Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkCanvas.h"
      9 #include "SkClipStack.h"
     10 #include "SkPath.h"
     11 #include "SkThread.h"
     12 
     13 #include <new>
     14 
     15 
     16 // 0-2 are reserved for invalid, empty & wide-open
     17 static const int32_t kFirstUnreservedGenID = 3;
     18 int32_t SkClipStack::gGenID = kFirstUnreservedGenID;
     19 
     20 SkClipStack::Element::Element(const Element& that) {
     21     switch (that.getType()) {
     22         case kEmpty_Type:
     23             fPath.reset();
     24             break;
     25         case kRect_Type: // Rect uses rrect
     26         case kRRect_Type:
     27             fPath.reset();
     28             fRRect = that.fRRect;
     29             break;
     30         case kPath_Type:
     31             fPath.set(that.getPath());
     32             break;
     33     }
     34 
     35     fSaveCount = that.fSaveCount;
     36     fOp = that.fOp;
     37     fType = that.fType;
     38     fDoAA = that.fDoAA;
     39     fFiniteBoundType = that.fFiniteBoundType;
     40     fFiniteBound = that.fFiniteBound;
     41     fIsIntersectionOfRects = that.fIsIntersectionOfRects;
     42     fGenID = that.fGenID;
     43 }
     44 
     45 bool SkClipStack::Element::operator== (const Element& element) const {
     46     if (this == &element) {
     47         return true;
     48     }
     49     if (fOp != element.fOp ||
     50         fType != element.fType ||
     51         fDoAA != element.fDoAA ||
     52         fSaveCount != element.fSaveCount) {
     53         return false;
     54     }
     55     switch (fType) {
     56         case kPath_Type:
     57             return this->getPath() == element.getPath();
     58         case kRRect_Type:
     59             return fRRect == element.fRRect;
     60         case kRect_Type:
     61             return this->getRect() == element.getRect();
     62         case kEmpty_Type:
     63             return true;
     64         default:
     65             SkDEBUGFAIL("Unexpected type.");
     66             return false;
     67     }
     68 }
     69 
     70 void SkClipStack::Element::replay(SkCanvasClipVisitor* visitor) const {
     71     static const SkRect kEmptyRect = { 0, 0, 0, 0 };
     72 
     73     switch (fType) {
     74         case kPath_Type:
     75             visitor->clipPath(this->getPath(), this->getOp(), this->isAA());
     76             break;
     77         case kRRect_Type:
     78             visitor->clipRRect(this->getRRect(), this->getOp(), this->isAA());
     79             break;
     80         case kRect_Type:
     81             visitor->clipRect(this->getRect(), this->getOp(), this->isAA());
     82             break;
     83         case kEmpty_Type:
     84             visitor->clipRect(kEmptyRect, SkRegion::kIntersect_Op, false);
     85             break;
     86     }
     87 }
     88 
     89 void SkClipStack::Element::invertShapeFillType() {
     90     switch (fType) {
     91         case kRect_Type:
     92             fPath.init();
     93             fPath.get()->addRect(this->getRect());
     94             fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType);
     95             fType = kPath_Type;
     96             break;
     97         case kRRect_Type:
     98             fPath.init();
     99             fPath.get()->addRRect(fRRect);
    100             fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType);
    101             fType = kPath_Type;
    102             break;
    103         case kPath_Type:
    104             fPath.get()->toggleInverseFillType();
    105             break;
    106         case kEmpty_Type:
    107             // Should this set to an empty, inverse filled path?
