1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CGOpenCLRuntime.h" 17 #include "CodeGenModule.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/Basic/SourceManager.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/Type.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 34 void CodeGenFunction::EmitDecl(const Decl &D) { 35 switch (D.getKind()) { 36 case Decl::TranslationUnit: 37 case Decl::Namespace: 38 case Decl::UnresolvedUsingTypename: 39 case Decl::ClassTemplateSpecialization: 40 case Decl::ClassTemplatePartialSpecialization: 41 case Decl::VarTemplateSpecialization: 42 case Decl::VarTemplatePartialSpecialization: 43 case Decl::TemplateTypeParm: 44 case Decl::UnresolvedUsingValue: 45 case Decl::NonTypeTemplateParm: 46 case Decl::CXXMethod: 47 case Decl::CXXConstructor: 48 case Decl::CXXDestructor: 49 case Decl::CXXConversion: 50 case Decl::Field: 51 case Decl::MSProperty: 52 case Decl::IndirectField: 53 case Decl::ObjCIvar: 54 case Decl::ObjCAtDefsField: 55 case Decl::ParmVar: 56 case Decl::ImplicitParam: 57 case Decl::ClassTemplate: 58 case Decl::VarTemplate: 59 case Decl::FunctionTemplate: 60 case Decl::TypeAliasTemplate: 61 case Decl::TemplateTemplateParm: 62 case Decl::ObjCMethod: 63 case Decl::ObjCCategory: 64 case Decl::ObjCProtocol: 65 case Decl::ObjCInterface: 66 case Decl::ObjCCategoryImpl: 67 case Decl::ObjCImplementation: 68 case Decl::ObjCProperty: 69 case Decl::ObjCCompatibleAlias: 70 case Decl::AccessSpec: 71 case Decl::LinkageSpec: 72 case Decl::ObjCPropertyImpl: 73 case Decl::FileScopeAsm: 74 case Decl::Friend: 75 case Decl::FriendTemplate: 76 case Decl::Block: 77 case Decl::Captured: 78 case Decl::ClassScopeFunctionSpecialization: 79 case Decl::UsingShadow: 80 llvm_unreachable("Declaration should not be in declstmts!"); 81 case Decl::Function: // void X(); 82 case Decl::Record: // struct/union/class X; 83 case Decl::Enum: // enum X; 84 case Decl::EnumConstant: // enum ? { X = ? } 85 case Decl::CXXRecord: // struct/union/class X; [C++] 86 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 87 case Decl::Label: // __label__ x; 88 case Decl::Import: 89 case Decl::OMPThreadPrivate: 90 case Decl::Empty: 91 // None of these decls require codegen support. 92 return; 93 94 case Decl::NamespaceAlias: 95 if (CGDebugInfo *DI = getDebugInfo()) 96 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 97 return; 98 case Decl::Using: // using X; [C++] 99 if (CGDebugInfo *DI = getDebugInfo()) 100 DI->EmitUsingDecl(cast<UsingDecl>(D)); 101 return; 102 case Decl::UsingDirective: // using namespace X; [C++] 103 if (CGDebugInfo *DI = getDebugInfo()) 104 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 105 return; 106 case Decl::Var: { 107 const VarDecl &VD = cast<VarDecl>(D); 108 assert(VD.isLocalVarDecl() && 109 "Should not see file-scope variables inside a function!"); 110 return EmitVarDecl(VD); 111 } 112 113 case Decl::Typedef: // typedef int X; 114 case Decl::TypeAlias: { // using X = int; [C++0x] 115 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 116 QualType Ty = TD.getUnderlyingType(); 117 118 if (Ty->isVariablyModifiedType()) 119 EmitVariablyModifiedType(Ty); 120 } 121 } 122 } 123 124 /// EmitVarDecl - This method handles emission of any variable declaration 125 /// inside a function, including static vars etc. 126 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 127 if (D.isStaticLocal()) { 128 llvm::GlobalValue::LinkageTypes Linkage = 129 CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); 130 131 // FIXME: We need to force the emission/use of a guard variable for 132 // some variables even if we can constant-evaluate them because 133 // we can't guarantee every translation unit will constant-evaluate them. 134 135 return EmitStaticVarDecl(D, Linkage); 136 } 137 138 if (D.hasExternalStorage()) 139 // Don't emit it now, allow it to be emitted lazily on its first use. 140 return; 141 142 if (D.getStorageClass() == SC_OpenCLWorkGroupLocal) 143 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 144 145 assert(D.hasLocalStorage()); 146 return EmitAutoVarDecl(D); 147 } 148 149 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 150 const char *Separator) { 151 CodeGenModule &CGM = CGF.CGM; 152 153 if (CGF.getLangOpts().CPlusPlus) 154 return CGM.getMangledName(&D).str(); 155 156 StringRef ContextName; 157 if (!CGF.CurFuncDecl) { 158 // Better be in a block declared in global scope. 159 const NamedDecl *ND = cast<NamedDecl>(&D); 160 const DeclContext *DC = ND->getDeclContext(); 161 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) 162 ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); 163 else 164 llvm_unreachable("Unknown context for block static var decl"); 165 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) 166 ContextName = CGM.getMangledName(FD); 167 else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 168 ContextName = CGF.CurFn->getName(); 169 else 170 llvm_unreachable("Unknown context for static var decl"); 171 172 return ContextName.str() + Separator + D.getNameAsString(); 173 } 174 175 llvm::Constant * 176 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 177 const char *Separator, 178 llvm::GlobalValue::LinkageTypes Linkage) { 179 QualType Ty = D.getType(); 180 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 181 182 // Use the label if the variable is renamed with the asm-label extension. 183 std::string Name; 184 if (D.hasAttr<AsmLabelAttr>()) 185 Name = CGM.getMangledName(&D); 186 else 187 Name = GetStaticDeclName(*this, D, Separator); 188 189 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 190 unsigned AddrSpace = 191 CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty)); 192 llvm::GlobalVariable *GV = 193 new llvm::GlobalVariable(CGM.getModule(), LTy, 194 Ty.isConstant(getContext()), Linkage, 195 CGM.EmitNullConstant(D.getType()), Name, nullptr, 196 llvm::GlobalVariable::NotThreadLocal, 197 AddrSpace); 198 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 199 CGM.setGlobalVisibility(GV, &D); 200 201 if (D.getTLSKind()) 202 CGM.setTLSMode(GV, D); 203 204 if (D.isExternallyVisible()) { 205 if (D.hasAttr<DLLImportAttr>()) 206 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 207 else if (D.hasAttr<DLLExportAttr>()) 208 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 209 } 210 211 // Make sure the result is of the correct type. 212 unsigned ExpectedAddrSpace = CGM.getContext().getTargetAddressSpace(Ty); 213 if (AddrSpace != ExpectedAddrSpace) { 214 llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace); 215 return llvm::ConstantExpr::getAddrSpaceCast(GV, PTy); 216 } 217 218 return GV; 219 } 220 221 /// hasNontrivialDestruction - Determine whether a type's destruction is 222 /// non-trivial. If so, and the variable uses static initialization, we must 223 /// register its destructor to run on exit. 224 static bool hasNontrivialDestruction(QualType T) { 225 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 226 return RD && !RD->hasTrivialDestructor(); 227 } 228 229 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 230 /// global variable that has already been created for it. If the initializer 231 /// has a different type than GV does, this may free GV and return a different 232 /// one. Otherwise it just returns GV. 233 llvm::GlobalVariable * 234 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 235 llvm::GlobalVariable *GV) { 236 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 237 238 // If constant emission failed, then this should be a C++ static 239 // initializer. 240 if (!Init) { 241 if (!getLangOpts().CPlusPlus) 242 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 243 else if (Builder.GetInsertBlock()) { 244 // Since we have a static initializer, this global variable can't 245 // be constant. 