1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for C++ lambda expressions. 11 // 12 //===----------------------------------------------------------------------===// 13 #include "clang/Sema/DeclSpec.h" 14 #include "TypeLocBuilder.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/ExprCXX.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/Sema/Initialization.h" 19 #include "clang/Sema/Lookup.h" 20 #include "clang/Sema/Scope.h" 21 #include "clang/Sema/ScopeInfo.h" 22 #include "clang/Sema/SemaInternal.h" 23 #include "clang/Sema/SemaLambda.h" 24 using namespace clang; 25 using namespace sema; 26 27 /// \brief Examines the FunctionScopeInfo stack to determine the nearest 28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for 29 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 30 /// If successful, returns the index into Sema's FunctionScopeInfo stack 31 /// of the capture-ready lambda's LambdaScopeInfo. 32 /// 33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current 34 /// lambda - is on top) to determine the index of the nearest enclosing/outer 35 /// lambda that is ready to capture the \p VarToCapture being referenced in 36 /// the current lambda. 37 /// As we climb down the stack, we want the index of the first such lambda - 38 /// that is the lambda with the highest index that is 'capture-ready'. 39 /// 40 /// A lambda 'L' is capture-ready for 'V' (var or this) if: 41 /// - its enclosing context is non-dependent 42 /// - and if the chain of lambdas between L and the lambda in which 43 /// V is potentially used (i.e. the lambda at the top of the scope info 44 /// stack), can all capture or have already captured V. 45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'. 46 /// 47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked 48 /// for whether it is 'capture-capable' (see 49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly 50 /// capture. 51 /// 52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 54 /// is at the top of the stack and has the highest index. 55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 56 /// 57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains 58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda 59 /// which is capture-ready. If the return value evaluates to 'false' then 60 /// no lambda is capture-ready for \p VarToCapture. 61 62 static inline Optional<unsigned> 63 getStackIndexOfNearestEnclosingCaptureReadyLambda( 64 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes, 65 VarDecl *VarToCapture) { 66 // Label failure to capture. 67 const Optional<unsigned> NoLambdaIsCaptureReady; 68 69 assert( 70 isa<clang::sema::LambdaScopeInfo>( 71 FunctionScopes[FunctionScopes.size() - 1]) && 72 "The function on the top of sema's function-info stack must be a lambda"); 73 74 // If VarToCapture is null, we are attempting to capture 'this'. 75 const bool IsCapturingThis = !VarToCapture; 76 const bool IsCapturingVariable = !IsCapturingThis; 77 78 // Start with the current lambda at the top of the stack (highest index). 79 unsigned CurScopeIndex = FunctionScopes.size() - 1; 80 DeclContext *EnclosingDC = 81 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator; 82 83 do { 84 const clang::sema::LambdaScopeInfo *LSI = 85 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]); 86 // IF we have climbed down to an intervening enclosing lambda that contains 87 // the variable declaration - it obviously can/must not capture the 88 // variable. 89 // Since its enclosing DC is dependent, all the lambdas between it and the 90 // innermost nested lambda are dependent (otherwise we wouldn't have 91 // arrived here) - so we don't yet have a lambda that can capture the 92 // variable. 93 if (IsCapturingVariable && 94 VarToCapture->getDeclContext()->Equals(EnclosingDC)) 95 return NoLambdaIsCaptureReady; 96 97 // For an enclosing lambda to be capture ready for an entity, all 98 // intervening lambda's have to be able to capture that entity. If even 99 // one of the intervening lambda's is not capable of capturing the entity 100 // then no enclosing lambda can ever capture that entity. 101 // For e.g. 102 // const int x = 10; 103 // [=](auto a) { #1 104 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x' 105 // [=](auto c) { #3 106 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2 107 // }; }; }; 108 // If they do not have a default implicit capture, check to see 109 // if the entity has already been explicitly captured. 110 // If even a single dependent enclosing lambda lacks the capability 111 // to ever capture this variable, there is no further enclosing 112 // non-dependent lambda that can capture this variable. 113 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) { 114 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture)) 115 return NoLambdaIsCaptureReady; 116 if (IsCapturingThis && !LSI->isCXXThisCaptured()) 117 return NoLambdaIsCaptureReady; 118 } 119 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC); 120 121 assert(CurScopeIndex); 122 --CurScopeIndex; 123 } while (!EnclosingDC->isTranslationUnit() && 124 EnclosingDC->isDependentContext() && 125 isLambdaCallOperator(EnclosingDC)); 126 127 assert(CurScopeIndex < (FunctionScopes.size() - 1)); 128 // If the enclosingDC is not dependent, then the immediately nested lambda 129 // (one index above) is capture-ready. 130 if (!EnclosingDC->isDependentContext()) 131 return CurScopeIndex + 1; 132 return NoLambdaIsCaptureReady; 133 } 134 135 /// \brief Examines the FunctionScopeInfo stack to determine the nearest 136 /// enclosing lambda (to the current lambda) that is 'capture-capable' for 137 /// the variable referenced in the current lambda (i.e. \p VarToCapture). 138 /// If successful, returns the index into Sema's FunctionScopeInfo stack 139 /// of the capture-capable lambda's LambdaScopeInfo. 140 /// 141 /// Given the current stack of lambdas being processed by Sema and 142 /// the variable of interest, to identify the nearest enclosing lambda (to the 143 /// current lambda at the top of the stack) that can truly capture 144 /// a variable, it has to have the following two properties: 145 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready': 146 /// - climb down the stack (i.e. starting from the innermost and examining 147 /// each outer lambda step by step) checking if each enclosing 148 /// lambda can either implicitly or explicitly capture the variable. 149 /// Record the first such lambda that is enclosed in a non-dependent 150 /// context. If no such lambda currently exists return failure. 151 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly 152 /// capture the variable by checking all its enclosing lambdas: 153 /// - check if all outer lambdas enclosing the 'capture-ready' lambda 154 /// identified above in 'a' can also capture the variable (this is done 155 /// via tryCaptureVariable for variables and CheckCXXThisCapture for 156 /// 'this' by passing in the index of the Lambda identified in step 'a') 157 /// 158 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a 159 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda 160 /// is at the top of the stack. 161 /// 162 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'. 163 /// 164 /// 165 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains 166 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda 167 /// which is capture-capable. If the return value evaluates to 'false' then 168 /// no lambda is capture-capable for \p VarToCapture. 