Home | History | Annotate | Download | only in Core
      1 //==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines a generic engine for intraprocedural, path-sensitive,
     11 //  dataflow analysis via graph reachability engine.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
     16 #include "clang/AST/Expr.h"
     17 #include "clang/AST/StmtCXX.h"
     18 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
     19 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
     20 #include "llvm/ADT/DenseMap.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/Support/Casting.h"
     23 
     24 using namespace clang;
     25 using namespace ento;
     26 
     27 #define DEBUG_TYPE "CoreEngine"
     28 
     29 STATISTIC(NumSteps,
     30             "The # of steps executed.");
     31 STATISTIC(NumReachedMaxSteps,
     32             "The # of times we reached the max number of steps.");
     33 STATISTIC(NumPathsExplored,
     34             "The # of paths explored by the analyzer.");
     35 
     36 //===----------------------------------------------------------------------===//
     37 // Worklist classes for exploration of reachable states.
     38 //===----------------------------------------------------------------------===//
     39 
     40 WorkList::Visitor::~Visitor() {}
     41 
     42 namespace {
     43 class DFS : public WorkList {
     44   SmallVector<WorkListUnit,20> Stack;
     45 public:
     46   bool hasWork() const override {
     47     return !Stack.empty();
     48   }
     49 
     50   void enqueue(const WorkListUnit& U) override {
     51     Stack.push_back(U);
     52   }
     53 
     54   WorkListUnit dequeue() override {
     55     assert (!Stack.empty());
     56     const WorkListUnit& U = Stack.back();
     57     Stack.pop_back(); // This technically "invalidates" U, but we are fine.
     58     return U;
     59   }
     60 
     61   bool visitItemsInWorkList(Visitor &V) override {
     62     for (SmallVectorImpl<WorkListUnit>::iterator
     63          I = Stack.begin(), E = Stack.end(); I != E; ++I) {
     64       if (V.visit(*I))
     65         return true;
     66     }
     67     return false;
     68   }
     69 };
     70 
     71 class BFS : public WorkList {
     72   std::deque<WorkListUnit> Queue;
     73 public:
     74   bool hasWork() const override {
     75     return !Queue.empty();
     76   }
     77 
     78   void enqueue(const WorkListUnit& U) override {
     79     Queue.push_back(U);
     80   }
     81 
     82   WorkListUnit dequeue() override {
     83     WorkListUnit U = Queue.front();
     84     Queue.pop_front();
     85     return U;
     86   }
     87 
     88   bool visitItemsInWorkList(Visitor &V) override {
     89     for (std::deque<WorkListUnit>::iterator
     90          I = Queue.begin(), E = Queue.end(); I != E; ++I) {
     91       if (V.visit(*I))
     92         return true;
     93     }
     94     return false;
     95   }
     96 };
     97 
     98 } // end anonymous namespace
     99 
    100 // Place the dstor for WorkList here because it contains virtual member
    101 // functions, and we the code for the dstor generated in one compilation unit.
    102 WorkList::~WorkList() {}
    103 
    104 WorkList *WorkList::makeDFS() { return new DFS(); }
    105 WorkList *WorkList::makeBFS() { return new BFS(); }
    106 
    107 namespace {
    108   class BFSBlockDFSContents : public WorkList {
    109     std::deque<WorkListUnit> Queue;
    110     SmallVector<WorkListUnit,20> Stack;
    111   public:
    112     bool hasWork() const override {
    113       return !Queue.empty() || !Stack.empty();
    114     }
    115 
    116     void enqueue(const WorkListUnit& U) override {
    117       if (U.getNode()->getLocation().getAs<BlockEntrance>())
    118         Queue.push_front(U);
    119       else
    120         Stack.push_back(U);
    121     }
    122 
    123     WorkListUnit dequeue() override {
    124       // Process all basic blocks to completion.
    125       if (!Stack.empty()) {
    126         const WorkListUnit& U = Stack.back();
    127         Stack.pop_back(); // This technically "invalidates" U, but we are fine.
    128         return U;
    129       }
    130 
    131       assert(!Queue.empty());
    132       // Don't use const reference.  The subsequent pop_back() might make it
    133       // unsafe.