246 GV->setConstant(false); 247 248 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 249 } 250 return GV; 251 } 252 253 // The initializer may differ in type from the global. Rewrite 254 // the global to match the initializer. (We have to do this 255 // because some types, like unions, can't be completely represented 256 // in the LLVM type system.) 257 if (GV->getType()->getElementType() != Init->getType()) { 258 llvm::GlobalVariable *OldGV = GV; 259 260 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 261 OldGV->isConstant(), 262 OldGV->getLinkage(), Init, "", 263 /*InsertBefore*/ OldGV, 264 OldGV->getThreadLocalMode(), 265 CGM.getContext().getTargetAddressSpace(D.getType())); 266 GV->setVisibility(OldGV->getVisibility()); 267 268 // Steal the name of the old global 269 GV->takeName(OldGV); 270 271 // Replace all uses of the old global with the new global 272 llvm::Constant *NewPtrForOldDecl = 273 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 274 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 275 276 // Erase the old global, since it is no longer used. 277 OldGV->eraseFromParent(); 278 } 279 280 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 281 GV->setInitializer(Init); 282 283 if (hasNontrivialDestruction(D.getType())) { 284 // We have a constant initializer, but a nontrivial destructor. We still 285 // need to perform a guarded "initialization" in order to register the 286 // destructor. 287 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 288 } 289 290 return GV; 291 } 292 293 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 294 llvm::GlobalValue::LinkageTypes Linkage) { 295 llvm::Value *&DMEntry = LocalDeclMap[&D]; 296 assert(!DMEntry && "Decl already exists in localdeclmap!"); 297 298 // Check to see if we already have a global variable for this 299 // declaration. This can happen when double-emitting function 300 // bodies, e.g. with complete and base constructors. 301 llvm::Constant *addr = 302 CGM.getStaticLocalDeclAddress(&D); 303 304 if (!addr) 305 addr = CreateStaticVarDecl(D, ".", Linkage); 306 307 // Store into LocalDeclMap before generating initializer to handle 308 // circular references. 309 DMEntry = addr; 310 CGM.setStaticLocalDeclAddress(&D, addr); 311 312 // We can't have a VLA here, but we can have a pointer to a VLA, 313 // even though that doesn't really make any sense. 314 // Make sure to evaluate VLA bounds now so that we have them for later. 315 if (D.getType()->isVariablyModifiedType()) 316 EmitVariablyModifiedType(D.getType()); 317 318 // Save the type in case adding the initializer forces a type change. 319 llvm::Type *expectedType = addr->getType(); 320 321 llvm::GlobalVariable *var = 322 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 323 // If this value has an initializer, emit it. 324 if (D.getInit()) 325 var = AddInitializerToStaticVarDecl(D, var); 326 327 var->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 328 329 if (D.hasAttr<AnnotateAttr>()) 330 CGM.AddGlobalAnnotations(&D, var); 331 332 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 333 var->setSection(SA->getName()); 334 335 if (D.hasAttr<UsedAttr>()) 336 CGM.addUsedGlobal(var); 337 338 // We may have to cast the constant because of the initializer 339 // mismatch above. 340 // 341 // FIXME: It is really dangerous to store this in the map; if anyone 342 // RAUW's the GV uses of this constant will be invalid. 343 llvm::Constant *castedAddr = 344 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 345 DMEntry = castedAddr; 346 CGM.setStaticLocalDeclAddress(&D, castedAddr); 347 348 CGM.reportGlobalToASan(var, D.getLocation()); 349 350 // Emit global variable debug descriptor for static vars. 351 CGDebugInfo *DI = getDebugInfo(); 352 if (DI && 353 CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 354 DI->setLocation(D.getLocation()); 355 DI->EmitGlobalVariable(var, &D); 356 } 357 } 358 359 namespace { 360 struct DestroyObject : EHScopeStack::Cleanup { 361 DestroyObject(llvm::Value *addr, QualType type, 362 CodeGenFunction::Destroyer *destroyer, 363 bool useEHCleanupForArray) 364 : addr(addr), type(type), destroyer(destroyer), 365 useEHCleanupForArray(useEHCleanupForArray) {} 366 367 llvm::Value *addr; 368 QualType type; 369 CodeGenFunction::Destroyer *destroyer; 370 bool useEHCleanupForArray; 371 372 void Emit(CodeGenFunction &CGF, Flags flags) override { 373 // Don't use an EH cleanup recursively from an EH cleanup. 374 bool useEHCleanupForArray = 375 flags.isForNormalCleanup() && this->useEHCleanupForArray; 376 377 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 378 } 379 }; 380 381 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 382 DestroyNRVOVariable(llvm::Value *addr, 383 const CXXDestructorDecl *Dtor, 384 llvm::Value *NRVOFlag) 385 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 386 387 const CXXDestructorDecl *Dtor; 388 llvm::Value *NRVOFlag; 389 llvm::Value *Loc; 390 391 void Emit(CodeGenFunction &CGF, Flags flags) override { 392 // Along the exceptions path we always execute the dtor. 393 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 394 395 llvm::BasicBlock *SkipDtorBB = nullptr; 396 if (NRVO) { 397 // If we exited via NRVO, we skip the destructor call. 398 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 399 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 400 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 401 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 402 CGF.EmitBlock(RunDtorBB); 403 } 404 405 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 406 /*ForVirtualBase=*/false, 407 /*Delegating=*/false, 408 Loc); 409 410 if (NRVO) CGF.EmitBlock(SkipDtorBB); 411 } 412 }; 413 414 struct CallStackRestore : EHScopeStack::Cleanup { 415 llvm::Value *Stack; 416 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 417 void Emit(CodeGenFunction &CGF, Flags flags) override { 418 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 419 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 420 CGF.Builder.CreateCall(F, V); 421 } 422 }; 423 424 struct ExtendGCLifetime : EHScopeStack::Cleanup { 425 const VarDecl &Var; 426 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 427 428 void Emit(CodeGenFunction &CGF, Flags flags) override { 429 // Compute the address of the local variable, in case it's a 430 // byref or something. 431 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 432 Var.getType(), VK_LValue, SourceLocation()); 433 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 434 SourceLocation()); 435 CGF.EmitExtendGCLifetime(value); 436 } 437 }; 438 439 struct CallCleanupFunction : EHScopeStack::Cleanup { 440 llvm::Constant *CleanupFn; 441 const CGFunctionInfo &FnInfo; 442 const VarDecl &Var; 443 444 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 445 const VarDecl *Var) 446 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 447 448 void Emit(CodeGenFunction &CGF, Flags flags) override { 449 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 450 Var.getType(), VK_LValue, SourceLocation()); 451 // Compute the address of the local variable, in case it's a byref 452 // or something. 