1 /* 2 * Copyright 2011 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef GrGpu_DEFINED 9 #define GrGpu_DEFINED 10 11 #include "GrDrawTarget.h" 12 #include "GrClipMaskManager.h" 13 #include "GrPathRendering.h" 14 #include "SkPath.h" 15 16 class GrContext; 17 class GrIndexBufferAllocPool; 18 class GrPath; 19 class GrPathRange; 20 class GrPathRenderer; 21 class GrPathRendererChain; 22 class GrStencilBuffer; 23 class GrVertexBufferAllocPool; 24 25 class GrGpu : public GrDrawTarget { 26 public: 27 28 /** 29 * Additional blend coefficients for dual source blending, not exposed 30 * through GrPaint/GrContext. 31 */ 32 enum ExtendedBlendCoeffs { 33 // source 2 refers to second output color when 34 // using dual source blending. 35 kS2C_GrBlendCoeff = kPublicGrBlendCoeffCount, 36 kIS2C_GrBlendCoeff, 37 kS2A_GrBlendCoeff, 38 kIS2A_GrBlendCoeff, 39 40 kTotalGrBlendCoeffCount 41 }; 42 43 /** 44 * Create an instance of GrGpu that matches the specified backend. If the requested backend is 45 * not supported (at compile-time or run-time) this returns NULL. The context will not be 46 * fully constructed and should not be used by GrGpu until after this function returns. 47 */ 48 static GrGpu* Create(GrBackend, GrBackendContext, GrContext* context); 49 50 //////////////////////////////////////////////////////////////////////////// 51 52 GrGpu(GrContext* context); 53 virtual ~GrGpu(); 54 55 GrContext* getContext() { return this->INHERITED::getContext(); } 56 const GrContext* getContext() const { return this->INHERITED::getContext(); } 57 58 GrPathRendering* pathRendering() { 59 return fPathRendering.get(); 60 } 61 62 // Called by GrContext when the underlying backend context has been destroyed. 63 // GrGpu should use this to ensure that no backend API calls will be made from 64 // here onward, including in its destructor. Subclasses should call 65 // INHERITED::contextAbandoned() if they override this. 66 virtual void contextAbandoned(); 67 68 /** 69 * The GrGpu object normally assumes that no outsider is setting state 70 * within the underlying 3D API's context/device/whatever. This call informs 71 * the GrGpu that the state was modified and it shouldn't make assumptions 72 * about the state. 73 */ 74 void markContextDirty(uint32_t state = kAll_GrBackendState) { 75 fResetBits |= state; 76 } 77 78 void unimpl(const char[]); 79 80 /** 81 * Creates a texture object. If desc width or height is not a power of 82 * two but underlying API requires a power of two texture then srcData 83 * will be embedded in a power of two texture. The extra width and height 84 * is filled as though srcData were rendered clamped into the texture. 85 * The exception is when using compressed data formats. In this case, the 86 * desc width and height must be a multiple of the compressed format block 87 * size otherwise this function returns NULL. Similarly, if the underlying 88 * API requires a power of two texture and the source width and height are not 89 * a power of two, then this function returns NULL. 90 * 91 * If kRenderTarget_TextureFlag is specified the GrRenderTarget is 92 * accessible via GrTexture::asRenderTarget(). The texture will hold a ref 93 * on the render target until the texture is destroyed. Compressed textures 94 * cannot have the kRenderTarget_TextureFlag set. 95 * 96 * @param desc describes the texture to be created. 97 * @param srcData texel data to load texture. Begins with full-size 98 * palette data for paletted textures. For compressed 99 * formats it contains the compressed pixel data. Otherwise, 100 * it contains width*height texels. If NULL texture data 101 * is uninitialized. 102 * @param rowBytes the number of bytes between consecutive rows. Zero 103 * means rows are tightly packed. This field is ignored 104 * for compressed formats. 