Home | History | Annotate | Download | only in Sema
      1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for C++ lambda expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 #include "clang/Sema/DeclSpec.h"
     14 #include "TypeLocBuilder.h"
     15 #include "clang/AST/ASTLambda.h"
     16 #include "clang/AST/ExprCXX.h"
     17 #include "clang/Basic/TargetInfo.h"
     18 #include "clang/Sema/Initialization.h"
     19 #include "clang/Sema/Lookup.h"
     20 #include "clang/Sema/Scope.h"
     21 #include "clang/Sema/ScopeInfo.h"
     22 #include "clang/Sema/SemaInternal.h"
     23 #include "clang/Sema/SemaLambda.h"
     24 using namespace clang;
     25 using namespace sema;
     26 
     27 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
     28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
     29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
     30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
     31 /// of the capture-ready lambda's LambdaScopeInfo.
     32 ///
     33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
     34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
     35 /// lambda that is ready to capture the \p VarToCapture being referenced in
     36 /// the current lambda.
     37 /// As we climb down the stack, we want the index of the first such lambda -
     38 /// that is the lambda with the highest index that is 'capture-ready'.
     39 ///
     40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
     41 ///  - its enclosing context is non-dependent
     42 ///  - and if the chain of lambdas between L and the lambda in which
     43 ///    V is potentially used (i.e. the lambda at the top of the scope info
     44 ///    stack), can all capture or have already captured V.
     45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
     46 ///
     47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
     48 /// for whether it is 'capture-capable' (see
     49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
     50 /// capture.
     51 ///
     52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
     53 ///  LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
     54 ///  is at the top of the stack and has the highest index.
     55 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
     56 ///
     57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
     58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
     59 /// which is capture-ready.  If the return value evaluates to 'false' then
     60 /// no lambda is capture-ready for \p VarToCapture.
     61 
     62 static inline Optional<unsigned>
     63 getStackIndexOfNearestEnclosingCaptureReadyLambda(
     64     ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
     65     VarDecl *VarToCapture) {
     66   // Label failure to capture.
     67   const Optional<unsigned> NoLambdaIsCaptureReady;
     68 
     69   assert(
     70       isa<clang::sema::LambdaScopeInfo>(
     71           FunctionScopes[FunctionScopes.size() - 1]) &&
     72       "The function on the top of sema's function-info stack must be a lambda");
     73 
     74   // If VarToCapture is null, we are attempting to capture 'this'.
     75   const bool IsCapturingThis = !VarToCapture;
     76   const bool IsCapturingVariable = !IsCapturingThis;
     77 
     78   // Start with the current lambda at the top of the stack (highest index).
     79   unsigned CurScopeIndex = FunctionScopes.size() - 1;
     80   DeclContext *EnclosingDC =
     81       cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
     82 
     83   do {
     84     const clang::sema::LambdaScopeInfo *LSI =
     85         cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
     86     // IF we have climbed down to an intervening enclosing lambda that contains
     87     // the variable declaration - it obviously can/must not capture the
     88     // variable.
     89     // Since its enclosing DC is dependent, all the lambdas between it and the
     90     // innermost nested lambda are dependent (otherwise we wouldn't have
     91     // arrived here) - so we don't yet have a lambda that can capture the
     92     // variable.
     93     if (IsCapturingVariable &&
     94         VarToCapture->getDeclContext()->Equals(EnclosingDC))
     95       return NoLambdaIsCaptureReady;
     96 
     97     // For an enclosing lambda to be capture ready for an entity, all
     98     // intervening lambda's have to be able to capture that entity. If even
     99     // one of the intervening lambda's is not capable of capturing the entity
    100     // then no enclosing lambda can ever capture that entity.
    101     // For e.g.
    102     // const int x = 10;
    103     // [=](auto a) {    #1
    104     //   [](auto b) {   #2 <-- an intervening lambda that can never capture 'x'
    105     //    [=](auto c) { #3
    106     //       f(x, c);  <-- can not lead to x's speculative capture by #1 or #2
    107     //    }; }; };
    108     // If they do not have a default implicit capture, check to see
    109     // if the entity has already been explicitly captured.
    110     // If even a single dependent enclosing lambda lacks the capability
    111     // to ever capture this variable, there is no further enclosing
    112     // non-dependent lambda that can capture this variable.
    113     if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
    114       if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
    115         return NoLambdaIsCaptureReady;
    116       if (IsCapturingThis && !LSI->isCXXThisCaptured())
    117         return NoLambdaIsCaptureReady;
    118     }
    119     EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
    120 
    121     assert(CurScopeIndex);
    122     --CurScopeIndex;
    123   } while (!EnclosingDC->isTranslationUnit() &&
    124            EnclosingDC->isDependentContext() &&
    125            isLambdaCallOperator(EnclosingDC));
    126 
    127   assert(CurScopeIndex < (FunctionScopes.size() - 1));
    128   // If the enclosingDC is not dependent, then the immediately nested lambda
    129   // (one index above) is capture-ready.
    130   if (!EnclosingDC->isDependentContext())
    131     return CurScopeIndex + 1;
    132   return NoLambdaIsCaptureReady;
    133 }
    134 
    135 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
    136 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
    137 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
    138 /// If successful, returns the index into Sema's FunctionScopeInfo stack
    139 /// of the capture-capable lambda's LambdaScopeInfo.
    140 ///
    141 /// Given the current stack of lambdas being processed by Sema and
    142 /// the variable of interest, to identify the nearest enclosing lambda (to the
    143 /// current lambda at the top of the stack) that can truly capture
    144 /// a variable, it has to have the following two properties:
    145 ///  a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
    146 ///     - climb down the stack (i.e. starting from the innermost and examining
    147 ///       each outer lambda step by step) checking if each enclosing
    148 ///       lambda can either implicitly or explicitly capture the variable.
    149 ///       Record the first such lambda that is enclosed in a non-dependent
    150 ///       context. If no such lambda currently exists return failure.
    151 ///  b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
    152 ///  capture the variable by checking all its enclosing lambdas:
    153 ///     - check if all outer lambdas enclosing the 'capture-ready' lambda
    154 ///       identified above in 'a' can also capture the variable (this is done
    155 ///       via tryCaptureVariable for variables and CheckCXXThisCapture for
    156 ///       'this' by passing in the index of the Lambda identified in step 'a')
    157 ///
    158 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
    159 /// LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
    160 /// is at the top of the stack.
    161 ///
    162 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
    163 ///
    164 ///
    165 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
    166 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
    167 /// which is capture-capable.  If the return value evaluates to 'false' then
    168 /// no lambda is capture-capable for \p VarToCapture.
    169 
    170 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
    171     ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
    172     VarDecl *VarToCapture, Sema &S) {
    173 
    174   const Optional<unsigned> NoLambdaIsCaptureCapable;
    175 
    176   const Optional<unsigned> OptionalStackIndex =
    177       getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
    178                                                         VarToCapture);
    179   if (!OptionalStackIndex)
    180     return NoLambdaIsCaptureCapable;
    181 
    182   const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
    183   assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
    184           S.getCurGenericLambda()) &&
    185          "The capture ready lambda for a potential capture can only be the "
    186          "current lambda if it is a generic lambda");
    187 
    188   const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
    189       cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
    190 
    191   // If VarToCapture is null, we are attempting to capture 'this'
    192   const bool IsCapturingThis = !VarToCapture;
    193   const bool IsCapturingVariable = !IsCapturingThis;
    194 
    195   if (IsCapturingVariable) {
    196     // Check if the capture-ready lambda can truly capture the variable, by
    197     // checking whether all enclosing lambdas of the capture-ready lambda allow
    198     // the capture - i.e. make sure it is capture-capable.
    199     QualType CaptureType, DeclRefType;
    200     const bool CanCaptureVariable =
    201         !S.tryCaptureVariable(VarToCapture,
    202                               /*ExprVarIsUsedInLoc*/ SourceLocation(),
    203                               clang::Sema::TryCapture_Implicit,
    204                               /*EllipsisLoc*/ SourceLocation(),
    205                               /*BuildAndDiagnose*/ false, CaptureType,
    206                               DeclRefType, &IndexOfCaptureReadyLambda);
    207     if (!CanCaptureVariable)
    208       return NoLambdaIsCaptureCapable;
    209   } else {
    210     // Check if the capture-ready lambda can truly capture 'this' by checking
    211     // whether all enclosing lambdas of the capture-ready lambda can capture
    212     // 'this'.
