Home | History | Annotate | Download | only in AST
      1 //===-- DeclCXX.h - Classes for representing C++ declarations -*- C++ -*-=====//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief Defines the C++ Decl subclasses, other than those for templates
     12 /// (found in DeclTemplate.h) and friends (in DeclFriend.h).
     13 ///
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_CLANG_AST_DECLCXX_H
     17 #define LLVM_CLANG_AST_DECLCXX_H
     18 
     19 #include "clang/AST/ASTUnresolvedSet.h"
     20 #include "clang/AST/Attr.h"
     21 #include "clang/AST/Decl.h"
     22 #include "clang/AST/Expr.h"
     23 #include "clang/AST/LambdaCapture.h"
     24 #include "llvm/ADT/DenseMap.h"
     25 #include "llvm/ADT/PointerIntPair.h"
     26 #include "llvm/Support/Compiler.h"
     27 
     28 namespace clang {
     29 
     30 class ClassTemplateDecl;
     31 class ClassTemplateSpecializationDecl;
     32 class CXXBasePath;
     33 class CXXBasePaths;
     34 class CXXConstructorDecl;
     35 class CXXConversionDecl;
     36 class CXXDestructorDecl;
     37 class CXXMethodDecl;
     38 class CXXRecordDecl;
     39 class CXXMemberLookupCriteria;
     40 class CXXFinalOverriderMap;
     41 class CXXIndirectPrimaryBaseSet;
     42 class FriendDecl;
     43 class LambdaExpr;
     44 class UsingDecl;
     45 
     46 /// \brief Represents any kind of function declaration, whether it is a
     47 /// concrete function or a function template.
     48 class AnyFunctionDecl {
     49   NamedDecl *Function;
     50 
     51   AnyFunctionDecl(NamedDecl *ND) : Function(ND) { }
     52 
     53 public:
     54   AnyFunctionDecl(FunctionDecl *FD) : Function(FD) { }
     55   AnyFunctionDecl(FunctionTemplateDecl *FTD);
     56 
     57   /// \brief Implicily converts any function or function template into a
     58   /// named declaration.
     59   operator NamedDecl *() const { return Function; }
     60 
     61   /// \brief Retrieve the underlying function or function template.
     62   NamedDecl *get() const { return Function; }
     63 
     64   static AnyFunctionDecl getFromNamedDecl(NamedDecl *ND) {
     65     return AnyFunctionDecl(ND);
     66   }
     67 };
     68 
     69 } // end namespace clang
     70 
     71 namespace llvm {
     72   // Provide PointerLikeTypeTraits for non-cvr pointers.
     73   template<>
     74   class PointerLikeTypeTraits< ::clang::AnyFunctionDecl> {
     75   public:
     76     static inline void *getAsVoidPointer(::clang::AnyFunctionDecl F) {
     77       return F.get();
     78     }
     79     static inline ::clang::AnyFunctionDecl getFromVoidPointer(void *P) {
     80       return ::clang::AnyFunctionDecl::getFromNamedDecl(
     81                                       static_cast< ::clang::NamedDecl*>(P));
     82     }
     83 
     84     enum { NumLowBitsAvailable = 2 };
     85   };
     86 
     87 } // end namespace llvm
     88 
     89 namespace clang {
     90 
     91 /// \brief Represents an access specifier followed by colon ':'.
     92 ///
     93 /// An objects of this class represents sugar for the syntactic occurrence
     94 /// of an access specifier followed by a colon in the list of member
     95 /// specifiers of a C++ class definition.
     96 ///
     97 /// Note that they do not represent other uses of access specifiers,
     98 /// such as those occurring in a list of base specifiers.
     99 /// Also note that this class has nothing to do with so-called
    100 /// "access declarations" (C++98 11.3 [class.access.dcl]).
    101 class AccessSpecDecl : public Decl {
    102   virtual void anchor();
    103   /// \brief The location of the ':'.
    104   SourceLocation ColonLoc;
    105 
    106   AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
    107                  SourceLocation ASLoc, SourceLocation ColonLoc)
    108     : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
    109     setAccess(AS);
    110   }
    111   AccessSpecDecl(EmptyShell Empty)
    112     : Decl(AccessSpec, Empty) { }
    113 public:
    114   /// \brief The location of the access specifier.
    115   SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
    116   /// \brief Sets the location of the access specifier.
    117   void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
    118 
    119   /// \brief The location of the colon following the access specifier.
    120   SourceLocation getColonLoc() const { return ColonLoc; }
    121   /// \brief Sets the location of the colon.
    122   void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
    123 
    124   SourceRange getSourceRange() const override LLVM_READONLY {
    125     return SourceRange(getAccessSpecifierLoc(), getColonLoc());
    126   }
    127 
    128   static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
    129                                 DeclContext *DC, SourceLocation ASLoc,
    130                                 SourceLocation ColonLoc) {
    131     return new (C, DC) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
    132   }
    133   static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
    134 
    135   // Implement isa/cast/dyncast/etc.
    136   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
    137   static bool classofKind(Kind K) { return K == AccessSpec; }
    138 };
    139 
    140 
    141 /// \brief Represents a base class of a C++ class.
    142 ///
    143 /// Each CXXBaseSpecifier represents a single, direct base class (or
    144 /// struct) of a C++ class (or struct). It specifies the type of that
    145 /// base class, whether it is a virtual or non-virtual base, and what
    146 /// level of access (public, protected, private) is used for the
    147 /// derivation. For example:
    148 ///
    149 /// \code
    150 ///   class A { };
    151 ///   class B { };
    152 ///   class C : public virtual A, protected B { };
    153 /// \endcode
    154 ///
    155 /// In this code, C will have two CXXBaseSpecifiers, one for "public
    156 /// virtual A" and the other for "protected B".
    157 class CXXBaseSpecifier {
    158   /// \brief The source code range that covers the full base
    159   /// specifier, including the "virtual" (if present) and access
    160   /// specifier (if present).
    161   SourceRange Range;
    162 
    163   /// \brief The source location of the ellipsis, if this is a pack
    164   /// expansion.
    165   SourceLocation EllipsisLoc;
    166 
    167   /// \brief Whether this is a virtual base class or not.
    168   bool Virtual : 1;
    169 
    170   /// \brief Whether this is the base of a class (true) or of a struct (false).
    171   ///
    172   /// This determines the mapping from the access specifier as written in the
    173   /// source code to the access specifier used for semantic analysis.
    174   bool BaseOfClass : 1;
    175 
    176   /// \brief Access specifier as written in the source code (may be AS_none).
    177   ///
    178   /// The actual type of data stored here is an AccessSpecifier, but we use
    179   /// "unsigned" here to work around a VC++ bug.
    180   unsigned Access : 2;
    181 
    182   /// \brief Whether the class contains a using declaration
    183   /// to inherit the named class's constructors.
    184   bool InheritConstructors : 1;
    185 
    186   /// \brief The type of the base class.
    187   ///
    188   /// This will be a class or struct (or a typedef of such). The source code
    189   /// range does not include the \c virtual or the access specifier.
    190   TypeSourceInfo *BaseTypeInfo;
    191 
    192 public:
    193   CXXBaseSpecifier() { }
    194 
    195   CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
    196                    TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
    197     : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
    198       Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) { }
    199 
    200   /// \brief Retrieves the source range that contains the entire base specifier.
    201   SourceRange getSourceRange() const LLVM_READONLY { return Range; }
    202   SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
    203   SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
    204 
    205   /// \brief Determines whether the base class is a virtual base class (or not).
    206   bool isVirtual() const { return Virtual; }
    207 
    208   /// \brief Determine whether this base class is a base of a class declared
    209   /// with the 'class' keyword (vs. one declared with the 'struct' keyword).
    210   bool isBaseOfClass() const { return BaseOfClass; }
    211 
    212   /// \brief Determine whether this base specifier is a pack expansion.
    213   bool isPackExpansion() const { return EllipsisLoc.isValid(); }
    214 
    215   /// \brief Determine whether this base class's constructors get inherited.
    216   bool getInheritConstructors() const { return InheritConstructors; }
    217 
    218   /// \brief Set that this base class's constructors should be inherited.
    219   void setInheritConstructors(bool Inherit = true) {
    220     InheritConstructors = Inherit;
    221   }
    222 
    223   /// \brief For a pack expansion, determine the location of the ellipsis.
    224   SourceLocation getEllipsisLoc() const {
    225     return EllipsisLoc;
    226   }
    227 
    228   /// \brief Returns the access specifier for this base specifier.
    229   ///
    230   /// This is the actual base specifier as used for semantic analysis, so
    231   /// the result can never be AS_none. To retrieve the access specifier as
    232   /// written in the source code, use getAccessSpecifierAsWritten().
    233   AccessSpecifier getAccessSpecifier() const {
    234     if ((AccessSpecifier)Access == AS_none)
    235       return BaseOfClass? AS_private : AS_public;
    236     else
    237       return (AccessSpecifier)Access;
    238   }
    239 
    240   /// \brief Retrieves the access specifier as written in the source code
    241   /// (which may mean that no access specifier was explicitly written).
    242   ///
    243   /// Use getAccessSpecifier() to retrieve the access specifier for use in
    244   /// semantic analysis.
    245   AccessSpecifier getAccessSpecifierAsWritten() const {
    246     return (AccessSpecifier)Access;
    247   }
    248 
    249   /// \brief Retrieves the type of the base class.
    250   ///
    251   /// This type will always be an unqualified class type.
    252   QualType getType() const {
    253     return BaseTypeInfo->getType().getUnqualifiedType();
    254   }
    255 
    256   /// \brief Retrieves the type and source location of the base class.
    257   TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
    258 };
    259 
    260 /// \brief A lazy pointer to the definition data for a declaration.
    261 /// FIXME: This is a little CXXRecordDecl-specific that the moment.
    262 template<typename Decl, typename T> class LazyDefinitionDataPtr {
    263   llvm::PointerUnion<T *, Decl *> DataOrCanonicalDecl;
    264 
    265   LazyDefinitionDataPtr update() {
    266     if (Decl *Canon = DataOrCanonicalDecl.template dyn_cast<Decl*>()) {
    267       if (Canon->isCanonicalDecl())
    268         Canon->getMostRecentDecl();
    269       else
    270         // Declaration isn't canonical any more;
    271         // update it and perform path compression.
    272         *this = Canon->getPreviousDecl()->DefinitionData.update();
    273     }
    274     return *this;
    275   }
    276 
    277 public:
    278   LazyDefinitionDataPtr(Decl *Canon) : DataOrCanonicalDecl(Canon) {}
    279   LazyDefinitionDataPtr(T *Data) : DataOrCanonicalDecl(Data) {}
    280   T *getNotUpdated() { return DataOrCanonicalDecl.template dyn_cast<T*>(); }
    281   T *get() { return update().getNotUpdated(); }
    282 };
    283 
    284 /// \brief Represents a C++ struct/union/class.
    285 class CXXRecordDecl : public RecordDecl {
    286 
    287   friend void TagDecl::startDefinition();
    288 
    289   /// Values used in DefinitionData fields to represent special members.
    290   enum SpecialMemberFlags {
    291     SMF_DefaultConstructor = 0x1,
    292     SMF_CopyConstructor = 0x2,
    293     SMF_MoveConstructor = 0x4,
    294     SMF_CopyAssignment = 0x8,
    295     SMF_MoveAssignment = 0x10,
    296     SMF_Destructor = 0x20,
    297     SMF_All = 0x3f
    298   };
    299 
    300   struct DefinitionData {
    301     DefinitionData(CXXRecordDecl *D);
    302 
    303     /// \brief True if this class has any user-declared constructors.
    304     bool UserDeclaredConstructor : 1;
    305 
    306     /// \brief The user-declared special members which this class has.
    307     unsigned UserDeclaredSpecialMembers : 6;
    308 
    309     /// \brief True when this class is an aggregate.
    310     bool Aggregate : 1;
    311 
    312     /// \brief True when this class is a POD-type.