169 170 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda( 171 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes, 172 VarDecl *VarToCapture, Sema &S) { 173 174 const Optional<unsigned> NoLambdaIsCaptureCapable; 175 176 const Optional<unsigned> OptionalStackIndex = 177 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes, 178 VarToCapture); 179 if (!OptionalStackIndex) 180 return NoLambdaIsCaptureCapable; 181 182 const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue(); 183 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) || 184 S.getCurGenericLambda()) && 185 "The capture ready lambda for a potential capture can only be the " 186 "current lambda if it is a generic lambda"); 187 188 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI = 189 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]); 190 191 // If VarToCapture is null, we are attempting to capture 'this' 192 const bool IsCapturingThis = !VarToCapture; 193 const bool IsCapturingVariable = !IsCapturingThis; 194 195 if (IsCapturingVariable) { 196 // Check if the capture-ready lambda can truly capture the variable, by 197 // checking whether all enclosing lambdas of the capture-ready lambda allow 198 // the capture - i.e. make sure it is capture-capable. 199 QualType CaptureType, DeclRefType; 200 const bool CanCaptureVariable = 201 !S.tryCaptureVariable(VarToCapture, 202 /*ExprVarIsUsedInLoc*/ SourceLocation(), 203 clang::Sema::TryCapture_Implicit, 204 /*EllipsisLoc*/ SourceLocation(), 205 /*BuildAndDiagnose*/ false, CaptureType, 206 DeclRefType, &IndexOfCaptureReadyLambda); 207 if (!CanCaptureVariable) 208 return NoLambdaIsCaptureCapable; 209 } else { 210 // Check if the capture-ready lambda can truly capture 'this' by checking 211 // whether all enclosing lambdas of the capture-ready lambda can capture 212 // 'this'. 213 const bool CanCaptureThis = 214 !S.CheckCXXThisCapture( 215 CaptureReadyLambdaLSI->PotentialThisCaptureLocation, 216 /*Explicit*/ false, /*BuildAndDiagnose*/ false, 217 &IndexOfCaptureReadyLambda); 218 if (!CanCaptureThis) 219 return NoLambdaIsCaptureCapable; 220 } 221 return IndexOfCaptureReadyLambda; 222 } 223 224 static inline TemplateParameterList * 225 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) { 226 if (LSI->GLTemplateParameterList) 227 return LSI->GLTemplateParameterList; 228 229 if (LSI->AutoTemplateParams.size()) { 230 SourceRange IntroRange = LSI->IntroducerRange; 231 SourceLocation LAngleLoc = IntroRange.getBegin(); 232 SourceLocation RAngleLoc = IntroRange.getEnd(); 233 LSI->GLTemplateParameterList = TemplateParameterList::Create( 234 SemaRef.Context, 235 /*Template kw loc*/ SourceLocation(), LAngleLoc, 236 (NamedDecl **)LSI->AutoTemplateParams.data(), 237 LSI->AutoTemplateParams.size(), RAngleLoc); 238 } 239 return LSI->GLTemplateParameterList; 240 } 241 242 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange, 243 TypeSourceInfo *Info, 244 bool KnownDependent, 245 LambdaCaptureDefault CaptureDefault) { 246 DeclContext *DC = CurContext; 247 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) 248 DC = DC->getParent(); 249 bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(), 250 *this); 251 // Start constructing the lambda class. 252 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info, 253 IntroducerRange.getBegin(), 254 KnownDependent, 255 IsGenericLambda, 256 CaptureDefault); 257 DC->addDecl(Class); 258 259 return Class; 260 } 261 262 /// \brief Determine whether the given context is or is enclosed in an inline 263 /// function. 264 static bool isInInlineFunction(const DeclContext *DC) { 265 while (!DC->isFileContext()) { 266 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) 267 if (FD->isInlined()) 268 return true; 269 270 DC = DC->getLexicalParent(); 271 } 272 273 return false; 274 } 275 276 MangleNumberingContext * 277 Sema::getCurrentMangleNumberContext(const DeclContext *DC, 278 Decl *&ManglingContextDecl) { 279 // Compute the context for allocating mangling numbers in the current 280 // expression, if the ABI requires them. 281 ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl; 282 283 enum ContextKind { 284 Normal, 285 DefaultArgument, 286 DataMember, 287 StaticDataMember 288 } Kind = Normal; 289 290 // Default arguments of member function parameters that appear in a class 291 // definition, as well as the initializers of data members, receive special 292 // treatment. Identify them. 293 if (ManglingContextDecl) { 294 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) { 295 if (const DeclContext *LexicalDC 296 = Param->getDeclContext()->getLexicalParent()) 297 if (LexicalDC->isRecord()) 298 Kind = DefaultArgument; 299 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) { 300 if (Var->getDeclContext()->isRecord()) 301 Kind = StaticDataMember; 302 } else if (isa<FieldDecl>(ManglingContextDecl)) { 303 Kind = DataMember; 304 } 305 } 306 307 // Itanium ABI [5.1.7]: 308 // In the following contexts [...] the one-definition rule requires closure 309 // types in different translation units to "correspond": 310 bool IsInNonspecializedTemplate = 311 !ActiveTemplateInstantiations.empty() || CurContext->isDependentContext(); 312 switch (Kind) { 313 case Normal: 314 // -- the bodies of non-exported nonspecialized template functions 315 // -- the bodies of inline functions 316 if ((IsInNonspecializedTemplate && 317 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) || 318 isInInlineFunction(CurContext)) { 319 ManglingContextDecl = nullptr; 320 return &Context.getManglingNumberContext(DC); 321 } 322 323 ManglingContextDecl = nullptr; 324 return nullptr; 325 326 case StaticDataMember: 327 // -- the initializers of nonspecialized static members of template classes 328 if (!IsInNonspecializedTemplate) { 329 ManglingContextDecl = nullptr; 330 return nullptr; 331 } 332 // Fall through to get the current context. 333 334 case DataMember: 335 // -- the in-class initializers of class members 336 case DefaultArgument: 337 // -- default arguments appearing in class definitions 338 return &ExprEvalContexts.back().getMangleNumberingContext(Context); 339 } 340 341 llvm_unreachable("unexpected context"); 342 } 343 344 MangleNumberingContext & 345 Sema::ExpressionEvaluationContextRecord::getMangleNumberingContext( 346 ASTContext &Ctx) { 347 assert(ManglingContextDecl && "Need to have a context declaration"); 348 if (!MangleNumbering) 349 MangleNumbering = Ctx.createMangleNumberingContext(); 350 return *MangleNumbering; 351 } 352 353 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class, 354 SourceRange IntroducerRange, 355 TypeSourceInfo *MethodTypeInfo, 356 SourceLocation EndLoc, 357 ArrayRef<ParmVarDecl *> Params) { 358 QualType MethodType = MethodTypeInfo->getType(); 359 TemplateParameterList *TemplateParams = 360 getGenericLambdaTemplateParameterList(getCurLambda(), *this); 361 // If a lambda appears in a dependent context or is a generic lambda (has 362 // template parameters) and has an 'auto' return type, deduce it to a 363 // dependent type. 364 if (Class->isDependentContext() || TemplateParams) { 365 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>(); 366 QualType Result = FPT->getReturnType(); 367 if (Result->isUndeducedType()) { 368 Result = SubstAutoType(Result, Context.DependentTy); 369 MethodType = Context.getFunctionType(Result, FPT->getParamTypes(), 370 FPT->getExtProtoInfo()); 371 } 372 } 373 374 // C++11 [expr.prim.lambda]p5: 375 // The closure type for a lambda-expression has a public inline function 376 // call operator (13.5.4) whose parameters and return type are described by 377 // the lambda-expression's parameter-declaration-clause and 378 // trailing-return-type respectively. 379 DeclarationName MethodName 380 = Context.DeclarationNames.getCXXOperatorName(OO_Call); 381 DeclarationNameLoc MethodNameLoc; 382 MethodNameLoc.CXXOperatorName.BeginOpNameLoc 383 = IntroducerRange.getBegin().getRawEncoding(); 384 MethodNameLoc.CXXOperatorName.EndOpNameLoc 385 = IntroducerRange.getEnd().getRawEncoding(); 386 CXXMethodDecl *Method 387 = CXXMethodDecl::Create(Context, Class, EndLoc, 388 DeclarationNameInfo(MethodName, 389 IntroducerRange.getBegin(), 390 MethodNameLoc), 391 MethodType, MethodTypeInfo, 392 SC_None, 393 /*isInline=*/true, 394 /*isConstExpr=*/false, 395 EndLoc); 396 Method->setAccess(AS_public); 397 398 // Temporarily set the lexical declaration context to the current 399 // context, so that the Scope stack matches the lexical nesting. 