    213     const bool CanCaptureThis =
    214         !S.CheckCXXThisCapture(
    215              CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
    216              /*Explicit*/ false, /*BuildAndDiagnose*/ false,
    217              &IndexOfCaptureReadyLambda);
    218     if (!CanCaptureThis)
    219       return NoLambdaIsCaptureCapable;
    220   }
    221   return IndexOfCaptureReadyLambda;
    222 }
    223 
    224 static inline TemplateParameterList *
    225 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
    226   if (LSI->GLTemplateParameterList)
    227     return LSI->GLTemplateParameterList;
    228 
    229   if (LSI->AutoTemplateParams.size()) {
    230     SourceRange IntroRange = LSI->IntroducerRange;
    231     SourceLocation LAngleLoc = IntroRange.getBegin();
    232     SourceLocation RAngleLoc = IntroRange.getEnd();
    233     LSI->GLTemplateParameterList = TemplateParameterList::Create(
    234         SemaRef.Context,
    235         /*Template kw loc*/ SourceLocation(), LAngleLoc,
    236         (NamedDecl **)LSI->AutoTemplateParams.data(),
    237         LSI->AutoTemplateParams.size(), RAngleLoc);
    238   }
    239   return LSI->GLTemplateParameterList;
    240 }
    241 
    242 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
    243                                              TypeSourceInfo *Info,
    244                                              bool KnownDependent,
    245                                              LambdaCaptureDefault CaptureDefault) {
    246   DeclContext *DC = CurContext;
    247   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
    248     DC = DC->getParent();
    249   bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
    250                                                                *this);
    251   // Start constructing the lambda class.
    252   CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
    253                                                      IntroducerRange.getBegin(),
    254                                                      KnownDependent,
    255                                                      IsGenericLambda,
    256                                                      CaptureDefault);
    257   DC->addDecl(Class);
    258 
    259   return Class;
    260 }
    261 
    262 /// \brief Determine whether the given context is or is enclosed in an inline
    263 /// function.
    264 static bool isInInlineFunction(const DeclContext *DC) {
    265   while (!DC->isFileContext()) {
    266     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
    267       if (FD->isInlined())
    268         return true;
    269 
    270     DC = DC->getLexicalParent();
    271   }
    272 
    273   return false;
    274 }
    275 
    276 MangleNumberingContext *
    277 Sema::getCurrentMangleNumberContext(const DeclContext *DC,
    278                                     Decl *&ManglingContextDecl) {
    279   // Compute the context for allocating mangling numbers in the current
    280   // expression, if the ABI requires them.
    281   ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
    282 
    283   enum ContextKind {
    284     Normal,
    285     DefaultArgument,
    286     DataMember,
    287     StaticDataMember
    288   } Kind = Normal;
    289 
    290   // Default arguments of member function parameters that appear in a class
    291   // definition, as well as the initializers of data members, receive special
    292   // treatment. Identify them.
    293   if (ManglingContextDecl) {
    294     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
    295       if (const DeclContext *LexicalDC
    296           = Param->getDeclContext()->getLexicalParent())
    297         if (LexicalDC->isRecord())
    298           Kind = DefaultArgument;
    299     } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
    300       if (Var->getDeclContext()->isRecord())
    301         Kind = StaticDataMember;
    302     } else if (isa<FieldDecl>(ManglingContextDecl)) {
    303       Kind = DataMember;
    304     }
    305   }
    306 
    307   // Itanium ABI [5.1.7]:
    308   //   In the following contexts [...] the one-definition rule requires closure
    309   //   types in different translation units to "correspond":
    310   bool IsInNonspecializedTemplate =
    311     !ActiveTemplateInstantiations.empty() || CurContext->isDependentContext();
    312   switch (Kind) {
    313   case Normal:
    314     //  -- the bodies of non-exported nonspecialized template functions
    315     //  -- the bodies of inline functions
    316     if ((IsInNonspecializedTemplate &&
    317          !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
    318         isInInlineFunction(CurContext)) {
    319       ManglingContextDecl = nullptr;
    320       return &Context.getManglingNumberContext(DC);
    321     }
    322 
    323     ManglingContextDecl = nullptr;
    324     return nullptr;
    325 
    326   case StaticDataMember:
    327     //  -- the initializers of nonspecialized static members of template classes
    328     if (!IsInNonspecializedTemplate) {
    329       ManglingContextDecl = nullptr;
    330       return nullptr;
    331     }
    332     // Fall through to get the current context.
    333 
    334   case DataMember:
    335     //  -- the in-class initializers of class members
    336   case DefaultArgument:
    337     //  -- default arguments appearing in class definitions
    338     return &ExprEvalContexts.back().getMangleNumberingContext(Context);
    339   }
    340 
    341   llvm_unreachable("unexpected context");
    342 }
    343 
    344 MangleNumberingContext &
    345 Sema::ExpressionEvaluationContextRecord::getMangleNumberingContext(
    346     ASTContext &Ctx) {
    347   assert(ManglingContextDecl && "Need to have a context declaration");
    348   if (!MangleNumbering)
    349     MangleNumbering = Ctx.createMangleNumberingContext();
    350   return *MangleNumbering;
    351 }
    352 
    353 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
    354                                            SourceRange IntroducerRange,
    355                                            TypeSourceInfo *MethodTypeInfo,
    356                                            SourceLocation EndLoc,
    357                                            ArrayRef<ParmVarDecl *> Params) {
    358   QualType MethodType = MethodTypeInfo->getType();
    359   TemplateParameterList *TemplateParams =
    360             getGenericLambdaTemplateParameterList(getCurLambda(), *this);
    361   // If a lambda appears in a dependent context or is a generic lambda (has
    362   // template parameters) and has an 'auto' return type, deduce it to a
    363   // dependent type.
    364   if (Class->isDependentContext() || TemplateParams) {
    365     const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
    366     QualType Result = FPT->getReturnType();
    367     if (Result->isUndeducedType()) {
    368       Result = SubstAutoType(Result, Context.DependentTy);
    369       MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
    370                                            FPT->getExtProtoInfo());
    371     }
    372   }
    373 
    374   // C++11 [expr.prim.lambda]p5:
    375   //   The closure type for a lambda-expression has a public inline function
    376   //   call operator (13.5.4) whose parameters and return type are described by
    377   //   the lambda-expression's parameter-declaration-clause and
    378   //   trailing-return-type respectively.
    379   DeclarationName MethodName
    380     = Context.DeclarationNames.getCXXOperatorName(OO_Call);
    381   DeclarationNameLoc MethodNameLoc;
    382   MethodNameLoc.CXXOperatorName.BeginOpNameLoc
    383     = IntroducerRange.getBegin().getRawEncoding();
    384   MethodNameLoc.CXXOperatorName.EndOpNameLoc
    385     = IntroducerRange.getEnd().getRawEncoding();
    386   CXXMethodDecl *Method
    387     = CXXMethodDecl::Create(Context, Class, EndLoc,
    388                             DeclarationNameInfo(MethodName,
    389                                                 IntroducerRange.getBegin(),
    390                                                 MethodNameLoc),
    391                             MethodType, MethodTypeInfo,
    392                             SC_None,
    393                             /*isInline=*/true,
    394                             /*isConstExpr=*/false,
    395                             EndLoc);
    396   Method->setAccess(AS_public);
    397 
    398   // Temporarily set the lexical declaration context to the current
    399   // context, so that the Scope stack matches the lexical nesting.
    400   Method->setLexicalDeclContext(CurContext);
    401   // Create a function template if we have a template parameter list
    402   FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
    403             FunctionTemplateDecl::Create(Context, Class,
    404                                          Method->getLocation(), MethodName,
    405                                          TemplateParams,
    406                                          Method) : nullptr;
    407   if (TemplateMethod) {
    408     TemplateMethod->setLexicalDeclContext(CurContext);
    409     TemplateMethod->setAccess(AS_public);
    410     Method->setDescribedFunctionTemplate(TemplateMethod);
    411   }
    412 
    413   // Add parameters.