105 * 106 * @return The texture object if successful, otherwise NULL. 107 */ 108 GrTexture* createTexture(const GrTextureDesc& desc, 109 const void* srcData, size_t rowBytes); 110 111 /** 112 * Implements GrContext::wrapBackendTexture 113 */ 114 GrTexture* wrapBackendTexture(const GrBackendTextureDesc&); 115 116 /** 117 * Implements GrContext::wrapBackendTexture 118 */ 119 GrRenderTarget* wrapBackendRenderTarget(const GrBackendRenderTargetDesc&); 120 121 /** 122 * Creates a vertex buffer. 123 * 124 * @param size size in bytes of the vertex buffer 125 * @param dynamic hints whether the data will be frequently changed 126 * by either GrVertexBuffer::map() or 127 * GrVertexBuffer::updateData(). 128 * 129 * @return The vertex buffer if successful, otherwise NULL. 130 */ 131 GrVertexBuffer* createVertexBuffer(size_t size, bool dynamic); 132 133 /** 134 * Creates an index buffer. 135 * 136 * @param size size in bytes of the index buffer 137 * @param dynamic hints whether the data will be frequently changed 138 * by either GrIndexBuffer::map() or 139 * GrIndexBuffer::updateData(). 140 * 141 * @return The index buffer if successful, otherwise NULL. 142 */ 143 GrIndexBuffer* createIndexBuffer(size_t size, bool dynamic); 144 145 /** 146 * Returns an index buffer that can be used to render quads. 147 * Six indices per quad: 0, 1, 2, 0, 2, 3, etc. 148 * The max number of quads can be queried using GrIndexBuffer::maxQuads(). 149 * Draw with kTriangles_GrPrimitiveType 150 * @ return the quad index buffer 151 */ 152 const GrIndexBuffer* getQuadIndexBuffer() const; 153 154 /** 155 * Resolves MSAA. 156 */ 157 void resolveRenderTarget(GrRenderTarget* target); 158 159 /** 160 * Gets a preferred 8888 config to use for writing/reading pixel data to/from a surface with 161 * config surfaceConfig. The returned config must have at least as many bits per channel as the 162 * readConfig or writeConfig param. 163 */ 164 virtual GrPixelConfig preferredReadPixelsConfig(GrPixelConfig readConfig, 165 GrPixelConfig surfaceConfig) const { 166 return readConfig; 167 } 168 virtual GrPixelConfig preferredWritePixelsConfig(GrPixelConfig writeConfig, 169 GrPixelConfig surfaceConfig) const { 170 return writeConfig; 171 } 172 173 /** 174 * Called before uploading writing pixels to a GrTexture when the src pixel config doesn't 175 * match the texture's config. 176 */ 177 virtual bool canWriteTexturePixels(const GrTexture*, GrPixelConfig srcConfig) const = 0; 178 179 /** 180 * OpenGL's readPixels returns the result bottom-to-top while the skia 181 * API is top-to-bottom. Thus we have to do a y-axis flip. The obvious 182 * solution is to have the subclass do the flip using either the CPU or GPU. 183 * However, the caller (GrContext) may have transformations to apply and can 184 * simply fold in the y-flip for free. On the other hand, the subclass may 185 * be able to do it for free itself. For example, the subclass may have to 186 * do memcpys to handle rowBytes that aren't tight. It could do the y-flip 187 * concurrently. 188 * 189 * This function returns true if a y-flip is required to put the pixels in 190 * top-to-bottom order and the subclass cannot do it for free. 191 * 192 * See read pixels for the params 193 * @return true if calling readPixels with the same set of params will 194 * produce bottom-to-top data 195 */ 196 virtual bool readPixelsWillPayForYFlip(GrRenderTarget* renderTarget, 197 int left, int top, 198 int width, int height, 199 GrPixelConfig config, 200 size_t rowBytes) const = 0; 201 /** 202 * This should return true if reading a NxM rectangle of pixels from a 203 * render target is faster if the target has dimensons N and M and the read 204 * rectangle has its top-left at 0,0. 205 */ 206 virtual bool fullReadPixelsIsFasterThanPartial() const { return false; }; 207 208 /** 209 * Reads a rectangle of pixels from a render target. 210 * 211 * @param renderTarget the render target to read from. NULL means the 212 * current render target. 213 * @param left left edge of the rectangle to read (inclusive) 214 * @param top top edge of the rectangle to read (inclusive) 215 * @param width width of rectangle to read in pixels. 