453 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 454 455 // In some cases, the type of the function argument will be different from 456 // the type of the pointer. An example of this is 457 // void f(void* arg); 458 // __attribute__((cleanup(f))) void *g; 459 // 460 // To fix this we insert a bitcast here. 461 QualType ArgTy = FnInfo.arg_begin()->type; 462 llvm::Value *Arg = 463 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 464 465 CallArgList Args; 466 Args.add(RValue::get(Arg), 467 CGF.getContext().getPointerType(Var.getType())); 468 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 469 } 470 }; 471 472 /// A cleanup to call @llvm.lifetime.end. 473 class CallLifetimeEnd : public EHScopeStack::Cleanup { 474 llvm::Value *Addr; 475 llvm::Value *Size; 476 public: 477 CallLifetimeEnd(llvm::Value *addr, llvm::Value *size) 478 : Addr(addr), Size(size) {} 479 480 void Emit(CodeGenFunction &CGF, Flags flags) override { 481 llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy); 482 CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(), 483 Size, castAddr) 484 ->setDoesNotThrow(); 485 } 486 }; 487 } 488 489 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 490 /// variable with lifetime. 491 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 492 llvm::Value *addr, 493 Qualifiers::ObjCLifetime lifetime) { 494 switch (lifetime) { 495 case Qualifiers::OCL_None: 496 llvm_unreachable("present but none"); 497 498 case Qualifiers::OCL_ExplicitNone: 499 // nothing to do 500 break; 501 502 case Qualifiers::OCL_Strong: { 503 CodeGenFunction::Destroyer *destroyer = 504 (var.hasAttr<ObjCPreciseLifetimeAttr>() 505 ? CodeGenFunction::destroyARCStrongPrecise 506 : CodeGenFunction::destroyARCStrongImprecise); 507 508 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 509 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 510 cleanupKind & EHCleanup); 511 break; 512 } 513 case Qualifiers::OCL_Autoreleasing: 514 // nothing to do 515 break; 516 517 case Qualifiers::OCL_Weak: 518 // __weak objects always get EH cleanups; otherwise, exceptions 519 // could cause really nasty crashes instead of mere leaks. 520 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 521 CodeGenFunction::destroyARCWeak, 522 /*useEHCleanup*/ true); 523 break; 524 } 525 } 526 527 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 528 if (const Expr *e = dyn_cast<Expr>(s)) { 529 // Skip the most common kinds of expressions that make 530 // hierarchy-walking expensive. 531 s = e = e->IgnoreParenCasts(); 532 533 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 534 return (ref->getDecl() == &var); 535 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 536 const BlockDecl *block = be->getBlockDecl(); 537 for (const auto &I : block->captures()) { 538 if (I.getVariable() == &var) 539 return true; 540 } 541 } 542 } 543 544 for (Stmt::const_child_range children = s->children(); children; ++children) 545 // children might be null; as in missing decl or conditional of an if-stmt. 546 if ((*children) && isAccessedBy(var, *children)) 547 return true; 548 549 return false; 550 } 551 552 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 553 if (!decl) return false; 554 if (!isa<VarDecl>(decl)) return false; 555 const VarDecl *var = cast<VarDecl>(decl); 556 return isAccessedBy(*var, e); 557 } 558 559 static void drillIntoBlockVariable(CodeGenFunction &CGF, 560 LValue &lvalue, 561 const VarDecl *var) { 562 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 563 } 564 565 void CodeGenFunction::EmitScalarInit(const Expr *init, 566 const ValueDecl *D, 567 LValue lvalue, 568 bool capturedByInit) { 569 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 570 if (!lifetime) { 571 llvm::Value *value = EmitScalarExpr(init); 572 if (capturedByInit) 573 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 574 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 575 return; 576 } 577 578 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 579 init = DIE->getExpr(); 580 581 // If we're emitting a value with lifetime, we have to do the 582 // initialization *before* we leave the cleanup scopes. 583 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 584 enterFullExpression(ewc); 585 init = ewc->getSubExpr(); 586 } 587 CodeGenFunction::RunCleanupsScope Scope(*this); 588 589 // We have to maintain the illusion that the variable is 590 // zero-initialized. If the variable might be accessed in its 591 // initializer, zero-initialize before running the initializer, then 592 // actually perform the initialization with an assign. 593 bool accessedByInit = false; 594 if (lifetime != Qualifiers::OCL_ExplicitNone) 595 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 596 if (accessedByInit) { 597 LValue tempLV = lvalue; 598 // Drill down to the __block object if necessary. 599 if (capturedByInit) { 600 // We can use a simple GEP for this because it can't have been 601 // moved yet. 602 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 603 getByRefValueLLVMField(cast<VarDecl>(D)))); 604 } 605 606 llvm::PointerType *ty 607 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 608 ty = cast<llvm::PointerType>(ty->getElementType()); 609 610 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 611 612 // If __weak, we want to use a barrier under certain conditions. 613 if (lifetime == Qualifiers::OCL_Weak) 614 EmitARCInitWeak(tempLV.getAddress(), zero); 615 616 // Otherwise just do a simple store. 617 else 618 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 619 } 620 621 // Emit the initializer. 622 llvm::Value *value = nullptr; 623 624 switch (lifetime) { 625 case Qualifiers::OCL_None: 626 llvm_unreachable("present but none"); 627 628 case Qualifiers::OCL_ExplicitNone: 629 // nothing to do 630 value = EmitScalarExpr(init); 631 break; 632 633 case Qualifiers::OCL_Strong: { 634 value = EmitARCRetainScalarExpr(init); 635 break; 636 } 637 638 case Qualifiers::OCL_Weak: { 639 // No way to optimize a producing initializer into this. It's not 640 // worth optimizing for, because the value will immediately 641 // disappear in the common case. 642 value = EmitScalarExpr(init); 643 644 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 645 if (accessedByInit) 646 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 647 else 648 EmitARCInitWeak(lvalue.getAddress(), value); 649 return; 650 } 651 652 case Qualifiers::OCL_Autoreleasing: 653 value = EmitARCRetainAutoreleaseScalarExpr(init); 654 break; 655 } 656 657 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 658 659 // If the variable might have been accessed by its initializer, we 660 // might have to initialize with a barrier. We have to do this for 661 // both __weak and __strong, but __weak got filtered out above. 662 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 663 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 664 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 665 EmitARCRelease(oldValue, ARCImpreciseLifetime); 666 return; 667 } 668 669 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 670 } 671 672 /// EmitScalarInit - Initialize the given lvalue with the given object. 673 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 674 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 675 if (!lifetime) 676 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 677 678 switch (lifetime) { 679 case Qualifiers::OCL_None: 680 llvm_unreachable("present but none"); 681 682 case Qualifiers::OCL_ExplicitNone: 683 // nothing to do 684 break; 685 686 case Qualifiers::OCL_Strong: 687 init = EmitARCRetain(lvalue.getType(), init); 688 break; 689 690 case Qualifiers::OCL_Weak: 691 // Initialize and then skip the primitive store. 692 EmitARCInitWeak(lvalue.getAddress(), init); 693 return; 694 695 case Qualifiers::OCL_Autoreleasing: 696 init = EmitARCRetainAutorelease(lvalue.getType(), init); 697 break; 698 } 699 700 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 701 } 702 703 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 704 /// non-zero parts of the specified initializer with equal or fewer than 705 /// NumStores scalar stores. 