    414   if (!Params.empty()) {
    415     Method->setParams(Params);
    416     CheckParmsForFunctionDef(const_cast<ParmVarDecl **>(Params.begin()),
    417                              const_cast<ParmVarDecl **>(Params.end()),
    418                              /*CheckParameterNames=*/false);
    419 
    420     for (auto P : Method->params())
    421       P->setOwningFunction(Method);
    422   }
    423 
    424   Decl *ManglingContextDecl;
    425   if (MangleNumberingContext *MCtx =
    426           getCurrentMangleNumberContext(Class->getDeclContext(),
    427                                         ManglingContextDecl)) {
    428     unsigned ManglingNumber = MCtx->getManglingNumber(Method);
    429     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl);
    430   }
    431 
    432   return Method;
    433 }
    434 
    435 void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
    436                                         CXXMethodDecl *CallOperator,
    437                                         SourceRange IntroducerRange,
    438                                         LambdaCaptureDefault CaptureDefault,
    439                                         SourceLocation CaptureDefaultLoc,
    440                                         bool ExplicitParams,
    441                                         bool ExplicitResultType,
    442                                         bool Mutable) {
    443   LSI->CallOperator = CallOperator;
    444   CXXRecordDecl *LambdaClass = CallOperator->getParent();
    445   LSI->Lambda = LambdaClass;
    446   if (CaptureDefault == LCD_ByCopy)
    447     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
    448   else if (CaptureDefault == LCD_ByRef)
    449     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
    450   LSI->CaptureDefaultLoc = CaptureDefaultLoc;
    451   LSI->IntroducerRange = IntroducerRange;
    452   LSI->ExplicitParams = ExplicitParams;
    453   LSI->Mutable = Mutable;
    454 
    455   if (ExplicitResultType) {
    456     LSI->ReturnType = CallOperator->getReturnType();
    457 
    458     if (!LSI->ReturnType->isDependentType() &&
    459         !LSI->ReturnType->isVoidType()) {
    460       if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType,
    461                               diag::err_lambda_incomplete_result)) {
    462         // Do nothing.
    463       }
    464     }
    465   } else {
    466     LSI->HasImplicitReturnType = true;
    467   }
    468 }
    469 
    470 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
    471   LSI->finishedExplicitCaptures();
    472 }
    473 
    474 void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) {
    475   // Introduce our parameters into the function scope
    476   for (unsigned p = 0, NumParams = CallOperator->getNumParams();
    477        p < NumParams; ++p) {
    478     ParmVarDecl *Param = CallOperator->getParamDecl(p);
    479 
    480     // If this has an identifier, add it to the scope stack.
    481     if (CurScope && Param->getIdentifier()) {
    482       CheckShadow(CurScope, Param);
    483 
    484       PushOnScopeChains(Param, CurScope);
    485     }
    486   }
    487 }
    488 
    489 /// If this expression is an enumerator-like expression of some type
    490 /// T, return the type T; otherwise, return null.
    491 ///
    492 /// Pointer comparisons on the result here should always work because
    493 /// it's derived from either the parent of an EnumConstantDecl
    494 /// (i.e. the definition) or the declaration returned by
    495 /// EnumType::getDecl() (i.e. the definition).
    496 static EnumDecl *findEnumForBlockReturn(Expr *E) {
    497   // An expression is an enumerator-like expression of type T if,
    498   // ignoring parens and parens-like expressions:
    499   E = E->IgnoreParens();
    500 
    501   //  - it is an enumerator whose enum type is T or
    502   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
    503     if (EnumConstantDecl *D
    504           = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
    505       return cast<EnumDecl>(D->getDeclContext());
    506     }
    507     return nullptr;
    508   }
    509 
    510   //  - it is a comma expression whose RHS is an enumerator-like
    511   //    expression of type T or
    512   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
    513     if (BO->getOpcode() == BO_Comma)
    514       return findEnumForBlockReturn(BO->getRHS());
    515     return nullptr;
    516   }
    517 
    518   //  - it is a statement-expression whose value expression is an
    519   //    enumerator-like expression of type T or
    520   if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
    521     if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
    522       return findEnumForBlockReturn(last);
    523     return nullptr;
    524   }
    525 
    526   //   - it is a ternary conditional operator (not the GNU ?:
    527   //     extension) whose second and third operands are
    528   //     enumerator-like expressions of type T or
    529   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
    530     if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
    531       if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
    532         return ED;
    533     return nullptr;
    534   }
    535 
    536   // (implicitly:)
    537   //   - it is an implicit integral conversion applied to an
    538   //     enumerator-like expression of type T or
    539   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
    540     // We can sometimes see integral conversions in valid
    541     // enumerator-like expressions.
    542     if (ICE->getCastKind() == CK_IntegralCast)
    543       return findEnumForBlockReturn(ICE->getSubExpr());
    544 
    545     // Otherwise, just rely on the type.
    546   }
    547 
    548   //   - it is an expression of that formal enum type.
    549   if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
    550     return ET->getDecl();
    551   }
    552 
    553   // Otherwise, nope.
    554   return nullptr;
    555 }
    556 
    557 /// Attempt to find a type T for which the returned expression of the
    558 /// given statement is an enumerator-like expression of that type.
    559 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
    560   if (Expr *retValue = ret->getRetValue())
    561     return findEnumForBlockReturn(retValue);
    562   return nullptr;
    563 }
    564 
    565 /// Attempt to find a common type T for which all of the returned
    566 /// expressions in a block are enumerator-like expressions of that
    567 /// type.
    568 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
    569   ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
    570 
    571   // Try to find one for the first return.
    572   EnumDecl *ED = findEnumForBlockReturn(*i);
    573   if (!ED) return nullptr;
    574 
    575   // Check that the rest of the returns have the same enum.
    576   for (++i; i != e; ++i) {
    577     if (findEnumForBlockReturn(*i) != ED)
    578       return nullptr;
    579   }
    580 
    581   // Never infer an anonymous enum type.
    582   if (!ED->hasNameForLinkage()) return nullptr;
    583 
    584   return ED;
    585 }
    586 
    587 /// Adjust the given return statements so that they formally return
    588 /// the given type.  It should require, at most, an IntegralCast.
    589 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
    590                                      QualType returnType) {
    591   for (ArrayRef<ReturnStmt*>::iterator
    592          i = returns.begin(), e = returns.end(); i != e; ++i) {
    593     ReturnStmt *ret = *i;
    594     Expr *retValue = ret->getRetValue();
    595     if (S.Context.hasSameType(retValue->getType(), returnType))
    596       continue;
    597 
    598     // Right now we only support integral fixup casts.
    599     assert(returnType->isIntegralOrUnscopedEnumerationType());
    600     assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
    601 
    602     ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
    603 
    604     Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
    605     E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
    606                                  E, /*base path*/ nullptr, VK_RValue);
    607     if (cleanups) {
    608       cleanups->setSubExpr(E);
    609     } else {
    610       ret->setRetValue(E);
    611     }
    612   }
    613 }
    614 
    615 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
    616   assert(CSI.HasImplicitReturnType);
    617   // If it was ever a placeholder, it had to been deduced to DependentTy.
    618   assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
    619 
    620   // C++ Core Issue #975, proposed resolution:
    621   //   If a lambda-expression does not include a trailing-return-type,
    622   //   it is as if the trailing-return-type denotes the following type:
    623   //     - if there are no return statements in the compound-statement,
    624   //       or all return statements return either an expression of type
    625   //       void or no expression or braced-init-list, the type void;
    626   //     - otherwise, if all return statements return an expression
    627   //       and the types of the returned expressions after
    628   //       lvalue-to-rvalue conversion (4.1 [conv.lval]),
    629   //       array-to-pointer conversion (4.2 [conv.array]), and
    630   //       function-to-pointer conversion (4.3 [conv.func]) are the
    631   //       same, that common type;
    632   //     - otherwise, the program is ill-formed.
    633   //
    634   // In addition, in blocks in non-C++ modes, if all of the return
    635   // statements are enumerator-like expressions of some type T, where
    636   // T has a name for linkage, then we infer the return type of the
    637   // block to be that type.
    638 
    639   // First case: no return statements, implicit void return type.
    640   ASTContext &Ctx = getASTContext();
    641   if (CSI.Returns.empty()) {
    642     // It's possible there were simply no /valid/ return statements.
    643     // In this case, the first one we found may have at least given us a type.
    644     if (CSI.ReturnType.isNull())
    645       CSI.ReturnType = Ctx.VoidTy;
    646     return;
    647   }
    648 
    649   // Second case: at least one return statement has dependent type.
    650   // Delay type checking until instantiation.
    651   assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
    652   if (CSI.ReturnType->isDependentType())
    653     return;
    654 
    655   // Try to apply the enum-fuzz rule.
    656   if (!getLangOpts().CPlusPlus) {
    657     assert(isa<BlockScopeInfo>(CSI));
    658     const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
    659     if (ED) {
    660       CSI.ReturnType = Context.getTypeDeclType(ED);
    661       adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
    662       return;
    663     }
    664   }
    665 
    666   // Third case: only one return statement. Don't bother doing extra work!