400 Method->setLexicalDeclContext(CurContext); 401 // Create a function template if we have a template parameter list 402 FunctionTemplateDecl *const TemplateMethod = TemplateParams ? 403 FunctionTemplateDecl::Create(Context, Class, 404 Method->getLocation(), MethodName, 405 TemplateParams, 406 Method) : nullptr; 407 if (TemplateMethod) { 408 TemplateMethod->setLexicalDeclContext(CurContext); 409 TemplateMethod->setAccess(AS_public); 410 Method->setDescribedFunctionTemplate(TemplateMethod); 411 } 412 413 // Add parameters. 414 if (!Params.empty()) { 415 Method->setParams(Params); 416 CheckParmsForFunctionDef(const_cast<ParmVarDecl **>(Params.begin()), 417 const_cast<ParmVarDecl **>(Params.end()), 418 /*CheckParameterNames=*/false); 419 420 for (auto P : Method->params()) 421 P->setOwningFunction(Method); 422 } 423 424 Decl *ManglingContextDecl; 425 if (MangleNumberingContext *MCtx = 426 getCurrentMangleNumberContext(Class->getDeclContext(), 427 ManglingContextDecl)) { 428 unsigned ManglingNumber = MCtx->getManglingNumber(Method); 429 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl); 430 } 431 432 return Method; 433 } 434 435 void Sema::buildLambdaScope(LambdaScopeInfo *LSI, 436 CXXMethodDecl *CallOperator, 437 SourceRange IntroducerRange, 438 LambdaCaptureDefault CaptureDefault, 439 SourceLocation CaptureDefaultLoc, 440 bool ExplicitParams, 441 bool ExplicitResultType, 442 bool Mutable) { 443 LSI->CallOperator = CallOperator; 444 CXXRecordDecl *LambdaClass = CallOperator->getParent(); 445 LSI->Lambda = LambdaClass; 446 if (CaptureDefault == LCD_ByCopy) 447 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval; 448 else if (CaptureDefault == LCD_ByRef) 449 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref; 450 LSI->CaptureDefaultLoc = CaptureDefaultLoc; 451 LSI->IntroducerRange = IntroducerRange; 452 LSI->ExplicitParams = ExplicitParams; 453 LSI->Mutable = Mutable; 454 455 if (ExplicitResultType) { 456 LSI->ReturnType = CallOperator->getReturnType(); 457 458 if (!LSI->ReturnType->isDependentType() && 459 !LSI->ReturnType->isVoidType()) { 460 if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType, 461 diag::err_lambda_incomplete_result)) { 462 // Do nothing. 463 } 464 } 465 } else { 466 LSI->HasImplicitReturnType = true; 467 } 468 } 469 470 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) { 471 LSI->finishedExplicitCaptures(); 472 } 473 474 void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) { 475 // Introduce our parameters into the function scope 476 for (unsigned p = 0, NumParams = CallOperator->getNumParams(); 477 p < NumParams; ++p) { 478 ParmVarDecl *Param = CallOperator->getParamDecl(p); 479 480 // If this has an identifier, add it to the scope stack. 481 if (CurScope && Param->getIdentifier()) { 482 CheckShadow(CurScope, Param); 483 484 PushOnScopeChains(Param, CurScope); 485 } 486 } 487 } 488 489 /// If this expression is an enumerator-like expression of some type 490 /// T, return the type T; otherwise, return null. 491 /// 492 /// Pointer comparisons on the result here should always work because 493 /// it's derived from either the parent of an EnumConstantDecl 494 /// (i.e. the definition) or the declaration returned by 495 /// EnumType::getDecl() (i.e. the definition). 496 static EnumDecl *findEnumForBlockReturn(Expr *E) { 497 // An expression is an enumerator-like expression of type T if, 498 // ignoring parens and parens-like expressions: 499 E = E->IgnoreParens(); 500 501 // - it is an enumerator whose enum type is T or 502 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 503 if (EnumConstantDecl *D 504 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 505 return cast<EnumDecl>(D->getDeclContext()); 506 } 507 return nullptr; 508 } 509 510 // - it is a comma expression whose RHS is an enumerator-like 511 // expression of type T or 512 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 513 if (BO->getOpcode() == BO_Comma) 514 return findEnumForBlockReturn(BO->getRHS()); 515 return nullptr; 516 } 517 518 // - it is a statement-expression whose value expression is an 519 // enumerator-like expression of type T or 520 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 521 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back())) 522 return findEnumForBlockReturn(last); 523 return nullptr; 524 } 525 526 // - it is a ternary conditional operator (not the GNU ?: 527 // extension) whose second and third operands are 528 // enumerator-like expressions of type T or 529 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 530 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr())) 531 if (ED == findEnumForBlockReturn(CO->getFalseExpr())) 532 return ED; 533 return nullptr; 534 } 535 536 // (implicitly:) 537 // - it is an implicit integral conversion applied to an 538 // enumerator-like expression of type T or 539 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 540 // We can sometimes see integral conversions in valid 541 // enumerator-like expressions. 542 if (ICE->getCastKind() == CK_IntegralCast) 543 return findEnumForBlockReturn(ICE->getSubExpr()); 544 545 // Otherwise, just rely on the type. 546 } 547 548 // - it is an expression of that formal enum type. 549 if (const EnumType *ET = E->getType()->getAs<EnumType>()) { 550 return ET->getDecl(); 551 } 552 553 // Otherwise, nope. 554 return nullptr; 555 } 556 557 /// Attempt to find a type T for which the returned expression of the 558 /// given statement is an enumerator-like expression of that type. 559 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) { 560 if (Expr *retValue = ret->getRetValue()) 561 return findEnumForBlockReturn(retValue); 562 return nullptr; 563 } 564 565 /// Attempt to find a common type T for which all of the returned 566 /// expressions in a block are enumerator-like expressions of that 567 /// type. 568 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) { 569 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end(); 570 571 // Try to find one for the first return. 572 EnumDecl *ED = findEnumForBlockReturn(*i); 573 if (!ED) return nullptr; 574 575 // Check that the rest of the returns have the same enum. 576 for (++i; i != e; ++i) { 577 if (findEnumForBlockReturn(*i) != ED) 578 return nullptr; 579 } 580 581 // Never infer an anonymous enum type. 582 if (!ED->hasNameForLinkage()) return nullptr; 583 584 return ED; 585 } 586 587 /// Adjust the given return statements so that they formally return 588 /// the given type. It should require, at most, an IntegralCast. 589 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns, 590 QualType returnType) { 591 for (ArrayRef<ReturnStmt*>::iterator 592 i = returns.begin(), e = returns.end(); i != e; ++i) { 593 ReturnStmt *ret = *i; 594 Expr *retValue = ret->getRetValue(); 595 if (S.Context.hasSameType(retValue->getType(), returnType)) 596 continue; 597 598 // Right now we only support integral fixup casts. 599 assert(returnType->isIntegralOrUnscopedEnumerationType()); 600 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType()); 601 602 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue); 603 604 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue); 605 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, 606 E, /*base path*/ nullptr, VK_RValue); 607 if (cleanups) { 608 cleanups->setSubExpr(E); 609 } else { 610 ret->setRetValue(E); 611 } 612 } 613 } 614 615 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) { 616 assert(CSI.HasImplicitReturnType); 617 // If it was ever a placeholder, it had to been deduced to DependentTy. 