216 * @param height height of rectangle to read in pixels. 217 * @param config the pixel config of the destination buffer 218 * @param buffer memory to read the rectangle into. 219 * @param rowBytes the number of bytes between consecutive rows. Zero 220 * means rows are tightly packed. 221 * @param invertY buffer should be populated bottom-to-top as opposed 222 * to top-to-bottom (skia's usual order) 223 * 224 * @return true if the read succeeded, false if not. The read can fail 225 * because of a unsupported pixel config or because no render 226 * target is currently set. 227 */ 228 bool readPixels(GrRenderTarget* renderTarget, 229 int left, int top, int width, int height, 230 GrPixelConfig config, void* buffer, size_t rowBytes); 231 232 /** 233 * Updates the pixels in a rectangle of a texture. 234 * 235 * @param left left edge of the rectangle to write (inclusive) 236 * @param top top edge of the rectangle to write (inclusive) 237 * @param width width of rectangle to write in pixels. 238 * @param height height of rectangle to write in pixels. 239 * @param config the pixel config of the source buffer 240 * @param buffer memory to read pixels from 241 * @param rowBytes number of bytes between consecutive rows. Zero 242 * means rows are tightly packed. 243 */ 244 bool writeTexturePixels(GrTexture* texture, 245 int left, int top, int width, int height, 246 GrPixelConfig config, const void* buffer, 247 size_t rowBytes); 248 249 // GrDrawTarget overrides 250 virtual void clear(const SkIRect* rect, 251 GrColor color, 252 bool canIgnoreRect, 253 GrRenderTarget* renderTarget = NULL) SK_OVERRIDE; 254 255 virtual void purgeResources() SK_OVERRIDE { 256 // The clip mask manager can rebuild all its clip masks so just 257 // get rid of them all. 258 fClipMaskManager.purgeResources(); 259 } 260 261 // After the client interacts directly with the 3D context state the GrGpu 262 // must resync its internal state and assumptions about 3D context state. 263 // Each time this occurs the GrGpu bumps a timestamp. 264 // state of the 3D context 265 // At 10 resets / frame and 60fps a 64bit timestamp will overflow in about 266 // a billion years. 267 typedef uint64_t ResetTimestamp; 268 269 // This timestamp is always older than the current timestamp 270 static const ResetTimestamp kExpiredTimestamp = 0; 271 // Returns a timestamp based on the number of times the context was reset. 272 // This timestamp can be used to lazily detect when cached 3D context state 273 // is dirty. 274 ResetTimestamp getResetTimestamp() const { 275 return fResetTimestamp; 276 } 277 278 /** 279 * These methods are called by the clip manager's setupClipping function 280 * which (called as part of GrGpu's implementation of onDraw and 281 * onStencilPath member functions.) The GrGpu subclass should flush the 282 * stencil state to the 3D API in its implementation of flushGraphicsState. 283 */ 284 void enableScissor(const SkIRect& rect) { 285 fScissorState.fEnabled = true; 286 fScissorState.fRect = rect; 287 } 288 void disableScissor() { fScissorState.fEnabled = false; } 289 290 /** 291 * Like the scissor methods above this is called by setupClipping and 292 * should be flushed by the GrGpu subclass in flushGraphicsState. These 293 * stencil settings should be used in place of those on the GrDrawState. 294 * They have been adjusted to account for any interactions between the 295 * GrDrawState's stencil settings and stencil clipping. 296 */ 297 void setStencilSettings(const GrStencilSettings& settings) { 298 fStencilSettings = settings; 299 } 300 void disableStencil() { fStencilSettings.setDisabled(); } 301 302 // GrGpu subclass sets clip bit in the stencil buffer. The subclass is 303 // free to clear the remaining bits to zero if masked clears are more 304 // expensive than clearing all bits. 305 virtual void clearStencilClip(GrRenderTarget*, const SkIRect& rect, bool insideClip) = 0; 306 307 enum PrivateDrawStateStateBits { 308 kFirstBit = (GrDrawState::kLastPublicStateBit << 1), 309 310 kModifyStencilClip_StateBit = kFirstBit, // allows draws to modify 311 // stencil bits used for 312 // clipping. 