    667   SmallVectorImpl<ReturnStmt*>::iterator I = CSI.Returns.begin(),
    668                                          E = CSI.Returns.end();
    669   if (I+1 == E)
    670     return;
    671 
    672   // General case: many return statements.
    673   // Check that they all have compatible return types.
    674 
    675   // We require the return types to strictly match here.
    676   // Note that we've already done the required promotions as part of
    677   // processing the return statement.
    678   for (; I != E; ++I) {
    679     const ReturnStmt *RS = *I;
    680     const Expr *RetE = RS->getRetValue();
    681 
    682     QualType ReturnType = (RetE ? RetE->getType() : Context.VoidTy);
    683     if (Context.hasSameType(ReturnType, CSI.ReturnType))
    684       continue;
    685 
    686     // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
    687     // TODO: It's possible that the *first* return is the divergent one.
    688     Diag(RS->getLocStart(),
    689          diag::err_typecheck_missing_return_type_incompatible)
    690       << ReturnType << CSI.ReturnType
    691       << isa<LambdaScopeInfo>(CSI);
    692     // Continue iterating so that we keep emitting diagnostics.
    693   }
    694 }
    695 
    696 QualType Sema::performLambdaInitCaptureInitialization(SourceLocation Loc,
    697                                                       bool ByRef,
    698                                                       IdentifierInfo *Id,
    699                                                       Expr *&Init) {
    700 
    701   // We do not need to distinguish between direct-list-initialization
    702   // and copy-list-initialization here, because we will always deduce
    703   // std::initializer_list<T>, and direct- and copy-list-initialization
    704   // always behave the same for such a type.
    705   // FIXME: We should model whether an '=' was present.
    706   const bool IsDirectInit = isa<ParenListExpr>(Init) || isa<InitListExpr>(Init);
    707 
    708   // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
    709   // deduce against.
    710   QualType DeductType = Context.getAutoDeductType();
    711   TypeLocBuilder TLB;
    712   TLB.pushTypeSpec(DeductType).setNameLoc(Loc);
    713   if (ByRef) {
    714     DeductType = BuildReferenceType(DeductType, true, Loc, Id);
    715     assert(!DeductType.isNull() && "can't build reference to auto");
    716     TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
    717   }
    718   TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
    719 
    720   // Are we a non-list direct initialization?
    721   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
    722 
    723   Expr *DeduceInit = Init;
    724   // Initializer could be a C++ direct-initializer. Deduction only works if it
    725   // contains exactly one expression.
    726   if (CXXDirectInit) {
    727     if (CXXDirectInit->getNumExprs() == 0) {
    728       Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_no_expression)
    729           << DeclarationName(Id) << TSI->getType() << Loc;
    730       return QualType();
    731     } else if (CXXDirectInit->getNumExprs() > 1) {
    732       Diag(CXXDirectInit->getExpr(1)->getLocStart(),
    733            diag::err_init_capture_multiple_expressions)
    734           << DeclarationName(Id) << TSI->getType() << Loc;
    735       return QualType();
    736     } else {
    737       DeduceInit = CXXDirectInit->getExpr(0);
    738       if (isa<InitListExpr>(DeduceInit))
    739         Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_paren_braces)
    740           << DeclarationName(Id) << Loc;
    741     }
    742   }
    743 
    744   // Now deduce against the initialization expression and store the deduced
    745   // type below.
    746   QualType DeducedType;
    747   if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
    748     if (isa<InitListExpr>(Init))
    749       Diag(Loc, diag::err_init_capture_deduction_failure_from_init_list)
    750           << DeclarationName(Id)
    751           << (DeduceInit->getType().isNull() ? TSI->getType()
    752                                              : DeduceInit->getType())
    753           << DeduceInit->getSourceRange();
    754     else
    755       Diag(Loc, diag::err_init_capture_deduction_failure)
    756           << DeclarationName(Id) << TSI->getType()
    757           << (DeduceInit->getType().isNull() ? TSI->getType()
    758                                              : DeduceInit->getType())
    759           << DeduceInit->getSourceRange();
    760   }
    761   if (DeducedType.isNull())
    762     return QualType();
    763 
    764   // Perform initialization analysis and ensure any implicit conversions
    765   // (such as lvalue-to-rvalue) are enforced.
    766   InitializedEntity Entity =
    767       InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
    768   InitializationKind Kind =
    769       IsDirectInit
    770           ? (CXXDirectInit ? InitializationKind::CreateDirect(
    771                                  Loc, Init->getLocStart(), Init->getLocEnd())
    772                            : InitializationKind::CreateDirectList(Loc))
    773           : InitializationKind::CreateCopy(Loc, Init->getLocStart());
    774 
    775   MultiExprArg Args = Init;
    776   if (CXXDirectInit)
    777     Args =
    778         MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
    779   QualType DclT;
    780   InitializationSequence InitSeq(*this, Entity, Kind, Args);
    781   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
    782 
    783   if (Result.isInvalid())
    784     return QualType();
    785   Init = Result.getAs<Expr>();
    786 
    787   // The init-capture initialization is a full-expression that must be
    788   // processed as one before we enter the declcontext of the lambda's
    789   // call-operator.
    790   Result = ActOnFinishFullExpr(Init, Loc, /*DiscardedValue*/ false,
    791                                /*IsConstexpr*/ false,
    792                                /*IsLambdaInitCaptureInitalizer*/ true);
    793   if (Result.isInvalid())
    794     return QualType();
    795 
    796   Init = Result.getAs<Expr>();
    797   return DeducedType;
    798 }
    799 
    800 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
    801     QualType InitCaptureType, IdentifierInfo *Id, Expr *Init) {
    802 
    803   TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType,
    804       Loc);
    805   // Create a dummy variable representing the init-capture. This is not actually
    806   // used as a variable, and only exists as a way to name and refer to the
    807   // init-capture.
    808   // FIXME: Pass in separate source locations for '&' and identifier.
    809   VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
    810                                    Loc, Id, InitCaptureType, TSI, SC_Auto);
    811   NewVD->setInitCapture(true);
    812   NewVD->setReferenced(true);
    813   NewVD->markUsed(Context);
    814   NewVD->setInit(Init);
    815   return NewVD;
    816 
    817 }
    818 
    819 FieldDecl *Sema::buildInitCaptureField(LambdaScopeInfo *LSI, VarDecl *Var) {
    820   FieldDecl *Field = FieldDecl::Create(
    821       Context, LSI->Lambda, Var->getLocation(), Var->getLocation(),
    822       nullptr, Var->getType(), Var->getTypeSourceInfo(), nullptr, false,
    823       ICIS_NoInit);
    824   Field->setImplicit(true);
    825   Field->setAccess(AS_private);
    826   LSI->Lambda->addDecl(Field);
    827 
    828   LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
    829                   /*isNested*/false, Var->getLocation(), SourceLocation(),
    830                   Var->getType(), Var->getInit());
    831   return Field;
    832 }
    833 
    834 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
    835                   Declarator &ParamInfo, Scope *CurScope) {
    836   // Determine if we're within a context where we know that the lambda will
    837   // be dependent, because there are template parameters in scope.
    838   bool KnownDependent = false;
    839   LambdaScopeInfo *const LSI = getCurLambda();
    840   assert(LSI && "LambdaScopeInfo should be on stack!");
    841   TemplateParameterList *TemplateParams =
    842             getGenericLambdaTemplateParameterList(LSI, *this);
    843 
    844   if (Scope *TmplScope = CurScope->getTemplateParamParent()) {
    845     // Since we have our own TemplateParams, so check if an outer scope
    846     // has template params, only then are we in a dependent scope.
    847     if (TemplateParams)  {
    848       TmplScope = TmplScope->getParent();
    849       TmplScope = TmplScope ? TmplScope->getTemplateParamParent() : nullptr;
    850     }
    851     if (TmplScope && !TmplScope->decl_empty())
    852       KnownDependent = true;
    853   }
    854   // Determine the signature of the call operator.
    855   TypeSourceInfo *MethodTyInfo;
    856   bool ExplicitParams = true;
    857   bool ExplicitResultType = true;
    858   bool ContainsUnexpandedParameterPack = false;
    859   SourceLocation EndLoc;
    860   SmallVector<ParmVarDecl *, 8> Params;
    861   if (ParamInfo.getNumTypeObjects() == 0) {
    862     // C++11 [expr.prim.lambda]p4:
    863     //   If a lambda-expression does not include a lambda-declarator, it is as
    864     //   if the lambda-declarator were ().