    313     bool PlainOldData : 1;
    314 
    315     /// true when this class is empty for traits purposes,
    316     /// i.e. has no data members other than 0-width bit-fields, has no
    317     /// virtual function/base, and doesn't inherit from a non-empty
    318     /// class. Doesn't take union-ness into account.
    319     bool Empty : 1;
    320 
    321     /// \brief True when this class is polymorphic, i.e., has at
    322     /// least one virtual member or derives from a polymorphic class.
    323     bool Polymorphic : 1;
    324 
    325     /// \brief True when this class is abstract, i.e., has at least
    326     /// one pure virtual function, (that can come from a base class).
    327     bool Abstract : 1;
    328 
    329     /// \brief True when this class has standard layout.
    330     ///
    331     /// C++11 [class]p7.  A standard-layout class is a class that:
    332     /// * has no non-static data members of type non-standard-layout class (or
    333     ///   array of such types) or reference,
    334     /// * has no virtual functions (10.3) and no virtual base classes (10.1),
    335     /// * has the same access control (Clause 11) for all non-static data
    336     ///   members
    337     /// * has no non-standard-layout base classes,
    338     /// * either has no non-static data members in the most derived class and at
    339     ///   most one base class with non-static data members, or has no base
    340     ///   classes with non-static data members, and
    341     /// * has no base classes of the same type as the first non-static data
    342     ///   member.
    343     bool IsStandardLayout : 1;
    344 
    345     /// \brief True when there are no non-empty base classes.
    346     ///
    347     /// This is a helper bit of state used to implement IsStandardLayout more
    348     /// efficiently.
    349     bool HasNoNonEmptyBases : 1;
    350 
    351     /// \brief True when there are private non-static data members.
    352     bool HasPrivateFields : 1;
    353 
    354     /// \brief True when there are protected non-static data members.
    355     bool HasProtectedFields : 1;
    356 
    357     /// \brief True when there are private non-static data members.
    358     bool HasPublicFields : 1;
    359 
    360     /// \brief True if this class (or any subobject) has mutable fields.
    361     bool HasMutableFields : 1;
    362 
    363     /// \brief True if this class (or any nested anonymous struct or union)
    364     /// has variant members.
    365     bool HasVariantMembers : 1;
    366 
    367     /// \brief True if there no non-field members declared by the user.
    368     bool HasOnlyCMembers : 1;
    369 
    370     /// \brief True if any field has an in-class initializer, including those
    371     /// within anonymous unions or structs.
    372     bool HasInClassInitializer : 1;
    373 
    374     /// \brief True if any field is of reference type, and does not have an
    375     /// in-class initializer.
    376     ///
    377     /// In this case, value-initialization of this class is illegal in C++98
    378     /// even if the class has a trivial default constructor.
    379     bool HasUninitializedReferenceMember : 1;
    380 
    381     /// \brief These flags are \c true if a defaulted corresponding special
    382     /// member can't be fully analyzed without performing overload resolution.
    383     /// @{
    384     bool NeedOverloadResolutionForMoveConstructor : 1;
    385     bool NeedOverloadResolutionForMoveAssignment : 1;
    386     bool NeedOverloadResolutionForDestructor : 1;
    387     /// @}
    388 
    389     /// \brief These flags are \c true if an implicit defaulted corresponding
    390     /// special member would be defined as deleted.
    391     /// @{
    392     bool DefaultedMoveConstructorIsDeleted : 1;
    393     bool DefaultedMoveAssignmentIsDeleted : 1;
    394     bool DefaultedDestructorIsDeleted : 1;
    395     /// @}
    396 
    397     /// \brief The trivial special members which this class has, per
    398     /// C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25,
    399     /// C++11 [class.dtor]p5, or would have if the member were not suppressed.
    400     ///
    401     /// This excludes any user-declared but not user-provided special members
    402     /// which have been declared but not yet defined.
    403     unsigned HasTrivialSpecialMembers : 6;
    404 
    405     /// \brief The declared special members of this class which are known to be
    406     /// non-trivial.
    407     ///
    408     /// This excludes any user-declared but not user-provided special members
    409     /// which have been declared but not yet defined, and any implicit special
    410     /// members which have not yet been declared.
    411     unsigned DeclaredNonTrivialSpecialMembers : 6;
    412 
    413     /// \brief True when this class has a destructor with no semantic effect.
    414     bool HasIrrelevantDestructor : 1;
    415 
    416     /// \brief True when this class has at least one user-declared constexpr
    417     /// constructor which is neither the copy nor move constructor.
    418     bool HasConstexprNonCopyMoveConstructor : 1;
    419 
    420     /// \brief True if a defaulted default constructor for this class would
    421     /// be constexpr.
    422     bool DefaultedDefaultConstructorIsConstexpr : 1;
    423 
    424     /// \brief True if this class has a constexpr default constructor.
    425     ///
    426     /// This is true for either a user-declared constexpr default constructor
    427     /// or an implicitly declared constexpr default constructor.
    428     bool HasConstexprDefaultConstructor : 1;
    429 
    430     /// \brief True when this class contains at least one non-static data
    431     /// member or base class of non-literal or volatile type.
    432     bool HasNonLiteralTypeFieldsOrBases : 1;
    433 
    434     /// \brief True when visible conversion functions are already computed
    435     /// and are available.
    436     bool ComputedVisibleConversions : 1;
    437 
    438     /// \brief Whether we have a C++11 user-provided default constructor (not
    439     /// explicitly deleted or defaulted).
    440     bool UserProvidedDefaultConstructor : 1;
    441 
    442     /// \brief The special members which have been declared for this class,
    443     /// either by the user or implicitly.
    444     unsigned DeclaredSpecialMembers : 6;
    445 
    446     /// \brief Whether an implicit copy constructor would have a const-qualified
    447     /// parameter.
    448     bool ImplicitCopyConstructorHasConstParam : 1;
    449 
    450     /// \brief Whether an implicit copy assignment operator would have a
    451     /// const-qualified parameter.
    452     bool ImplicitCopyAssignmentHasConstParam : 1;
    453 
    454     /// \brief Whether any declared copy constructor has a const-qualified
    455     /// parameter.
    456     bool HasDeclaredCopyConstructorWithConstParam : 1;
    457 
    458     /// \brief Whether any declared copy assignment operator has either a
    459     /// const-qualified reference parameter or a non-reference parameter.
    460     bool HasDeclaredCopyAssignmentWithConstParam : 1;
    461 
    462     /// \brief Whether this class describes a C++ lambda.
    463     bool IsLambda : 1;
    464 
    465     /// \brief Whether we are currently parsing base specifiers.
    466     bool IsParsingBaseSpecifiers : 1;
    467 
    468     /// \brief The number of base class specifiers in Bases.
    469     unsigned NumBases;
    470 
    471     /// \brief The number of virtual base class specifiers in VBases.
    472     unsigned NumVBases;
    473 
    474     /// \brief Base classes of this class.
    475     ///
    476     /// FIXME: This is wasted space for a union.
    477     LazyCXXBaseSpecifiersPtr Bases;
    478 
    479     /// \brief direct and indirect virtual base classes of this class.
    480     LazyCXXBaseSpecifiersPtr VBases;
    481 
    482     /// \brief The conversion functions of this C++ class (but not its
    483     /// inherited conversion functions).
    484     ///
    485     /// Each of the entries in this overload set is a CXXConversionDecl.
    486     LazyASTUnresolvedSet Conversions;
    487 
    488     /// \brief The conversion functions of this C++ class and all those
    489     /// inherited conversion functions that are visible in this class.
    490     ///
    491     /// Each of the entries in this overload set is a CXXConversionDecl or a
    492     /// FunctionTemplateDecl.
    493     LazyASTUnresolvedSet VisibleConversions;
    494 
    495     /// \brief The declaration which defines this record.
    496     CXXRecordDecl *Definition;
    497 
    498     /// \brief The first friend declaration in this class, or null if there
    499     /// aren't any.
    500     ///
    501     /// This is actually currently stored in reverse order.
    502     LazyDeclPtr FirstFriend;
    503 
    504     /// \brief Retrieve the set of direct base classes.
    505     CXXBaseSpecifier *getBases() const {
    506       if (!Bases.isOffset())
    507         return Bases.get(nullptr);
    508       return getBasesSlowCase();
    509     }
    510 
    511     /// \brief Retrieve the set of virtual base classes.
    512     CXXBaseSpecifier *getVBases() const {
    513       if (!VBases.isOffset())
    514         return VBases.get(nullptr);
    515       return getVBasesSlowCase();
    516     }
    517 
    518   private:
    519     CXXBaseSpecifier *getBasesSlowCase() const;
    520     CXXBaseSpecifier *getVBasesSlowCase() const;
    521   };
    522 
    523   typedef LazyDefinitionDataPtr<CXXRecordDecl, struct DefinitionData>
    524       DefinitionDataPtr;
    525   friend class LazyDefinitionDataPtr<CXXRecordDecl, struct DefinitionData>;
    526 
    527   mutable DefinitionDataPtr DefinitionData;
    528 
    529   /// \brief Describes a C++ closure type (generated by a lambda expression).
    530   struct LambdaDefinitionData : public DefinitionData {
    531     typedef LambdaCapture Capture;
    532 
    533     LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info,
    534                          bool Dependent, bool IsGeneric,
    535                          LambdaCaptureDefault CaptureDefault)
    536       : DefinitionData(D), Dependent(Dependent), IsGenericLambda(IsGeneric),
    537         CaptureDefault(CaptureDefault), NumCaptures(0), NumExplicitCaptures(0),
    538         ManglingNumber(0), ContextDecl(nullptr), Captures(nullptr),
    539         MethodTyInfo(Info) {
    540       IsLambda = true;
    541     }
    542 
    543     /// \brief Whether this lambda is known to be dependent, even if its
    544     /// context isn't dependent.
    545     ///
    546     /// A lambda with a non-dependent context can be dependent if it occurs
    547     /// within the default argument of a function template, because the
    548     /// lambda will have been created with the enclosing context as its
    549     /// declaration context, rather than function. This is an unfortunate
    550     /// artifact of having to parse the default arguments before.
    551     unsigned Dependent : 1;
    552 
    553     /// \brief Whether this lambda is a generic lambda.
    554     unsigned IsGenericLambda : 1;
    555 
    556     /// \brief The Default Capture.
    557     unsigned CaptureDefault : 2;
    558 
    559     /// \brief The number of captures in this lambda is limited 2^NumCaptures.
    560     unsigned NumCaptures : 15;
    561 
    562     /// \brief The number of explicit captures in this lambda.
    563     unsigned NumExplicitCaptures : 13;
    564 
    565     /// \brief The number used to indicate this lambda expression for name
    566     /// mangling in the Itanium C++ ABI.
    567     unsigned ManglingNumber;
    568 
    569     /// \brief The declaration that provides context for this lambda, if the
    570     /// actual DeclContext does not suffice. This is used for lambdas that
    571     /// occur within default arguments of function parameters within the class
    572     /// or within a data member initializer.
    573     Decl *ContextDecl;
    574 
    575     /// \brief The list of captures, both explicit and implicit, for this
    576     /// lambda.
    577     Capture *Captures;
    578 
    579     /// \brief The type of the call method.
    580     TypeSourceInfo *MethodTyInfo;
    581 
    582   };
    583 
    584   struct DefinitionData &data() const {
    585     auto *DD = DefinitionData.get();
    586     assert(DD && "queried property of class with no definition");
    587     return *DD;
    588   }
    589 
    590   struct LambdaDefinitionData &getLambdaData() const {
    591     // No update required: a merged definition cannot change any lambda
    592     // properties.
    593     auto *DD = DefinitionData.getNotUpdated();
    594     assert(DD && DD->IsLambda && "queried lambda property of non-lambda class");
    595     return static_cast<LambdaDefinitionData&>(*DD);
    596   }
    597 
    598   /// \brief The template or declaration that this declaration
    599   /// describes or was instantiated from, respectively.