    108             break;
    109     }
    110 }
    111 
    112 void SkClipStack::Element::initPath(int saveCount, const SkPath& path, SkRegion::Op op,
    113                                     bool doAA) {
    114     if (!path.isInverseFillType()) {
    115         if (SkPath::kNone_PathAsRect != path.asRect()) {
    116             this->initRect(saveCount, path.getBounds(), op, doAA);
    117             return;
    118         }
    119         SkRect ovalRect;
    120         if (path.isOval(&ovalRect)) {
    121             SkRRect rrect;
    122             rrect.setOval(ovalRect);
    123             this->initRRect(saveCount, rrect, op, doAA);
    124             return;
    125         }
    126     }
    127     fPath.set(path);
    128     fType = kPath_Type;
    129     this->initCommon(saveCount, op, doAA);
    130 }
    131 
    132 void SkClipStack::Element::asPath(SkPath* path) const {
    133     switch (fType) {
    134         case kEmpty_Type:
    135             path->reset();
    136             break;
    137         case kRect_Type:
    138             path->reset();
    139             path->addRect(this->getRect());
    140             break;
    141         case kRRect_Type:
    142             path->reset();
    143             path->addRRect(fRRect);
    144             break;
    145         case kPath_Type:
    146             *path = *fPath.get();
    147             break;
    148     }
    149 }
    150 
    151 void SkClipStack::Element::setEmpty() {
    152     fType = kEmpty_Type;
    153     fFiniteBound.setEmpty();
    154     fFiniteBoundType = kNormal_BoundsType;
    155     fIsIntersectionOfRects = false;
    156     fRRect.setEmpty();
    157     fPath.reset();
    158     fGenID = kEmptyGenID;
    159     SkDEBUGCODE(this->checkEmpty();)
    160 }
    161 
    162 void SkClipStack::Element::checkEmpty() const {
    163     SkASSERT(fFiniteBound.isEmpty());
    164     SkASSERT(kNormal_BoundsType == fFiniteBoundType);
    165     SkASSERT(!fIsIntersectionOfRects);
    166     SkASSERT(kEmptyGenID == fGenID);
    167     SkASSERT(!fPath.isValid());
    168 }
    169 
    170 bool SkClipStack::Element::canBeIntersectedInPlace(int saveCount, SkRegion::Op op) const {
    171     if (kEmpty_Type == fType &&
    172         (SkRegion::kDifference_Op == op || SkRegion::kIntersect_Op == op)) {
    173         return true;
    174     }
    175     // Only clips within the same save/restore frame (as captured by
    176     // the save count) can be merged
    177     return  fSaveCount == saveCount &&
    178             SkRegion::kIntersect_Op == op &&
    179             (SkRegion::kIntersect_Op == fOp || SkRegion::kReplace_Op == fOp);
    180 }
    181 
    182 bool SkClipStack::Element::rectRectIntersectAllowed(const SkRect& newR, bool newAA) const {
    183     SkASSERT(kRect_Type == fType);
    184 
    185     if (fDoAA == newAA) {
    186         // if the AA setting is the same there is no issue
    187         return true;
    188     }
    189 
    190     if (!SkRect::Intersects(this->getRect(), newR)) {
    191         // The calling code will correctly set the result to the empty clip
    192         return true;
    193     }
    194 
    195     if (this->getRect().contains(newR)) {
    196         // if the new rect carves out a portion of the old one there is no
    197         // issue
    198         return true;
    199     }
    200 
    201     // So either the two overlap in some complex manner or newR contains oldR.
    202     // In the first, case the edges will require different AA. In the second,
    203     // the AA setting that would be carried forward is incorrect (e.g., oldR
    204     // is AA while newR is BW but since newR contains oldR, oldR will be
    205     // drawn BW) since the new AA setting will predominate.
    206     return false;
    207 }
    208 
    209 // a mirror of combineBoundsRevDiff
    210 void SkClipStack::Element::combineBoundsDiff(FillCombo combination, const SkRect& prevFinite) {
    211     switch (combination) {
    212         case kInvPrev_InvCur_FillCombo:
    213             // In this case the only pixels that can remain set
    214             // are inside the current clip rect since the extensions
    215             // to infinity of both clips cancel out and whatever
    216             // is outside of the current clip is removed
    217             fFiniteBoundType = kNormal_BoundsType;
    218             break;
    219         case kInvPrev_Cur_FillCombo:
    220             // In this case the current op is finite so the only pixels
    221             // that aren't set are whatever isn't set in the previous
    222             // clip and whatever this clip carves out
    223             fFiniteBound.join(prevFinite);
    224             fFiniteBoundType = kInsideOut_BoundsType;
    225             break;
    226         case kPrev_InvCur_FillCombo:
    227             // In this case everything outside of this clip's bound
    228             // is erased, so the only pixels that can remain set
    229             // occur w/in the intersection of the two finite bounds
    230             if (!fFiniteBound.intersect(prevFinite)) {
    231                 this->setEmpty();
    232             } else {
    233                 fFiniteBoundType = kNormal_BoundsType;
    234             }
    235             break;
    236         case kPrev_Cur_FillCombo:
    237             // The most conservative result bound is that of the
    238             // prior clip. This could be wildly incorrect if the
    239             // second clip either exactly matches the first clip
    240             // (which should yield the empty set) or reduces the
    241             // size of the prior bound (e.g., if the second clip
    242             // exactly matched the bottom half of the prior clip).