313 }; 314 315 void getPathStencilSettingsForFillType(SkPath::FillType fill, GrStencilSettings* outStencilSettings); 316 317 enum DrawType { 318 kDrawPoints_DrawType, 319 kDrawLines_DrawType, 320 kDrawTriangles_DrawType, 321 kStencilPath_DrawType, 322 kDrawPath_DrawType, 323 kDrawPaths_DrawType, 324 }; 325 326 static bool IsPathRenderingDrawType(DrawType type) { 327 return kDrawPath_DrawType == type || kDrawPaths_DrawType == type; 328 } 329 330 GrContext::GPUStats* gpuStats() { return &fGPUStats; } 331 332 protected: 333 DrawType PrimTypeToDrawType(GrPrimitiveType type) { 334 switch (type) { 335 case kTriangles_GrPrimitiveType: 336 case kTriangleStrip_GrPrimitiveType: 337 case kTriangleFan_GrPrimitiveType: 338 return kDrawTriangles_DrawType; 339 case kPoints_GrPrimitiveType: 340 return kDrawPoints_DrawType; 341 case kLines_GrPrimitiveType: 342 case kLineStrip_GrPrimitiveType: 343 return kDrawLines_DrawType; 344 default: 345 SkFAIL("Unexpected primitive type"); 346 return kDrawTriangles_DrawType; 347 } 348 } 349 350 // prepares clip flushes gpu state before a draw 351 bool setupClipAndFlushState(DrawType, 352 const GrDeviceCoordTexture* dstCopy, 353 GrDrawState::AutoRestoreEffects* are, 354 const SkRect* devBounds); 355 356 // Functions used to map clip-respecting stencil tests into normal 357 // stencil funcs supported by GPUs. 358 static GrStencilFunc ConvertStencilFunc(bool stencilInClip, 359 GrStencilFunc func); 360 static void ConvertStencilFuncAndMask(GrStencilFunc func, 361 bool clipInStencil, 362 unsigned int clipBit, 363 unsigned int userBits, 364 unsigned int* ref, 365 unsigned int* mask); 366 367 GrClipMaskManager fClipMaskManager; 368 369 GrContext::GPUStats fGPUStats; 370 371 struct GeometryPoolState { 372 const GrVertexBuffer* fPoolVertexBuffer; 373 int fPoolStartVertex; 374 375 const GrIndexBuffer* fPoolIndexBuffer; 376 int fPoolStartIndex; 377 }; 378 const GeometryPoolState& getGeomPoolState() { 379 return fGeomPoolStateStack.back(); 380 } 381 382 // The state of the scissor is controlled by the clip manager 383 struct ScissorState { 384 bool fEnabled; 385 SkIRect fRect; 386 } fScissorState; 387 388 // The final stencil settings to use as determined by the clip manager. 389 GrStencilSettings fStencilSettings; 390 391 // Helpers for setting up geometry state 392 void finalizeReservedVertices(); 393 void finalizeReservedIndices(); 394 395 SkAutoTDelete<GrPathRendering> fPathRendering; 396 397 private: 398 // GrDrawTarget overrides 399 virtual bool onReserveVertexSpace(size_t vertexSize, int vertexCount, void** vertices) SK_OVERRIDE; 400 virtual bool onReserveIndexSpace(int indexCount, void** indices) SK_OVERRIDE; 401 virtual void releaseReservedVertexSpace() SK_OVERRIDE; 402 virtual void releaseReservedIndexSpace() SK_OVERRIDE; 403 virtual void onSetVertexSourceToArray(const void* vertexArray, int vertexCount) SK_OVERRIDE; 404 virtual void onSetIndexSourceToArray(const void* indexArray, int indexCount) SK_OVERRIDE; 405 virtual void releaseVertexArray() SK_OVERRIDE; 406 virtual void releaseIndexArray() SK_OVERRIDE; 407 virtual void geometrySourceWillPush() SK_OVERRIDE; 408 virtual void geometrySourceWillPop(const GeometrySrcState& restoredState) SK_OVERRIDE; 409 410 411 // called when the 3D context state is unknown. Subclass should emit any 412 // assumed 3D context state and dirty any state cache. 413 virtual void onResetContext(uint32_t resetBits) = 0; 414 415 // overridden by backend-specific derived class to create objects. 