1 //===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveInterval analysis pass. Given some numbering of 11 // each the machine instructions (in this implemention depth-first order) an 12 // interval [i, j) is said to be a live interval for register v if there is no 13 // instruction with number j' > j such that v is live at j' and there is no 14 // instruction with number i' < i such that v is live at i'. In this 15 // implementation intervals can have holes, i.e. an interval might look like 16 // [1,20), [50,65), [1000,1001). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #ifndef LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H 21 #define LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H 22 23 #include "llvm/ADT/IndexedMap.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/CodeGen/LiveInterval.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/SlotIndexes.h" 29 #include "llvm/Support/Allocator.h" 30 #include "llvm/Target/TargetRegisterInfo.h" 31 #include <cmath> 32 #include <iterator> 33 34 namespace llvm { 35 36 class AliasAnalysis; 37 class BitVector; 38 class BlockFrequency; 39 class LiveRangeCalc; 40 class LiveVariables; 41 class MachineDominatorTree; 42 class MachineLoopInfo; 43 class TargetRegisterInfo; 44 class MachineRegisterInfo; 45 class TargetInstrInfo; 46 class TargetRegisterClass; 47 class VirtRegMap; 48 class MachineBlockFrequencyInfo; 49 50 class LiveIntervals : public MachineFunctionPass { 51 MachineFunction* MF; 52 MachineRegisterInfo* MRI; 53 const TargetMachine* TM; 54 const TargetRegisterInfo* TRI; 55 const TargetInstrInfo* TII; 56 AliasAnalysis *AA; 57 SlotIndexes* Indexes; 58 MachineDominatorTree *DomTree; 59 LiveRangeCalc *LRCalc; 60 61 /// Special pool allocator for VNInfo's (LiveInterval val#). 62 /// 63 VNInfo::Allocator VNInfoAllocator; 64 65 /// Live interval pointers for all the virtual registers. 66 IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals; 67 68 /// RegMaskSlots - Sorted list of instructions with register mask operands. 69 /// Always use the 'r' slot, RegMasks are normal clobbers, not early 70 /// clobbers. 71 SmallVector<SlotIndex, 8> RegMaskSlots; 72 73 /// RegMaskBits - This vector is parallel to RegMaskSlots, it holds a 74 /// pointer to the corresponding register mask. This pointer can be 75 /// recomputed as: 76 /// 77 /// MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]); 78 /// unsigned OpNum = findRegMaskOperand(MI); 79 /// RegMaskBits[N] = MI->getOperand(OpNum).getRegMask(); 80 /// 81 /// This is kept in a separate vector partly because some standard 82 /// libraries don't support lower_bound() with mixed objects, partly to 83 /// improve locality when searching in RegMaskSlots. 84 /// Also see the comment in LiveInterval::find(). 85 SmallVector<const uint32_t*, 8> RegMaskBits; 86 87 /// For each basic block number, keep (begin, size) pairs indexing into the 88 /// RegMaskSlots and RegMaskBits arrays. 89 /// Note that basic block numbers may not be layout contiguous, that's why 90 /// we can't just keep track of the first register mask in each basic 91 /// block. 92 SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks; 93 94 /// Keeps a live range set for each register unit to track fixed physreg 95 /// interference. 96 SmallVector<LiveRange*, 0> RegUnitRanges; 97 98 public: 99 static char ID; // Pass identification, replacement for typeid 100 LiveIntervals(); 101 virtual ~LiveIntervals(); 102 103 // Calculate the spill weight to assign to a single instruction. 104 static float getSpillWeight(bool isDef, bool isUse, 105 const MachineBlockFrequencyInfo *MBFI, 106 const MachineInstr *Instr); 107 108 LiveInterval &getInterval(unsigned Reg) { 109 if (hasInterval(Reg)) 110 return *VirtRegIntervals[Reg]; 111 else 112 return createAndComputeVirtRegInterval(Reg); 113 } 114 115 const LiveInterval &getInterval(unsigned Reg) const { 116 return const_cast<LiveIntervals*>(this)->getInterval(Reg); 117 } 118 119 bool hasInterval(unsigned Reg) const { 120 return VirtRegIntervals.inBounds(Reg) && VirtRegIntervals[Reg]; 121 } 122 123 // Interval creation. 