    865     FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
    866         /*IsVariadic=*/false, /*IsCXXMethod=*/true));
    867     EPI.HasTrailingReturn = true;
    868     EPI.TypeQuals |= DeclSpec::TQ_const;
    869     // C++1y [expr.prim.lambda]:
    870     //   The lambda return type is 'auto', which is replaced by the
    871     //   trailing-return type if provided and/or deduced from 'return'
    872     //   statements
    873     // We don't do this before C++1y, because we don't support deduced return
    874     // types there.
    875     QualType DefaultTypeForNoTrailingReturn =
    876         getLangOpts().CPlusPlus1y ? Context.getAutoDeductType()
    877                                   : Context.DependentTy;
    878     QualType MethodTy =
    879         Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
    880     MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
    881     ExplicitParams = false;
    882     ExplicitResultType = false;
    883     EndLoc = Intro.Range.getEnd();
    884   } else {
    885     assert(ParamInfo.isFunctionDeclarator() &&
    886            "lambda-declarator is a function");
    887     DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
    888 
    889     // C++11 [expr.prim.lambda]p5:
    890     //   This function call operator is declared const (9.3.1) if and only if
    891     //   the lambda-expression's parameter-declaration-clause is not followed
    892     //   by mutable. It is neither virtual nor declared volatile. [...]
    893     if (!FTI.hasMutableQualifier())
    894       FTI.TypeQuals |= DeclSpec::TQ_const;
    895 
    896     MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
    897     assert(MethodTyInfo && "no type from lambda-declarator");
    898     EndLoc = ParamInfo.getSourceRange().getEnd();
    899 
    900     ExplicitResultType = FTI.hasTrailingReturnType();
    901 
    902     if (FTIHasNonVoidParameters(FTI)) {
    903       Params.reserve(FTI.NumParams);
    904       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
    905         Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
    906     }
    907 
    908     // Check for unexpanded parameter packs in the method type.
    909     if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
    910       ContainsUnexpandedParameterPack = true;
    911   }
    912 
    913   CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
    914                                                  KnownDependent, Intro.Default);
    915 
    916   CXXMethodDecl *Method = startLambdaDefinition(Class, Intro.Range,
    917                                                 MethodTyInfo, EndLoc, Params);
    918   if (ExplicitParams)
    919     CheckCXXDefaultArguments(Method);
    920 
    921   // Attributes on the lambda apply to the method.
    922   ProcessDeclAttributes(CurScope, Method, ParamInfo);
    923 
    924   // Introduce the function call operator as the current declaration context.
    925   PushDeclContext(CurScope, Method);
    926 
    927   // Build the lambda scope.
    928   buildLambdaScope(LSI, Method,
    929                        Intro.Range,
    930                        Intro.Default, Intro.DefaultLoc,
    931                        ExplicitParams,
    932                        ExplicitResultType,
    933                        !Method->isConst());
    934 
    935   // C++11 [expr.prim.lambda]p9:
    936   //   A lambda-expression whose smallest enclosing scope is a block scope is a
    937   //   local lambda expression; any other lambda expression shall not have a
    938   //   capture-default or simple-capture in its lambda-introducer.
    939   //
    940   // For simple-captures, this is covered by the check below that any named
    941   // entity is a variable that can be captured.
    942   //
    943   // For DR1632, we also allow a capture-default in any context where we can
    944   // odr-use 'this' (in particular, in a default initializer for a non-static
    945   // data member).
    946   if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
    947       (getCurrentThisType().isNull() ||
    948        CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
    949                            /*BuildAndDiagnose*/false)))
    950     Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
    951 
    952   // Distinct capture names, for diagnostics.
    953   llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
    954 
    955   // Handle explicit captures.
    956   SourceLocation PrevCaptureLoc
    957     = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
    958   for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
    959        PrevCaptureLoc = C->Loc, ++C) {
    960     if (C->Kind == LCK_This) {
    961       // C++11 [expr.prim.lambda]p8:
    962       //   An identifier or this shall not appear more than once in a
    963       //   lambda-capture.
    964       if (LSI->isCXXThisCaptured()) {
    965         Diag(C->Loc, diag::err_capture_more_than_once)
    966             << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
    967             << FixItHint::CreateRemoval(
    968                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
    969         continue;
    970       }
    971 
    972       // C++11 [expr.prim.lambda]p8:
    973       //   If a lambda-capture includes a capture-default that is =, the
    974       //   lambda-capture shall not contain this [...].
    975       if (Intro.Default == LCD_ByCopy) {
    976         Diag(C->Loc, diag::err_this_capture_with_copy_default)
    977             << FixItHint::CreateRemoval(
    978                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
    979         continue;
    980       }
    981 
    982       // C++11 [expr.prim.lambda]p12:
    983       //   If this is captured by a local lambda expression, its nearest
    984       //   enclosing function shall be a non-static member function.
    985       QualType ThisCaptureType = getCurrentThisType();
    986       if (ThisCaptureType.isNull()) {
    987         Diag(C->Loc, diag::err_this_capture) << true;
    988         continue;
    989       }
    990 
    991       CheckCXXThisCapture(C->Loc, /*Explicit=*/true);
    992       continue;
    993     }
    994 
    995     assert(C->Id && "missing identifier for capture");
    996 
    997     if (C->Init.isInvalid())
    998       continue;
    999 
   1000     VarDecl *Var = nullptr;
   1001     if (C->Init.isUsable()) {
   1002       Diag(C->Loc, getLangOpts().CPlusPlus1y
   1003                        ? diag::warn_cxx11_compat_init_capture
   1004                        : diag::ext_init_capture);
   1005 
   1006       if (C->Init.get()->containsUnexpandedParameterPack())
   1007         ContainsUnexpandedParameterPack = true;
   1008       // If the initializer expression is usable, but the InitCaptureType
   1009       // is not, then an error has occurred - so ignore the capture for now.
   1010       // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
   1011       // FIXME: we should create the init capture variable and mark it invalid
   1012       // in this case.
   1013       if (C->InitCaptureType.get().isNull())
   1014         continue;
   1015       Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
   1016             C->Id, C->Init.get());
   1017       // C++1y [expr.prim.lambda]p11:
   1018       //   An init-capture behaves as if it declares and explicitly
   1019       //   captures a variable [...] whose declarative region is the
   1020       //   lambda-expression's compound-statement
   1021       if (Var)
   1022         PushOnScopeChains(Var, CurScope, false);
   1023     } else {
   1024       // C++11 [expr.prim.lambda]p8:
   1025       //   If a lambda-capture includes a capture-default that is &, the
   1026       //   identifiers in the lambda-capture shall not be preceded by &.
   1027       //   If a lambda-capture includes a capture-default that is =, [...]
   1028       //   each identifier it contains shall be preceded by &.
   1029       if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
   1030         Diag(C->Loc, diag::err_reference_capture_with_reference_default)
   1031             << FixItHint::CreateRemoval(
   1032                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
   1033         continue;
   1034       } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
   1035         Diag(C->Loc, diag::err_copy_capture_with_copy_default)
   1036             << FixItHint::CreateRemoval(
   1037                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
   1038         continue;
   1039       }
   1040 
   1041       // C++11 [expr.prim.lambda]p10:
   1042       //   The identifiers in a capture-list are looked up using the usual
   1043       //   rules for unqualified name lookup (3.4.1)
   1044       DeclarationNameInfo Name(C->Id, C->Loc);
   1045       LookupResult R(*this, Name, LookupOrdinaryName);
   1046       LookupName(R, CurScope);
   1047       if (R.isAmbiguous())
   1048         continue;
   1049       if (R.empty()) {
   1050         // FIXME: Disable corrections that would add qualification?
   1051         CXXScopeSpec ScopeSpec;
   1052         DeclFilterCCC<VarDecl> Validator;
   1053         if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
   1054           continue;
   1055       }
   1056 
   1057       Var = R.getAsSingle<VarDecl>();
   1058       if (Var && DiagnoseUseOfDecl(Var, C->Loc))
   1059         continue;
   1060     }
   1061 
   1062     // C++11 [expr.prim.lambda]p8:
   1063     //   An identifier or this shall not appear more than once in a
   1064     //   lambda-capture.
   1065     if (!CaptureNames.insert(C->Id)) {
   1066       if (Var && LSI->isCaptured(Var)) {
   1067         Diag(C->Loc, diag::err_capture_more_than_once)
   1068             << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
   1069             << FixItHint::CreateRemoval(
   1070                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
   1071       } else
   1072         // Previous capture captured something different (one or both was
   1073         // an init-cpature): no fixit.