618 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType()); 619 620 // C++ Core Issue #975, proposed resolution: 621 // If a lambda-expression does not include a trailing-return-type, 622 // it is as if the trailing-return-type denotes the following type: 623 // - if there are no return statements in the compound-statement, 624 // or all return statements return either an expression of type 625 // void or no expression or braced-init-list, the type void; 626 // - otherwise, if all return statements return an expression 627 // and the types of the returned expressions after 628 // lvalue-to-rvalue conversion (4.1 [conv.lval]), 629 // array-to-pointer conversion (4.2 [conv.array]), and 630 // function-to-pointer conversion (4.3 [conv.func]) are the 631 // same, that common type; 632 // - otherwise, the program is ill-formed. 633 // 634 // In addition, in blocks in non-C++ modes, if all of the return 635 // statements are enumerator-like expressions of some type T, where 636 // T has a name for linkage, then we infer the return type of the 637 // block to be that type. 638 639 // First case: no return statements, implicit void return type. 640 ASTContext &Ctx = getASTContext(); 641 if (CSI.Returns.empty()) { 642 // It's possible there were simply no /valid/ return statements. 643 // In this case, the first one we found may have at least given us a type. 644 if (CSI.ReturnType.isNull()) 645 CSI.ReturnType = Ctx.VoidTy; 646 return; 647 } 648 649 // Second case: at least one return statement has dependent type. 650 // Delay type checking until instantiation. 651 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type."); 652 if (CSI.ReturnType->isDependentType()) 653 return; 654 655 // Try to apply the enum-fuzz rule. 656 if (!getLangOpts().CPlusPlus) { 657 assert(isa<BlockScopeInfo>(CSI)); 658 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns); 659 if (ED) { 660 CSI.ReturnType = Context.getTypeDeclType(ED); 661 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType); 662 return; 663 } 664 } 665 666 // Third case: only one return statement. Don't bother doing extra work! 667 SmallVectorImpl<ReturnStmt*>::iterator I = CSI.Returns.begin(), 668 E = CSI.Returns.end(); 669 if (I+1 == E) 670 return; 671 672 // General case: many return statements. 673 // Check that they all have compatible return types. 674 675 // We require the return types to strictly match here. 676 // Note that we've already done the required promotions as part of 677 // processing the return statement. 678 for (; I != E; ++I) { 679 const ReturnStmt *RS = *I; 680 const Expr *RetE = RS->getRetValue(); 681 682 QualType ReturnType = (RetE ? RetE->getType() : Context.VoidTy); 683 if (Context.hasSameType(ReturnType, CSI.ReturnType)) 684 continue; 685 686 // FIXME: This is a poor diagnostic for ReturnStmts without expressions. 687 // TODO: It's possible that the *first* return is the divergent one. 688 Diag(RS->getLocStart(), 689 diag::err_typecheck_missing_return_type_incompatible) 690 << ReturnType << CSI.ReturnType 691 << isa<LambdaScopeInfo>(CSI); 692 // Continue iterating so that we keep emitting diagnostics. 693 } 694 } 695 696 QualType Sema::performLambdaInitCaptureInitialization(SourceLocation Loc, 697 bool ByRef, 698 IdentifierInfo *Id, 699 Expr *&Init) { 700 701 // We do not need to distinguish between direct-list-initialization 702 // and copy-list-initialization here, because we will always deduce 703 // std::initializer_list<T>, and direct- and copy-list-initialization 704 // always behave the same for such a type. 705 // FIXME: We should model whether an '=' was present. 706 const bool IsDirectInit = isa<ParenListExpr>(Init) || isa<InitListExpr>(Init); 707 708 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to 709 // deduce against. 710 QualType DeductType = Context.getAutoDeductType(); 711 TypeLocBuilder TLB; 712 TLB.pushTypeSpec(DeductType).setNameLoc(Loc); 713 if (ByRef) { 714 DeductType = BuildReferenceType(DeductType, true, Loc, Id); 715 assert(!DeductType.isNull() && "can't build reference to auto"); 716 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc); 717 } 718 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType); 719 720 // Are we a non-list direct initialization? 721 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 722 723 Expr *DeduceInit = Init; 724 // Initializer could be a C++ direct-initializer. Deduction only works if it 725 // contains exactly one expression. 726 if (CXXDirectInit) { 727 if (CXXDirectInit->getNumExprs() == 0) { 728 Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_no_expression) 729 << DeclarationName(Id) << TSI->getType() << Loc; 730 return QualType(); 731 } else if (CXXDirectInit->getNumExprs() > 1) { 732 Diag(CXXDirectInit->getExpr(1)->getLocStart(), 733 diag::err_init_capture_multiple_expressions) 734 << DeclarationName(Id) << TSI->getType() << Loc; 735 return QualType(); 736 } else { 737 DeduceInit = CXXDirectInit->getExpr(0); 738 if (isa<InitListExpr>(DeduceInit)) 739 Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_paren_braces) 740 << DeclarationName(Id) << Loc; 741 } 742 } 743 744 // Now deduce against the initialization expression and store the deduced 745 // type below. 746 QualType DeducedType; 747 if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) { 748 if (isa<InitListExpr>(Init)) 749 Diag(Loc, diag::err_init_capture_deduction_failure_from_init_list) 750 << DeclarationName(Id) 751 << (DeduceInit->getType().isNull() ? TSI->getType() 752 : DeduceInit->getType()) 753 << DeduceInit->getSourceRange(); 754 else 755 Diag(Loc, diag::err_init_capture_deduction_failure) 756 << DeclarationName(Id) << TSI->getType() 757 << (DeduceInit->getType().isNull() ? TSI->getType() 758 : DeduceInit->getType()) 759 << DeduceInit->getSourceRange(); 760 } 761 if (DeducedType.isNull()) 762 return QualType(); 763 764 // Perform initialization analysis and ensure any implicit conversions 765 // (such as lvalue-to-rvalue) are enforced. 766 InitializedEntity Entity = 767 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc); 768 InitializationKind Kind = 769 IsDirectInit 770 ? (CXXDirectInit ? InitializationKind::CreateDirect( 771 Loc, Init->getLocStart(), Init->getLocEnd()) 772 : InitializationKind::CreateDirectList(Loc)) 773 : InitializationKind::CreateCopy(Loc, Init->getLocStart()); 774 775 MultiExprArg Args = Init; 776 if (CXXDirectInit) 777 Args = 778 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs()); 779 QualType DclT; 780 InitializationSequence InitSeq(*this, Entity, Kind, Args); 781 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 782 783 if (Result.isInvalid()) 784 return QualType(); 785 Init = Result.getAs<Expr>(); 786 787 // The init-capture initialization is a full-expression that must be 788 // processed as one before we enter the declcontext of the lambda's 789 // call-operator. 790 Result = ActOnFinishFullExpr(Init, Loc, /*DiscardedValue*/ false, 791 /*IsConstexpr*/ false, 792 /*IsLambdaInitCaptureInitalizer*/ true); 793 if (Result.isInvalid()) 794 return QualType(); 795 796 Init = Result.getAs<Expr>(); 797 return DeducedType; 798 } 799 800 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc, 801 QualType InitCaptureType, IdentifierInfo *Id, Expr *Init) { 802 803 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, 804 Loc); 805 // Create a dummy variable representing the init-capture. This is not actually 806 // used as a variable, and only exists as a way to name and refer to the 807 // init-capture. 808 // FIXME: Pass in separate source locations for '&' and identifier. 809 VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc, 810 Loc, Id, InitCaptureType, TSI, SC_Auto); 811 NewVD->setInitCapture(true); 812 NewVD->setReferenced(true); 813 NewVD->markUsed(Context); 814 NewVD->setInit(Init); 815 return NewVD; 816 817 } 818 819 FieldDecl *Sema::buildInitCaptureField(LambdaScopeInfo *LSI, VarDecl *Var) { 820 FieldDecl *Field = FieldDecl::Create( 821 Context, LSI->Lambda, Var->getLocation(), Var->getLocation(), 822 nullptr, Var->getType(), Var->getTypeSourceInfo(), nullptr, false, 823 ICIS_NoInit); 824 Field->setImplicit(true); 825 Field->setAccess(AS_private); 826 LSI->Lambda->addDecl(Field); 827 828 LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(), 829 /*isNested*/false, Var->getLocation(), SourceLocation(), 830 Var->getType(), Var->getInit()); 831 return Field; 832 } 833 834 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, 835 Declarator &ParamInfo, Scope *CurScope) { 836 // Determine if we're within a context where we know that the lambda will 837 // be dependent, because there are template parameters in scope. 