    600   ///
    601   /// For non-templates, this value will be null. For record
    602   /// declarations that describe a class template, this will be a
    603   /// pointer to a ClassTemplateDecl. For member
    604   /// classes of class template specializations, this will be the
    605   /// MemberSpecializationInfo referring to the member class that was
    606   /// instantiated or specialized.
    607   llvm::PointerUnion<ClassTemplateDecl*, MemberSpecializationInfo*>
    608     TemplateOrInstantiation;
    609 
    610   friend class DeclContext;
    611   friend class LambdaExpr;
    612 
    613   /// \brief Called from setBases and addedMember to notify the class that a
    614   /// direct or virtual base class or a member of class type has been added.
    615   void addedClassSubobject(CXXRecordDecl *Base);
    616 
    617   /// \brief Notify the class that member has been added.
    618   ///
    619   /// This routine helps maintain information about the class based on which
    620   /// members have been added. It will be invoked by DeclContext::addDecl()
    621   /// whenever a member is added to this record.
    622   void addedMember(Decl *D);
    623 
    624   void markedVirtualFunctionPure();
    625   friend void FunctionDecl::setPure(bool);
    626 
    627   friend class ASTNodeImporter;
    628 
    629   /// \brief Get the head of our list of friend declarations, possibly
    630   /// deserializing the friends from an external AST source.
    631   FriendDecl *getFirstFriend() const;
    632 
    633 protected:
    634   CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC,
    635                 SourceLocation StartLoc, SourceLocation IdLoc,
    636                 IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
    637 
    638 public:
    639   /// \brief Iterator that traverses the base classes of a class.
    640   typedef CXXBaseSpecifier*       base_class_iterator;
    641 
    642   /// \brief Iterator that traverses the base classes of a class.
    643   typedef const CXXBaseSpecifier* base_class_const_iterator;
    644 
    645   CXXRecordDecl *getCanonicalDecl() override {
    646     return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
    647   }
    648   virtual const CXXRecordDecl *getCanonicalDecl() const {
    649     return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
    650   }
    651 
    652   CXXRecordDecl *getPreviousDecl() {
    653     return cast_or_null<CXXRecordDecl>(
    654             static_cast<RecordDecl *>(this)->getPreviousDecl());
    655   }
    656   const CXXRecordDecl *getPreviousDecl() const {
    657     return const_cast<CXXRecordDecl*>(this)->getPreviousDecl();
    658   }
    659 
    660   CXXRecordDecl *getMostRecentDecl() {
    661     return cast<CXXRecordDecl>(
    662             static_cast<RecordDecl *>(this)->getMostRecentDecl());
    663   }
    664 
    665   const CXXRecordDecl *getMostRecentDecl() const {
    666     return const_cast<CXXRecordDecl*>(this)->getMostRecentDecl();
    667   }
    668 
    669   CXXRecordDecl *getDefinition() const {
    670     auto *DD = DefinitionData.get();
    671     return DD ? DD->Definition : nullptr;
    672   }
    673 
    674   bool hasDefinition() const { return DefinitionData.get(); }
    675 
    676   static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
    677                                SourceLocation StartLoc, SourceLocation IdLoc,
    678                                IdentifierInfo *Id,
    679                                CXXRecordDecl *PrevDecl = nullptr,
    680                                bool DelayTypeCreation = false);
    681   static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
    682                                      TypeSourceInfo *Info, SourceLocation Loc,
    683                                      bool DependentLambda, bool IsGeneric,
    684                                      LambdaCaptureDefault CaptureDefault);
    685   static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
    686 
    687   bool isDynamicClass() const {
    688     return data().Polymorphic || data().NumVBases != 0;
    689   }
    690 
    691   void setIsParsingBaseSpecifiers() { data().IsParsingBaseSpecifiers = true; }
    692 
    693   bool isParsingBaseSpecifiers() const {
    694     return data().IsParsingBaseSpecifiers;
    695   }
    696 
    697   /// \brief Sets the base classes of this struct or class.
    698   void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
    699 
    700   /// \brief Retrieves the number of base classes of this class.
    701   unsigned getNumBases() const { return data().NumBases; }
    702 
    703   typedef llvm::iterator_range<base_class_iterator> base_class_range;
    704   typedef llvm::iterator_range<base_class_const_iterator>
    705     base_class_const_range;
    706 
    707   base_class_range bases() {
    708     return base_class_range(bases_begin(), bases_end());
    709   }
    710   base_class_const_range bases() const {
    711     return base_class_const_range(bases_begin(), bases_end());
    712   }
    713 
    714   base_class_iterator bases_begin() { return data().getBases(); }
    715   base_class_const_iterator bases_begin() const { return data().getBases(); }
    716   base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
    717   base_class_const_iterator bases_end() const {
    718     return bases_begin() + data().NumBases;
    719   }
    720 
    721   /// \brief Retrieves the number of virtual base classes of this class.
    722   unsigned getNumVBases() const { return data().NumVBases; }
    723 
    724   base_class_range vbases() {
    725     return base_class_range(vbases_begin(), vbases_end());
    726   }
    727   base_class_const_range vbases() const {
    728     return base_class_const_range(vbases_begin(), vbases_end());
    729   }
    730 
    731   base_class_iterator vbases_begin() { return data().getVBases(); }
    732   base_class_const_iterator vbases_begin() const { return data().getVBases(); }
    733   base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
    734   base_class_const_iterator vbases_end() const {
    735     return vbases_begin() + data().NumVBases;
    736   }
    737 
    738   /// \brief Determine whether this class has any dependent base classes which
    739   /// are not the current instantiation.
    740   bool hasAnyDependentBases() const;
    741 
    742   /// Iterator access to method members.  The method iterator visits
    743   /// all method members of the class, including non-instance methods,
    744   /// special methods, etc.
    745   typedef specific_decl_iterator<CXXMethodDecl> method_iterator;
    746   typedef llvm::iterator_range<specific_decl_iterator<CXXMethodDecl>>
    747     method_range;
    748 
    749   method_range methods() const {
    750     return method_range(method_begin(), method_end());
    751   }
    752 
    753   /// \brief Method begin iterator.  Iterates in the order the methods
    754   /// were declared.
    755   method_iterator method_begin() const {
    756     return method_iterator(decls_begin());
    757   }
    758   /// \brief Method past-the-end iterator.
    759   method_iterator method_end() const {
    760     return method_iterator(decls_end());
    761   }
    762 
    763   /// Iterator access to constructor members.
    764   typedef specific_decl_iterator<CXXConstructorDecl> ctor_iterator;
    765   typedef llvm::iterator_range<specific_decl_iterator<CXXConstructorDecl>>
    766     ctor_range;
    767 
    768   ctor_range ctors() const { return ctor_range(ctor_begin(), ctor_end()); }
    769 
    770   ctor_iterator ctor_begin() const {
    771     return ctor_iterator(decls_begin());
    772   }
    773   ctor_iterator ctor_end() const {
    774     return ctor_iterator(decls_end());
    775   }
    776 
    777   /// An iterator over friend declarations.  All of these are defined
    778   /// in DeclFriend.h.
    779   class friend_iterator;
    780   typedef llvm::iterator_range<friend_iterator> friend_range;
    781 
    782   friend_range friends() const;
    783   friend_iterator friend_begin() const;
    784   friend_iterator friend_end() const;
    785   void pushFriendDecl(FriendDecl *FD);
    786 
    787   /// Determines whether this record has any friends.
    788   bool hasFriends() const {
    789     return data().FirstFriend.isValid();
    790   }
    791 
    792   /// \brief \c true if we know for sure that this class has a single,
    793   /// accessible, unambiguous move constructor that is not deleted.
    794   bool hasSimpleMoveConstructor() const {
    795     return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() &&
    796            !data().DefaultedMoveConstructorIsDeleted;
    797   }
    798   /// \brief \c true if we know for sure that this class has a single,
    799   /// accessible, unambiguous move assignment operator that is not deleted.
    800   bool hasSimpleMoveAssignment() const {
    801     return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() &&
    802            !data().DefaultedMoveAssignmentIsDeleted;
    803   }
    804   /// \brief \c true if we know for sure that this class has an accessible
    805   /// destructor that is not deleted.
    806   bool hasSimpleDestructor() const {
    807     return !hasUserDeclaredDestructor() &&
    808            !data().DefaultedDestructorIsDeleted;
    809   }
    810 
    811   /// \brief Determine whether this class has any default constructors.
    812   bool hasDefaultConstructor() const {
    813     return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
    814            needsImplicitDefaultConstructor();
    815   }
    816 
    817   /// \brief Determine if we need to declare a default constructor for
    818   /// this class.
    819   ///
    820   /// This value is used for lazy creation of default constructors.
    821   bool needsImplicitDefaultConstructor() const {
    822     return !data().UserDeclaredConstructor &&
    823            !(data().DeclaredSpecialMembers & SMF_DefaultConstructor);
    824   }
    825 
    826   /// \brief Determine whether this class has any user-declared constructors.
    827   ///
    828   /// When true, a default constructor will not be implicitly declared.
    829   bool hasUserDeclaredConstructor() const {
    830     return data().UserDeclaredConstructor;
    831   }
    832 
    833   /// \brief Whether this class has a user-provided default constructor
    834   /// per C++11.
    835   bool hasUserProvidedDefaultConstructor() const {
    836     return data().UserProvidedDefaultConstructor;
    837   }
    838 
    839   /// \brief Determine whether this class has a user-declared copy constructor.
    840   ///
    841   /// When false, a copy constructor will be implicitly declared.
    842   bool hasUserDeclaredCopyConstructor() const {
    843     return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
    844   }
    845 
    846   /// \brief Determine whether this class needs an implicit copy
    847   /// constructor to be lazily declared.
    848   bool needsImplicitCopyConstructor() const {
    849     return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
    850   }
    851 
    852   /// \brief Determine whether we need to eagerly declare a defaulted copy
    853   /// constructor for this class.
    854   bool needsOverloadResolutionForCopyConstructor() const {
    855     return data().HasMutableFields;
    856   }
    857 
    858   /// \brief Determine whether an implicit copy constructor for this type
    859   /// would have a parameter with a const-qualified reference type.
    860   bool implicitCopyConstructorHasConstParam() const {
    861     return data().ImplicitCopyConstructorHasConstParam;
    862   }
    863 
    864   /// \brief Determine whether this class has a copy constructor with
    865   /// a parameter type which is a reference to a const-qualified type.
    866   bool hasCopyConstructorWithConstParam() const {
    867     return data().HasDeclaredCopyConstructorWithConstParam ||
    868            (needsImplicitCopyConstructor() &&
    869             implicitCopyConstructorHasConstParam());
    870   }
    871 
    872   /// \brief Whether this class has a user-declared move constructor or
    873   /// assignment operator.
    874   ///
    875   /// When false, a move constructor and assignment operator may be
    876   /// implicitly declared.
    877   bool hasUserDeclaredMoveOperation() const {
    878     return data().UserDeclaredSpecialMembers &
    879              (SMF_MoveConstructor | SMF_MoveAssignment);
    880   }
    881 
    882   /// \brief Determine whether this class has had a move constructor
    883   /// declared by the user.
    884   bool hasUserDeclaredMoveConstructor() const {
    885     return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
    886   }
    887 
    888   /// \brief Determine whether this class has a move constructor.
    889   bool hasMoveConstructor() const {
    890     return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
    891            needsImplicitMoveConstructor();
    892   }
    893 
    894   /// \brief Set that we attempted to declare an implicitly move
    895   /// constructor, but overload resolution failed so we deleted it.
    896   void setImplicitMoveConstructorIsDeleted() {
    897     assert((data().DefaultedMoveConstructorIsDeleted ||
    898             needsOverloadResolutionForMoveConstructor()) &&
    899            "move constructor should not be deleted");
    900     data().DefaultedMoveConstructorIsDeleted = true;
    901   }
    902 
    903   /// \brief Determine whether this class should get an implicit move
    904   /// constructor or if any existing special member function inhibits this.