    243             // We ignore these two possibilities.
    244             fFiniteBound = prevFinite;
    245             break;
    246         default:
    247             SkDEBUGFAIL("SkClipStack::Element::combineBoundsDiff Invalid fill combination");
    248             break;
    249     }
    250 }
    251 
    252 void SkClipStack::Element::combineBoundsXOR(int combination, const SkRect& prevFinite) {
    253 
    254     switch (combination) {
    255         case kInvPrev_Cur_FillCombo:       // fall through
    256         case kPrev_InvCur_FillCombo:
    257             // With only one of the clips inverted the result will always
    258             // extend to infinity. The only pixels that may be un-writeable
    259             // lie within the union of the two finite bounds
    260             fFiniteBound.join(prevFinite);
    261             fFiniteBoundType = kInsideOut_BoundsType;
    262             break;
    263         case kInvPrev_InvCur_FillCombo:
    264             // The only pixels that can survive are within the
    265             // union of the two bounding boxes since the extensions
    266             // to infinity of both clips cancel out
    267             // fall through!
    268         case kPrev_Cur_FillCombo:
    269             // The most conservative bound for xor is the
    270             // union of the two bounds. If the two clips exactly overlapped
    271             // the xor could yield the empty set. Similarly the xor
    272             // could reduce the size of the original clip's bound (e.g.,
    273             // if the second clip exactly matched the bottom half of the
    274             // first clip). We ignore these two cases.
    275             fFiniteBound.join(prevFinite);
    276             fFiniteBoundType = kNormal_BoundsType;
    277             break;
    278         default:
    279             SkDEBUGFAIL("SkClipStack::Element::combineBoundsXOR Invalid fill combination");
    280             break;
    281     }
    282 }
    283 
    284 // a mirror of combineBoundsIntersection
    285 void SkClipStack::Element::combineBoundsUnion(int combination, const SkRect& prevFinite) {
    286 
    287     switch (combination) {
    288         case kInvPrev_InvCur_FillCombo:
    289             if (!fFiniteBound.intersect(prevFinite)) {
    290                 fFiniteBound.setEmpty();
    291                 fGenID = kWideOpenGenID;
    292             }
    293             fFiniteBoundType = kInsideOut_BoundsType;
    294             break;
    295         case kInvPrev_Cur_FillCombo:
    296             // The only pixels that won't be drawable are inside
    297             // the prior clip's finite bound
    298             fFiniteBound = prevFinite;
    299             fFiniteBoundType = kInsideOut_BoundsType;
    300             break;
    301         case kPrev_InvCur_FillCombo:
    302             // The only pixels that won't be drawable are inside
    303             // this clip's finite bound
    304             break;
    305         case kPrev_Cur_FillCombo:
    306             fFiniteBound.join(prevFinite);
    307             break;
    308         default:
    309             SkDEBUGFAIL("SkClipStack::Element::combineBoundsUnion Invalid fill combination");
    310             break;
    311     }
    312 }
    313 
    314 // a mirror of combineBoundsUnion
    315 void SkClipStack::Element::combineBoundsIntersection(int combination, const SkRect& prevFinite) {
    316 
    317     switch (combination) {
    318         case kInvPrev_InvCur_FillCombo:
    319             // The only pixels that aren't writable in this case
    320             // occur in the union of the two finite bounds
    321             fFiniteBound.join(prevFinite);
    322             fFiniteBoundType = kInsideOut_BoundsType;
    323             break;
    324         case kInvPrev_Cur_FillCombo:
    325             // In this case the only pixels that will remain writeable
    326             // are within the current clip
    327             break;
    328         case kPrev_InvCur_FillCombo:
    329             // In this case the only pixels that will remain writeable
    330             // are with the previous clip
    331             fFiniteBound = prevFinite;
    332             fFiniteBoundType = kNormal_BoundsType;
    333             break;
    334         case kPrev_Cur_FillCombo:
    335             if (!fFiniteBound.intersect(prevFinite)) {
    336                 this->setEmpty();
    337             }
    338             break;
    339         default:
    340             SkDEBUGFAIL("SkClipStack::Element::combineBoundsIntersection Invalid fill combination");
    341             break;
    342     }
    343 }
    344 
    345 // a mirror of combineBoundsDiff
    346 void SkClipStack::Element::combineBoundsRevDiff(int combination, const SkRect& prevFinite) {
    347 
    348     switch (combination) {
    349         case kInvPrev_InvCur_FillCombo:
    350             // The only pixels that can survive are in the
    351             // previous bound since the extensions to infinity in
    352             // both clips cancel out
    353             fFiniteBound = prevFinite;
    354             fFiniteBoundType = kNormal_BoundsType;
    355             break;
    356         case kInvPrev_Cur_FillCombo:
    357             if (!fFiniteBound.intersect(prevFinite)) {
    358                 this->setEmpty();
    359             } else {
    360                 fFiniteBoundType = kNormal_BoundsType;
    361             }
    362             break;
    363         case kPrev_InvCur_FillCombo:
    364             fFiniteBound.join(prevFinite);
    365             fFiniteBoundType = kInsideOut_BoundsType;
    366             break;
    367         case kPrev_Cur_FillCombo:
    368             // Fall through - as with the kDifference_Op case, the
    369             // most conservative result bound is the bound of the
    370             // current clip. The prior clip could reduce the size of this
    371             // bound (as in the kDifference_Op case) but we are ignoring
    372             // those cases.