838 bool KnownDependent = false; 839 LambdaScopeInfo *const LSI = getCurLambda(); 840 assert(LSI && "LambdaScopeInfo should be on stack!"); 841 TemplateParameterList *TemplateParams = 842 getGenericLambdaTemplateParameterList(LSI, *this); 843 844 if (Scope *TmplScope = CurScope->getTemplateParamParent()) { 845 // Since we have our own TemplateParams, so check if an outer scope 846 // has template params, only then are we in a dependent scope. 847 if (TemplateParams) { 848 TmplScope = TmplScope->getParent(); 849 TmplScope = TmplScope ? TmplScope->getTemplateParamParent() : nullptr; 850 } 851 if (TmplScope && !TmplScope->decl_empty()) 852 KnownDependent = true; 853 } 854 // Determine the signature of the call operator. 855 TypeSourceInfo *MethodTyInfo; 856 bool ExplicitParams = true; 857 bool ExplicitResultType = true; 858 bool ContainsUnexpandedParameterPack = false; 859 SourceLocation EndLoc; 860 SmallVector<ParmVarDecl *, 8> Params; 861 if (ParamInfo.getNumTypeObjects() == 0) { 862 // C++11 [expr.prim.lambda]p4: 863 // If a lambda-expression does not include a lambda-declarator, it is as 864 // if the lambda-declarator were (). 865 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 866 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 867 EPI.HasTrailingReturn = true; 868 EPI.TypeQuals |= DeclSpec::TQ_const; 869 // C++1y [expr.prim.lambda]: 870 // The lambda return type is 'auto', which is replaced by the 871 // trailing-return type if provided and/or deduced from 'return' 872 // statements 873 // We don't do this before C++1y, because we don't support deduced return 874 // types there. 875 QualType DefaultTypeForNoTrailingReturn = 876 getLangOpts().CPlusPlus1y ? Context.getAutoDeductType() 877 : Context.DependentTy; 878 QualType MethodTy = 879 Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI); 880 MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy); 881 ExplicitParams = false; 882 ExplicitResultType = false; 883 EndLoc = Intro.Range.getEnd(); 884 } else { 885 assert(ParamInfo.isFunctionDeclarator() && 886 "lambda-declarator is a function"); 887 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo(); 888 889 // C++11 [expr.prim.lambda]p5: 890 // This function call operator is declared const (9.3.1) if and only if 891 // the lambda-expression's parameter-declaration-clause is not followed 892 // by mutable. It is neither virtual nor declared volatile. [...] 893 if (!FTI.hasMutableQualifier()) 894 FTI.TypeQuals |= DeclSpec::TQ_const; 895 896 MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope); 897 assert(MethodTyInfo && "no type from lambda-declarator"); 898 EndLoc = ParamInfo.getSourceRange().getEnd(); 899 900 ExplicitResultType = FTI.hasTrailingReturnType(); 901 902 if (FTIHasNonVoidParameters(FTI)) { 903 Params.reserve(FTI.NumParams); 904 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) 905 Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param)); 906 } 907 908 // Check for unexpanded parameter packs in the method type. 909 if (MethodTyInfo->getType()->containsUnexpandedParameterPack()) 910 ContainsUnexpandedParameterPack = true; 911 } 912 913 CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo, 914 KnownDependent, Intro.Default); 915 916 CXXMethodDecl *Method = startLambdaDefinition(Class, Intro.Range, 917 MethodTyInfo, EndLoc, Params); 918 if (ExplicitParams) 919 CheckCXXDefaultArguments(Method); 920 921 // Attributes on the lambda apply to the method. 922 ProcessDeclAttributes(CurScope, Method, ParamInfo); 923 924 // Introduce the function call operator as the current declaration context. 925 PushDeclContext(CurScope, Method); 926 927 // Build the lambda scope. 928 buildLambdaScope(LSI, Method, 929 Intro.Range, 930 Intro.Default, Intro.DefaultLoc, 931 ExplicitParams, 932 ExplicitResultType, 933 !Method->isConst()); 934 935 // C++11 [expr.prim.lambda]p9: 936 // A lambda-expression whose smallest enclosing scope is a block scope is a 937 // local lambda expression; any other lambda expression shall not have a 938 // capture-default or simple-capture in its lambda-introducer. 939 // 940 // For simple-captures, this is covered by the check below that any named 941 // entity is a variable that can be captured. 942 // 943 // For DR1632, we also allow a capture-default in any context where we can 944 // odr-use 'this' (in particular, in a default initializer for a non-static 945 // data member). 946 if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() && 947 (getCurrentThisType().isNull() || 948 CheckCXXThisCapture(SourceLocation(), /*Explicit*/true, 949 /*BuildAndDiagnose*/false))) 950 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local); 951 952 // Distinct capture names, for diagnostics. 953 llvm::SmallSet<IdentifierInfo*, 8> CaptureNames; 954 955 // Handle explicit captures. 956 SourceLocation PrevCaptureLoc 957 = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc; 958 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E; 959 PrevCaptureLoc = C->Loc, ++C) { 960 if (C->Kind == LCK_This) { 961 // C++11 [expr.prim.lambda]p8: 962 // An identifier or this shall not appear more than once in a 963 // lambda-capture. 964 if (LSI->isCXXThisCaptured()) { 965 Diag(C->Loc, diag::err_capture_more_than_once) 966 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation()) 967 << FixItHint::CreateRemoval( 968 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 969 continue; 970 } 971 972 // C++11 [expr.prim.lambda]p8: 973 // If a lambda-capture includes a capture-default that is =, the 974 // lambda-capture shall not contain this [...]. 975 if (Intro.Default == LCD_ByCopy) { 976 Diag(C->Loc, diag::err_this_capture_with_copy_default) 977 << FixItHint::CreateRemoval( 978 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 979 continue; 980 } 981 982 // C++11 [expr.prim.lambda]p12: 983 // If this is captured by a local lambda expression, its nearest 984 // enclosing function shall be a non-static member function. 985 QualType ThisCaptureType = getCurrentThisType(); 986 if (ThisCaptureType.isNull()) { 987 Diag(C->Loc, diag::err_this_capture) << true; 988 continue; 989 } 990 991 CheckCXXThisCapture(C->Loc, /*Explicit=*/true); 992 continue; 993 } 994 995 assert(C->Id && "missing identifier for capture"); 996 997 if (C->Init.isInvalid()) 998 continue; 999 1000 VarDecl *Var = nullptr; 1001 if (C->Init.isUsable()) { 1002 Diag(C->Loc, getLangOpts().CPlusPlus1y 1003 ? diag::warn_cxx11_compat_init_capture 1004 : diag::ext_init_capture); 1005 1006 if (C->Init.get()->containsUnexpandedParameterPack()) 1007 ContainsUnexpandedParameterPack = true; 1008 // If the initializer expression is usable, but the InitCaptureType 1009 // is not, then an error has occurred - so ignore the capture for now. 1010 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included. 1011 // FIXME: we should create the init capture variable and mark it invalid 1012 // in this case. 1013 if (C->InitCaptureType.get().isNull()) 1014 continue; 1015 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(), 1016 C->Id, C->Init.get()); 1017 // C++1y [expr.prim.lambda]p11: 1018 // An init-capture behaves as if it declares and explicitly 1019 // captures a variable [...] whose declarative region is the 1020 // lambda-expression's compound-statement 1021 if (Var) 1022 PushOnScopeChains(Var, CurScope, false); 1023 } else { 1024 // C++11 [expr.prim.lambda]p8: 1025 // If a lambda-capture includes a capture-default that is &, the 1026 // identifiers in the lambda-capture shall not be preceded by &. 1027 // If a lambda-capture includes a capture-default that is =, [...] 