    905   bool needsImplicitMoveConstructor() const {
    906     return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
    907            !hasUserDeclaredCopyConstructor() &&
    908            !hasUserDeclaredCopyAssignment() &&
    909            !hasUserDeclaredMoveAssignment() &&
    910            !hasUserDeclaredDestructor();
    911   }
    912 
    913   /// \brief Determine whether we need to eagerly declare a defaulted move
    914   /// constructor for this class.
    915   bool needsOverloadResolutionForMoveConstructor() const {
    916     return data().NeedOverloadResolutionForMoveConstructor;
    917   }
    918 
    919   /// \brief Determine whether this class has a user-declared copy assignment
    920   /// operator.
    921   ///
    922   /// When false, a copy assigment operator will be implicitly declared.
    923   bool hasUserDeclaredCopyAssignment() const {
    924     return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
    925   }
    926 
    927   /// \brief Determine whether this class needs an implicit copy
    928   /// assignment operator to be lazily declared.
    929   bool needsImplicitCopyAssignment() const {
    930     return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
    931   }
    932 
    933   /// \brief Determine whether we need to eagerly declare a defaulted copy
    934   /// assignment operator for this class.
    935   bool needsOverloadResolutionForCopyAssignment() const {
    936     return data().HasMutableFields;
    937   }
    938 
    939   /// \brief Determine whether an implicit copy assignment operator for this
    940   /// type would have a parameter with a const-qualified reference type.
    941   bool implicitCopyAssignmentHasConstParam() const {
    942     return data().ImplicitCopyAssignmentHasConstParam;
    943   }
    944 
    945   /// \brief Determine whether this class has a copy assignment operator with
    946   /// a parameter type which is a reference to a const-qualified type or is not
    947   /// a reference.
    948   bool hasCopyAssignmentWithConstParam() const {
    949     return data().HasDeclaredCopyAssignmentWithConstParam ||
    950            (needsImplicitCopyAssignment() &&
    951             implicitCopyAssignmentHasConstParam());
    952   }
    953 
    954   /// \brief Determine whether this class has had a move assignment
    955   /// declared by the user.
    956   bool hasUserDeclaredMoveAssignment() const {
    957     return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
    958   }
    959 
    960   /// \brief Determine whether this class has a move assignment operator.
    961   bool hasMoveAssignment() const {
    962     return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
    963            needsImplicitMoveAssignment();
    964   }
    965 
    966   /// \brief Set that we attempted to declare an implicit move assignment
    967   /// operator, but overload resolution failed so we deleted it.
    968   void setImplicitMoveAssignmentIsDeleted() {
    969     assert((data().DefaultedMoveAssignmentIsDeleted ||
    970             needsOverloadResolutionForMoveAssignment()) &&
    971            "move assignment should not be deleted");
    972     data().DefaultedMoveAssignmentIsDeleted = true;
    973   }
    974 
    975   /// \brief Determine whether this class should get an implicit move
    976   /// assignment operator or if any existing special member function inhibits
    977   /// this.
    978   bool needsImplicitMoveAssignment() const {
    979     return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
    980            !hasUserDeclaredCopyConstructor() &&
    981            !hasUserDeclaredCopyAssignment() &&
    982            !hasUserDeclaredMoveConstructor() &&
    983            !hasUserDeclaredDestructor();
    984   }
    985 
    986   /// \brief Determine whether we need to eagerly declare a move assignment
    987   /// operator for this class.
    988   bool needsOverloadResolutionForMoveAssignment() const {
    989     return data().NeedOverloadResolutionForMoveAssignment;
    990   }
    991 
    992   /// \brief Determine whether this class has a user-declared destructor.
    993   ///
    994   /// When false, a destructor will be implicitly declared.
    995   bool hasUserDeclaredDestructor() const {
    996     return data().UserDeclaredSpecialMembers & SMF_Destructor;
    997   }
    998 
    999   /// \brief Determine whether this class needs an implicit destructor to
   1000   /// be lazily declared.
   1001   bool needsImplicitDestructor() const {
   1002     return !(data().DeclaredSpecialMembers & SMF_Destructor);
   1003   }
   1004 
   1005   /// \brief Determine whether we need to eagerly declare a destructor for this
   1006   /// class.
   1007   bool needsOverloadResolutionForDestructor() const {
   1008     return data().NeedOverloadResolutionForDestructor;
   1009   }
   1010 
   1011   /// \brief Determine whether this class describes a lambda function object.
   1012   bool isLambda() const {
   1013     // An update record can't turn a non-lambda into a lambda.
   1014     auto *DD = DefinitionData.getNotUpdated();
   1015     return DD && DD->IsLambda;
   1016   }
   1017 
   1018   /// \brief Determine whether this class describes a generic
   1019   /// lambda function object (i.e. function call operator is
   1020   /// a template).
   1021   bool isGenericLambda() const;
   1022 
   1023   /// \brief Retrieve the lambda call operator of the closure type
   1024   /// if this is a closure type.
   1025   CXXMethodDecl *getLambdaCallOperator() const;
   1026 
   1027   /// \brief Retrieve the lambda static invoker, the address of which
   1028   /// is returned by the conversion operator, and the body of which
   1029   /// is forwarded to the lambda call operator.
   1030   CXXMethodDecl *getLambdaStaticInvoker() const;
   1031 
   1032   /// \brief Retrieve the generic lambda's template parameter list.
   1033   /// Returns null if the class does not represent a lambda or a generic
   1034   /// lambda.
   1035   TemplateParameterList *getGenericLambdaTemplateParameterList() const;
   1036 
   1037   LambdaCaptureDefault getLambdaCaptureDefault() const {
   1038     assert(isLambda());
   1039     return static_cast<LambdaCaptureDefault>(getLambdaData().CaptureDefault);
   1040   }
   1041 
   1042   /// \brief For a closure type, retrieve the mapping from captured
   1043   /// variables and \c this to the non-static data members that store the
   1044   /// values or references of the captures.
   1045   ///
   1046   /// \param Captures Will be populated with the mapping from captured
   1047   /// variables to the corresponding fields.
   1048   ///
   1049   /// \param ThisCapture Will be set to the field declaration for the
   1050   /// \c this capture.
   1051   ///
   1052   /// \note No entries will be added for init-captures, as they do not capture
   1053   /// variables.
   1054   void getCaptureFields(llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
   1055                         FieldDecl *&ThisCapture) const;
   1056 
   1057   typedef const LambdaCapture *capture_const_iterator;
   1058   typedef llvm::iterator_range<capture_const_iterator> capture_const_range;
   1059 
   1060   capture_const_range captures() const {
   1061     return capture_const_range(captures_begin(), captures_end());
   1062   }
   1063   capture_const_iterator captures_begin() const {
   1064     return isLambda() ? getLambdaData().Captures : nullptr;
   1065   }
   1066   capture_const_iterator captures_end() const {
   1067     return isLambda() ? captures_begin() + getLambdaData().NumCaptures
   1068                       : nullptr;
   1069   }
   1070 
   1071   typedef UnresolvedSetIterator conversion_iterator;
   1072   conversion_iterator conversion_begin() const {
   1073     return data().Conversions.get(getASTContext()).begin();
   1074   }
   1075   conversion_iterator conversion_end() const {
   1076     return data().Conversions.get(getASTContext()).end();
   1077   }
   1078 
   1079   /// Removes a conversion function from this class.  The conversion
   1080   /// function must currently be a member of this class.  Furthermore,
   1081   /// this class must currently be in the process of being defined.
   1082   void removeConversion(const NamedDecl *Old);
   1083 
   1084   /// \brief Get all conversion functions visible in current class,
   1085   /// including conversion function templates.
   1086   std::pair<conversion_iterator, conversion_iterator>
   1087     getVisibleConversionFunctions();
   1088 
   1089   /// Determine whether this class is an aggregate (C++ [dcl.init.aggr]),
   1090   /// which is a class with no user-declared constructors, no private
   1091   /// or protected non-static data members, no base classes, and no virtual
   1092   /// functions (C++ [dcl.init.aggr]p1).
   1093   bool isAggregate() const { return data().Aggregate; }
   1094 
   1095   /// \brief Whether this class has any in-class initializers
   1096   /// for non-static data members (including those in anonymous unions or
   1097   /// structs).
   1098   bool hasInClassInitializer() const { return data().HasInClassInitializer; }
   1099 
   1100   /// \brief Whether this class or any of its subobjects has any members of
   1101   /// reference type which would make value-initialization ill-formed.
   1102   ///
   1103   /// Per C++03 [dcl.init]p5:
   1104   ///  - if T is a non-union class type without a user-declared constructor,
   1105   ///    then every non-static data member and base-class component of T is
   1106   ///    value-initialized [...] A program that calls for [...]
   1107   ///    value-initialization of an entity of reference type is ill-formed.
   1108   bool hasUninitializedReferenceMember() const {
   1109     return !isUnion() && !hasUserDeclaredConstructor() &&
   1110            data().HasUninitializedReferenceMember;
   1111   }
   1112 
   1113   /// \brief Whether this class is a POD-type (C++ [class]p4)
   1114   ///
   1115   /// For purposes of this function a class is POD if it is an aggregate
   1116   /// that has no non-static non-POD data members, no reference data
   1117   /// members, no user-defined copy assignment operator and no
   1118   /// user-defined destructor.
   1119   ///
   1120   /// Note that this is the C++ TR1 definition of POD.
   1121   bool isPOD() const { return data().PlainOldData; }
   1122 
   1123   /// \brief True if this class is C-like, without C++-specific features, e.g.
   1124   /// it contains only public fields, no bases, tag kind is not 'class', etc.
   1125   bool isCLike() const;
   1126 
   1127   /// \brief Determine whether this is an empty class in the sense of
   1128   /// (C++11 [meta.unary.prop]).
   1129   ///
   1130   /// A non-union class is empty iff it has a virtual function, virtual base,
   1131   /// data member (other than 0-width bit-field) or inherits from a non-empty
   1132   /// class.
   1133   ///
   1134   /// \note This does NOT include a check for union-ness.
   1135   bool isEmpty() const { return data().Empty; }
   1136 
   1137   /// Whether this class is polymorphic (C++ [class.virtual]),
   1138   /// which means that the class contains or inherits a virtual function.
   1139   bool isPolymorphic() const { return data().Polymorphic; }
   1140 
   1141   /// \brief Determine whether this class has a pure virtual function.
   1142   ///
   1143   /// The class is is abstract per (C++ [class.abstract]p2) if it declares
   1144   /// a pure virtual function or inherits a pure virtual function that is
   1145   /// not overridden.
   1146   bool isAbstract() const { return data().Abstract; }
   1147 
   1148   /// \brief Determine whether this class has standard layout per
   1149   /// (C++ [class]p7)
   1150   bool isStandardLayout() const { return data().IsStandardLayout; }
   1151 
   1152   /// \brief Determine whether this class, or any of its class subobjects,
   1153   /// contains a mutable field.
   1154   bool hasMutableFields() const { return data().HasMutableFields; }
   1155 
   1156   /// \brief Determine whether this class has any variant members.
   1157   bool hasVariantMembers() const { return data().HasVariantMembers; }
   1158 
   1159   /// \brief Determine whether this class has a trivial default constructor
   1160   /// (C++11 [class.ctor]p5).
   1161   bool hasTrivialDefaultConstructor() const {
   1162     return hasDefaultConstructor() &&
   1163            (data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
   1164   }
   1165 
   1166   /// \brief Determine whether this class has a non-trivial default constructor
   1167   /// (C++11 [class.ctor]p5).
   1168   bool hasNonTrivialDefaultConstructor() const {
   1169     return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
   1170            (needsImplicitDefaultConstructor() &&
   1171             !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
   1172   }
   1173 
   1174   /// \brief Determine whether this class has at least one constexpr constructor
   1175   /// other than the copy or move constructors.
   1176   bool hasConstexprNonCopyMoveConstructor() const {
   1177     return data().HasConstexprNonCopyMoveConstructor ||
   1178            (needsImplicitDefaultConstructor() &&
   1179             defaultedDefaultConstructorIsConstexpr());
   1180   }
   1181 
   1182   /// \brief Determine whether a defaulted default constructor for this class
   1183   /// would be constexpr.
