge_weight = nodes_[i].incoming_edge_weight;
    437         next_node = &nodes_[i];
    438       }
    439     }
    440     DCHECK(next_node);
    441     // Remove all its incoming edges.
    442     for (size_t e = 0; e < next_node->incoming.size(); e++) {
    443       GraphEdge* incoming_edge = next_node->incoming[e];
    444 
    445       active_edges_.erase(incoming_edge);
    446       RemoveEdgeFromList(incoming_edge, &incoming_edge->from->outgoing);
    447     }
    448     next_node->incoming.clear();
    449     next_node->incoming_edge_weight = 0.f;
    450     no_incoming_edge_node_list.push_back(next_node);
    451     DVLOG(2) << "Breaking cycle by cleaning up incoming edges from " <<
    452         next_node->layer->id() <<
    453         " (weight = " << min_incoming_edge_weight << ")";
    454   }
    455 
    456   // Note: The original elements of the list are in no danger of having their
    457   // ref count go to zero here as they are all nodes of the layer hierarchy and
    458   // are kept alive by their parent nodes.
    459   int count = 0;
    460   for (LayerImplList::iterator it = first; it < last; it++)
    461     *it = sorted_list[count++]->layer;
    462 
    463   DVLOG(2) << "Sorting end ----";
    464 
    465   nodes_.clear();
    466   edges_.clear();
    467   active_edges_.clear();
    468 }
    469 
    470 }  // namespace cc
    471