1028 // each identifier it contains shall be preceded by &. 1029 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) { 1030 Diag(C->Loc, diag::err_reference_capture_with_reference_default) 1031 << FixItHint::CreateRemoval( 1032 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1033 continue; 1034 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) { 1035 Diag(C->Loc, diag::err_copy_capture_with_copy_default) 1036 << FixItHint::CreateRemoval( 1037 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1038 continue; 1039 } 1040 1041 // C++11 [expr.prim.lambda]p10: 1042 // The identifiers in a capture-list are looked up using the usual 1043 // rules for unqualified name lookup (3.4.1) 1044 DeclarationNameInfo Name(C->Id, C->Loc); 1045 LookupResult R(*this, Name, LookupOrdinaryName); 1046 LookupName(R, CurScope); 1047 if (R.isAmbiguous()) 1048 continue; 1049 if (R.empty()) { 1050 // FIXME: Disable corrections that would add qualification? 1051 CXXScopeSpec ScopeSpec; 1052 DeclFilterCCC<VarDecl> Validator; 1053 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator)) 1054 continue; 1055 } 1056 1057 Var = R.getAsSingle<VarDecl>(); 1058 if (Var && DiagnoseUseOfDecl(Var, C->Loc)) 1059 continue; 1060 } 1061 1062 // C++11 [expr.prim.lambda]p8: 1063 // An identifier or this shall not appear more than once in a 1064 // lambda-capture. 1065 if (!CaptureNames.insert(C->Id)) { 1066 if (Var && LSI->isCaptured(Var)) { 1067 Diag(C->Loc, diag::err_capture_more_than_once) 1068 << C->Id << SourceRange(LSI->getCapture(Var).getLocation()) 1069 << FixItHint::CreateRemoval( 1070 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc)); 1071 } else 1072 // Previous capture captured something different (one or both was 1073 // an init-cpature): no fixit. 1074 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id; 1075 continue; 1076 } 1077 1078 // C++11 [expr.prim.lambda]p10: 1079 // [...] each such lookup shall find a variable with automatic storage 1080 // duration declared in the reaching scope of the local lambda expression. 1081 // Note that the 'reaching scope' check happens in tryCaptureVariable(). 1082 if (!Var) { 1083 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id; 1084 continue; 1085 } 1086 1087 // Ignore invalid decls; they'll just confuse the code later. 1088 if (Var->isInvalidDecl()) 1089 continue; 1090 1091 if (!Var->hasLocalStorage()) { 1092 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id; 1093 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id; 1094 continue; 1095 } 1096 1097 // C++11 [expr.prim.lambda]p23: 1098 // A capture followed by an ellipsis is a pack expansion (14.5.3). 1099 SourceLocation EllipsisLoc; 1100 if (C->EllipsisLoc.isValid()) { 1101 if (Var->isParameterPack()) { 1102 EllipsisLoc = C->EllipsisLoc; 1103 } else { 1104 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) 1105 << SourceRange(C->Loc); 1106 1107 // Just ignore the ellipsis. 1108 } 1109 } else if (Var->isParameterPack()) { 1110 ContainsUnexpandedParameterPack = true; 1111 } 1112 1113 if (C->Init.isUsable()) { 1114 buildInitCaptureField(LSI, Var); 1115 } else { 1116 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef : 1117 TryCapture_ExplicitByVal; 1118 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc); 1119 } 1120 } 1121 finishLambdaExplicitCaptures(LSI); 1122 1123 LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack; 1124 1125 // Add lambda parameters into scope. 1126 addLambdaParameters(Method, CurScope); 1127 1128 // Enter a new evaluation context to insulate the lambda from any 1129 // cleanups from the enclosing full-expression. 1130 PushExpressionEvaluationContext(PotentiallyEvaluated); 1131 } 1132 1133 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, 1134 bool IsInstantiation) { 1135 LambdaScopeInfo *LSI = getCurLambda(); 1136 1137 // Leave the expression-evaluation context. 1138 DiscardCleanupsInEvaluationContext(); 1139 PopExpressionEvaluationContext(); 1140 1141 // Leave the context of the lambda. 1142 if (!IsInstantiation) 1143 PopDeclContext(); 1144 1145 // Finalize the lambda. 1146 CXXRecordDecl *Class = LSI->Lambda; 1147 Class->setInvalidDecl(); 1148 SmallVector<Decl*, 4> Fields(Class->fields()); 1149 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1150 SourceLocation(), nullptr); 1151 CheckCompletedCXXClass(Class); 1152 1153 PopFunctionScopeInfo(); 1154 } 1155 1156 /// \brief Add a lambda's conversion to function pointer, as described in 1157 /// C++11 [expr.prim.lambda]p6. 1158 static void addFunctionPointerConversion(Sema &S, 1159 SourceRange IntroducerRange, 1160 CXXRecordDecl *Class, 1161 CXXMethodDecl *CallOperator) { 1162 // Add the conversion to function pointer. 1163 const FunctionProtoType *CallOpProto = 1164 CallOperator->getType()->getAs<FunctionProtoType>(); 1165 const FunctionProtoType::ExtProtoInfo CallOpExtInfo = 1166 CallOpProto->getExtProtoInfo(); 1167 QualType PtrToFunctionTy; 1168 QualType InvokerFunctionTy; 1169 { 1170 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo; 1171 CallingConv CC = S.Context.getDefaultCallingConvention( 1172 CallOpProto->isVariadic(), /*IsCXXMethod=*/false); 1173 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC); 1174 InvokerExtInfo.TypeQuals = 0; 1175 assert(InvokerExtInfo.RefQualifier == RQ_None && 1176 "Lambda's call operator should not have a reference qualifier"); 1177 InvokerFunctionTy = 1178 S.Context.getFunctionType(CallOpProto->getReturnType(), 1179 CallOpProto->getParamTypes(), InvokerExtInfo); 1180 PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy); 1181 } 1182 1183 // Create the type of the conversion function. 1184 FunctionProtoType::ExtProtoInfo ConvExtInfo( 1185 S.Context.getDefaultCallingConvention( 1186 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1187 // The conversion function is always const. 1188 ConvExtInfo.TypeQuals = Qualifiers::Const; 1189 QualType ConvTy = 1190 S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo); 1191 1192 SourceLocation Loc = IntroducerRange.getBegin(); 1193 DeclarationName ConversionName 1194 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1195 S.Context.getCanonicalType(PtrToFunctionTy)); 1196 DeclarationNameLoc ConvNameLoc; 1197 // Construct a TypeSourceInfo for the conversion function, and wire 1198 // all the parameters appropriately for the FunctionProtoTypeLoc 1199 // so that everything works during transformation/instantiation of 1200 // generic lambdas. 1201 // The main reason for wiring up the parameters of the conversion 1202 // function with that of the call operator is so that constructs 1203 // like the following work: 1204 // auto L = [](auto b) { <-- 1 1205 // return [](auto a) -> decltype(a) { <-- 2 1206 // return a; 1207 // }; 1208 // }; 1209 // int (*fp)(int) = L(5); 1210 // Because the trailing return type can contain DeclRefExprs that refer 1211 // to the original call operator's variables, we hijack the call 1212 // operators ParmVarDecls below. 1213 TypeSourceInfo *ConvNamePtrToFunctionTSI = 1214 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc); 1215 ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI; 1216 1217 // The conversion function is a conversion to a pointer-to-function. 1218 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc); 1219 FunctionProtoTypeLoc ConvTL = 1220 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>(); 1221 // Get the result of the conversion function which is a pointer-to-function. 1222 PointerTypeLoc PtrToFunctionTL = 1223 ConvTL.getReturnLoc().getAs<PointerTypeLoc>(); 1224 // Do the same for the TypeSourceInfo that is used to name the conversion 1225 // operator. 1226 PointerTypeLoc ConvNamePtrToFunctionTL = 1227 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>(); 1228 1229 // Get the underlying function types that the conversion function will 1230 // be converting to (should match the type of the call operator). 