   1184   bool defaultedDefaultConstructorIsConstexpr() const {
   1185     return data().DefaultedDefaultConstructorIsConstexpr &&
   1186            (!isUnion() || hasInClassInitializer() || !hasVariantMembers());
   1187   }
   1188 
   1189   /// \brief Determine whether this class has a constexpr default constructor.
   1190   bool hasConstexprDefaultConstructor() const {
   1191     return data().HasConstexprDefaultConstructor ||
   1192            (needsImplicitDefaultConstructor() &&
   1193             defaultedDefaultConstructorIsConstexpr());
   1194   }
   1195 
   1196   /// \brief Determine whether this class has a trivial copy constructor
   1197   /// (C++ [class.copy]p6, C++11 [class.copy]p12)
   1198   bool hasTrivialCopyConstructor() const {
   1199     return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
   1200   }
   1201 
   1202   /// \brief Determine whether this class has a non-trivial copy constructor
   1203   /// (C++ [class.copy]p6, C++11 [class.copy]p12)
   1204   bool hasNonTrivialCopyConstructor() const {
   1205     return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
   1206            !hasTrivialCopyConstructor();
   1207   }
   1208 
   1209   /// \brief Determine whether this class has a trivial move constructor
   1210   /// (C++11 [class.copy]p12)
   1211   bool hasTrivialMoveConstructor() const {
   1212     return hasMoveConstructor() &&
   1213            (data().HasTrivialSpecialMembers & SMF_MoveConstructor);
   1214   }
   1215 
   1216   /// \brief Determine whether this class has a non-trivial move constructor
   1217   /// (C++11 [class.copy]p12)
   1218   bool hasNonTrivialMoveConstructor() const {
   1219     return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
   1220            (needsImplicitMoveConstructor() &&
   1221             !(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
   1222   }
   1223 
   1224   /// \brief Determine whether this class has a trivial copy assignment operator
   1225   /// (C++ [class.copy]p11, C++11 [class.copy]p25)
   1226   bool hasTrivialCopyAssignment() const {
   1227     return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
   1228   }
   1229 
   1230   /// \brief Determine whether this class has a non-trivial copy assignment
   1231   /// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
   1232   bool hasNonTrivialCopyAssignment() const {
   1233     return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
   1234            !hasTrivialCopyAssignment();
   1235   }
   1236 
   1237   /// \brief Determine whether this class has a trivial move assignment operator
   1238   /// (C++11 [class.copy]p25)
   1239   bool hasTrivialMoveAssignment() const {
   1240     return hasMoveAssignment() &&
   1241            (data().HasTrivialSpecialMembers & SMF_MoveAssignment);
   1242   }
   1243 
   1244   /// \brief Determine whether this class has a non-trivial move assignment
   1245   /// operator (C++11 [class.copy]p25)
   1246   bool hasNonTrivialMoveAssignment() const {
   1247     return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
   1248            (needsImplicitMoveAssignment() &&
   1249             !(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
   1250   }
   1251 
   1252   /// \brief Determine whether this class has a trivial destructor
   1253   /// (C++ [class.dtor]p3)
   1254   bool hasTrivialDestructor() const {
   1255     return data().HasTrivialSpecialMembers & SMF_Destructor;
   1256   }
   1257 
   1258   /// \brief Determine whether this class has a non-trivial destructor
   1259   /// (C++ [class.dtor]p3)
   1260   bool hasNonTrivialDestructor() const {
   1261     return !(data().HasTrivialSpecialMembers & SMF_Destructor);
   1262   }
   1263 
   1264   /// \brief Determine whether this class has a destructor which has no
   1265   /// semantic effect.
   1266   ///
   1267   /// Any such destructor will be trivial, public, defaulted and not deleted,
   1268   /// and will call only irrelevant destructors.
   1269   bool hasIrrelevantDestructor() const {
   1270     return data().HasIrrelevantDestructor;
   1271   }
   1272 
   1273   /// \brief Determine whether this class has a non-literal or/ volatile type
   1274   /// non-static data member or base class.
   1275   bool hasNonLiteralTypeFieldsOrBases() const {
   1276     return data().HasNonLiteralTypeFieldsOrBases;
   1277   }
   1278 
   1279   /// \brief Determine whether this class is considered trivially copyable per
   1280   /// (C++11 [class]p6).
   1281   bool isTriviallyCopyable() const;
   1282 
   1283   /// \brief Determine whether this class is considered trivial.
   1284   ///
   1285   /// C++11 [class]p6:
   1286   ///    "A trivial class is a class that has a trivial default constructor and
   1287   ///    is trivially copiable."
   1288   bool isTrivial() const {
   1289     return isTriviallyCopyable() && hasTrivialDefaultConstructor();
   1290   }
   1291 
   1292   /// \brief Determine whether this class is a literal type.
   1293   ///
   1294   /// C++11 [basic.types]p10:
   1295   ///   A class type that has all the following properties:
   1296   ///     - it has a trivial destructor
   1297   ///     - every constructor call and full-expression in the
   1298   ///       brace-or-equal-intializers for non-static data members (if any) is
   1299   ///       a constant expression.
   1300   ///     - it is an aggregate type or has at least one constexpr constructor
   1301   ///       or constructor template that is not a copy or move constructor, and
   1302   ///     - all of its non-static data members and base classes are of literal
   1303   ///       types
   1304   ///
   1305   /// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by
   1306   /// treating types with trivial default constructors as literal types.
   1307   bool isLiteral() const {
   1308     return hasTrivialDestructor() &&
   1309            (isAggregate() || hasConstexprNonCopyMoveConstructor() ||
   1310             hasTrivialDefaultConstructor()) &&
   1311            !hasNonLiteralTypeFieldsOrBases();
   1312   }
   1313 
   1314   /// \brief If this record is an instantiation of a member class,
   1315   /// retrieves the member class from which it was instantiated.
   1316   ///
   1317   /// This routine will return non-null for (non-templated) member
   1318   /// classes of class templates. For example, given:
   1319   ///
   1320   /// \code
   1321   /// template<typename T>
   1322   /// struct X {
   1323   ///   struct A { };
   1324   /// };
   1325   /// \endcode
   1326   ///
   1327   /// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
   1328   /// whose parent is the class template specialization X<int>. For
   1329   /// this declaration, getInstantiatedFromMemberClass() will return
   1330   /// the CXXRecordDecl X<T>::A. When a complete definition of
   1331   /// X<int>::A is required, it will be instantiated from the
   1332   /// declaration returned by getInstantiatedFromMemberClass().
   1333   CXXRecordDecl *getInstantiatedFromMemberClass() const;
   1334 
   1335   /// \brief If this class is an instantiation of a member class of a
   1336   /// class template specialization, retrieves the member specialization
   1337   /// information.
   1338   MemberSpecializationInfo *getMemberSpecializationInfo() const {
   1339     return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
   1340   }
   1341 
   1342   /// \brief Specify that this record is an instantiation of the
   1343   /// member class \p RD.
   1344   void setInstantiationOfMemberClass(CXXRecordDecl *RD,
   1345                                      TemplateSpecializationKind TSK);
   1346 
   1347   /// \brief Retrieves the class template that is described by this
   1348   /// class declaration.
   1349   ///
   1350   /// Every class template is represented as a ClassTemplateDecl and a
   1351   /// CXXRecordDecl. The former contains template properties (such as
   1352   /// the template parameter lists) while the latter contains the
   1353   /// actual description of the template's
   1354   /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
   1355   /// CXXRecordDecl that from a ClassTemplateDecl, while
   1356   /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
   1357   /// a CXXRecordDecl.
   1358   ClassTemplateDecl *getDescribedClassTemplate() const {
   1359     return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl*>();
   1360   }
   1361 
   1362   void setDescribedClassTemplate(ClassTemplateDecl *Template) {
   1363     TemplateOrInstantiation = Template;
   1364   }
   1365 
   1366   /// \brief Determine whether this particular class is a specialization or
   1367   /// instantiation of a class template or member class of a class template,
   1368   /// and how it was instantiated or specialized.
   1369   TemplateSpecializationKind getTemplateSpecializationKind() const;
   1370 
   1371   /// \brief Set the kind of specialization or template instantiation this is.
   1372   void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
   1373 
   1374   /// \brief Returns the destructor decl for this class.
   1375   CXXDestructorDecl *getDestructor() const;
   1376 
   1377   /// \brief If the class is a local class [class.local], returns
   1378   /// the enclosing function declaration.
   1379   const FunctionDecl *isLocalClass() const {
   1380     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
   1381       return RD->isLocalClass();
   1382 
   1383     return dyn_cast<FunctionDecl>(getDeclContext());
   1384   }
   1385 
   1386   FunctionDecl *isLocalClass() {
   1387     return const_cast<FunctionDecl*>(
   1388         const_cast<const CXXRecordDecl*>(this)->isLocalClass());
   1389   }
   1390 
   1391   /// \brief Determine whether this dependent class is a current instantiation,
   1392   /// when viewed from within the given context.
   1393   bool isCurrentInstantiation(const DeclContext *CurContext) const;
   1394 
   1395   /// \brief Determine whether this class is derived from the class \p Base.
   1396   ///
   1397   /// This routine only determines whether this class is derived from \p Base,
   1398   /// but does not account for factors that may make a Derived -> Base class
   1399   /// ill-formed, such as private/protected inheritance or multiple, ambiguous
   1400   /// base class subobjects.
   1401   ///
   1402   /// \param Base the base class we are searching for.
   1403   ///
   1404   /// \returns true if this class is derived from Base, false otherwise.
   1405   bool isDerivedFrom(const CXXRecordDecl *Base) const;
   1406 
   1407   /// \brief Determine whether this class is derived from the type \p Base.
   1408   ///
   1409   /// This routine only determines whether this class is derived from \p Base,
   1410   /// but does not account for factors that may make a Derived -> Base class
   1411   /// ill-formed, such as private/protected inheritance or multiple, ambiguous
   1412   /// base class subobjects.
   1413   ///
   1414   /// \param Base the base class we are searching for.
   1415   ///
   1416   /// \param Paths will contain the paths taken from the current class to the
   1417   /// given \p Base class.
   1418   ///
   1419   /// \returns true if this class is derived from \p Base, false otherwise.
   1420   ///
   1421   /// \todo add a separate paramaeter to configure IsDerivedFrom, rather than
   1422   /// tangling input and output in \p Paths
   1423   bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
   1424 
   1425   /// \brief Determine whether this class is virtually derived from
   1426   /// the class \p Base.
   1427   ///
   1428   /// This routine only determines whether this class is virtually
   1429   /// derived from \p Base, but does not account for factors that may
   1430   /// make a Derived -> Base class ill-formed, such as
   1431   /// private/protected inheritance or multiple, ambiguous base class
   1432   /// subobjects.
   1433   ///
   1434   /// \param Base the base class we are searching for.
   1435   ///
   1436   /// \returns true if this class is virtually derived from Base,
   1437   /// false otherwise.
   1438   bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
   1439 
   1440   /// \brief Determine whether this class is provably not derived from
   1441   /// the type \p Base.
   1442   bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
   1443 
   1444   /// \brief Function type used by forallBases() as a callback.
   1445   ///
   1446   /// \param BaseDefinition the definition of the base class
   1447   ///
   1448   /// \returns true if this base matched the search criteria
   1449   typedef bool ForallBasesCallback(const CXXRecordDecl *BaseDefinition,
   1450                                    void *UserData);
   1451 
   1452   /// \brief Determines if the given callback holds for all the direct
   1453   /// or indirect base classes of this type.
   1454   ///
   1455   /// The class itself does not count as a base class.  This routine
   1456   /// returns false if the class has non-computable base classes.
   1457   ///
   1458   /// \param BaseMatches Callback invoked for each (direct or indirect) base
   1459   /// class of this type, or if \p AllowShortCircuit is true then until a call
   1460   /// returns false.