    373             break;
    374         default:
    375             SkDEBUGFAIL("SkClipStack::Element::combineBoundsRevDiff Invalid fill combination");
    376             break;
    377     }
    378 }
    379 
    380 void SkClipStack::Element::updateBoundAndGenID(const Element* prior) {
    381     // We set this first here but we may overwrite it later if we determine that the clip is
    382     // either wide-open or empty.
    383     fGenID = GetNextGenID();
    384 
    385     // First, optimistically update the current Element's bound information
    386     // with the current clip's bound
    387     fIsIntersectionOfRects = false;
    388     switch (fType) {
    389         case kRect_Type:
    390             fFiniteBound = this->getRect();
    391             fFiniteBoundType = kNormal_BoundsType;
    392 
    393             if (SkRegion::kReplace_Op == fOp ||
    394                 (SkRegion::kIntersect_Op == fOp && NULL == prior) ||
    395                 (SkRegion::kIntersect_Op == fOp && prior->fIsIntersectionOfRects &&
    396                     prior->rectRectIntersectAllowed(this->getRect(), fDoAA))) {
    397                 fIsIntersectionOfRects = true;
    398             }
    399             break;
    400         case kRRect_Type:
    401             fFiniteBound = fRRect.getBounds();
    402             fFiniteBoundType = kNormal_BoundsType;
    403             break;
    404         case kPath_Type:
    405             fFiniteBound = fPath.get()->getBounds();
    406 
    407             if (fPath.get()->isInverseFillType()) {
    408                 fFiniteBoundType = kInsideOut_BoundsType;
    409             } else {
    410                 fFiniteBoundType = kNormal_BoundsType;
    411             }
    412             break;
    413         case kEmpty_Type:
    414             SkDEBUGFAIL("We shouldn't get here with an empty element.");
    415             break;
    416     }
    417 
    418     if (!fDoAA) {
    419         // Here we mimic a non-anti-aliased scanline system. If there is
    420         // no anti-aliasing we can integerize the bounding box to exclude
    421         // fractional parts that won't be rendered.