124 LiveInterval &createEmptyInterval(unsigned Reg) { 125 assert(!hasInterval(Reg) && "Interval already exists!"); 126 VirtRegIntervals.grow(Reg); 127 VirtRegIntervals[Reg] = createInterval(Reg); 128 return *VirtRegIntervals[Reg]; 129 } 130 131 LiveInterval &createAndComputeVirtRegInterval(unsigned Reg) { 132 LiveInterval &LI = createEmptyInterval(Reg); 133 computeVirtRegInterval(LI); 134 return LI; 135 } 136 137 // Interval removal. 138 void removeInterval(unsigned Reg) { 139 delete VirtRegIntervals[Reg]; 140 VirtRegIntervals[Reg] = nullptr; 141 } 142 143 /// Given a register and an instruction, adds a live segment from that 144 /// instruction to the end of its MBB. 145 LiveInterval::Segment addSegmentToEndOfBlock(unsigned reg, 146 MachineInstr* startInst); 147 148 /// shrinkToUses - After removing some uses of a register, shrink its live 149 /// range to just the remaining uses. This method does not compute reaching 150 /// defs for new uses, and it doesn't remove dead defs. 151 /// Dead PHIDef values are marked as unused. 152 /// New dead machine instructions are added to the dead vector. 153 /// Return true if the interval may have been separated into multiple 154 /// connected components. 155 bool shrinkToUses(LiveInterval *li, 156 SmallVectorImpl<MachineInstr*> *dead = nullptr); 157 158 /// \brief Walk the values in the given interval and compute which ones 159 /// are dead. Dead values are not deleted, however: 160 /// - Dead PHIDef values are marked as unused. 161 /// - New dead machine instructions are added to the dead vector. 162 /// - CanSeparate is set to true if the interval may have been separated 163 /// into multiple connected components. 164 void computeDeadValues(LiveInterval *li, 165 LiveRange &LR, 166 bool *CanSeparate, 167 SmallVectorImpl<MachineInstr*> *dead); 168 169 /// extendToIndices - Extend the live range of LI to reach all points in 170 /// Indices. The points in the Indices array must be jointly dominated by 171 /// existing defs in LI. PHI-defs are added as needed to maintain SSA form. 172 /// 173 /// If a SlotIndex in Indices is the end index of a basic block, LI will be 174 /// extended to be live out of the basic block. 175 /// 176 /// See also LiveRangeCalc::extend(). 177 void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices); 178 179 /// pruneValue - If an LI value is live at Kill, prune its live range by 180 /// removing any liveness reachable from Kill. Add live range end points to 181 /// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the 182 /// value's live range. 183 /// 184 /// Calling pruneValue() and extendToIndices() can be used to reconstruct 185 /// SSA form after adding defs to a virtual register. 186 void pruneValue(LiveInterval *LI, SlotIndex Kill, 187 SmallVectorImpl<SlotIndex> *EndPoints); 188 189 SlotIndexes *getSlotIndexes() const { 190 return Indexes; 191 } 192 193 AliasAnalysis *getAliasAnalysis() const { 194 return AA; 195 } 196 197 /// isNotInMIMap - returns true if the specified machine instr has been 198 /// removed or was never entered in the map. 199 bool isNotInMIMap(const MachineInstr* Instr) const { 200 return !Indexes->hasIndex(Instr); 201 } 202 203 /// Returns the base index of the given instruction. 204 SlotIndex getInstructionIndex(const MachineInstr *instr) const { 205 return Indexes->getInstructionIndex(instr); 206 } 207 208 /// Returns the instruction associated with the given index. 209 MachineInstr* getInstructionFromIndex(SlotIndex index) const { 210 return Indexes->getInstructionFromIndex(index); 211 } 212 213 /// Return the first index in the given basic block. 214 SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const { 215 return Indexes->getMBBStartIdx(mbb); 216 } 217 218 /// Return the last index in the given basic block. 