    134       WorkListUnit U = Queue.front();
    135       Queue.pop_front();
    136       return U;
    137     }
    138     bool visitItemsInWorkList(Visitor &V) override {
    139       for (SmallVectorImpl<WorkListUnit>::iterator
    140            I = Stack.begin(), E = Stack.end(); I != E; ++I) {
    141         if (V.visit(*I))
    142           return true;
    143       }
    144       for (std::deque<WorkListUnit>::iterator
    145            I = Queue.begin(), E = Queue.end(); I != E; ++I) {
    146         if (V.visit(*I))
    147           return true;
    148       }
    149       return false;
    150     }
    151 
    152   };
    153 } // end anonymous namespace
    154 
    155 WorkList* WorkList::makeBFSBlockDFSContents() {
    156   return new BFSBlockDFSContents();
    157 }
    158 
    159 //===----------------------------------------------------------------------===//
    160 // Core analysis engine.
    161 //===----------------------------------------------------------------------===//
    162 
    163 /// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
    164 bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps,
    165                                    ProgramStateRef InitState) {
    166 
    167   if (G->num_roots() == 0) { // Initialize the analysis by constructing
    168     // the root if none exists.
    169 
    170     const CFGBlock *Entry = &(L->getCFG()->getEntry());
    171 
    172     assert (Entry->empty() &&
    173             "Entry block must be empty.");
    174 
    175     assert (Entry->succ_size() == 1 &&
    176             "Entry block must have 1 successor.");
    177 
    178     // Mark the entry block as visited.
    179     FunctionSummaries->markVisitedBasicBlock(Entry->getBlockID(),
    180                                              L->getDecl(),
    181                                              L->getCFG()->getNumBlockIDs());
    182 
    183     // Get the solitary successor.
    184     const CFGBlock *Succ = *(Entry->succ_begin());
    185 
    186     // Construct an edge representing the
    187     // starting location in the function.
    188     BlockEdge StartLoc(Entry, Succ, L);
    189 
    190     // Set the current block counter to being empty.
    191     WList->setBlockCounter(BCounterFactory.GetEmptyCounter());
    192 
    193     if (!InitState)
    194       // Generate the root.
    195       generateNode(StartLoc, SubEng.getInitialState(L), nullptr);
    196     else
    197       generateNode(StartLoc, InitState, nullptr);
    198   }
    199 
    200   // Check if we have a steps limit
    201   bool UnlimitedSteps = Steps == 0;
    202 
    203   while (WList->hasWork()) {
    204     if (!UnlimitedSteps) {
    205       if (Steps == 0) {
    206         NumReachedMaxSteps++;
    207         break;
    208       }
    209       --Steps;
    210     }
    211 
    212     NumSteps++;
    213 
    214     const WorkListUnit& WU = WList->dequeue();
    215 
    216     // Set the current block counter.
    217     WList->setBlockCounter(WU.getBlockCounter());
    218 
    219     // Retrieve the node.
    220     ExplodedNode *Node = WU.getNode();
    221 
    222     dispatchWorkItem(Node, Node->getLocation(), WU);
    223   }
    224   SubEng.processEndWorklist(hasWorkRemaining());
    225   return WList->hasWork();
    226 }
    227 
    228 void CoreEngine::dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
    229                                   const WorkListUnit& WU) {
    230   // Dispatch on the location type.