706 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 707 unsigned &NumStores) { 708 // Zero and Undef never requires any extra stores. 709 if (isa<llvm::ConstantAggregateZero>(Init) || 710 isa<llvm::ConstantPointerNull>(Init) || 711 isa<llvm::UndefValue>(Init)) 712 return true; 713 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 714 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 715 isa<llvm::ConstantExpr>(Init)) 716 return Init->isNullValue() || NumStores--; 717 718 // See if we can emit each element. 719 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 720 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 721 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 722 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 723 return false; 724 } 725 return true; 726 } 727 728 if (llvm::ConstantDataSequential *CDS = 729 dyn_cast<llvm::ConstantDataSequential>(Init)) { 730 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 731 llvm::Constant *Elt = CDS->getElementAsConstant(i); 732 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 733 return false; 734 } 735 return true; 736 } 737 738 // Anything else is hard and scary. 739 return false; 740 } 741 742 /// emitStoresForInitAfterMemset - For inits that 743 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 744 /// stores that would be required. 745 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 746 bool isVolatile, CGBuilderTy &Builder) { 747 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 748 "called emitStoresForInitAfterMemset for zero or undef value."); 749 750 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 751 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 752 isa<llvm::ConstantExpr>(Init)) { 753 Builder.CreateStore(Init, Loc, isVolatile); 754 return; 755 } 756 757 if (llvm::ConstantDataSequential *CDS = 758 dyn_cast<llvm::ConstantDataSequential>(Init)) { 759 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 760 llvm::Constant *Elt = CDS->getElementAsConstant(i); 761 762 // If necessary, get a pointer to the element and emit it. 763 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 764 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 765 isVolatile, Builder); 766 } 767 return; 768 } 769 770 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 771 "Unknown value type!"); 772 773 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 774 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 775 776 // If necessary, get a pointer to the element and emit it. 777 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 778 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 779 isVolatile, Builder); 780 } 781 } 782 783 784 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 785 /// plus some stores to initialize a local variable instead of using a memcpy 786 /// from a constant global. It is beneficial to use memset if the global is all 787 /// zeros, or mostly zeros and large. 788 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 789 uint64_t GlobalSize) { 790 // If a global is all zeros, always use a memset. 791 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 792 793 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 794 // do it if it will require 6 or fewer scalar stores. 795 // TODO: Should budget depends on the size? Avoiding a large global warrants 796 // plopping in more stores. 797 unsigned StoreBudget = 6; 798 uint64_t SizeLimit = 32; 799 800 return GlobalSize > SizeLimit && 801 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 802 } 803 804 /// Should we use the LLVM lifetime intrinsics for the given local variable? 805 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D, 806 unsigned Size) { 807 // For now, only in optimized builds. 808 if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) 809 return false; 810 811 // Limit the size of marked objects to 32 bytes. We don't want to increase 812 // compile time by marking tiny objects. 813 unsigned SizeThreshold = 32; 814 815 return Size > SizeThreshold; 816 } 817 818 819 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 820 /// variable declaration with auto, register, or no storage class specifier. 821 /// These turn into simple stack objects, or GlobalValues depending on target. 822 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 823 AutoVarEmission emission = EmitAutoVarAlloca(D); 824 EmitAutoVarInit(emission); 825 EmitAutoVarCleanups(emission); 826 } 827 828 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 829 /// local variable. Does not emit initialization or destruction. 830 CodeGenFunction::AutoVarEmission 831 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 832 QualType Ty = D.getType(); 833 834 AutoVarEmission emission(D); 835 836 bool isByRef = D.hasAttr<BlocksAttr>(); 837 emission.IsByRef = isByRef; 838 839 CharUnits alignment = getContext().getDeclAlign(&D); 840 emission.Alignment = alignment; 841 842 // If the type is variably-modified, emit all the VLA sizes for it. 843 if (Ty->isVariablyModifiedType()) 844 EmitVariablyModifiedType(Ty); 845 846 llvm::Value *DeclPtr; 847 if (Ty->isConstantSizeType()) { 848 bool NRVO = getLangOpts().ElideConstructors && 849 D.isNRVOVariable(); 850 851 // If this value is an array or struct with a statically determinable 852 // constant initializer, there are optimizations we can do. 853 // 854 // TODO: We should constant-evaluate the initializer of any variable, 855 // as long as it is initialized by a constant expression. Currently, 856 // isConstantInitializer produces wrong answers for structs with 857 // reference or bitfield members, and a few other cases, and checking 858 // for POD-ness protects us from some of these. 859 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 860 (D.isConstexpr() || 861 ((Ty.isPODType(getContext()) || 862 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 863 D.getInit()->isConstantInitializer(getContext(), false)))) { 864 865 // If the variable's a const type, and it's neither an NRVO 866 // candidate nor a __block variable and has no mutable members, 867 // emit it as a global instead. 868 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 869 CGM.isTypeConstant(Ty, true)) { 870 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 871 872 emission.Address = nullptr; // signal this condition to later callbacks 873 assert(emission.wasEmittedAsGlobal()); 874 return emission; 875 } 876 877 // Otherwise, tell the initialization code that we're in this case. 878 emission.IsConstantAggregate = true; 879 } 880 881 // A normal fixed sized variable becomes an alloca in the entry block, 882 // unless it's an NRVO variable. 883 llvm::Type *LTy = ConvertTypeForMem(Ty); 884 885 if (NRVO) { 886 // The named return value optimization: allocate this variable in the 887 // return slot, so that we can elide the copy when returning this 888 // variable (C++0x [class.copy]p34). 889 DeclPtr = ReturnValue; 890 891 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 892 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 893 // Create a flag that is used to indicate when the NRVO was applied 894 // to this variable. Set it to zero to indicate that NRVO was not 895 // applied. 896 llvm::Value *Zero = Builder.getFalse(); 897 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 898 EnsureInsertPoint(); 899 Builder.CreateStore(Zero, NRVOFlag); 900 901 // Record the NRVO flag for this variable. 