219 SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const { 220 return Indexes->getMBBEndIdx(mbb); 221 } 222 223 bool isLiveInToMBB(const LiveRange &LR, 224 const MachineBasicBlock *mbb) const { 225 return LR.liveAt(getMBBStartIdx(mbb)); 226 } 227 228 bool isLiveOutOfMBB(const LiveRange &LR, 229 const MachineBasicBlock *mbb) const { 230 return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot()); 231 } 232 233 MachineBasicBlock* getMBBFromIndex(SlotIndex index) const { 234 return Indexes->getMBBFromIndex(index); 235 } 236 237 void insertMBBInMaps(MachineBasicBlock *MBB) { 238 Indexes->insertMBBInMaps(MBB); 239 assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() && 240 "Blocks must be added in order."); 241 RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0)); 242 } 243 244 SlotIndex InsertMachineInstrInMaps(MachineInstr *MI) { 245 return Indexes->insertMachineInstrInMaps(MI); 246 } 247 248 void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B, 249 MachineBasicBlock::iterator E) { 250 for (MachineBasicBlock::iterator I = B; I != E; ++I) 251 Indexes->insertMachineInstrInMaps(I); 252 } 253 254 void RemoveMachineInstrFromMaps(MachineInstr *MI) { 255 Indexes->removeMachineInstrFromMaps(MI); 256 } 257 258 void ReplaceMachineInstrInMaps(MachineInstr *MI, MachineInstr *NewMI) { 259 Indexes->replaceMachineInstrInMaps(MI, NewMI); 260 } 261 262 bool findLiveInMBBs(SlotIndex Start, SlotIndex End, 263 SmallVectorImpl<MachineBasicBlock*> &MBBs) const { 264 return Indexes->findLiveInMBBs(Start, End, MBBs); 265 } 266 267 VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; } 268 269 void getAnalysisUsage(AnalysisUsage &AU) const override; 270 void releaseMemory() override; 271 272 /// runOnMachineFunction - pass entry point 273 bool runOnMachineFunction(MachineFunction&) override; 274 275 /// print - Implement the dump method. 276 void print(raw_ostream &O, const Module* = nullptr) const override; 277 278 /// intervalIsInOneMBB - If LI is confined to a single basic block, return 279 /// a pointer to that block. If LI is live in to or out of any block, 280 /// return NULL. 281 MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const; 282 283 /// Returns true if VNI is killed by any PHI-def values in LI. 284 /// This may conservatively return true to avoid expensive computations. 285 bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const; 286 287 /// addKillFlags - Add kill flags to any instruction that kills a virtual 288 /// register. 289 void addKillFlags(const VirtRegMap*); 290 291 /// handleMove - call this method to notify LiveIntervals that 292 /// instruction 'mi' has been moved within a basic block. This will update 293 /// the live intervals for all operands of mi. Moves between basic blocks 294 /// are not supported. 295 /// 296 /// \param UpdateFlags Update live intervals for nonallocatable physregs. 297 void handleMove(MachineInstr* MI, bool UpdateFlags = false); 298 299 /// moveIntoBundle - Update intervals for operands of MI so that they 300 /// begin/end on the SlotIndex for BundleStart. 301 /// 302 /// \param UpdateFlags Update live intervals for nonallocatable physregs. 303 /// 304 /// Requires MI and BundleStart to have SlotIndexes, and assumes 305 /// existing liveness is accurate. BundleStart should be the first 306 /// instruction in the Bundle. 307 void handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart, 308 bool UpdateFlags = false); 309 310 /// repairIntervalsInRange - Update live intervals for instructions in a 311 /// range of iterators. It is intended for use after target hooks that may 312 /// insert or remove instructions, and is only efficient for a small number 313 /// of instructions. 314 /// 315 /// OrigRegs is a vector of registers that were originally used by the 316 /// instructions in the range between the two iterators. 