   1074         Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
   1075       continue;
   1076     }
   1077 
   1078     // C++11 [expr.prim.lambda]p10:
   1079     //   [...] each such lookup shall find a variable with automatic storage
   1080     //   duration declared in the reaching scope of the local lambda expression.
   1081     // Note that the 'reaching scope' check happens in tryCaptureVariable().
   1082     if (!Var) {
   1083       Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
   1084       continue;
   1085     }
   1086 
   1087     // Ignore invalid decls; they'll just confuse the code later.
   1088     if (Var->isInvalidDecl())
   1089       continue;
   1090 
   1091     if (!Var->hasLocalStorage()) {
   1092       Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
   1093       Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
   1094       continue;
   1095     }
   1096 
   1097     // C++11 [expr.prim.lambda]p23:
   1098     //   A capture followed by an ellipsis is a pack expansion (14.5.3).
   1099     SourceLocation EllipsisLoc;
   1100     if (C->EllipsisLoc.isValid()) {
   1101       if (Var->isParameterPack()) {
   1102         EllipsisLoc = C->EllipsisLoc;
   1103       } else {
   1104         Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
   1105           << SourceRange(C->Loc);
   1106 
   1107         // Just ignore the ellipsis.
   1108       }
   1109     } else if (Var->isParameterPack()) {
   1110       ContainsUnexpandedParameterPack = true;
   1111     }
   1112 
   1113     if (C->Init.isUsable()) {
   1114       buildInitCaptureField(LSI, Var);
   1115     } else {
   1116       TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
   1117                                                    TryCapture_ExplicitByVal;
   1118       tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
   1119     }
   1120   }
   1121   finishLambdaExplicitCaptures(LSI);
   1122 
   1123   LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
   1124 
   1125   // Add lambda parameters into scope.
   1126   addLambdaParameters(Method, CurScope);
   1127 
   1128   // Enter a new evaluation context to insulate the lambda from any
   1129   // cleanups from the enclosing full-expression.
   1130   PushExpressionEvaluationContext(PotentiallyEvaluated);
   1131 }
   1132 
   1133 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
   1134                             bool IsInstantiation) {
   1135   LambdaScopeInfo *LSI = getCurLambda();
   1136 
   1137   // Leave the expression-evaluation context.
   1138   DiscardCleanupsInEvaluationContext();
   1139   PopExpressionEvaluationContext();
   1140 
   1141   // Leave the context of the lambda.
   1142   if (!IsInstantiation)
   1143     PopDeclContext();
   1144 
   1145   // Finalize the lambda.
   1146   CXXRecordDecl *Class = LSI->Lambda;
   1147   Class->setInvalidDecl();
   1148   SmallVector<Decl*, 4> Fields(Class->fields());
   1149   ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
   1150               SourceLocation(), nullptr);
   1151   CheckCompletedCXXClass(Class);
   1152 
   1153   PopFunctionScopeInfo();
   1154 }
   1155 
   1156 /// \brief Add a lambda's conversion to function pointer, as described in
   1157 /// C++11 [expr.prim.lambda]p6.
   1158 static void addFunctionPointerConversion(Sema &S,
   1159                                          SourceRange IntroducerRange,
   1160                                          CXXRecordDecl *Class,
   1161                                          CXXMethodDecl *CallOperator) {
   1162   // Add the conversion to function pointer.
   1163   const FunctionProtoType *CallOpProto =
   1164       CallOperator->getType()->getAs<FunctionProtoType>();
   1165   const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
   1166       CallOpProto->getExtProtoInfo();
   1167   QualType PtrToFunctionTy;
   1168   QualType InvokerFunctionTy;
   1169   {
   1170     FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
   1171     CallingConv CC = S.Context.getDefaultCallingConvention(
   1172         CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
   1173     InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
   1174     InvokerExtInfo.TypeQuals = 0;
   1175     assert(InvokerExtInfo.RefQualifier == RQ_None &&
   1176         "Lambda's call operator should not have a reference qualifier");
   1177     InvokerFunctionTy =
   1178         S.Context.getFunctionType(CallOpProto->getReturnType(),
   1179                                   CallOpProto->getParamTypes(), InvokerExtInfo);
   1180     PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
   1181   }
   1182 
   1183   // Create the type of the conversion function.
   1184   FunctionProtoType::ExtProtoInfo ConvExtInfo(
   1185       S.Context.getDefaultCallingConvention(
   1186       /*IsVariadic=*/false, /*IsCXXMethod=*/true));
   1187   // The conversion function is always const.
   1188   ConvExtInfo.TypeQuals = Qualifiers::Const;
   1189   QualType ConvTy =
   1190       S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
   1191 
   1192   SourceLocation Loc = IntroducerRange.getBegin();
   1193   DeclarationName ConversionName
   1194     = S.Context.DeclarationNames.getCXXConversionFunctionName(
   1195         S.Context.getCanonicalType(PtrToFunctionTy));
   1196   DeclarationNameLoc ConvNameLoc;
   1197   // Construct a TypeSourceInfo for the conversion function, and wire
   1198   // all the parameters appropriately for the FunctionProtoTypeLoc
   1199   // so that everything works during transformation/instantiation of
   1200   // generic lambdas.
   1201   // The main reason for wiring up the parameters of the conversion
   1202   // function with that of the call operator is so that constructs
   1203   // like the following work:
   1204   // auto L = [](auto b) {                <-- 1
   1205   //   return [](auto a) -> decltype(a) { <-- 2
   1206   //      return a;
   1207   //   };
   1208   // };
   1209   // int (*fp)(int) = L(5);
   1210   // Because the trailing return type can contain DeclRefExprs that refer
   1211   // to the original call operator's variables, we hijack the call
   1212   // operators ParmVarDecls below.
   1213   TypeSourceInfo *ConvNamePtrToFunctionTSI =
   1214       S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
   1215   ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
   1216 
   1217   // The conversion function is a conversion to a pointer-to-function.
   1218   TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
   1219   FunctionProtoTypeLoc ConvTL =
   1220       ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
   1221   // Get the result of the conversion function which is a pointer-to-function.
   1222   PointerTypeLoc PtrToFunctionTL =
   1223       ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
   1224   // Do the same for the TypeSourceInfo that is used to name the conversion
   1225   // operator.
   1226   PointerTypeLoc ConvNamePtrToFunctionTL =
   1227       ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
   1228 
   1229   // Get the underlying function types that the conversion function will
   1230   // be converting to (should match the type of the call operator).
   1231   FunctionProtoTypeLoc CallOpConvTL =
   1232       PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
   1233   FunctionProtoTypeLoc CallOpConvNameTL =
   1234     ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
   1235 
   1236   // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
   1237   // These parameter's are essentially used to transform the name and
   1238   // the type of the conversion operator.  By using the same parameters
   1239   // as the call operator's we don't have to fix any back references that
   1240   // the trailing return type of the call operator's uses (such as
   1241   // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
   1242   // - we can simply use the return type of the call operator, and
   1243   // everything should work.
   1244   SmallVector<ParmVarDecl *, 4> InvokerParams;
   1245   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
   1246     ParmVarDecl *From = CallOperator->getParamDecl(I);
   1247 
   1248     InvokerParams.push_back(ParmVarDecl::Create(S.Context,
   1249            // Temporarily add to the TU. This is set to the invoker below.
   1250                                              S.Context.getTranslationUnitDecl(),
   1251                                              From->getLocStart(),
   1252                                              From->getLocation(),
   1253                                              From->getIdentifier(),
   1254                                              From->getType(),
   1255                                              From->getTypeSourceInfo(),
   1256                                              From->getStorageClass(),
   1257                                              /*DefaultArg=*/nullptr));
   1258     CallOpConvTL.setParam(I, From);
   1259     CallOpConvNameTL.setParam(I, From);
   1260   }
   1261 
   1262   CXXConversionDecl *Conversion
   1263     = CXXConversionDecl::Create(S.Context, Class, Loc,
   1264                                 DeclarationNameInfo(ConversionName,
   1265                                   Loc, ConvNameLoc),
   1266                                 ConvTy,
   1267                                 ConvTSI,
   1268                                 /*isInline=*/true, /*isExplicit=*/false,
   1269                                 /*isConstexpr=*/false,
   1270                                 CallOperator->getBody()->getLocEnd());
   1271   Conversion->setAccess(AS_public);
   1272   Conversion->setImplicit(true);
   1273 
   1274   if (Class->isGenericLambda()) {
   1275     // Create a template version of the conversion operator, using the template
   1276     // parameter list of the function call operator.