1231 FunctionProtoTypeLoc CallOpConvTL = 1232 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1233 FunctionProtoTypeLoc CallOpConvNameTL = 1234 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>(); 1235 1236 // Wire up the FunctionProtoTypeLocs with the call operator's parameters. 1237 // These parameter's are essentially used to transform the name and 1238 // the type of the conversion operator. By using the same parameters 1239 // as the call operator's we don't have to fix any back references that 1240 // the trailing return type of the call operator's uses (such as 1241 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.) 1242 // - we can simply use the return type of the call operator, and 1243 // everything should work. 1244 SmallVector<ParmVarDecl *, 4> InvokerParams; 1245 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1246 ParmVarDecl *From = CallOperator->getParamDecl(I); 1247 1248 InvokerParams.push_back(ParmVarDecl::Create(S.Context, 1249 // Temporarily add to the TU. This is set to the invoker below. 1250 S.Context.getTranslationUnitDecl(), 1251 From->getLocStart(), 1252 From->getLocation(), 1253 From->getIdentifier(), 1254 From->getType(), 1255 From->getTypeSourceInfo(), 1256 From->getStorageClass(), 1257 /*DefaultArg=*/nullptr)); 1258 CallOpConvTL.setParam(I, From); 1259 CallOpConvNameTL.setParam(I, From); 1260 } 1261 1262 CXXConversionDecl *Conversion 1263 = CXXConversionDecl::Create(S.Context, Class, Loc, 1264 DeclarationNameInfo(ConversionName, 1265 Loc, ConvNameLoc), 1266 ConvTy, 1267 ConvTSI, 1268 /*isInline=*/true, /*isExplicit=*/false, 1269 /*isConstexpr=*/false, 1270 CallOperator->getBody()->getLocEnd()); 1271 Conversion->setAccess(AS_public); 1272 Conversion->setImplicit(true); 1273 1274 if (Class->isGenericLambda()) { 1275 // Create a template version of the conversion operator, using the template 1276 // parameter list of the function call operator. 1277 FunctionTemplateDecl *TemplateCallOperator = 1278 CallOperator->getDescribedFunctionTemplate(); 1279 FunctionTemplateDecl *ConversionTemplate = 1280 FunctionTemplateDecl::Create(S.Context, Class, 1281 Loc, ConversionName, 1282 TemplateCallOperator->getTemplateParameters(), 1283 Conversion); 1284 ConversionTemplate->setAccess(AS_public); 1285 ConversionTemplate->setImplicit(true); 1286 Conversion->setDescribedFunctionTemplate(ConversionTemplate); 1287 Class->addDecl(ConversionTemplate); 1288 } else 1289 Class->addDecl(Conversion); 1290 // Add a non-static member function that will be the result of 1291 // the conversion with a certain unique ID. 1292 DeclarationName InvokerName = &S.Context.Idents.get( 1293 getLambdaStaticInvokerName()); 1294 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo() 1295 // we should get a prebuilt TrivialTypeSourceInfo from Context 1296 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc 1297 // then rewire the parameters accordingly, by hoisting up the InvokeParams 1298 // loop below and then use its Params to set Invoke->setParams(...) below. 1299 // This would avoid the 'const' qualifier of the calloperator from 1300 // contaminating the type of the invoker, which is currently adjusted 1301 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the 1302 // trailing return type of the invoker would require a visitor to rebuild 1303 // the trailing return type and adjusting all back DeclRefExpr's to refer 1304 // to the new static invoker parameters - not the call operator's. 1305 CXXMethodDecl *Invoke 1306 = CXXMethodDecl::Create(S.Context, Class, Loc, 1307 DeclarationNameInfo(InvokerName, Loc), 1308 InvokerFunctionTy, 1309 CallOperator->getTypeSourceInfo(), 1310 SC_Static, /*IsInline=*/true, 1311 /*IsConstexpr=*/false, 1312 CallOperator->getBody()->getLocEnd()); 1313 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) 1314 InvokerParams[I]->setOwningFunction(Invoke); 1315 Invoke->setParams(InvokerParams); 1316 Invoke->setAccess(AS_private); 1317 Invoke->setImplicit(true); 1318 if (Class->isGenericLambda()) { 1319 FunctionTemplateDecl *TemplateCallOperator = 1320 CallOperator->getDescribedFunctionTemplate(); 1321 FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create( 1322 S.Context, Class, Loc, InvokerName, 1323 TemplateCallOperator->getTemplateParameters(), 1324 Invoke); 1325 StaticInvokerTemplate->setAccess(AS_private); 1326 StaticInvokerTemplate->setImplicit(true); 1327 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate); 1328 Class->addDecl(StaticInvokerTemplate); 1329 } else 1330 Class->addDecl(Invoke); 1331 } 1332 1333 /// \brief Add a lambda's conversion to block pointer. 1334 static void addBlockPointerConversion(Sema &S, 1335 SourceRange IntroducerRange, 1336 CXXRecordDecl *Class, 1337 CXXMethodDecl *CallOperator) { 1338 const FunctionProtoType *Proto 1339 = CallOperator->getType()->getAs<FunctionProtoType>(); 1340 QualType BlockPtrTy; 1341 { 1342 FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo(); 1343 ExtInfo.TypeQuals = 0; 1344 QualType FunctionTy = S.Context.getFunctionType( 1345 Proto->getReturnType(), Proto->getParamTypes(), ExtInfo); 1346 BlockPtrTy = S.Context.getBlockPointerType(FunctionTy); 1347 } 1348 1349 FunctionProtoType::ExtProtoInfo ExtInfo(S.Context.getDefaultCallingConvention( 1350 /*IsVariadic=*/false, /*IsCXXMethod=*/true)); 1351 ExtInfo.TypeQuals = Qualifiers::Const; 1352 QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ExtInfo); 1353 1354 SourceLocation Loc = IntroducerRange.getBegin(); 1355 DeclarationName Name 1356 = S.Context.DeclarationNames.getCXXConversionFunctionName( 1357 S.Context.getCanonicalType(BlockPtrTy)); 1358 DeclarationNameLoc NameLoc; 1359 NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc); 1360 CXXConversionDecl *Conversion 1361 = CXXConversionDecl::Create(S.Context, Class, Loc, 1362 DeclarationNameInfo(Name, Loc, NameLoc), 1363 ConvTy, 1364 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc), 1365 /*isInline=*/true, /*isExplicit=*/false, 1366 /*isConstexpr=*/false, 1367 CallOperator->getBody()->getLocEnd()); 1368 Conversion->setAccess(AS_public); 1369 Conversion->setImplicit(true); 1370 Class->addDecl(Conversion); 1371 } 1372 1373 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, 1374 Scope *CurScope, 1375 bool IsInstantiation) { 1376 // Collect information from the lambda scope. 1377 SmallVector<LambdaCapture, 4> Captures; 1378 SmallVector<Expr *, 4> CaptureInits; 1379 LambdaCaptureDefault CaptureDefault; 1380 SourceLocation CaptureDefaultLoc; 1381 CXXRecordDecl *Class; 1382 CXXMethodDecl *CallOperator; 1383 SourceRange IntroducerRange; 1384 bool ExplicitParams; 1385 bool ExplicitResultType; 1386 bool LambdaExprNeedsCleanups; 1387 bool ContainsUnexpandedParameterPack; 1388 SmallVector<VarDecl *, 4> ArrayIndexVars; 1389 SmallVector<unsigned, 4> ArrayIndexStarts; 1390 { 1391 LambdaScopeInfo *LSI = getCurLambda(); 1392 CallOperator = LSI->CallOperator; 1393 Class = LSI->Lambda; 1394 IntroducerRange = LSI->IntroducerRange; 1395 ExplicitParams = LSI->ExplicitParams; 1396 ExplicitResultType = !LSI->HasImplicitReturnType; 1397 LambdaExprNeedsCleanups = LSI->ExprNeedsCleanups; 1398 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack; 1399 ArrayIndexVars.swap(LSI->ArrayIndexVars); 1400 ArrayIndexStarts.swap(LSI->ArrayIndexStarts); 1401 1402 // Translate captures. 1403 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) { 1404 LambdaScopeInfo::Capture From = LSI->Captures[I]; 1405 assert(!From.isBlockCapture() && "Cannot capture __block variables"); 1406 bool IsImplicit = I >= LSI->NumExplicitCaptures; 1407 1408 // Handle 'this' capture. 