    422         // Note: the left edge is handled slightly differently below. We
    423         // are a bit more generous in the rounding since we don't want to
    424         // risk missing the left pixels when fLeft is very close to .5
    425         fFiniteBound.set(SkScalarFloorToScalar(fFiniteBound.fLeft+0.45f),
    426                          SkScalarRoundToScalar(fFiniteBound.fTop),
    427                          SkScalarRoundToScalar(fFiniteBound.fRight),
    428                          SkScalarRoundToScalar(fFiniteBound.fBottom));
    429     }
    430 
    431     // Now determine the previous Element's bound information taking into
    432     // account that there may be no previous clip
    433     SkRect prevFinite;
    434     SkClipStack::BoundsType prevType;
    435 
    436     if (NULL == prior) {
    437         // no prior clip means the entire plane is writable
    438         prevFinite.setEmpty();   // there are no pixels that cannot be drawn to
    439         prevType = kInsideOut_BoundsType;
    440     } else {
    441         prevFinite = prior->fFiniteBound;
    442         prevType = prior->fFiniteBoundType;
    443     }
    444 
    445     FillCombo combination = kPrev_Cur_FillCombo;
    446     if (kInsideOut_BoundsType == fFiniteBoundType) {
    447         combination = (FillCombo) (combination | 0x01);
    448     }
    449     if (kInsideOut_BoundsType == prevType) {
    450         combination = (FillCombo) (combination | 0x02);
    451     }
    452 
    453     SkASSERT(kInvPrev_InvCur_FillCombo == combination ||
    454                 kInvPrev_Cur_FillCombo == combination ||
    455                 kPrev_InvCur_FillCombo == combination ||
    456                 kPrev_Cur_FillCombo == combination);
    457 
    458     // Now integrate with clip with the prior clips
    459     switch (fOp) {
    460         case SkRegion::kDifference_Op:
    461             this->combineBoundsDiff(combination, prevFinite);
    462             break;
    463         case SkRegion::kXOR_Op:
    464             this->combineBoundsXOR(combination, prevFinite);
    465             break;
    466         case SkRegion::kUnion_Op:
    467             this->combineBoundsUnion(combination, prevFinite);
    468             break;
    469         case SkRegion::kIntersect_Op:
    470             this->combineBoundsIntersection(combination, prevFinite);
    471             break;
    472         case SkRegion::kReverseDifference_Op:
    473             this->combineBoundsRevDiff(combination, prevFinite);
    474             break;
    475         case SkRegion::kReplace_Op:
    476             // Replace just ignores everything prior
    477             // The current clip's bound information is already filled in
    478             // so nothing to do
    479             break;
    480         default:
    481             SkDebugf("SkRegion::Op error\n");
    482             SkASSERT(0);
    483             break;
    484     }
    485 }
    486 
    487 // This constant determines how many Element's are allocated together as a block in
    488 // the deque. As such it needs to balance allocating too much memory vs.
    489 // incurring allocation/deallocation thrashing. It should roughly correspond to
    490 // the deepest save/restore stack we expect to see.
    491 static const int kDefaultElementAllocCnt = 8;
    492 
    493 SkClipStack::SkClipStack()
    494     : fDeque(sizeof(Element), kDefaultElementAllocCnt)
    495     , fSaveCount(0) {
    496 }
    497 
    498 SkClipStack::SkClipStack(const SkClipStack& b)
    499     : fDeque(sizeof(Element), kDefaultElementAllocCnt) {
    500     *this = b;
    501 }
    502 
    503 SkClipStack::SkClipStack(const SkRect& r)
    504     : fDeque(sizeof(Element), kDefaultElementAllocCnt)
    505     , fSaveCount(0) {
    506     if (!r.isEmpty()) {
    507         this->clipDevRect(r, SkRegion::kReplace_Op, false);
    508     }
    509 }
    510 
    511 SkClipStack::SkClipStack(const SkIRect& r)
    512     : fDeque(sizeof(Element), kDefaultElementAllocCnt)
    513     , fSaveCount(0) {
    514     if (!r.isEmpty()) {
    515         SkRect temp;
    516         temp.set(r);
    517         this->clipDevRect(temp, SkRegion::kReplace_Op, false);
    518     }
    519 }
    520 
    521 SkClipStack::~SkClipStack() {
    522     reset();
    523 }
    524 
    525 SkClipStack& SkClipStack::operator=(const SkClipStack& b) {
    526     if (this == &b) {
    527         return *this;
    528     }
    529     reset();
    530 
    531     fSaveCount = b.fSaveCount;
    532     SkDeque::F2BIter recIter(b.fDeque);
    533     for (const Element* element = (const Element*)recIter.next();
    534          element != NULL;
    535          element = (const Element*)recIter.next()) {
    536         new (fDeque.push_back()) Element(*element);
    537     }
    538 
    539     return *this;
    540 }
    541 
    542 bool SkClipStack::operator==(const SkClipStack& b) const {
    543     if (this->getTopmostGenID() == b.getTopmostGenID()) {
    544         return true;
    545     }
    546     if (fSaveCount != b.fSaveCount ||
    547         fDeque.count() != b.fDeque.count()) {
    548         return false;
    549     }
    550     SkDeque::F2BIter myIter(fDeque);
    551     SkDeque::F2BIter bIter(b.fDeque);
    552     const Element* myElement = (const Element*)myIter.next();
    553     const Element* bElement = (const Element*)bIter.next();
    554 
    555     while (myElement != NULL && bElement != NULL) {
    556         if (*myElement != *bElement) {
    557             return false;
    558         }
    559         myElement = (const Element*)myIter.next();
    560         bElement = (const Element*)bIter.next();
    561     }
    562     return myElement == NULL && bElement == NULL;
    563 }
    564 
    565 void SkClipStack::reset() {
    566     // We used a placement new for each object in fDeque, so we're responsible
    567     // for calling the destructor on each of them as well.