   1277     FunctionTemplateDecl *TemplateCallOperator =
   1278             CallOperator->getDescribedFunctionTemplate();
   1279     FunctionTemplateDecl *ConversionTemplate =
   1280                   FunctionTemplateDecl::Create(S.Context, Class,
   1281                                       Loc, ConversionName,
   1282                                       TemplateCallOperator->getTemplateParameters(),
   1283                                       Conversion);
   1284     ConversionTemplate->setAccess(AS_public);
   1285     ConversionTemplate->setImplicit(true);
   1286     Conversion->setDescribedFunctionTemplate(ConversionTemplate);
   1287     Class->addDecl(ConversionTemplate);
   1288   } else
   1289     Class->addDecl(Conversion);
   1290   // Add a non-static member function that will be the result of
   1291   // the conversion with a certain unique ID.
   1292   DeclarationName InvokerName = &S.Context.Idents.get(
   1293                                                  getLambdaStaticInvokerName());
   1294   // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
   1295   // we should get a prebuilt TrivialTypeSourceInfo from Context
   1296   // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
   1297   // then rewire the parameters accordingly, by hoisting up the InvokeParams
   1298   // loop below and then use its Params to set Invoke->setParams(...) below.
   1299   // This would avoid the 'const' qualifier of the calloperator from
   1300   // contaminating the type of the invoker, which is currently adjusted
   1301   // in SemaTemplateDeduction.cpp:DeduceTemplateArguments.  Fixing the
   1302   // trailing return type of the invoker would require a visitor to rebuild
   1303   // the trailing return type and adjusting all back DeclRefExpr's to refer
   1304   // to the new static invoker parameters - not the call operator's.
   1305   CXXMethodDecl *Invoke
   1306     = CXXMethodDecl::Create(S.Context, Class, Loc,
   1307                             DeclarationNameInfo(InvokerName, Loc),
   1308                             InvokerFunctionTy,
   1309                             CallOperator->getTypeSourceInfo(),
   1310                             SC_Static, /*IsInline=*/true,
   1311                             /*IsConstexpr=*/false,
   1312                             CallOperator->getBody()->getLocEnd());
   1313   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
   1314     InvokerParams[I]->setOwningFunction(Invoke);
   1315   Invoke->setParams(InvokerParams);
   1316   Invoke->setAccess(AS_private);
   1317   Invoke->setImplicit(true);
   1318   if (Class->isGenericLambda()) {
   1319     FunctionTemplateDecl *TemplateCallOperator =
   1320             CallOperator->getDescribedFunctionTemplate();
   1321     FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
   1322                           S.Context, Class, Loc, InvokerName,
   1323                           TemplateCallOperator->getTemplateParameters(),
   1324                           Invoke);
   1325     StaticInvokerTemplate->setAccess(AS_private);
   1326     StaticInvokerTemplate->setImplicit(true);
   1327     Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
   1328     Class->addDecl(StaticInvokerTemplate);
   1329   } else
   1330     Class->addDecl(Invoke);
   1331 }
   1332 
   1333 /// \brief Add a lambda's conversion to block pointer.
   1334 static void addBlockPointerConversion(Sema &S,
   1335                                       SourceRange IntroducerRange,
   1336                                       CXXRecordDecl *Class,
   1337                                       CXXMethodDecl *CallOperator) {
   1338   const FunctionProtoType *Proto
   1339     = CallOperator->getType()->getAs<FunctionProtoType>();
   1340   QualType BlockPtrTy;
   1341   {
   1342     FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo();
   1343     ExtInfo.TypeQuals = 0;
   1344     QualType FunctionTy = S.Context.getFunctionType(
   1345         Proto->getReturnType(), Proto->getParamTypes(), ExtInfo);
   1346     BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
   1347   }
   1348 
   1349   FunctionProtoType::ExtProtoInfo ExtInfo(S.Context.getDefaultCallingConvention(
   1350       /*IsVariadic=*/false, /*IsCXXMethod=*/true));
   1351   ExtInfo.TypeQuals = Qualifiers::Const;
   1352   QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ExtInfo);
   1353 
   1354   SourceLocation Loc = IntroducerRange.getBegin();
   1355   DeclarationName Name
   1356     = S.Context.DeclarationNames.getCXXConversionFunctionName(
   1357         S.Context.getCanonicalType(BlockPtrTy));
   1358   DeclarationNameLoc NameLoc;
   1359   NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
   1360   CXXConversionDecl *Conversion
   1361     = CXXConversionDecl::Create(S.Context, Class, Loc,
   1362                                 DeclarationNameInfo(Name, Loc, NameLoc),
   1363                                 ConvTy,
   1364                                 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
   1365                                 /*isInline=*/true, /*isExplicit=*/false,
   1366                                 /*isConstexpr=*/false,
   1367                                 CallOperator->getBody()->getLocEnd());
   1368   Conversion->setAccess(AS_public);
   1369   Conversion->setImplicit(true);
   1370   Class->addDecl(Conversion);
   1371 }
   1372 
   1373 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
   1374                                  Scope *CurScope,
   1375                                  bool IsInstantiation) {
   1376   // Collect information from the lambda scope.
   1377   SmallVector<LambdaCapture, 4> Captures;
   1378   SmallVector<Expr *, 4> CaptureInits;
   1379   LambdaCaptureDefault CaptureDefault;
   1380   SourceLocation CaptureDefaultLoc;
   1381   CXXRecordDecl *Class;
   1382   CXXMethodDecl *CallOperator;
   1383   SourceRange IntroducerRange;
   1384   bool ExplicitParams;
   1385   bool ExplicitResultType;
   1386   bool LambdaExprNeedsCleanups;
   1387   bool ContainsUnexpandedParameterPack;
   1388   SmallVector<VarDecl *, 4> ArrayIndexVars;
   1389   SmallVector<unsigned, 4> ArrayIndexStarts;
   1390   {
   1391     LambdaScopeInfo *LSI = getCurLambda();
   1392     CallOperator = LSI->CallOperator;
   1393     Class = LSI->Lambda;
   1394     IntroducerRange = LSI->IntroducerRange;
   1395     ExplicitParams = LSI->ExplicitParams;
   1396     ExplicitResultType = !LSI->HasImplicitReturnType;
   1397     LambdaExprNeedsCleanups = LSI->ExprNeedsCleanups;
   1398     ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
   1399     ArrayIndexVars.swap(LSI->ArrayIndexVars);
   1400     ArrayIndexStarts.swap(LSI->ArrayIndexStarts);
   1401 
   1402     // Translate captures.
   1403     for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
   1404       LambdaScopeInfo::Capture From = LSI->Captures[I];
   1405       assert(!From.isBlockCapture() && "Cannot capture __block variables");
   1406       bool IsImplicit = I >= LSI->NumExplicitCaptures;
   1407 
   1408       // Handle 'this' capture.
   1409       if (From.isThisCapture()) {
   1410         Captures.push_back(
   1411             LambdaCapture(From.getLocation(), IsImplicit, LCK_This));
   1412         CaptureInits.push_back(new (Context) CXXThisExpr(From.getLocation(),
   1413                                                          getCurrentThisType(),
   1414                                                          /*isImplicit=*/true));
   1415         continue;
   1416       }
   1417 
   1418       VarDecl *Var = From.getVariable();
   1419       LambdaCaptureKind Kind = From.isCopyCapture()? LCK_ByCopy : LCK_ByRef;
   1420       Captures.push_back(LambdaCapture(From.getLocation(), IsImplicit, Kind,
   1421                                        Var, From.getEllipsisLoc()));
   1422       CaptureInits.push_back(From.getInitExpr());
   1423     }
   1424 
   1425     switch (LSI->ImpCaptureStyle) {
   1426     case CapturingScopeInfo::ImpCap_None:
   1427       CaptureDefault = LCD_None;
   1428       break;
   1429 
   1430     case CapturingScopeInfo::ImpCap_LambdaByval:
   1431       CaptureDefault = LCD_ByCopy;
   1432       break;
   1433 
   1434     case CapturingScopeInfo::ImpCap_CapturedRegion:
   1435     case CapturingScopeInfo::ImpCap_LambdaByref:
   1436       CaptureDefault = LCD_ByRef;
   1437       break;
   1438 
   1439     case CapturingScopeInfo::ImpCap_Block:
   1440       llvm_unreachable("block capture in lambda");
   1441       break;
   1442     }
   1443     CaptureDefaultLoc = LSI->CaptureDefaultLoc;
   1444 
   1445     // C++11 [expr.prim.lambda]p4:
   1446     //   If a lambda-expression does not include a
   1447     //   trailing-return-type, it is as if the trailing-return-type
   1448     //   denotes the following type:
   1449     //
   1450     // Skip for C++1y return type deduction semantics which uses
   1451     // different machinery.