317 /// 318 /// Currently, the only only changes that are supported are simple removal 319 /// and addition of uses. 320 void repairIntervalsInRange(MachineBasicBlock *MBB, 321 MachineBasicBlock::iterator Begin, 322 MachineBasicBlock::iterator End, 323 ArrayRef<unsigned> OrigRegs); 324 325 // Register mask functions. 326 // 327 // Machine instructions may use a register mask operand to indicate that a 328 // large number of registers are clobbered by the instruction. This is 329 // typically used for calls. 330 // 331 // For compile time performance reasons, these clobbers are not recorded in 332 // the live intervals for individual physical registers. Instead, 333 // LiveIntervalAnalysis maintains a sorted list of instructions with 334 // register mask operands. 335 336 /// getRegMaskSlots - Returns a sorted array of slot indices of all 337 /// instructions with register mask operands. 338 ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; } 339 340 /// getRegMaskSlotsInBlock - Returns a sorted array of slot indices of all 341 /// instructions with register mask operands in the basic block numbered 342 /// MBBNum. 343 ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const { 344 std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum]; 345 return getRegMaskSlots().slice(P.first, P.second); 346 } 347 348 /// getRegMaskBits() - Returns an array of register mask pointers 349 /// corresponding to getRegMaskSlots(). 350 ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; } 351 352 /// getRegMaskBitsInBlock - Returns an array of mask pointers corresponding 353 /// to getRegMaskSlotsInBlock(MBBNum). 354 ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const { 355 std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum]; 356 return getRegMaskBits().slice(P.first, P.second); 357 } 358 359 /// checkRegMaskInterference - Test if LI is live across any register mask 360 /// instructions, and compute a bit mask of physical registers that are not 361 /// clobbered by any of them. 362 /// 363 /// Returns false if LI doesn't cross any register mask instructions. In 364 /// that case, the bit vector is not filled in. 365 bool checkRegMaskInterference(LiveInterval &LI, 366 BitVector &UsableRegs); 367 368 // Register unit functions. 369 // 370 // Fixed interference occurs when MachineInstrs use physregs directly 371 // instead of virtual registers. This typically happens when passing 372 // arguments to a function call, or when instructions require operands in 373 // fixed registers. 374 // 375 // Each physreg has one or more register units, see MCRegisterInfo. We 376 // track liveness per register unit to handle aliasing registers more 377 // efficiently. 378 379 /// getRegUnit - Return the live range for Unit. 380 /// It will be computed if it doesn't exist. 381 LiveRange &getRegUnit(unsigned Unit) { 382 LiveRange *LR = RegUnitRanges[Unit]; 383 if (!LR) { 384 // Compute missing ranges on demand. 385 RegUnitRanges[Unit] = LR = new LiveRange(); 386 computeRegUnitRange(*LR, Unit); 387 } 388 return *LR; 389 } 390 391 /// getCachedRegUnit - Return the live range for Unit if it has already 392 /// been computed, or NULL if it hasn't been computed yet. 393 LiveRange *getCachedRegUnit(unsigned Unit) { 394 return RegUnitRanges[Unit]; 395 } 396 397 const LiveRange *getCachedRegUnit(unsigned Unit) const { 398 return RegUnitRanges[Unit]; 399 } 400 401 private: 402 /// Compute live intervals for all virtual registers. 403 void computeVirtRegs(); 404 405 /// Compute RegMaskSlots and RegMaskBits. 406 void computeRegMasks(); 407 408 static LiveInterval* createInterval(unsigned Reg); 409 410 void printInstrs(raw_ostream &O) const; 411 void dumpInstrs() const; 412 413 void computeLiveInRegUnits(); 414 void computeRegUnitRange(LiveRange&, unsigned Unit); 415 void computeVirtRegInterval(LiveInterval&); 416 417 class HMEditor; 418 }; 419 } // End llvm namespace 420 421 #endif 422