    568     while (!fDeque.empty()) {
    569         Element* element = (Element*)fDeque.back();
    570         element->~Element();
    571         fDeque.pop_back();
    572     }
    573 
    574     fSaveCount = 0;
    575 }
    576 
    577 void SkClipStack::save() {
    578     fSaveCount += 1;
    579 }
    580 
    581 void SkClipStack::restore() {
    582     fSaveCount -= 1;
    583     restoreTo(fSaveCount);
    584 }
    585 
    586 void SkClipStack::restoreTo(int saveCount) {
    587     while (!fDeque.empty()) {
    588         Element* element = (Element*)fDeque.back();
    589         if (element->fSaveCount <= saveCount) {
    590             break;
    591         }
    592         element->~Element();
    593         fDeque.pop_back();
    594     }
    595 }
    596 
    597 void SkClipStack::getBounds(SkRect* canvFiniteBound,
    598                             BoundsType* boundType,
    599                             bool* isIntersectionOfRects) const {
    600     SkASSERT(canvFiniteBound && boundType);
    601 
    602     Element* element = (Element*)fDeque.back();
    603 
    604     if (NULL == element) {
    605         // the clip is wide open - the infinite plane w/ no pixels un-writeable
    606         canvFiniteBound->setEmpty();
    607         *boundType = kInsideOut_BoundsType;
    608         if (isIntersectionOfRects) {
    609             *isIntersectionOfRects = false;
    610         }
    611         return;
    612     }
    613 
    614     *canvFiniteBound = element->fFiniteBound;
    615     *boundType = element->fFiniteBoundType;
    616     if (isIntersectionOfRects) {
    617         *isIntersectionOfRects = element->fIsIntersectionOfRects;
    618     }
    619 }
    620 
    621 bool SkClipStack::intersectRectWithClip(SkRect* rect) const {
    622     SkASSERT(rect);
    623 
    624     SkRect bounds;
    625     SkClipStack::BoundsType bt;
    626     this->getBounds(&bounds, &bt);
    627     if (bt == SkClipStack::kInsideOut_BoundsType) {
    628         if (bounds.contains(*rect)) {
    629             return false;
    630         } else {
    631             // If rect's x values are both within bound's x range we
    632             // could clip here. Same for y. But we don't bother to check.
    633             return true;
    634         }
    635     } else {
    636         return rect->intersect(bounds);
    637     }
    638 }
    639 
    640 bool SkClipStack::quickContains(const SkRect& rect) const {
    641 
    642     Iter iter(*this, Iter::kTop_IterStart);
    643     const Element* element = iter.prev();
    644     while (element != NULL) {
    645         if (SkRegion::kIntersect_Op != element->getOp() && SkRegion::kReplace_Op != element->getOp())
    646             return false;
    647         if (element->isInverseFilled()) {
    648             // Part of 'rect' could be trimmed off by the inverse-filled clip element
    649             if (SkRect::Intersects(element->getBounds(), rect)) {
    650                 return false;
    651             }
    652         } else {
    653             if (!element->contains(rect)) {
    654                 return false;
    655             }
    656         }
    657         if (SkRegion::kReplace_Op == element->getOp()) {
    658             break;
    659         }
    660         element = iter.prev();
    661     }
    662     return true;
    663 }
    664 
    665 void SkClipStack::pushElement(const Element& element) {
    666     // Use reverse iterator instead of back because Rect path may need previous
    667     SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart);
    668     Element* prior = (Element*) iter.prev();
    669 
    670     if (prior) {
    671         if (prior->canBeIntersectedInPlace(fSaveCount, element.getOp())) {
    672             switch (prior->fType) {
    673                 case Element::kEmpty_Type:
    674                     SkDEBUGCODE(prior->checkEmpty();)
    675                     return;
    676                 case Element::kRect_Type:
    677                     if (Element::kRect_Type == element.getType()) {
    678                         if (prior->rectRectIntersectAllowed(element.getRect(), element.isAA())) {
    679                             SkRect isectRect;
    680                             if (!isectRect.intersect(prior->getRect(), element.getRect())) {