   1461   ///
   1462   /// \param UserData Passed as the second argument of every call to
   1463   /// \p BaseMatches.
   1464   ///
   1465   /// \param AllowShortCircuit if false, forces the callback to be called
   1466   /// for every base class, even if a dependent or non-matching base was
   1467   /// found.
   1468   bool forallBases(ForallBasesCallback *BaseMatches, void *UserData,
   1469                    bool AllowShortCircuit = true) const;
   1470 
   1471   /// \brief Function type used by lookupInBases() to determine whether a
   1472   /// specific base class subobject matches the lookup criteria.
   1473   ///
   1474   /// \param Specifier the base-class specifier that describes the inheritance
   1475   /// from the base class we are trying to match.
   1476   ///
   1477   /// \param Path the current path, from the most-derived class down to the
   1478   /// base named by the \p Specifier.
   1479   ///
   1480   /// \param UserData a single pointer to user-specified data, provided to
   1481   /// lookupInBases().
   1482   ///
   1483   /// \returns true if this base matched the search criteria, false otherwise.
   1484   typedef bool BaseMatchesCallback(const CXXBaseSpecifier *Specifier,
   1485                                    CXXBasePath &Path,
   1486                                    void *UserData);
   1487 
   1488   /// \brief Look for entities within the base classes of this C++ class,
   1489   /// transitively searching all base class subobjects.
   1490   ///
   1491   /// This routine uses the callback function \p BaseMatches to find base
   1492   /// classes meeting some search criteria, walking all base class subobjects
   1493   /// and populating the given \p Paths structure with the paths through the
   1494   /// inheritance hierarchy that resulted in a match. On a successful search,
   1495   /// the \p Paths structure can be queried to retrieve the matching paths and
   1496   /// to determine if there were any ambiguities.
   1497   ///
   1498   /// \param BaseMatches callback function used to determine whether a given
   1499   /// base matches the user-defined search criteria.
   1500   ///
   1501   /// \param UserData user data pointer that will be provided to \p BaseMatches.
   1502   ///
   1503   /// \param Paths used to record the paths from this class to its base class
   1504   /// subobjects that match the search criteria.
   1505   ///
   1506   /// \returns true if there exists any path from this class to a base class
   1507   /// subobject that matches the search criteria.
   1508   bool lookupInBases(BaseMatchesCallback *BaseMatches, void *UserData,
   1509                      CXXBasePaths &Paths) const;
   1510 
   1511   /// \brief Base-class lookup callback that determines whether the given
   1512   /// base class specifier refers to a specific class declaration.
   1513   ///
   1514   /// This callback can be used with \c lookupInBases() to determine whether
   1515   /// a given derived class has is a base class subobject of a particular type.
   1516   /// The user data pointer should refer to the canonical CXXRecordDecl of the
   1517   /// base class that we are searching for.
   1518   static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
   1519                             CXXBasePath &Path, void *BaseRecord);
   1520 
   1521   /// \brief Base-class lookup callback that determines whether the
   1522   /// given base class specifier refers to a specific class
   1523   /// declaration and describes virtual derivation.
   1524   ///
   1525   /// This callback can be used with \c lookupInBases() to determine
   1526   /// whether a given derived class has is a virtual base class
   1527   /// subobject of a particular type.  The user data pointer should
   1528   /// refer to the canonical CXXRecordDecl of the base class that we
   1529   /// are searching for.
   1530   static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
   1531                                    CXXBasePath &Path, void *BaseRecord);
   1532 
   1533   /// \brief Base-class lookup callback that determines whether there exists
   1534   /// a tag with the given name.
   1535   ///
   1536   /// This callback can be used with \c lookupInBases() to find tag members
   1537   /// of the given name within a C++ class hierarchy. The user data pointer
   1538   /// is an opaque \c DeclarationName pointer.
   1539   static bool FindTagMember(const CXXBaseSpecifier *Specifier,
   1540                             CXXBasePath &Path, void *Name);
   1541 
   1542   /// \brief Base-class lookup callback that determines whether there exists
   1543   /// a member with the given name.
   1544   ///
   1545   /// This callback can be used with \c lookupInBases() to find members
   1546   /// of the given name within a C++ class hierarchy. The user data pointer
   1547   /// is an opaque \c DeclarationName pointer.
   1548   static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier,
   1549                                  CXXBasePath &Path, void *Name);
   1550 
   1551   /// \brief Base-class lookup callback that determines whether there exists
   1552   /// a member with the given name that can be used in a nested-name-specifier.
   1553   ///
   1554   /// This callback can be used with \c lookupInBases() to find membes of
   1555   /// the given name within a C++ class hierarchy that can occur within
   1556   /// nested-name-specifiers.
   1557   static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier,
   1558                                             CXXBasePath &Path,
   1559                                             void *UserData);
   1560 
   1561   /// \brief Retrieve the final overriders for each virtual member
   1562   /// function in the class hierarchy where this class is the
   1563   /// most-derived class in the class hierarchy.
   1564   void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
   1565 
   1566   /// \brief Get the indirect primary bases for this class.
   1567   void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
   1568 
   1569   /// Renders and displays an inheritance diagram
   1570   /// for this C++ class and all of its base classes (transitively) using
   1571   /// GraphViz.
   1572   void viewInheritance(ASTContext& Context) const;
   1573 
   1574   /// \brief Calculates the access of a decl that is reached
   1575   /// along a path.
   1576   static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
   1577                                      AccessSpecifier DeclAccess) {
   1578     assert(DeclAccess != AS_none);
   1579     if (DeclAccess == AS_private) return AS_none;
   1580     return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
   1581   }
   1582 
   1583   /// \brief Indicates that the declaration of a defaulted or deleted special
   1584   /// member function is now complete.
   1585   void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
   1586 
   1587   /// \brief Indicates that the definition of this class is now complete.
   1588   void completeDefinition() override;
   1589 
   1590   /// \brief Indicates that the definition of this class is now complete,
   1591   /// and provides a final overrider map to help determine
   1592   ///
   1593   /// \param FinalOverriders The final overrider map for this class, which can
   1594   /// be provided as an optimization for abstract-class checking. If NULL,
   1595   /// final overriders will be computed if they are needed to complete the
   1596   /// definition.
   1597   void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
   1598 
   1599   /// \brief Determine whether this class may end up being abstract, even though
   1600   /// it is not yet known to be abstract.
   1601   ///
   1602   /// \returns true if this class is not known to be abstract but has any
   1603   /// base classes that are abstract. In this case, \c completeDefinition()
   1604   /// will need to compute final overriders to determine whether the class is
   1605   /// actually abstract.
   1606   bool mayBeAbstract() const;
   1607 
   1608   /// \brief If this is the closure type of a lambda expression, retrieve the
   1609   /// number to be used for name mangling in the Itanium C++ ABI.
   1610   ///
   1611   /// Zero indicates that this closure type has internal linkage, so the
   1612   /// mangling number does not matter, while a non-zero value indicates which
   1613   /// lambda expression this is in this particular context.
   1614   unsigned getLambdaManglingNumber() const {
   1615     assert(isLambda() && "Not a lambda closure type!");
   1616     return getLambdaData().ManglingNumber;
   1617   }
   1618 
   1619   /// \brief Retrieve the declaration that provides additional context for a
   1620   /// lambda, when the normal declaration context is not specific enough.
   1621   ///
   1622   /// Certain contexts (default arguments of in-class function parameters and
   1623   /// the initializers of data members) have separate name mangling rules for
   1624   /// lambdas within the Itanium C++ ABI. For these cases, this routine provides
   1625   /// the declaration in which the lambda occurs, e.g., the function parameter
   1626   /// or the non-static data member. Otherwise, it returns NULL to imply that
   1627   /// the declaration context suffices.
   1628   Decl *getLambdaContextDecl() const {
   1629     assert(isLambda() && "Not a lambda closure type!");
   1630     return getLambdaData().ContextDecl;
   1631   }
   1632 
   1633   /// \brief Set the mangling number and context declaration for a lambda
   1634   /// class.
   1635   void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl) {
   1636     getLambdaData().ManglingNumber = ManglingNumber;
   1637     getLambdaData().ContextDecl = ContextDecl;
   1638   }
   1639 
   1640   /// \brief Returns the inheritance model used for this record.
   1641   MSInheritanceAttr::Spelling getMSInheritanceModel() const;
   1642   /// \brief Calculate what the inheritance model would be for this class.
   1643   MSInheritanceAttr::Spelling calculateInheritanceModel() const;
   1644 
   1645   /// In the Microsoft C++ ABI, use zero for the field offset of a null data
   1646   /// member pointer if we can guarantee that zero is not a valid field offset,
   1647   /// or if the member pointer has multiple fields.  Polymorphic classes have a
   1648   /// vfptr at offset zero, so we can use zero for null.  If there are multiple
   1649   /// fields, we can use zero even if it is a valid field offset because
   1650   /// null-ness testing will check the other fields.
   1651   bool nullFieldOffsetIsZero() const {
   1652     return !MSInheritanceAttr::hasOnlyOneField(/*IsMemberFunction=*/false,
   1653                                                getMSInheritanceModel()) ||
   1654            (hasDefinition() && isPolymorphic());
   1655   }
   1656 
   1657   /// \brief Controls when vtordisps will be emitted if this record is used as a
   1658   /// virtual base.
   1659   MSVtorDispAttr::Mode getMSVtorDispMode() const;
   1660 
   1661   /// \brief Determine whether this lambda expression was known to be dependent
   1662   /// at the time it was created, even if its context does not appear to be
   1663   /// dependent.
   1664   ///
   1665   /// This flag is a workaround for an issue with parsing, where default
   1666   /// arguments are parsed before their enclosing function declarations have
   1667   /// been created. This means that any lambda expressions within those
   1668   /// default arguments will have as their DeclContext the context enclosing
   1669   /// the function declaration, which may be non-dependent even when the
   1670   /// function declaration itself is dependent. This flag indicates when we
   1671   /// know that the lambda is dependent despite that.
   1672   bool isDependentLambda() const {
   1673     return isLambda() && getLambdaData().Dependent;
   1674   }
   1675 
   1676   TypeSourceInfo *getLambdaTypeInfo() const {
   1677     return getLambdaData().MethodTyInfo;
   1678   }
   1679 
   1680   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   1681   static bool classofKind(Kind K) {
   1682     return K >= firstCXXRecord && K <= lastCXXRecord;
   1683   }
   1684 
   1685   friend class ASTDeclReader;
   1686   friend class ASTDeclWriter;
   1687   friend class ASTReader;
   1688   friend class ASTWriter;
   1689 };
   1690 
   1691 /// \brief Represents a static or instance method of a struct/union/class.
   1692 ///
   1693 /// In the terminology of the C++ Standard, these are the (static and
   1694 /// non-static) member functions, whether virtual or not.
   1695 class CXXMethodDecl : public FunctionDecl {
   1696   void anchor() override;
   1697 protected:
   1698   CXXMethodDecl(Kind DK, ASTContext &C, CXXRecordDecl *RD,
   1699                 SourceLocation StartLoc, const DeclarationNameInfo &NameInfo,
   1700                 QualType T, TypeSourceInfo *TInfo,
   1701                 StorageClass SC, bool isInline,
   1702                 bool isConstexpr, SourceLocation EndLocation)
   1703     : FunctionDecl(DK, C, RD, StartLoc, NameInfo, T, TInfo,
   1704                    SC, isInline, isConstexpr) {
   1705     if (EndLocation.isValid())
   1706       setRangeEnd(EndLocation);
   1707   }
   1708 
   1709 public:
   1710   static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD,
   1711                                SourceLocation StartLoc,
   1712                                const DeclarationNameInfo &NameInfo,
   1713                                QualType T, TypeSourceInfo *TInfo,
   1714                                StorageClass SC,
   1715                                bool isInline,
   1716                                bool isConstexpr,
   1717                                SourceLocation EndLocation);
   1718 
   1719   static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   1720 
   1721   bool isStatic() const;
   1722   bool isInstance() const { return !isStatic(); }
   1723 
   1724   /// Returns true if the given operator is implicitly static in a record
   1725   /// context.