   1452     // FIXME: Refactor and Merge the return type deduction machinery.
   1453     // FIXME: Assumes current resolution to core issue 975.
   1454     if (LSI->HasImplicitReturnType && !getLangOpts().CPlusPlus1y) {
   1455       deduceClosureReturnType(*LSI);
   1456 
   1457       //   - if there are no return statements in the
   1458       //     compound-statement, or all return statements return
   1459       //     either an expression of type void or no expression or
   1460       //     braced-init-list, the type void;
   1461       if (LSI->ReturnType.isNull()) {
   1462         LSI->ReturnType = Context.VoidTy;
   1463       }
   1464 
   1465       // Create a function type with the inferred return type.
   1466       const FunctionProtoType *Proto
   1467         = CallOperator->getType()->getAs<FunctionProtoType>();
   1468       QualType FunctionTy = Context.getFunctionType(
   1469           LSI->ReturnType, Proto->getParamTypes(), Proto->getExtProtoInfo());
   1470       CallOperator->setType(FunctionTy);
   1471     }
   1472     // C++ [expr.prim.lambda]p7:
   1473     //   The lambda-expression's compound-statement yields the
   1474     //   function-body (8.4) of the function call operator [...].
   1475     ActOnFinishFunctionBody(CallOperator, Body, IsInstantiation);
   1476     CallOperator->setLexicalDeclContext(Class);
   1477     Decl *TemplateOrNonTemplateCallOperatorDecl =
   1478         CallOperator->getDescribedFunctionTemplate()
   1479         ? CallOperator->getDescribedFunctionTemplate()
   1480         : cast<Decl>(CallOperator);
   1481 
   1482     TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
   1483     Class->addDecl(TemplateOrNonTemplateCallOperatorDecl);
   1484 
   1485     PopExpressionEvaluationContext();
   1486 
   1487     // C++11 [expr.prim.lambda]p6:
   1488     //   The closure type for a lambda-expression with no lambda-capture
   1489     //   has a public non-virtual non-explicit const conversion function
   1490     //   to pointer to function having the same parameter and return
   1491     //   types as the closure type's function call operator.
   1492     if (Captures.empty() && CaptureDefault == LCD_None)
   1493       addFunctionPointerConversion(*this, IntroducerRange, Class,
   1494                                    CallOperator);
   1495 
   1496     // Objective-C++:
   1497     //   The closure type for a lambda-expression has a public non-virtual
   1498     //   non-explicit const conversion function to a block pointer having the
   1499     //   same parameter and return types as the closure type's function call
   1500     //   operator.
   1501     // FIXME: Fix generic lambda to block conversions.
   1502     if (getLangOpts().Blocks && getLangOpts().ObjC1 &&
   1503                                               !Class->isGenericLambda())
   1504       addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
   1505 
   1506     // Finalize the lambda class.
   1507     SmallVector<Decl*, 4> Fields(Class->fields());
   1508     ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
   1509                 SourceLocation(), nullptr);
   1510     CheckCompletedCXXClass(Class);
   1511   }
   1512 
   1513   if (LambdaExprNeedsCleanups)
   1514     ExprNeedsCleanups = true;
   1515 
   1516   LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
   1517                                           CaptureDefault, CaptureDefaultLoc,
   1518                                           Captures,
   1519                                           ExplicitParams, ExplicitResultType,
   1520                                           CaptureInits, ArrayIndexVars,
   1521                                           ArrayIndexStarts, Body->getLocEnd(),
   1522                                           ContainsUnexpandedParameterPack);
   1523 
   1524   if (!CurContext->isDependentContext()) {
   1525     switch (ExprEvalContexts.back().Context) {
   1526     // C++11 [expr.prim.lambda]p2:
   1527     //   A lambda-expression shall not appear in an unevaluated operand
   1528     //   (Clause 5).
   1529     case Unevaluated:
   1530     case UnevaluatedAbstract:
   1531     // C++1y [expr.const]p2:
   1532     //   A conditional-expression e is a core constant expression unless the
   1533     //   evaluation of e, following the rules of the abstract machine, would
   1534     //   evaluate [...] a lambda-expression.
   1535     //
   1536     // This is technically incorrect, there are some constant evaluated contexts
   1537     // where this should be allowed.  We should probably fix this when DR1607 is
   1538     // ratified, it lays out the exact set of conditions where we shouldn't
   1539     // allow a lambda-expression.
   1540     case ConstantEvaluated:
   1541       // We don't actually diagnose this case immediately, because we
   1542       // could be within a context where we might find out later that
   1543       // the expression is potentially evaluated (e.g., for typeid).
   1544       ExprEvalContexts.back().Lambdas.push_back(Lambda);
   1545       break;
   1546 
   1547     case PotentiallyEvaluated:
   1548     case PotentiallyEvaluatedIfUsed:
   1549       break;
   1550     }
   1551   }
   1552 
   1553   return MaybeBindToTemporary(Lambda);
   1554 }
   1555 
   1556 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
   1557                                                SourceLocation ConvLocation,
   1558                                                CXXConversionDecl *Conv,
   1559                                                Expr *Src) {
   1560   // Make sure that the lambda call operator is marked used.
   1561   CXXRecordDecl *Lambda = Conv->getParent();
   1562   CXXMethodDecl *CallOperator
   1563     = cast<CXXMethodDecl>(
   1564         Lambda->lookup(
   1565           Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
   1566   CallOperator->setReferenced();
   1567   CallOperator->markUsed(Context);
   1568 
   1569   ExprResult Init = PerformCopyInitialization(
   1570                       InitializedEntity::InitializeBlock(ConvLocation,
   1571                                                          Src->getType(),
   1572                                                          /*NRVO=*/false),
   1573                       CurrentLocation, Src);
   1574   if (!Init.isInvalid())
   1575     Init = ActOnFinishFullExpr(Init.get());
   1576 
   1577   if (Init.isInvalid())
   1578     return ExprError();
   1579 
   1580   // Create the new block to be returned.
   1581   BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
   1582 
   1583   // Set the type information.
   1584   Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
   1585   Block->setIsVariadic(CallOperator->isVariadic());
   1586   Block->setBlockMissingReturnType(false);
   1587 
   1588   // Add parameters.
   1589   SmallVector<ParmVarDecl *, 4> BlockParams;
   1590   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
   1591     ParmVarDecl *From = CallOperator->getParamDecl(I);
   1592     BlockParams.push_back(ParmVarDecl::Create(Context, Block,
   1593                                               From->getLocStart(),
   1594                                               From->getLocation(),
   1595                                               From->getIdentifier(),
   1596                                               From->getType(),
   1597                                               From->getTypeSourceInfo(),
   1598                                               From->getStorageClass(),
   1599                                               /*DefaultArg=*/nullptr));
   1600   }
   1601   Block->setParams(BlockParams);
   1602 
   1603   Block->setIsConversionFromLambda(true);
   1604 
   1605   // Add capture. The capture uses a fake variable, which doesn't correspond
   1606   // to any actual memory location. However, the initializer copy-initializes
   1607   // the lambda object.
   1608   TypeSourceInfo *CapVarTSI =
   1609       Context.getTrivialTypeSourceInfo(Src->getType());
   1610   VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
   1611                                     ConvLocation, nullptr,
   1612                                     Src->getType(), CapVarTSI,
   1613                                     SC_None);
   1614   BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
   1615                              /*Nested=*/false, /*Copy=*/Init.get());
   1616   Block->setCaptures(Context, &Capture, &Capture + 1,
   1617                      /*CapturesCXXThis=*/false);
   1618 
   1619   // Add a fake function body to the block. IR generation is responsible
   1620   // for filling in the actual body, which cannot be expressed as an AST.
   1621   Block->setBody(new (Context) CompoundStmt(ConvLocation));
   1622 
   1623   // Create the block literal expression.
   1624   Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
   1625   ExprCleanupObjects.push_back(Block);
   1626   ExprNeedsCleanups = true;
   1627 
   1628   return BuildBlock;
   1629 }
   1630