    231   switch (Loc.getKind()) {
    232     case ProgramPoint::BlockEdgeKind:
    233       HandleBlockEdge(Loc.castAs<BlockEdge>(), Pred);
    234       break;
    235 
    236     case ProgramPoint::BlockEntranceKind:
    237       HandleBlockEntrance(Loc.castAs<BlockEntrance>(), Pred);
    238       break;
    239 
    240     case ProgramPoint::BlockExitKind:
    241       assert (false && "BlockExit location never occur in forward analysis.");
    242       break;
    243 
    244     case ProgramPoint::CallEnterKind: {
    245       CallEnter CEnter = Loc.castAs<CallEnter>();
    246       SubEng.processCallEnter(CEnter, Pred);
    247       break;
    248     }
    249 
    250     case ProgramPoint::CallExitBeginKind:
    251       SubEng.processCallExit(Pred);
    252       break;
    253 
    254     case ProgramPoint::EpsilonKind: {
    255       assert(Pred->hasSinglePred() &&
    256              "Assume epsilon has exactly one predecessor by construction");
    257       ExplodedNode *PNode = Pred->getFirstPred();
    258       dispatchWorkItem(Pred, PNode->getLocation(), WU);
    259       break;
    260     }
    261     default:
    262       assert(Loc.getAs<PostStmt>() ||
    263              Loc.getAs<PostInitializer>() ||
    264              Loc.getAs<PostImplicitCall>() ||
    265              Loc.getAs<CallExitEnd>());
    266       HandlePostStmt(WU.getBlock(), WU.getIndex(), Pred);
    267       break;
    268   }
    269 }
    270 
    271 bool CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L,
    272                                                  unsigned Steps,
    273                                                  ProgramStateRef InitState,
    274                                                  ExplodedNodeSet &Dst) {
    275   bool DidNotFinish = ExecuteWorkList(L, Steps, InitState);
    276   for (ExplodedGraph::eop_iterator I = G->eop_begin(),
    277                                    E = G->eop_end(); I != E; ++I) {
    278     Dst.Add(*I);
    279   }
    280   return DidNotFinish;
    281 }
    282 
    283 void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) {
    284 
    285   const CFGBlock *Blk = L.getDst();
    286   NodeBuilderContext BuilderCtx(*this, Blk, Pred);
    287 
    288   // Mark this block as visited.
    289   const LocationContext *LC = Pred->getLocationContext();
    290   FunctionSummaries->markVisitedBasicBlock(Blk->getBlockID(),
    291                                            LC->getDecl(),
    292                                            LC->getCFG()->getNumBlockIDs());
    293 
    294   // Check if we are entering the EXIT block.
    295   if (Blk == &(L.getLocationContext()->getCFG()->getExit())) {
    296 
    297     assert (L.getLocationContext()->getCFG()->getExit().size() == 0
    298             && "EXIT block cannot contain Stmts.");
    299 
    300     // Process the final state transition.
    301     SubEng.processEndOfFunction(BuilderCtx, Pred);
    302 
    303     // This path is done. Don't enqueue any more nodes.
    304     return;
    305   }
    306 
    307   // Call into the SubEngine to process entering the CFGBlock.
    308   ExplodedNodeSet dstNodes;
    309   BlockEntrance BE(Blk, Pred->getLocationContext());
    310   NodeBuilderWithSinks nodeBuilder(Pred, dstNodes, BuilderCtx, BE);
    311   SubEng.processCFGBlockEntrance(L, nodeBuilder, Pred);
    312 
    313   // Auto-generate a node.
    314   if (!nodeBuilder.hasGeneratedNodes()) {
    315     nodeBuilder.generateNode(Pred->State, Pred);
    316   }
    317 
    318   // Enqueue nodes onto the worklist.
    319   enqueue(dstNodes);
    320 }
    321 
    322 void CoreEngine::HandleBlockEntrance(const BlockEntrance &L,
    323                                        ExplodedNode *Pred) {
    324 
    325   // Increment the block counter.
    326   const LocationContext *LC = Pred->getLocationContext();
    327   unsigned BlockId = L.getBlock()->getBlockID();
    328   BlockCounter Counter = WList->getBlockCounter();
    329   Counter = BCounterFactory.IncrementCount(Counter, LC->getCurrentStackFrame(),
    330                                            BlockId);
    331   WList->setBlockCounter(Counter);
    332 
    333   // Process the entrance of the block.
    334   if (Optional<CFGElement> E = L.getFirstElement()) {
    335     NodeBuilderContext Ctx(*this, L.getBlock(), Pred);
    336     SubEng.processCFGElement(*E, Pred, 0, &Ctx);
    337   }
    338   else
    339     HandleBlockExit(L.getBlock(), Pred);
    340 }
    341 
    342 void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) {
    343 
    344   if (const Stmt *Term = B->getTerminator()) {
    345     switch (Term->getStmtClass()) {
    346       default:
    347         llvm_unreachable("Analysis for this terminator not implemented.");
    348 
    349       // Model static initializers.
    350       case Stmt::DeclStmtClass:
    351         HandleStaticInit(cast<DeclStmt>(Term), B, Pred);
    352         return;
    353 
    354       case Stmt::BinaryOperatorClass: // '&&' and '||'
    355         HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
    356         return;
    357 
    358       case Stmt::BinaryConditionalOperatorClass:
    359       case Stmt::ConditionalOperatorClass:
    360         HandleBranch(cast<AbstractConditionalOperator>(Term)->getCond(),
    361                      Term, B, Pred);
    362         return;
    363 
    364         // FIXME: Use constant-folding in CFG construction to simplify this
    365         // case.