1409 if (From.isThisCapture()) { 1410 Captures.push_back( 1411 LambdaCapture(From.getLocation(), IsImplicit, LCK_This)); 1412 CaptureInits.push_back(new (Context) CXXThisExpr(From.getLocation(), 1413 getCurrentThisType(), 1414 /*isImplicit=*/true)); 1415 continue; 1416 } 1417 1418 VarDecl *Var = From.getVariable(); 1419 LambdaCaptureKind Kind = From.isCopyCapture()? LCK_ByCopy : LCK_ByRef; 1420 Captures.push_back(LambdaCapture(From.getLocation(), IsImplicit, Kind, 1421 Var, From.getEllipsisLoc())); 1422 CaptureInits.push_back(From.getInitExpr()); 1423 } 1424 1425 switch (LSI->ImpCaptureStyle) { 1426 case CapturingScopeInfo::ImpCap_None: 1427 CaptureDefault = LCD_None; 1428 break; 1429 1430 case CapturingScopeInfo::ImpCap_LambdaByval: 1431 CaptureDefault = LCD_ByCopy; 1432 break; 1433 1434 case CapturingScopeInfo::ImpCap_CapturedRegion: 1435 case CapturingScopeInfo::ImpCap_LambdaByref: 1436 CaptureDefault = LCD_ByRef; 1437 break; 1438 1439 case CapturingScopeInfo::ImpCap_Block: 1440 llvm_unreachable("block capture in lambda"); 1441 break; 1442 } 1443 CaptureDefaultLoc = LSI->CaptureDefaultLoc; 1444 1445 // C++11 [expr.prim.lambda]p4: 1446 // If a lambda-expression does not include a 1447 // trailing-return-type, it is as if the trailing-return-type 1448 // denotes the following type: 1449 // 1450 // Skip for C++1y return type deduction semantics which uses 1451 // different machinery. 1452 // FIXME: Refactor and Merge the return type deduction machinery. 1453 // FIXME: Assumes current resolution to core issue 975. 1454 if (LSI->HasImplicitReturnType && !getLangOpts().CPlusPlus1y) { 1455 deduceClosureReturnType(*LSI); 1456 1457 // - if there are no return statements in the 1458 // compound-statement, or all return statements return 1459 // either an expression of type void or no expression or 1460 // braced-init-list, the type void; 1461 if (LSI->ReturnType.isNull()) { 1462 LSI->ReturnType = Context.VoidTy; 1463 } 1464 1465 // Create a function type with the inferred return type. 1466 const FunctionProtoType *Proto 1467 = CallOperator->getType()->getAs<FunctionProtoType>(); 1468 QualType FunctionTy = Context.getFunctionType( 1469 LSI->ReturnType, Proto->getParamTypes(), Proto->getExtProtoInfo()); 1470 CallOperator->setType(FunctionTy); 1471 } 1472 // C++ [expr.prim.lambda]p7: 1473 // The lambda-expression's compound-statement yields the 1474 // function-body (8.4) of the function call operator [...]. 1475 ActOnFinishFunctionBody(CallOperator, Body, IsInstantiation); 1476 CallOperator->setLexicalDeclContext(Class); 1477 Decl *TemplateOrNonTemplateCallOperatorDecl = 1478 CallOperator->getDescribedFunctionTemplate() 1479 ? CallOperator->getDescribedFunctionTemplate() 1480 : cast<Decl>(CallOperator); 1481 1482 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class); 1483 Class->addDecl(TemplateOrNonTemplateCallOperatorDecl); 1484 1485 PopExpressionEvaluationContext(); 1486 1487 // C++11 [expr.prim.lambda]p6: 1488 // The closure type for a lambda-expression with no lambda-capture 1489 // has a public non-virtual non-explicit const conversion function 1490 // to pointer to function having the same parameter and return 1491 // types as the closure type's function call operator. 1492 if (Captures.empty() && CaptureDefault == LCD_None) 1493 addFunctionPointerConversion(*this, IntroducerRange, Class, 1494 CallOperator); 1495 1496 // Objective-C++: 1497 // The closure type for a lambda-expression has a public non-virtual 1498 // non-explicit const conversion function to a block pointer having the 1499 // same parameter and return types as the closure type's function call 1500 // operator. 1501 // FIXME: Fix generic lambda to block conversions. 1502 if (getLangOpts().Blocks && getLangOpts().ObjC1 && 1503 !Class->isGenericLambda()) 1504 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator); 1505 1506 // Finalize the lambda class. 1507 SmallVector<Decl*, 4> Fields(Class->fields()); 1508 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(), 1509 SourceLocation(), nullptr); 1510 CheckCompletedCXXClass(Class); 1511 } 1512 1513 if (LambdaExprNeedsCleanups) 1514 ExprNeedsCleanups = true; 1515 1516 LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange, 1517 CaptureDefault, CaptureDefaultLoc, 1518 Captures, 1519 ExplicitParams, ExplicitResultType, 1520 CaptureInits, ArrayIndexVars, 1521 ArrayIndexStarts, Body->getLocEnd(), 1522 ContainsUnexpandedParameterPack); 1523 1524 if (!CurContext->isDependentContext()) { 1525 switch (ExprEvalContexts.back().Context) { 1526 // C++11 [expr.prim.lambda]p2: 1527 // A lambda-expression shall not appear in an unevaluated operand 1528 // (Clause 5). 1529 case Unevaluated: 1530 case UnevaluatedAbstract: 1531 // C++1y [expr.const]p2: 1532 // A conditional-expression e is a core constant expression unless the 1533 // evaluation of e, following the rules of the abstract machine, would 1534 // evaluate [...] a lambda-expression. 1535 // 1536 // This is technically incorrect, there are some constant evaluated contexts 1537 // where this should be allowed. We should probably fix this when DR1607 is 1538 // ratified, it lays out the exact set of conditions where we shouldn't 1539 // allow a lambda-expression. 1540 case ConstantEvaluated: 1541 // We don't actually diagnose this case immediately, because we 1542 // could be within a context where we might find out later that 1543 // the expression is potentially evaluated (e.g., for typeid). 1544 ExprEvalContexts.back().Lambdas.push_back(Lambda); 1545 break; 1546 1547 case PotentiallyEvaluated: 1548 case PotentiallyEvaluatedIfUsed: 1549 break; 1550 } 1551 } 1552 1553 return MaybeBindToTemporary(Lambda); 1554 } 1555 1556 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation, 1557 SourceLocation ConvLocation, 1558 CXXConversionDecl *Conv, 1559 Expr *Src) { 1560 // Make sure that the lambda call operator is marked used. 1561 CXXRecordDecl *Lambda = Conv->getParent(); 1562 CXXMethodDecl *CallOperator 1563 = cast<CXXMethodDecl>( 1564 Lambda->lookup( 1565 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front()); 1566 CallOperator->setReferenced(); 1567 CallOperator->markUsed(Context); 1568 1569 ExprResult Init = PerformCopyInitialization( 1570 InitializedEntity::InitializeBlock(ConvLocation, 1571 Src->getType(), 1572 /*NRVO=*/false), 1573 CurrentLocation, Src); 1574 if (!Init.isInvalid()) 1575 Init = ActOnFinishFullExpr(Init.get()); 1576 1577 if (Init.isInvalid()) 1578 return ExprError(); 1579 1580 // Create the new block to be returned. 1581 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation); 1582 1583 // Set the type information. 1584 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo()); 1585 Block->setIsVariadic(CallOperator->isVariadic()); 1586 Block->setBlockMissingReturnType(false); 1587 1588 // Add parameters. 1589 SmallVector<ParmVarDecl *, 4> BlockParams; 1590 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) { 1591 ParmVarDecl *From = CallOperator->getParamDecl(I); 1592 BlockParams.push_back(ParmVarDecl::Create(Context, Block, 1593 From->getLocStart(), 1594 From->getLocation(), 1595 From->getIdentifier(), 1596 From->getType(), 1597 From->getTypeSourceInfo(), 1598 From->getStorageClass(), 1599 /*DefaultArg=*/nullptr)); 1600 } 1601 Block->setParams(BlockParams); 1602 1603 Block->setIsConversionFromLambda(true); 1604 1605 // Add capture. The capture uses a fake variable, which doesn't correspond 1606 // to any actual memory location. However, the initializer copy-initializes 1607 // the lambda object. 1608 TypeSourceInfo *CapVarTSI = 1609 Context.getTrivialTypeSourceInfo(Src->getType()); 1610 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation, 1611 ConvLocation, nullptr, 1612 Src->getType(), CapVarTSI, 1613 SC_None); 1614 BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false, 1615 /*Nested=*/false, /*Copy=*/Init.get()); 1616 Block->setCaptures(Context, &Capture, &Capture + 1, 1617 /*CapturesCXXThis=*/false); 1618 1619 // Add a fake function body to the block. IR generation is responsible 1620 // for filling in the actual body, which cannot be expressed as an AST. 1621 Block->setBody(new (Context) CompoundStmt(ConvLocation)); 1622 1623 // Create the block literal expression. 1624 Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType()); 1625 ExprCleanupObjects.push_back(Block); 1626 ExprNeedsCleanups = true; 1627 1628 return BuildBlock; 1629 } 1630