902 NRVOFlags[&D] = NRVOFlag; 903 emission.NRVOFlag = NRVOFlag; 904 } 905 } 906 } else { 907 if (isByRef) 908 LTy = BuildByRefType(&D); 909 910 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 911 Alloc->setName(D.getName()); 912 913 CharUnits allocaAlignment = alignment; 914 if (isByRef) 915 allocaAlignment = std::max(allocaAlignment, 916 getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0))); 917 Alloc->setAlignment(allocaAlignment.getQuantity()); 918 DeclPtr = Alloc; 919 920 // Emit a lifetime intrinsic if meaningful. There's no point 921 // in doing this if we don't have a valid insertion point (?). 922 uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy); 923 if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) { 924 llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size); 925 926 emission.SizeForLifetimeMarkers = sizeV; 927 llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy); 928 Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr) 929 ->setDoesNotThrow(); 930 } else { 931 assert(!emission.useLifetimeMarkers()); 932 } 933 } 934 } else { 935 EnsureInsertPoint(); 936 937 if (!DidCallStackSave) { 938 // Save the stack. 939 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 940 941 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 942 llvm::Value *V = Builder.CreateCall(F); 943 944 Builder.CreateStore(V, Stack); 945 946 DidCallStackSave = true; 947 948 // Push a cleanup block and restore the stack there. 949 // FIXME: in general circumstances, this should be an EH cleanup. 950 pushStackRestore(NormalCleanup, Stack); 951 } 952 953 llvm::Value *elementCount; 954 QualType elementType; 955 std::tie(elementCount, elementType) = getVLASize(Ty); 956 957 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 958 959 // Allocate memory for the array. 960 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 961 vla->setAlignment(alignment.getQuantity()); 962 963 DeclPtr = vla; 964 } 965 966 llvm::Value *&DMEntry = LocalDeclMap[&D]; 967 assert(!DMEntry && "Decl already exists in localdeclmap!"); 968 DMEntry = DeclPtr; 969 emission.Address = DeclPtr; 970 971 // Emit debug info for local var declaration. 972 if (HaveInsertPoint()) 973 if (CGDebugInfo *DI = getDebugInfo()) { 974 if (CGM.getCodeGenOpts().getDebugInfo() 975 >= CodeGenOptions::LimitedDebugInfo) { 976 DI->setLocation(D.getLocation()); 977 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 978 } 979 } 980 981 if (D.hasAttr<AnnotateAttr>()) 982 EmitVarAnnotations(&D, emission.Address); 983 984 return emission; 985 } 986 987 /// Determines whether the given __block variable is potentially 988 /// captured by the given expression. 989 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 990 // Skip the most common kinds of expressions that make 991 // hierarchy-walking expensive. 992 e = e->IgnoreParenCasts(); 993 994 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 995 const BlockDecl *block = be->getBlockDecl(); 996 for (const auto &I : block->captures()) { 997 if (I.getVariable() == &var) 998 return true; 999 } 1000 1001 // No need to walk into the subexpressions. 1002 return false; 1003 } 1004 1005 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1006 const CompoundStmt *CS = SE->getSubStmt(); 1007 for (const auto *BI : CS->body()) 1008 if (const auto *E = dyn_cast<Expr>(BI)) { 1009 if (isCapturedBy(var, E)) 1010 return true; 1011 } 1012 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1013 // special case declarations 1014 for (const auto *I : DS->decls()) { 1015 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1016 const Expr *Init = VD->getInit(); 1017 if (Init && isCapturedBy(var, Init)) 1018 return true; 1019 } 1020 } 1021 } 1022 else 1023 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1024 // Later, provide code to poke into statements for capture analysis. 1025 return true; 1026 return false; 1027 } 1028 1029 for (Stmt::const_child_range children = e->children(); children; ++children) 1030 if (isCapturedBy(var, cast<Expr>(*children))) 1031 return true; 1032 1033 return false; 1034 } 1035 1036 /// \brief Determine whether the given initializer is trivial in the sense 1037 /// that it requires no code to be generated. 1038 static bool isTrivialInitializer(const Expr *Init) { 1039 if (!Init) 1040 return true; 1041 1042 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1043 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1044 if (Constructor->isTrivial() && 1045 Constructor->isDefaultConstructor() && 1046 !Construct->requiresZeroInitialization()) 1047 return true; 1048 1049 return false; 1050 } 1051 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1052 assert(emission.Variable && "emission was not valid!"); 1053 1054 // If this was emitted as a global constant, we're done. 1055 if (emission.wasEmittedAsGlobal()) return; 1056 1057 const VarDecl &D = *emission.Variable; 1058 QualType type = D.getType(); 1059 1060 // If this local has an initializer, emit it now. 1061 const Expr *Init = D.getInit(); 1062 1063 // If we are at an unreachable point, we don't need to emit the initializer 1064 // unless it contains a label. 1065 if (!HaveInsertPoint()) { 1066 if (!Init || !ContainsLabel(Init)) return; 1067 EnsureInsertPoint(); 1068 } 1069 1070 // Initialize the structure of a __block variable. 1071 if (emission.IsByRef) 1072 emitByrefStructureInit(emission); 1073 1074 if (isTrivialInitializer(Init)) 1075 return; 1076 1077 CharUnits alignment = emission.Alignment; 1078 1079 // Check whether this is a byref variable that's potentially 1080 // captured and moved by its own initializer. If so, we'll need to 1081 // emit the initializer first, then copy into the variable. 1082 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1083 1084 llvm::Value *Loc = 1085 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 1086 1087 llvm::Constant *constant = nullptr; 1088 if (emission.IsConstantAggregate || D.isConstexpr()) { 1089 assert(!capturedByInit && "constant init contains a capturing block?"); 1090 constant = CGM.EmitConstantInit(D, this); 1091 } 1092 1093 if (!constant) { 1094 LValue lv = MakeAddrLValue(Loc, type, alignment); 1095 lv.setNonGC(true); 1096 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1097 } 1098 1099 if (!emission.IsConstantAggregate) { 1100 // For simple scalar/complex initialization, store the value directly. 1101 LValue lv = MakeAddrLValue(Loc, type, alignment); 1102 lv.setNonGC(true); 1103 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1104 } 1105 1106 // If this is a simple aggregate initialization, we can optimize it 1107 // in various ways. 1108 bool isVolatile = type.isVolatileQualified(); 1109 1110 llvm::Value *SizeVal = 1111 llvm::ConstantInt::get(IntPtrTy, 1112 getContext().getTypeSizeInChars(type).getQuantity()); 1113 1114 llvm::Type *BP = Int8PtrTy; 1115 if (Loc->getType() != BP) 1116 Loc = Builder.CreateBitCast(Loc, BP); 1117 1118 // If the initializer is all or mostly zeros, codegen with memset then do 1119 // a few stores afterward. 1120 if (shouldUseMemSetPlusStoresToInitialize(constant, 1121 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1122 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1123 alignment.getQuantity(), isVolatile); 1124 // Zero and undef don't require a stores. 1125 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1126 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1127 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 1128 } 1129 } else { 1130 // Otherwise, create a temporary global with the initializer then 1131 // memcpy from the global to the alloca. 