416 virtual GrTexture* onCreateTexture(const GrTextureDesc& desc, 417 const void* srcData, 418 size_t rowBytes) = 0; 419 virtual GrTexture* onCreateCompressedTexture(const GrTextureDesc& desc, 420 const void* srcData) = 0; 421 virtual GrTexture* onWrapBackendTexture(const GrBackendTextureDesc&) = 0; 422 virtual GrRenderTarget* onWrapBackendRenderTarget(const GrBackendRenderTargetDesc&) = 0; 423 virtual GrVertexBuffer* onCreateVertexBuffer(size_t size, bool dynamic) = 0; 424 virtual GrIndexBuffer* onCreateIndexBuffer(size_t size, bool dynamic) = 0; 425 426 // overridden by backend-specific derived class to perform the clear and 427 // clearRect. NULL rect means clear whole target. If canIgnoreRect is 428 // true, it is okay to perform a full clear instead of a partial clear 429 virtual void onClear(GrRenderTarget*, const SkIRect* rect, GrColor color, 430 bool canIgnoreRect) = 0; 431 432 // overridden by backend-specific derived class to perform the draw call. 433 virtual void onGpuDraw(const DrawInfo&) = 0; 434 435 // overridden by backend-specific derived class to perform the read pixels. 436 virtual bool onReadPixels(GrRenderTarget* target, 437 int left, int top, int width, int height, 438 GrPixelConfig, 439 void* buffer, 440 size_t rowBytes) = 0; 441 442 // overridden by backend-specific derived class to perform the texture update 443 virtual bool onWriteTexturePixels(GrTexture* texture, 444 int left, int top, int width, int height, 445 GrPixelConfig config, const void* buffer, 446 size_t rowBytes) = 0; 447 448 // overridden by backend-specific derived class to perform the resolve 449 virtual void onResolveRenderTarget(GrRenderTarget* target) = 0; 450 451 // width and height may be larger than rt (if underlying API allows it). 452 // Should attach the SB to the RT. Returns false if compatible sb could 453 // not be created. 454 virtual bool createStencilBufferForRenderTarget(GrRenderTarget*, int width, int height) = 0; 455 456 // attaches an existing SB to an existing RT. 457 virtual bool attachStencilBufferToRenderTarget(GrStencilBuffer*, GrRenderTarget*) = 0; 458 459 // The GrGpu typically records the clients requested state and then flushes 460 // deltas from previous state at draw time. This function does the 461 // backend-specific flush of the state. 462 // returns false if current state is unsupported. 463 virtual bool flushGraphicsState(DrawType, const GrDeviceCoordTexture* dstCopy) = 0; 464 465 // clears target's entire stencil buffer to 0 466 virtual void clearStencil(GrRenderTarget* target) = 0; 467 468 // Given a rt, find or create a stencil buffer and attach it 469 bool attachStencilBufferToRenderTarget(GrRenderTarget* target); 470 471 // GrDrawTarget overrides 472 virtual void onDraw(const DrawInfo&) SK_OVERRIDE; 473 virtual void onStencilPath(const GrPath*, SkPath::FillType) SK_OVERRIDE; 474 virtual void onDrawPath(const GrPath*, SkPath::FillType, 475 const GrDeviceCoordTexture* dstCopy) SK_OVERRIDE; 476 virtual void onDrawPaths(const GrPathRange*, 477 const uint32_t indices[], int count, 478 const float transforms[], PathTransformType, 479 SkPath::FillType, const GrDeviceCoordTexture*) SK_OVERRIDE; 480 481 // readies the pools to provide vertex/index data. 482 void prepareVertexPool(); 483 void prepareIndexPool(); 484 485 void resetContext() { 486 // We call this because the client may have messed with the 487 // stencil buffer. Perhaps we should detect whether it is a 488 // internally created stencil buffer and if so skip the invalidate. 489 fClipMaskManager.invalidateStencilMask(); 490 this->onResetContext(fResetBits); 491 fResetBits = 0; 492 ++fResetTimestamp; 493 } 494 495 void handleDirtyContext() { 496 if (fResetBits) { 497 this->resetContext(); 498 } 499 } 500 501 enum { 502 kPreallocGeomPoolStateStackCnt = 4, 503 }; 504 SkSTArray<kPreallocGeomPoolStateStackCnt, GeometryPoolState, true> fGeomPoolStateStack; 505 ResetTimestamp fResetTimestamp; 506 uint32_t fResetBits; 507 GrVertexBufferAllocPool* fVertexPool; 508 GrIndexBufferAllocPool* fIndexPool; 509 // counts number of uses of vertex/index pool in the geometry stack 510 int fVertexPoolUseCnt; 511 int fIndexPoolUseCnt; 512 // these are mutable so they can be created on-demand 513 mutable GrIndexBuffer* fQuadIndexBuffer; 514 515 typedef GrDrawTarget INHERITED; 516 }; 517 518 #endif 519