   1726   static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) {
   1727     // [class.free]p1:
   1728     // Any allocation function for a class T is a static member
   1729     // (even if not explicitly declared static).
   1730     // [class.free]p6 Any deallocation function for a class X is a static member
   1731     // (even if not explicitly declared static).
   1732     return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete ||
   1733            OOK == OO_Array_Delete;
   1734   }
   1735 
   1736   bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
   1737   bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
   1738 
   1739   bool isVirtual() const {
   1740     CXXMethodDecl *CD =
   1741       cast<CXXMethodDecl>(const_cast<CXXMethodDecl*>(this)->getCanonicalDecl());
   1742 
   1743     // Member function is virtual if it is marked explicitly so, or if it is
   1744     // declared in __interface -- then it is automatically pure virtual.
   1745     if (CD->isVirtualAsWritten() || CD->isPure())
   1746       return true;
   1747 
   1748     return (CD->begin_overridden_methods() != CD->end_overridden_methods());
   1749   }
   1750 
   1751   /// \brief Determine whether this is a usual deallocation function
   1752   /// (C++ [basic.stc.dynamic.deallocation]p2), which is an overloaded
   1753   /// delete or delete[] operator with a particular signature.
   1754   bool isUsualDeallocationFunction() const;
   1755 
   1756   /// \brief Determine whether this is a copy-assignment operator, regardless
   1757   /// of whether it was declared implicitly or explicitly.
   1758   bool isCopyAssignmentOperator() const;
   1759 
   1760   /// \brief Determine whether this is a move assignment operator.
   1761   bool isMoveAssignmentOperator() const;
   1762 
   1763   CXXMethodDecl *getCanonicalDecl() override {
   1764     return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
   1765   }
   1766   const CXXMethodDecl *getCanonicalDecl() const override {
   1767     return const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
   1768   }
   1769 
   1770   CXXMethodDecl *getMostRecentDecl() {
   1771     return cast<CXXMethodDecl>(
   1772             static_cast<FunctionDecl *>(this)->getMostRecentDecl());
   1773   }
   1774   const CXXMethodDecl *getMostRecentDecl() const {
   1775     return const_cast<CXXMethodDecl*>(this)->getMostRecentDecl();
   1776   }
   1777 
   1778   /// True if this method is user-declared and was not
   1779   /// deleted or defaulted on its first declaration.
   1780   bool isUserProvided() const {
   1781     return !(isDeleted() || getCanonicalDecl()->isDefaulted());
   1782   }
   1783 
   1784   ///
   1785   void addOverriddenMethod(const CXXMethodDecl *MD);
   1786 
   1787   typedef const CXXMethodDecl *const* method_iterator;
   1788 
   1789   method_iterator begin_overridden_methods() const;
   1790   method_iterator end_overridden_methods() const;
   1791   unsigned size_overridden_methods() const;
   1792 
   1793   /// Returns the parent of this method declaration, which
   1794   /// is the class in which this method is defined.
   1795   const CXXRecordDecl *getParent() const {
   1796     return cast<CXXRecordDecl>(FunctionDecl::getParent());
   1797   }
   1798 
   1799   /// Returns the parent of this method declaration, which
   1800   /// is the class in which this method is defined.
   1801   CXXRecordDecl *getParent() {
   1802     return const_cast<CXXRecordDecl *>(
   1803              cast<CXXRecordDecl>(FunctionDecl::getParent()));
   1804   }
   1805 
   1806   /// \brief Returns the type of the \c this pointer.
   1807   ///
   1808   /// Should only be called for instance (i.e., non-static) methods.
   1809   QualType getThisType(ASTContext &C) const;
   1810 
   1811   unsigned getTypeQualifiers() const {
   1812     return getType()->getAs<FunctionProtoType>()->getTypeQuals();
   1813   }
   1814 
   1815   /// \brief Retrieve the ref-qualifier associated with this method.
   1816   ///
   1817   /// In the following example, \c f() has an lvalue ref-qualifier, \c g()
   1818   /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
   1819   /// @code
   1820   /// struct X {
   1821   ///   void f() &;
   1822   ///   void g() &&;
   1823   ///   void h();
   1824   /// };
   1825   /// @endcode
   1826   RefQualifierKind getRefQualifier() const {
   1827     return getType()->getAs<FunctionProtoType>()->getRefQualifier();
   1828   }
   1829 
   1830   bool hasInlineBody() const;
   1831 
   1832   /// \brief Determine whether this is a lambda closure type's static member
   1833   /// function that is used for the result of the lambda's conversion to
   1834   /// function pointer (for a lambda with no captures).
   1835   ///
   1836   /// The function itself, if used, will have a placeholder body that will be
   1837   /// supplied by IR generation to either forward to the function call operator
   1838   /// or clone the function call operator.
   1839   bool isLambdaStaticInvoker() const;
   1840 
   1841   /// \brief Find the method in \p RD that corresponds to this one.
   1842   ///
   1843   /// Find if \p RD or one of the classes it inherits from override this method.
   1844   /// If so, return it. \p RD is assumed to be a subclass of the class defining
   1845   /// this method (or be the class itself), unless \p MayBeBase is set to true.
   1846   CXXMethodDecl *
   1847   getCorrespondingMethodInClass(const CXXRecordDecl *RD,
   1848                                 bool MayBeBase = false);
   1849 
   1850   const CXXMethodDecl *
   1851   getCorrespondingMethodInClass(const CXXRecordDecl *RD,
   1852                                 bool MayBeBase = false) const {
   1853     return const_cast<CXXMethodDecl *>(this)
   1854               ->getCorrespondingMethodInClass(RD, MayBeBase);
   1855   }
   1856 
   1857   // Implement isa/cast/dyncast/etc.
   1858   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   1859   static bool classofKind(Kind K) {
   1860     return K >= firstCXXMethod && K <= lastCXXMethod;
   1861   }
   1862 };
   1863 
   1864 /// \brief Represents a C++ base or member initializer.
   1865 ///
   1866 /// This is part of a constructor initializer that
   1867 /// initializes one non-static member variable or one base class. For
   1868 /// example, in the following, both 'A(a)' and 'f(3.14159)' are member
   1869 /// initializers:
   1870 ///
   1871 /// \code
   1872 /// class A { };
   1873 /// class B : public A {
   1874 ///   float f;
   1875 /// public:
   1876 ///   B(A& a) : A(a), f(3.14159) { }
   1877 /// };
   1878 /// \endcode
   1879 class CXXCtorInitializer {
   1880   /// \brief Either the base class name/delegating constructor type (stored as
   1881   /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
   1882   /// (IndirectFieldDecl*) being initialized.
   1883   llvm::PointerUnion3<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
   1884     Initializee;
   1885 
   1886   /// \brief The source location for the field name or, for a base initializer
   1887   /// pack expansion, the location of the ellipsis.
   1888   ///
   1889   /// In the case of a delegating
   1890   /// constructor, it will still include the type's source location as the
   1891   /// Initializee points to the CXXConstructorDecl (to allow loop detection).
   1892   SourceLocation MemberOrEllipsisLocation;
   1893 
   1894   /// \brief The argument used to initialize the base or member, which may
   1895   /// end up constructing an object (when multiple arguments are involved).
   1896   Stmt *Init;
   1897 
   1898   /// \brief Location of the left paren of the ctor-initializer.
   1899   SourceLocation LParenLoc;
   1900 
   1901   /// \brief Location of the right paren of the ctor-initializer.
   1902   SourceLocation RParenLoc;
   1903 
   1904   /// \brief If the initializee is a type, whether that type makes this
   1905   /// a delegating initialization.
   1906   bool IsDelegating : 1;
   1907 
   1908   /// \brief If the initializer is a base initializer, this keeps track
   1909   /// of whether the base is virtual or not.
   1910   bool IsVirtual : 1;
   1911 
   1912   /// \brief Whether or not the initializer is explicitly written
   1913   /// in the sources.
   1914   bool IsWritten : 1;
   1915 
   1916   /// If IsWritten is true, then this number keeps track of the textual order
   1917   /// of this initializer in the original sources, counting from 0; otherwise,
   1918   /// it stores the number of array index variables stored after this object
   1919   /// in memory.
   1920   unsigned SourceOrderOrNumArrayIndices : 13;
   1921 
   1922   CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
   1923                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
   1924                      SourceLocation R, VarDecl **Indices, unsigned NumIndices);
   1925 
   1926 public:
   1927   /// \brief Creates a new base-class initializer.
   1928   explicit
   1929   CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
   1930                      SourceLocation L, Expr *Init, SourceLocation R,
   1931                      SourceLocation EllipsisLoc);
   1932 
   1933   /// \brief Creates a new member initializer.
   1934   explicit
   1935   CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
   1936                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
   1937                      SourceLocation R);
   1938 
   1939   /// \brief Creates a new anonymous field initializer.
   1940   explicit
   1941   CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
   1942                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
   1943                      SourceLocation R);
   1944 
   1945   /// \brief Creates a new delegating initializer.
   1946   explicit
   1947   CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
   1948                      SourceLocation L, Expr *Init, SourceLocation R);
   1949 
   1950   /// \brief Creates a new member initializer that optionally contains
   1951   /// array indices used to describe an elementwise initialization.
   1952   static CXXCtorInitializer *Create(ASTContext &Context, FieldDecl *Member,
   1953                                     SourceLocation MemberLoc, SourceLocation L,
   1954                                     Expr *Init, SourceLocation R,
   1955                                     VarDecl **Indices, unsigned NumIndices);
   1956 
   1957   /// \brief Determine whether this initializer is initializing a base class.
   1958   bool isBaseInitializer() const {
   1959     return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
   1960   }
   1961 
   1962   /// \brief Determine whether this initializer is initializing a non-static
   1963   /// data member.
   1964   bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
   1965 
   1966   bool isAnyMemberInitializer() const {
   1967     return isMemberInitializer() || isIndirectMemberInitializer();
   1968   }
   1969 
   1970   bool isIndirectMemberInitializer() const {
   1971     return Initializee.is<IndirectFieldDecl*>();
   1972   }
   1973 
   1974   /// \brief Determine whether this initializer is an implicit initializer
   1975   /// generated for a field with an initializer defined on the member
   1976   /// declaration.
   1977   ///
   1978   /// In-class member initializers (also known as "non-static data member
   1979   /// initializations", NSDMIs) were introduced in C++11.
   1980   bool isInClassMemberInitializer() const {
   1981     return Init->getStmtClass() == Stmt::CXXDefaultInitExprClass;
   1982   }
   1983 
   1984   /// \brief Determine whether this initializer is creating a delegating
   1985   /// constructor.
   1986   bool isDelegatingInitializer() const {
   1987     return Initializee.is<TypeSourceInfo*>() && IsDelegating;
   1988   }
   1989 
   1990   /// \brief Determine whether this initializer is a pack expansion.
   1991   bool isPackExpansion() const {
   1992     return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
   1993   }
   1994 
   1995   // \brief For a pack expansion, returns the location of the ellipsis.
   1996   SourceLocation getEllipsisLoc() const {
   1997     assert(isPackExpansion() && "Initializer is not a pack expansion");
   1998     return MemberOrEllipsisLocation;
   1999   }
   2000 
   2001   /// If this is a base class initializer, returns the type of the
   2002   /// base class with location information. Otherwise, returns an NULL
   2003   /// type location.
   2004   TypeLoc getBaseClassLoc() const;
   2005 
   2006   /// If this is a base class initializer, returns the type of the base class.
   2007   /// Otherwise, returns null.
   2008   const Type *getBaseClass() const;
   2009 
   2010   /// Returns whether the base is virtual or not.
   2011   bool isBaseVirtual() const {
   2012     assert(isBaseInitializer() && "Must call this on base initializer!");
   2013 
   2014     return IsVirtual;
   2015   }
   2016 
   2017   /// \brief Returns the declarator information for a base class or delegating
   2018   /// initializer.