1132 std::string Name = GetStaticDeclName(*this, D, "."); 1133 llvm::GlobalVariable *GV = 1134 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1135 llvm::GlobalValue::PrivateLinkage, 1136 constant, Name); 1137 GV->setAlignment(alignment.getQuantity()); 1138 GV->setUnnamedAddr(true); 1139 1140 llvm::Value *SrcPtr = GV; 1141 if (SrcPtr->getType() != BP) 1142 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1143 1144 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 1145 isVolatile); 1146 } 1147 } 1148 1149 /// Emit an expression as an initializer for a variable at the given 1150 /// location. The expression is not necessarily the normal 1151 /// initializer for the variable, and the address is not necessarily 1152 /// its normal location. 1153 /// 1154 /// \param init the initializing expression 1155 /// \param var the variable to act as if we're initializing 1156 /// \param loc the address to initialize; its type is a pointer 1157 /// to the LLVM mapping of the variable's type 1158 /// \param alignment the alignment of the address 1159 /// \param capturedByInit true if the variable is a __block variable 1160 /// whose address is potentially changed by the initializer 1161 void CodeGenFunction::EmitExprAsInit(const Expr *init, 1162 const ValueDecl *D, 1163 LValue lvalue, 1164 bool capturedByInit) { 1165 QualType type = D->getType(); 1166 1167 if (type->isReferenceType()) { 1168 RValue rvalue = EmitReferenceBindingToExpr(init); 1169 if (capturedByInit) 1170 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1171 EmitStoreThroughLValue(rvalue, lvalue, true); 1172 return; 1173 } 1174 switch (getEvaluationKind(type)) { 1175 case TEK_Scalar: 1176 EmitScalarInit(init, D, lvalue, capturedByInit); 1177 return; 1178 case TEK_Complex: { 1179 ComplexPairTy complex = EmitComplexExpr(init); 1180 if (capturedByInit) 1181 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1182 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1183 return; 1184 } 1185 case TEK_Aggregate: 1186 if (type->isAtomicType()) { 1187 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1188 } else { 1189 // TODO: how can we delay here if D is captured by its initializer? 1190 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1191 AggValueSlot::IsDestructed, 1192 AggValueSlot::DoesNotNeedGCBarriers, 1193 AggValueSlot::IsNotAliased)); 1194 } 1195 return; 1196 } 1197 llvm_unreachable("bad evaluation kind"); 1198 } 1199 1200 /// Enter a destroy cleanup for the given local variable. 1201 void CodeGenFunction::emitAutoVarTypeCleanup( 1202 const CodeGenFunction::AutoVarEmission &emission, 1203 QualType::DestructionKind dtorKind) { 1204 assert(dtorKind != QualType::DK_none); 1205 1206 // Note that for __block variables, we want to destroy the 1207 // original stack object, not the possibly forwarded object. 1208 llvm::Value *addr = emission.getObjectAddress(*this); 1209 1210 const VarDecl *var = emission.Variable; 1211 QualType type = var->getType(); 1212 1213 CleanupKind cleanupKind = NormalAndEHCleanup; 1214 CodeGenFunction::Destroyer *destroyer = nullptr; 1215 1216 switch (dtorKind) { 1217 case QualType::DK_none: 1218 llvm_unreachable("no cleanup for trivially-destructible variable"); 1219 1220 case QualType::DK_cxx_destructor: 1221 // If there's an NRVO flag on the emission, we need a different 1222 // cleanup. 1223 if (emission.NRVOFlag) { 1224 assert(!type->isArrayType()); 1225 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1226 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 1227 emission.NRVOFlag); 1228 return; 1229 } 1230 break; 1231 1232 case QualType::DK_objc_strong_lifetime: 1233 // Suppress cleanups for pseudo-strong variables. 1234 if (var->isARCPseudoStrong()) return; 1235 1236 // Otherwise, consider whether to use an EH cleanup or not. 1237 cleanupKind = getARCCleanupKind(); 1238 1239 // Use the imprecise destroyer by default. 1240 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1241 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1242 break; 1243 1244 case QualType::DK_objc_weak_lifetime: 1245 break; 1246 } 1247 1248 // If we haven't chosen a more specific destroyer, use the default. 1249 if (!destroyer) destroyer = getDestroyer(dtorKind); 1250 1251 // Use an EH cleanup in array destructors iff the destructor itself 1252 // is being pushed as an EH cleanup. 1253 bool useEHCleanup = (cleanupKind & EHCleanup); 1254 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1255 useEHCleanup); 1256 } 1257 1258 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1259 assert(emission.Variable && "emission was not valid!"); 1260 1261 // If this was emitted as a global constant, we're done. 1262 if (emission.wasEmittedAsGlobal()) return; 1263 1264 // If we don't have an insertion point, we're done. Sema prevents 1265 // us from jumping into any of these scopes anyway. 1266 if (!HaveInsertPoint()) return; 1267 1268 const VarDecl &D = *emission.Variable; 1269 1270 // Make sure we call @llvm.lifetime.end. This needs to happen 1271 // *last*, so the cleanup needs to be pushed *first*. 1272 if (emission.useLifetimeMarkers()) { 1273 EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup, 1274 emission.getAllocatedAddress(), 1275 emission.getSizeForLifetimeMarkers()); 1276 } 1277 1278 // Check the type for a cleanup. 1279 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1280 emitAutoVarTypeCleanup(emission, dtorKind); 1281 1282 // In GC mode, honor objc_precise_lifetime. 1283 if (getLangOpts().getGC() != LangOptions::NonGC && 1284 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1285 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1286 } 1287 1288 // Handle the cleanup attribute. 1289 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1290 const FunctionDecl *FD = CA->getFunctionDecl(); 1291 1292 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1293 assert(F && "Could not find function!"); 1294 1295 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1296 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1297 } 1298 1299 // If this is a block variable, call _Block_object_destroy 1300 // (on the unforwarded address). 1301 if (emission.IsByRef) 1302 enterByrefCleanup(emission); 1303 } 1304 1305 CodeGenFunction::Destroyer * 1306 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1307 switch (kind) { 1308 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1309 case QualType::DK_cxx_destructor: 1310 return destroyCXXObject; 1311 case QualType::DK_objc_strong_lifetime: 1312 return destroyARCStrongPrecise; 1313 case QualType::DK_objc_weak_lifetime: 1314 return destroyARCWeak; 1315 } 1316 llvm_unreachable("Unknown DestructionKind"); 1317 } 1318 1319 /// pushEHDestroy - Push the standard destructor for the given type as 1320 /// an EH-only cleanup. 1321 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1322 llvm::Value *addr, QualType type) { 1323 assert(dtorKind && "cannot push destructor for trivial type"); 1324 assert(needsEHCleanup(dtorKind)); 1325 1326 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1327 } 1328 1329 /// pushDestroy - Push the standard destructor for the given type as 1330 /// at least a normal cleanup. 1331 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1332 llvm::Value *addr, QualType type) { 1333 assert(dtorKind && "cannot push destructor for trivial type"); 1334 1335 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1336 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1337 cleanupKind & EHCleanup); 1338 } 1339 1340 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 1341 QualType type, Destroyer *destroyer, 1342 bool useEHCleanupForArray) { 1343 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1344 destroyer, useEHCleanupForArray); 1345 } 1346 1347 void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) { 1348 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 1349 } 1350 1351 void CodeGenFunction::pushLifetimeExtendedDestroy( 1352 CleanupKind cleanupKind, llvm::Value *addr, QualType type, 1353 Destroyer *destroyer, bool useEHCleanupForArray) { 1354 assert(!isInConditionalBranch() && 1355 "performing lifetime extension from within conditional"); 1356 1357 // Push an EH-only cleanup for the object now. 1358 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1359 // around in case a temporary's destructor throws an exception. 