    366 
    367       case Stmt::ChooseExprClass:
    368         HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
    369         return;
    370 
    371       case Stmt::CXXTryStmtClass: {
    372         // Generate a node for each of the successors.
    373         // Our logic for EH analysis can certainly be improved.
    374         for (CFGBlock::const_succ_iterator it = B->succ_begin(),
    375              et = B->succ_end(); it != et; ++it) {
    376           if (const CFGBlock *succ = *it) {
    377             generateNode(BlockEdge(B, succ, Pred->getLocationContext()),
    378                          Pred->State, Pred);
    379           }
    380         }
    381         return;
    382       }
    383 
    384       case Stmt::DoStmtClass:
    385         HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
    386         return;
    387 
    388       case Stmt::CXXForRangeStmtClass:
    389         HandleBranch(cast<CXXForRangeStmt>(Term)->getCond(), Term, B, Pred);
    390         return;
    391 
    392       case Stmt::ForStmtClass:
    393         HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
    394         return;
    395 
    396       case Stmt::ContinueStmtClass:
    397       case Stmt::BreakStmtClass:
    398       case Stmt::GotoStmtClass:
    399         break;
    400 
    401       case Stmt::IfStmtClass:
    402         HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
    403         return;
    404 
    405       case Stmt::IndirectGotoStmtClass: {
    406         // Only 1 successor: the indirect goto dispatch block.
    407         assert (B->succ_size() == 1);
    408 
    409         IndirectGotoNodeBuilder
    410            builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
    411                    *(B->succ_begin()), this);
    412 
    413         SubEng.processIndirectGoto(builder);
    414         return;
    415       }
    416 
    417       case Stmt::ObjCForCollectionStmtClass: {
    418         // In the case of ObjCForCollectionStmt, it appears twice in a CFG:
    419         //
    420         //  (1) inside a basic block, which represents the binding of the
    421         //      'element' variable to a value.
    422         //  (2) in a terminator, which represents the branch.
    423         //
    424         // For (1), subengines will bind a value (i.e., 0 or 1) indicating
    425         // whether or not collection contains any more elements.  We cannot
    426         // just test to see if the element is nil because a container can
    427         // contain nil elements.
    428         HandleBranch(Term, Term, B, Pred);
    429         return;
    430       }
    431 
    432       case Stmt::SwitchStmtClass: {
    433         SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(),
    434                                     this);
    435 
    436         SubEng.processSwitch(builder);
    437         return;
    438       }
    439 
    440       case Stmt::WhileStmtClass:
    441         HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
    442         return;
    443     }
    444   }
    445 
    446   assert (B->succ_size() == 1 &&
    447           "Blocks with no terminator should have at most 1 successor.");
    448 
    449   generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()),
    450                Pred->State, Pred);
    451 }
    452 
    453 void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term,
    454                                 const CFGBlock * B, ExplodedNode *Pred) {
    455   assert(B->succ_size() == 2);
    456   NodeBuilderContext Ctx(*this, B, Pred);
    457   ExplodedNodeSet Dst;
    458   SubEng.processBranch(Cond, Term, Ctx, Pred, Dst,
    459                        *(B->succ_begin()), *(B->succ_begin()+1));
    460   // Enqueue the new frontier onto the worklist.
    461   enqueue(Dst);
    462 }
    463 
    464 
    465 void CoreEngine::HandleStaticInit(const DeclStmt *DS, const CFGBlock *B,
    466                                   ExplodedNode *Pred) {
    467   assert(B->succ_size() == 2);
    468   NodeBuilderContext Ctx(*this, B, Pred);
    469   ExplodedNodeSet Dst;
    470   SubEng.processStaticInitializer(DS, Ctx, Pred, Dst,
    471                                   *(B->succ_begin()), *(B->succ_begin()+1));
    472   // Enqueue the new frontier onto the worklist.