    681                                 prior->setEmpty();
    682                                 return;
    683                             }
    684 
    685                             prior->fRRect.setRect(isectRect);
    686                             prior->fDoAA = element.isAA();
    687                             Element* priorPrior = (Element*) iter.prev();
    688                             prior->updateBoundAndGenID(priorPrior);
    689                             return;
    690                         }
    691                         break;
    692                     }
    693                     // fallthrough
    694                 default:
    695                     if (!SkRect::Intersects(prior->getBounds(), element.getBounds())) {
    696                         prior->setEmpty();
    697                         return;
    698                     }
    699                     break;
    700             }
    701         } else if (SkRegion::kReplace_Op == element.getOp()) {
    702             this->restoreTo(fSaveCount - 1);
    703             prior = (Element*) fDeque.back();
    704         }
    705     }
    706     Element* newElement = SkNEW_PLACEMENT_ARGS(fDeque.push_back(), Element, (element));
    707     newElement->updateBoundAndGenID(prior);
    708 }
    709 
    710 void SkClipStack::clipDevRRect(const SkRRect& rrect, SkRegion::Op op, bool doAA) {
    711     Element element(fSaveCount, rrect, op, doAA);
    712     this->pushElement(element);
    713 }
    714 
    715 void SkClipStack::clipDevRect(const SkRect& rect, SkRegion::Op op, bool doAA) {
    716     Element element(fSaveCount, rect, op, doAA);
    717     this->pushElement(element);
    718 }
    719 
    720 void SkClipStack::clipDevPath(const SkPath& path, SkRegion::Op op, bool doAA) {
    721     Element element(fSaveCount, path, op, doAA);
    722     this->pushElement(element);
    723 }
    724 
    725 void SkClipStack::clipEmpty() {
    726     Element* element = (Element*) fDeque.back();
    727 
    728     if (element && element->canBeIntersectedInPlace(fSaveCount, SkRegion::kIntersect_Op)) {
    729         element->setEmpty();
    730     }
    731     new (fDeque.push_back()) Element(fSaveCount);
    732 
    733     ((Element*)fDeque.back())->fGenID = kEmptyGenID;
    734 }
    735 
    736 bool SkClipStack::isWideOpen() const {
    737     return this->getTopmostGenID() == kWideOpenGenID;
    738 }
    739 
    740 ///////////////////////////////////////////////////////////////////////////////
    741 
    742 SkClipStack::Iter::Iter() : fStack(NULL) {
    743 }
    744 
    745 SkClipStack::Iter::Iter(const SkClipStack& stack, IterStart startLoc)
    746     : fStack(&stack) {
    747     this->reset(stack, startLoc);
    748 }
    749 
    750 const SkClipStack::Element* SkClipStack::Iter::next() {
    751     return (const SkClipStack::Element*)fIter.next();
    752 }
    753 
    754 const SkClipStack::Element* SkClipStack::Iter::prev() {
    755     return (const SkClipStack::Element*)fIter.prev();
    756 }
    757 
    758 const SkClipStack::Element* SkClipStack::Iter::skipToTopmost(SkRegion::Op op) {
    759 
    760     if (NULL == fStack) {
    761         return NULL;
    762     }
    763 
    764     fIter.reset(fStack->fDeque, SkDeque::Iter::kBack_IterStart);
    765 
    766     const SkClipStack::Element* element = NULL;
    767 
    768     for (element = (const SkClipStack::Element*) fIter.prev();
    769          element;
    770          element = (const SkClipStack::Element*) fIter.prev()) {
    771 
    772         if (op == element->fOp) {
    773             // The Deque's iterator is actually one pace ahead of the
    774             // returned value. So while "element" is the element we want to
    775             // return, the iterator is actually pointing at (and will
    776             // return on the next "next" or "prev" call) the element
    777             // in front of it in the deque. Bump the iterator forward a
    778             // step so we get the expected result.
    779             if (NULL == fIter.next()) {
    780                 // The reverse iterator has run off the front of the deque
    781                 // (i.e., the "op" clip is the first clip) and can't
    782                 // recover. Reset the iterator to start at the front.