1360 if (cleanupKind & EHCleanup) 1361 EHStack.pushCleanup<DestroyObject>( 1362 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1363 destroyer, useEHCleanupForArray); 1364 1365 // Remember that we need to push a full cleanup for the object at the 1366 // end of the full-expression. 1367 pushCleanupAfterFullExpr<DestroyObject>( 1368 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1369 } 1370 1371 /// emitDestroy - Immediately perform the destruction of the given 1372 /// object. 1373 /// 1374 /// \param addr - the address of the object; a type* 1375 /// \param type - the type of the object; if an array type, all 1376 /// objects are destroyed in reverse order 1377 /// \param destroyer - the function to call to destroy individual 1378 /// elements 1379 /// \param useEHCleanupForArray - whether an EH cleanup should be 1380 /// used when destroying array elements, in case one of the 1381 /// destructions throws an exception 1382 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 1383 Destroyer *destroyer, 1384 bool useEHCleanupForArray) { 1385 const ArrayType *arrayType = getContext().getAsArrayType(type); 1386 if (!arrayType) 1387 return destroyer(*this, addr, type); 1388 1389 llvm::Value *begin = addr; 1390 llvm::Value *length = emitArrayLength(arrayType, type, begin); 1391 1392 // Normally we have to check whether the array is zero-length. 1393 bool checkZeroLength = true; 1394 1395 // But if the array length is constant, we can suppress that. 1396 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1397 // ...and if it's constant zero, we can just skip the entire thing. 1398 if (constLength->isZero()) return; 1399 checkZeroLength = false; 1400 } 1401 1402 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1403 emitArrayDestroy(begin, end, type, destroyer, 1404 checkZeroLength, useEHCleanupForArray); 1405 } 1406 1407 /// emitArrayDestroy - Destroys all the elements of the given array, 1408 /// beginning from last to first. The array cannot be zero-length. 1409 /// 1410 /// \param begin - a type* denoting the first element of the array 1411 /// \param end - a type* denoting one past the end of the array 1412 /// \param type - the element type of the array 1413 /// \param destroyer - the function to call to destroy elements 1414 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1415 /// the remaining elements in case the destruction of a single 1416 /// element throws 1417 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1418 llvm::Value *end, 1419 QualType type, 1420 Destroyer *destroyer, 1421 bool checkZeroLength, 1422 bool useEHCleanup) { 1423 assert(!type->isArrayType()); 1424 1425 // The basic structure here is a do-while loop, because we don't 1426 // need to check for the zero-element case. 1427 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1428 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1429 1430 if (checkZeroLength) { 1431 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1432 "arraydestroy.isempty"); 1433 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1434 } 1435 1436 // Enter the loop body, making that address the current address. 1437 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1438 EmitBlock(bodyBB); 1439 llvm::PHINode *elementPast = 1440 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1441 elementPast->addIncoming(end, entryBB); 1442 1443 // Shift the address back by one element. 1444 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1445 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1446 "arraydestroy.element"); 1447 1448 if (useEHCleanup) 1449 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 1450 1451 // Perform the actual destruction there. 1452 destroyer(*this, element, type); 1453 1454 if (useEHCleanup) 1455 PopCleanupBlock(); 1456 1457 // Check whether we've reached the end. 1458 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1459 Builder.CreateCondBr(done, doneBB, bodyBB); 1460 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1461 1462 // Done. 1463 EmitBlock(doneBB); 1464 } 1465 1466 /// Perform partial array destruction as if in an EH cleanup. Unlike 1467 /// emitArrayDestroy, the element type here may still be an array type. 1468 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1469 llvm::Value *begin, llvm::Value *end, 1470 QualType type, 1471 CodeGenFunction::Destroyer *destroyer) { 1472 // If the element type is itself an array, drill down. 1473 unsigned arrayDepth = 0; 1474 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1475 // VLAs don't require a GEP index to walk into. 1476 if (!isa<VariableArrayType>(arrayType)) 1477 arrayDepth++; 1478 type = arrayType->getElementType(); 1479 } 1480 1481 if (arrayDepth) { 1482 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); 1483 1484 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); 1485 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1486 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1487 } 1488 1489 // Destroy the array. We don't ever need an EH cleanup because we 1490 // assume that we're in an EH cleanup ourselves, so a throwing 1491 // destructor causes an immediate terminate. 1492 CGF.emitArrayDestroy(begin, end, type, destroyer, 1493 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1494 } 1495 1496 namespace { 1497 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1498 /// array destroy where the end pointer is regularly determined and 1499 /// does not need to be loaded from a local. 1500 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 1501 llvm::Value *ArrayBegin; 1502 llvm::Value *ArrayEnd; 1503 QualType ElementType; 1504 CodeGenFunction::Destroyer *Destroyer; 1505 public: 1506 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1507 QualType elementType, 1508 CodeGenFunction::Destroyer *destroyer) 1509 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1510 ElementType(elementType), Destroyer(destroyer) {} 1511 1512 void Emit(CodeGenFunction &CGF, Flags flags) override { 1513 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1514 ElementType, Destroyer); 1515 } 1516 }; 1517 1518 /// IrregularPartialArrayDestroy - a cleanup which performs a 1519 /// partial array destroy where the end pointer is irregularly 1520 /// determined and must be loaded from a local. 