    473   enqueue(Dst);
    474 }
    475 
    476 
    477 void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx,
    478                                   ExplodedNode *Pred) {
    479   assert(B);
    480   assert(!B->empty());
    481 
    482   if (StmtIdx == B->size())
    483     HandleBlockExit(B, Pred);
    484   else {
    485     NodeBuilderContext Ctx(*this, B, Pred);
    486     SubEng.processCFGElement((*B)[StmtIdx], Pred, StmtIdx, &Ctx);
    487   }
    488 }
    489 
    490 /// generateNode - Utility method to generate nodes, hook up successors,
    491 ///  and add nodes to the worklist.
    492 void CoreEngine::generateNode(const ProgramPoint &Loc,
    493                               ProgramStateRef State,
    494                               ExplodedNode *Pred) {
    495 
    496   bool IsNew;
    497   ExplodedNode *Node = G->getNode(Loc, State, false, &IsNew);
    498 
    499   if (Pred)
    500     Node->addPredecessor(Pred, *G);  // Link 'Node' with its predecessor.
    501   else {
    502     assert (IsNew);
    503     G->addRoot(Node);  // 'Node' has no predecessor.  Make it a root.
    504   }
    505 
    506   // Only add 'Node' to the worklist if it was freshly generated.
    507   if (IsNew) WList->enqueue(Node);
    508 }
    509 
    510 void CoreEngine::enqueueStmtNode(ExplodedNode *N,
    511                                  const CFGBlock *Block, unsigned Idx) {
    512   assert(Block);
    513   assert (!N->isSink());
    514 
    515   // Check if this node entered a callee.
    516   if (N->getLocation().getAs<CallEnter>()) {
    517     // Still use the index of the CallExpr. It's needed to create the callee
    518     // StackFrameContext.
    519     WList->enqueue(N, Block, Idx);
    520     return;
    521   }
    522 
    523   // Do not create extra nodes. Move to the next CFG element.
    524   if (N->getLocation().getAs<PostInitializer>() ||
    525       N->getLocation().getAs<PostImplicitCall>()) {
    526     WList->enqueue(N, Block, Idx+1);
    527     return;
    528   }
    529 
    530   if (N->getLocation().getAs<EpsilonPoint>()) {
    531     WList->enqueue(N, Block, Idx);
    532     return;
    533   }
    534 
    535   if ((*Block)[Idx].getKind() == CFGElement::NewAllocator) {
    536     WList->enqueue(N, Block, Idx+1);
    537     return;
    538   }
    539 
    540   // At this point, we know we're processing a normal statement.
    541   CFGStmt CS = (*Block)[Idx].castAs<CFGStmt>();
    542   PostStmt Loc(CS.getStmt(), N->getLocationContext());
    543 
    544   if (Loc == N->getLocation().withTag(nullptr)) {
    545     // Note: 'N' should be a fresh node because otherwise it shouldn't be
    546     // a member of Deferred.
    547     WList->enqueue(N, Block, Idx+1);
    548     return;
    549   }
    550 
    551   bool IsNew;
    552   ExplodedNode *Succ = G->getNode(Loc, N->getState(), false, &IsNew);
    553   Succ->addPredecessor(N, *G);
    554 
    555   if (IsNew)
    556     WList->enqueue(Succ, Block, Idx+1);
    557 }
    558 
    559 ExplodedNode *CoreEngine::generateCallExitBeginNode(ExplodedNode *N) {
    560   // Create a CallExitBegin node and enqueue it.
    561   const StackFrameContext *LocCtx
    562                          = cast<StackFrameContext>(N->getLocationContext());
    563 
    564   // Use the callee location context.
    565   CallExitBegin Loc(LocCtx);
    566 
    567   bool isNew;
    568   ExplodedNode *Node = G->getNode(Loc, N->getState(), false, &isNew);
    569   Node->addPredecessor(N, *G);
    570   return isNew ? Node : nullptr;
    571 }
    572 
    573 
    574 void CoreEngine::enqueue(ExplodedNodeSet &Set) {
    575   for (ExplodedNodeSet::iterator I = Set.begin(),
    576                                  E = Set.end(); I != E; ++I) {
    577     WList->enqueue(*I);
    578   }
    579 }
    580 
    581 void CoreEngine::enqueue(ExplodedNodeSet &Set,
    582                          const CFGBlock *Block, unsigned Idx) {
    583   for (ExplodedNodeSet::iterator I = Set.begin(),
    584                                  E = Set.end(); I != E; ++I) {
    585     enqueueStmtNode(*I, Block, Idx);
    586   }
    587 }
    588 
    589 void CoreEngine::enqueueEndOfFunction(ExplodedNodeSet &Set) {
    590   for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) {
    591     ExplodedNode *N = *I;
    592     // If we are in an inlined call, generate CallExitBegin node.