    783                 fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart);
    784             }
    785             break;
    786         }
    787     }
    788 
    789     if (NULL == element) {
    790         // There were no "op" clips
    791         fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart);
    792     }
    793 
    794     return this->next();
    795 }
    796 
    797 void SkClipStack::Iter::reset(const SkClipStack& stack, IterStart startLoc) {
    798     fStack = &stack;
    799     fIter.reset(stack.fDeque, static_cast<SkDeque::Iter::IterStart>(startLoc));
    800 }
    801 
    802 // helper method
    803 void SkClipStack::getConservativeBounds(int offsetX,
    804                                         int offsetY,
    805                                         int maxWidth,
    806                                         int maxHeight,
    807                                         SkRect* devBounds,
    808                                         bool* isIntersectionOfRects) const {
    809     SkASSERT(devBounds);
    810 
    811     devBounds->setLTRB(0, 0,
    812                        SkIntToScalar(maxWidth), SkIntToScalar(maxHeight));
    813 
    814     SkRect temp;
    815     SkClipStack::BoundsType boundType;
    816 
    817     // temp starts off in canvas space here
    818     this->getBounds(&temp, &boundType, isIntersectionOfRects);
    819     if (SkClipStack::kInsideOut_BoundsType == boundType) {
    820         return;
    821     }
    822 
    823     // but is converted to device space here
    824     temp.offset(SkIntToScalar(offsetX), SkIntToScalar(offsetY));
    825 
    826     if (!devBounds->intersect(temp)) {
    827         devBounds->setEmpty();
    828     }
    829 }
    830 
    831 int32_t SkClipStack::GetNextGenID() {
    832     // TODO: handle overflow.
    833     return sk_atomic_inc(&gGenID);
    834 }
    835 
    836 int32_t SkClipStack::getTopmostGenID() const {
    837     if (fDeque.empty()) {
    838         return kWideOpenGenID;
    839     }
    840 
    841     const Element* back = static_cast<const Element*>(fDeque.back());
    842     if (kInsideOut_BoundsType == back->fFiniteBoundType && back->fFiniteBound.isEmpty()) {
    843         return kWideOpenGenID;
    844     }
    845 
    846     return back->getGenID();
    847 }
    848 
    849 #ifdef SK_DEVELOPER
    850 void SkClipStack::Element::dump() const {
    851     static const char* kTypeStrings[] = {
    852         "empty",
    853         "rect",
    854         "rrect",
    855         "path"
    856     };
    857     SK_COMPILE_ASSERT(0 == kEmpty_Type, type_str);
    858     SK_COMPILE_ASSERT(1 == kRect_Type, type_str);
    859     SK_COMPILE_ASSERT(2 == kRRect_Type, type_str);
    860     SK_COMPILE_ASSERT(3 == kPath_Type, type_str);
    861     SK_COMPILE_ASSERT(SK_ARRAY_COUNT(kTypeStrings) == kTypeCnt, type_str);
    862 
    863     static const char* kOpStrings[] = {
    864         "difference",
    865         "intersect",
    866         "union",
    867         "xor",
    868         "reverse-difference",
    869         "replace",
    870     };
    871     SK_COMPILE_ASSERT(0 == SkRegion::kDifference_Op, op_str);
    872     SK_COMPILE_ASSERT(1 == SkRegion::kIntersect_Op, op_str);
    873     SK_COMPILE_ASSERT(2 == SkRegion::kUnion_Op, op_str);
    874     SK_COMPILE_ASSERT(3 == SkRegion::kXOR_Op, op_str);
    875     SK_COMPILE_ASSERT(4 == SkRegion::kReverseDifference_Op, op_str);
    876     SK_COMPILE_ASSERT(5 == SkRegion::kReplace_Op, op_str);
    877     SK_COMPILE_ASSERT(SK_ARRAY_COUNT(kOpStrings) == SkRegion::kOpCnt, op_str);
    878 
    879     SkDebugf("Type: %s, Op: %s, AA: %s, Save Count: %d\n", kTypeStrings[fType],
    880              kOpStrings[fOp], (fDoAA ? "yes" : "no"), fSaveCount);
    881     switch (fType) {
    882         case kEmpty_Type:
    883             SkDebugf("\n");
    884             break;
    885         case kRect_Type:
    886             this->getRect().dump();
    887             SkDebugf("\n");
    888             break;
    889         case kRRect_Type:
    890             this->getRRect().dump();
    891             SkDebugf("\n");
    892             break;
    893         case kPath_Type:
    894             this->getPath().dump(NULL, true, false);
    895             break;
    896     }
    897 }
    898 
    899 void SkClipStack::dump() const {
    900     B2TIter iter(*this);
    901     const Element* e;
    902     while ((e = iter.next())) {
    903         e->dump();
    904         SkDebugf("\n");
    905     }
    906 }
    907 #endif
    908