1521 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 1522 llvm::Value *ArrayBegin; 1523 llvm::Value *ArrayEndPointer; 1524 QualType ElementType; 1525 CodeGenFunction::Destroyer *Destroyer; 1526 public: 1527 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1528 llvm::Value *arrayEndPointer, 1529 QualType elementType, 1530 CodeGenFunction::Destroyer *destroyer) 1531 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1532 ElementType(elementType), Destroyer(destroyer) {} 1533 1534 void Emit(CodeGenFunction &CGF, Flags flags) override { 1535 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1536 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1537 ElementType, Destroyer); 1538 } 1539 }; 1540 } 1541 1542 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1543 /// already-constructed elements of the given array. The cleanup 1544 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1545 /// 1546 /// \param elementType - the immediate element type of the array; 1547 /// possibly still an array type 1548 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1549 llvm::Value *arrayEndPointer, 1550 QualType elementType, 1551 Destroyer *destroyer) { 1552 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1553 arrayBegin, arrayEndPointer, 1554 elementType, destroyer); 1555 } 1556 1557 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1558 /// already-constructed elements of the given array. The cleanup 1559 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1560 /// 1561 /// \param elementType - the immediate element type of the array; 1562 /// possibly still an array type 1563 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1564 llvm::Value *arrayEnd, 1565 QualType elementType, 1566 Destroyer *destroyer) { 1567 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1568 arrayBegin, arrayEnd, 1569 elementType, destroyer); 1570 } 1571 1572 /// Lazily declare the @llvm.lifetime.start intrinsic. 1573 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1574 if (LifetimeStartFn) return LifetimeStartFn; 1575 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1576 llvm::Intrinsic::lifetime_start); 1577 return LifetimeStartFn; 1578 } 1579 1580 /// Lazily declare the @llvm.lifetime.end intrinsic. 1581 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1582 if (LifetimeEndFn) return LifetimeEndFn; 1583 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1584 llvm::Intrinsic::lifetime_end); 1585 return LifetimeEndFn; 1586 } 1587 1588 namespace { 1589 /// A cleanup to perform a release of an object at the end of a 1590 /// function. This is used to balance out the incoming +1 of a 1591 /// ns_consumed argument when we can't reasonably do that just by 1592 /// not doing the initial retain for a __block argument. 1593 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1594 ConsumeARCParameter(llvm::Value *param, 1595 ARCPreciseLifetime_t precise) 1596 : Param(param), Precise(precise) {} 1597 1598 llvm::Value *Param; 1599 ARCPreciseLifetime_t Precise; 1600 1601 void Emit(CodeGenFunction &CGF, Flags flags) override { 1602 CGF.EmitARCRelease(Param, Precise); 1603 } 1604 }; 1605 } 1606 1607 /// Emit an alloca (or GlobalValue depending on target) 1608 /// for the specified parameter and set up LocalDeclMap. 1609 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1610 bool ArgIsPointer, unsigned ArgNo) { 1611 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1612 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1613 "Invalid argument to EmitParmDecl"); 1614 1615 Arg->setName(D.getName()); 1616 1617 QualType Ty = D.getType(); 1618 1619 // Use better IR generation for certain implicit parameters. 1620 if (isa<ImplicitParamDecl>(D)) { 1621 // The only implicit argument a block has is its literal. 1622 if (BlockInfo) { 1623 LocalDeclMap[&D] = Arg; 1624 llvm::Value *LocalAddr = nullptr; 1625 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1626 // Allocate a stack slot to let the debug info survive the RA. 1627 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1628 D.getName() + ".addr"); 1629 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 1630 LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D)); 1631 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1632 LocalAddr = Builder.CreateLoad(Alloc); 1633 } 1634 1635 if (CGDebugInfo *DI = getDebugInfo()) { 1636 if (CGM.getCodeGenOpts().getDebugInfo() 1637 >= CodeGenOptions::LimitedDebugInfo) { 1638 DI->setLocation(D.getLocation()); 1639 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder); 1640 } 1641 } 1642 1643 return; 1644 } 1645 } 1646 1647 llvm::Value *DeclPtr; 1648 bool DoStore = false; 1649 bool IsScalar = hasScalarEvaluationKind(Ty); 1650 CharUnits Align = getContext().getDeclAlign(&D); 1651 // If we already have a pointer to the argument, reuse the input pointer. 1652 if (ArgIsPointer) { 1653 // If we have a prettier pointer type at this point, bitcast to that. 1654 unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace(); 1655 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 1656 DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy, 1657 D.getName()); 1658 // Push a destructor cleanup for this parameter if the ABI requires it. 1659 if (!IsScalar && 1660 getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 1661 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 1662 if (RD && RD->hasNonTrivialDestructor()) 1663 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty); 1664 } 1665 } else { 1666 // Otherwise, create a temporary to hold the value. 1667 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1668 D.getName() + ".addr"); 1669 Alloc->setAlignment(Align.getQuantity()); 1670 DeclPtr = Alloc; 1671 DoStore = true; 1672 } 1673 1674 LValue lv = MakeAddrLValue(DeclPtr, Ty, Align); 1675 if (IsScalar) { 1676 Qualifiers qs = Ty.getQualifiers(); 1677 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1678 // We honor __attribute__((ns_consumed)) for types with lifetime. 1679 // For __strong, it's handled by just skipping the initial retain; 1680 // otherwise we have to balance out the initial +1 with an extra 1681 // cleanup to do the release at the end of the function. 1682 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1683 1684 // 'self' is always formally __strong, but if this is not an 1685 // init method then we don't want to retain it. 1686 if (D.isARCPseudoStrong()) { 1687 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1688 assert(&D == method->getSelfDecl()); 1689 assert(lt == Qualifiers::OCL_Strong); 1690 assert(qs.hasConst()); 1691 assert(method->getMethodFamily() != OMF_init); 1692 (void) method; 1693 lt = Qualifiers::OCL_ExplicitNone; 1694 } 1695 1696 if (lt == Qualifiers::OCL_Strong) { 1697 if (!isConsumed) { 1698 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1699 // use objc_storeStrong(&dest, value) for retaining the 1700 // object. But first, store a null into 'dest' because 1701 // objc_storeStrong attempts to release its old value. 1702 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 1703 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1704 EmitARCStoreStrongCall(lv.getAddress(), Arg, true); 1705 DoStore = false; 1706 } 1707 else 1708 // Don't use objc_retainBlock for block pointers, because we 1709 // don't want to Block_copy something just because we got it 1710 // as a parameter. 1711 Arg = EmitARCRetainNonBlock(Arg); 1712 } 1713 } else { 1714 // Push the cleanup for a consumed parameter. 1715 if (isConsumed) { 1716 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1717 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1718 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg, 1719 precise); 1720 } 1721 1722 if (lt == Qualifiers::OCL_Weak) { 1723 EmitARCInitWeak(DeclPtr, Arg); 1724 DoStore = false; // The weak init is a store, no need to do two. 1725 } 1726 } 1727 1728 // Enter the cleanup scope. 1729 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1730 } 1731 } 1732 1733 // Store the initial value into the alloca. 1734 if (DoStore) 1735 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1736 1737 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1738 assert(!DMEntry && "Decl already exists in localdeclmap!"); 1739 DMEntry = DeclPtr; 1740 1741 // Emit debug info for param declaration. 1742 if (CGDebugInfo *DI = getDebugInfo()) { 1743 if (CGM.getCodeGenOpts().getDebugInfo() 1744 >= CodeGenOptions::LimitedDebugInfo) { 1745 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1746 } 1747 } 1748 1749 if (D.hasAttr<AnnotateAttr>()) 1750 EmitVarAnnotations(&D, DeclPtr); 1751 } 1752