    593     if (N->getLocationContext()->getParent()) {
    594       N = generateCallExitBeginNode(N);
    595       if (N)
    596         WList->enqueue(N);
    597     } else {
    598       // TODO: We should run remove dead bindings here.
    599       G->addEndOfPath(N);
    600       NumPathsExplored++;
    601     }
    602   }
    603 }
    604 
    605 
    606 void NodeBuilder::anchor() { }
    607 
    608 ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc,
    609                                             ProgramStateRef State,
    610                                             ExplodedNode *FromN,
    611                                             bool MarkAsSink) {
    612   HasGeneratedNodes = true;
    613   bool IsNew;
    614   ExplodedNode *N = C.Eng.G->getNode(Loc, State, MarkAsSink, &IsNew);
    615   N->addPredecessor(FromN, *C.Eng.G);
    616   Frontier.erase(FromN);
    617 
    618   if (!IsNew)
    619     return nullptr;
    620 
    621   if (!MarkAsSink)
    622     Frontier.Add(N);
    623 
    624   return N;
    625 }
    626 
    627 void NodeBuilderWithSinks::anchor() { }
    628 
    629 StmtNodeBuilder::~StmtNodeBuilder() {
    630   if (EnclosingBldr)
    631     for (ExplodedNodeSet::iterator I = Frontier.begin(),
    632                                    E = Frontier.end(); I != E; ++I )
    633       EnclosingBldr->addNodes(*I);
    634 }
    635 
    636 void BranchNodeBuilder::anchor() { }
    637 
    638 ExplodedNode *BranchNodeBuilder::generateNode(ProgramStateRef State,
    639                                               bool branch,
    640                                               ExplodedNode *NodePred) {
    641   // If the branch has been marked infeasible we should not generate a node.
    642   if (!isFeasible(branch))
    643     return nullptr;
    644 
    645   ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF,
    646                                NodePred->getLocationContext());
    647   ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred);
    648   return Succ;
    649 }
    650 
    651 ExplodedNode*
    652 IndirectGotoNodeBuilder::generateNode(const iterator &I,
    653                                       ProgramStateRef St,
    654                                       bool IsSink) {
    655   bool IsNew;
    656   ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
    657                                       Pred->getLocationContext()), St,
    658                                       IsSink, &IsNew);
    659   Succ->addPredecessor(Pred, *Eng.G);
    660 
    661   if (!IsNew)
    662     return nullptr;
    663 
    664   if (!IsSink)
    665     Eng.WList->enqueue(Succ);
    666 
    667   return Succ;
    668 }
    669 
    670 
    671 ExplodedNode*
    672 SwitchNodeBuilder::generateCaseStmtNode(const iterator &I,
    673                                         ProgramStateRef St) {
    674 
    675   bool IsNew;
    676   ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
    677                                       Pred->getLocationContext()), St,
    678                                       false, &IsNew);
    679   Succ->addPredecessor(Pred, *Eng.G);
    680   if (!IsNew)
    681     return nullptr;
    682 
    683   Eng.WList->enqueue(Succ);
    684   return Succ;
    685 }
    686 
    687 
    688 ExplodedNode*
    689 SwitchNodeBuilder::generateDefaultCaseNode(ProgramStateRef St,
    690                                            bool IsSink) {
    691   // Get the block for the default case.
    692   assert(Src->succ_rbegin() != Src->succ_rend());
    693   CFGBlock *DefaultBlock = *Src->succ_rbegin();
    694 
    695   // Sanity check for default blocks that are unreachable and not caught
    696   // by earlier stages.
    697   if (!DefaultBlock)
    698     return nullptr;
    699 
    700   bool IsNew;
    701   ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, DefaultBlock,
    702                                       Pred->getLocationContext()), St,
    703                                       IsSink, &IsNew);
    704   Succ->addPredecessor(Pred, *Eng.G);
    705 
    706   if (!IsNew)
    707     return nullptr;
    708 
    709   if (!IsSink)
    710     Eng.WList->enqueue(Succ);
    711 
    712   return Succ;
    713 }
    714