   2019   TypeSourceInfo *getTypeSourceInfo() const {
   2020     return Initializee.dyn_cast<TypeSourceInfo *>();
   2021   }
   2022 
   2023   /// \brief If this is a member initializer, returns the declaration of the
   2024   /// non-static data member being initialized. Otherwise, returns null.
   2025   FieldDecl *getMember() const {
   2026     if (isMemberInitializer())
   2027       return Initializee.get<FieldDecl*>();
   2028     return nullptr;
   2029   }
   2030   FieldDecl *getAnyMember() const {
   2031     if (isMemberInitializer())
   2032       return Initializee.get<FieldDecl*>();
   2033     if (isIndirectMemberInitializer())
   2034       return Initializee.get<IndirectFieldDecl*>()->getAnonField();
   2035     return nullptr;
   2036   }
   2037 
   2038   IndirectFieldDecl *getIndirectMember() const {
   2039     if (isIndirectMemberInitializer())
   2040       return Initializee.get<IndirectFieldDecl*>();
   2041     return nullptr;
   2042   }
   2043 
   2044   SourceLocation getMemberLocation() const {
   2045     return MemberOrEllipsisLocation;
   2046   }
   2047 
   2048   /// \brief Determine the source location of the initializer.
   2049   SourceLocation getSourceLocation() const;
   2050 
   2051   /// \brief Determine the source range covering the entire initializer.
   2052   SourceRange getSourceRange() const LLVM_READONLY;
   2053 
   2054   /// \brief Determine whether this initializer is explicitly written
   2055   /// in the source code.
   2056   bool isWritten() const { return IsWritten; }
   2057 
   2058   /// \brief Return the source position of the initializer, counting from 0.
   2059   /// If the initializer was implicit, -1 is returned.
   2060   int getSourceOrder() const {
   2061     return IsWritten ? static_cast<int>(SourceOrderOrNumArrayIndices) : -1;
   2062   }
   2063 
   2064   /// \brief Set the source order of this initializer.
   2065   ///
   2066   /// This can only be called once for each initializer; it cannot be called
   2067   /// on an initializer having a positive number of (implicit) array indices.
   2068   ///
   2069   /// This assumes that the initialzier was written in the source code, and
   2070   /// ensures that isWritten() returns true.
   2071   void setSourceOrder(int pos) {
   2072     assert(!IsWritten &&
   2073            "calling twice setSourceOrder() on the same initializer");
   2074     assert(SourceOrderOrNumArrayIndices == 0 &&
   2075            "setSourceOrder() used when there are implicit array indices");
   2076     assert(pos >= 0 &&
   2077            "setSourceOrder() used to make an initializer implicit");
   2078     IsWritten = true;
   2079     SourceOrderOrNumArrayIndices = static_cast<unsigned>(pos);
   2080   }
   2081 
   2082   SourceLocation getLParenLoc() const { return LParenLoc; }
   2083   SourceLocation getRParenLoc() const { return RParenLoc; }
   2084 
   2085   /// \brief Determine the number of implicit array indices used while
   2086   /// described an array member initialization.
   2087   unsigned getNumArrayIndices() const {
   2088     return IsWritten ? 0 : SourceOrderOrNumArrayIndices;
   2089   }
   2090 
   2091   /// \brief Retrieve a particular array index variable used to
   2092   /// describe an array member initialization.
   2093   VarDecl *getArrayIndex(unsigned I) {
   2094     assert(I < getNumArrayIndices() && "Out of bounds member array index");
   2095     return reinterpret_cast<VarDecl **>(this + 1)[I];
   2096   }
   2097   const VarDecl *getArrayIndex(unsigned I) const {
   2098     assert(I < getNumArrayIndices() && "Out of bounds member array index");
   2099     return reinterpret_cast<const VarDecl * const *>(this + 1)[I];
   2100   }
   2101   void setArrayIndex(unsigned I, VarDecl *Index) {
   2102     assert(I < getNumArrayIndices() && "Out of bounds member array index");
   2103     reinterpret_cast<VarDecl **>(this + 1)[I] = Index;
   2104   }
   2105   ArrayRef<VarDecl *> getArrayIndexes() {
   2106     assert(getNumArrayIndices() != 0 && "Getting indexes for non-array init");
   2107     return ArrayRef<VarDecl *>(reinterpret_cast<VarDecl **>(this + 1),
   2108                                getNumArrayIndices());
   2109   }
   2110 
   2111   /// \brief Get the initializer.
   2112   Expr *getInit() const { return static_cast<Expr*>(Init); }
   2113 };
   2114 
   2115 /// \brief Represents a C++ constructor within a class.
   2116 ///
   2117 /// For example:
   2118 ///
   2119 /// \code
   2120 /// class X {
   2121 /// public:
   2122 ///   explicit X(int); // represented by a CXXConstructorDecl.
   2123 /// };
   2124 /// \endcode
   2125 class CXXConstructorDecl : public CXXMethodDecl {
   2126   void anchor() override;
   2127   /// \brief Whether this constructor declaration has the \c explicit keyword
   2128   /// specified.
   2129   bool IsExplicitSpecified : 1;
   2130 
   2131   /// \name Support for base and member initializers.
   2132   /// \{
   2133   /// \brief The arguments used to initialize the base or member.
   2134   CXXCtorInitializer **CtorInitializers;
   2135   unsigned NumCtorInitializers;
   2136   /// \}
   2137 
   2138   CXXConstructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
   2139                      const DeclarationNameInfo &NameInfo,
   2140                      QualType T, TypeSourceInfo *TInfo,
   2141                      bool isExplicitSpecified, bool isInline,
   2142                      bool isImplicitlyDeclared, bool isConstexpr)
   2143     : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo,
   2144                     SC_None, isInline, isConstexpr, SourceLocation()),
   2145       IsExplicitSpecified(isExplicitSpecified), CtorInitializers(nullptr),
   2146       NumCtorInitializers(0) {
   2147     setImplicit(isImplicitlyDeclared);
   2148   }
   2149 
   2150 public:
   2151   static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2152   static CXXConstructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
   2153                                     SourceLocation StartLoc,
   2154                                     const DeclarationNameInfo &NameInfo,
   2155                                     QualType T, TypeSourceInfo *TInfo,
   2156                                     bool isExplicit,
   2157                                     bool isInline, bool isImplicitlyDeclared,
   2158                                     bool isConstexpr);
   2159 
   2160   /// \brief Determine whether this constructor declaration has the
   2161   /// \c explicit keyword specified.
   2162   bool isExplicitSpecified() const { return IsExplicitSpecified; }
   2163 
   2164   /// \brief Determine whether this constructor was marked "explicit" or not.
   2165   bool isExplicit() const {
   2166     return cast<CXXConstructorDecl>(getFirstDecl())->isExplicitSpecified();
   2167   }
   2168 
   2169   /// \brief Iterates through the member/base initializer list.
   2170   typedef CXXCtorInitializer **init_iterator;
   2171 
   2172   /// \brief Iterates through the member/base initializer list.
   2173   typedef CXXCtorInitializer * const * init_const_iterator;
   2174 
   2175   typedef llvm::iterator_range<init_iterator> init_range;
   2176   typedef llvm::iterator_range<init_const_iterator> init_const_range;
   2177 
   2178   init_range inits() { return init_range(init_begin(), init_end()); }
   2179   init_const_range inits() const {
   2180     return init_const_range(init_begin(), init_end());
   2181   }
   2182 
   2183   /// \brief Retrieve an iterator to the first initializer.
   2184   init_iterator       init_begin()       { return CtorInitializers; }
   2185   /// \brief Retrieve an iterator to the first initializer.
   2186   init_const_iterator init_begin() const { return CtorInitializers; }
   2187 
   2188   /// \brief Retrieve an iterator past the last initializer.
   2189   init_iterator       init_end()       {
   2190     return CtorInitializers + NumCtorInitializers;
   2191   }
   2192   /// \brief Retrieve an iterator past the last initializer.
   2193   init_const_iterator init_end() const {
   2194     return CtorInitializers + NumCtorInitializers;
   2195   }
   2196 
   2197   typedef std::reverse_iterator<init_iterator> init_reverse_iterator;
   2198   typedef std::reverse_iterator<init_const_iterator>
   2199           init_const_reverse_iterator;
   2200 
   2201   init_reverse_iterator init_rbegin() {
   2202     return init_reverse_iterator(init_end());
   2203   }
   2204   init_const_reverse_iterator init_rbegin() const {
   2205     return init_const_reverse_iterator(init_end());
   2206   }
   2207 
   2208   init_reverse_iterator init_rend() {
   2209     return init_reverse_iterator(init_begin());
   2210   }
   2211   init_const_reverse_iterator init_rend() const {
   2212     return init_const_reverse_iterator(init_begin());
   2213   }
   2214 
   2215   /// \brief Determine the number of arguments used to initialize the member
   2216   /// or base.
   2217   unsigned getNumCtorInitializers() const {
   2218       return NumCtorInitializers;
   2219   }
   2220 
   2221   void setNumCtorInitializers(unsigned numCtorInitializers) {
   2222     NumCtorInitializers = numCtorInitializers;
   2223   }
   2224 
   2225   void setCtorInitializers(CXXCtorInitializer ** initializers) {
   2226     CtorInitializers = initializers;
   2227   }
   2228 
   2229   /// \brief Determine whether this constructor is a delegating constructor.
   2230   bool isDelegatingConstructor() const {
   2231     return (getNumCtorInitializers() == 1) &&
   2232       CtorInitializers[0]->isDelegatingInitializer();
   2233   }
   2234 
   2235   /// \brief When this constructor delegates to another, retrieve the target.
   2236   CXXConstructorDecl *getTargetConstructor() const;
   2237 
   2238   /// Whether this constructor is a default
   2239   /// constructor (C++ [class.ctor]p5), which can be used to
   2240   /// default-initialize a class of this type.
   2241   bool isDefaultConstructor() const;
   2242 
   2243   /// \brief Whether this constructor is a copy constructor (C++ [class.copy]p2,
   2244   /// which can be used to copy the class.
   2245   ///
   2246   /// \p TypeQuals will be set to the qualifiers on the
   2247   /// argument type. For example, \p TypeQuals would be set to \c
   2248   /// Qualifiers::Const for the following copy constructor:
   2249   ///
   2250   /// \code
   2251   /// class X {
   2252   /// public:
   2253   ///   X(const X&);
   2254   /// };
   2255   /// \endcode
   2256   bool isCopyConstructor(unsigned &TypeQuals) const;
   2257 
   2258   /// Whether this constructor is a copy
   2259   /// constructor (C++ [class.copy]p2, which can be used to copy the
   2260   /// class.
   2261   bool isCopyConstructor() const {
   2262     unsigned TypeQuals = 0;
   2263     return isCopyConstructor(TypeQuals);
   2264   }
   2265 
   2266   /// \brief Determine whether this constructor is a move constructor
   2267   /// (C++0x [class.copy]p3), which can be used to move values of the class.
   2268   ///
   2269   /// \param TypeQuals If this constructor is a move constructor, will be set
   2270   /// to the type qualifiers on the referent of the first parameter's type.
   2271   bool isMoveConstructor(unsigned &TypeQuals) const;
   2272 
   2273   /// \brief Determine whether this constructor is a move constructor
   2274   /// (C++0x [class.copy]p3), which can be used to move values of the class.
   2275   bool isMoveConstructor() const {
   2276     unsigned TypeQuals = 0;
   2277     return isMoveConstructor(TypeQuals);
   2278   }
   2279 
   2280   /// \brief Determine whether this is a copy or move constructor.
   2281   ///
   2282   /// \param TypeQuals Will be set to the type qualifiers on the reference
   2283   /// parameter, if in fact this is a copy or move constructor.
   2284   bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
   2285 
   2286   /// \brief Determine whether this a copy or move constructor.
   2287   bool isCopyOrMoveConstructor() const {
   2288     unsigned Quals;
   2289     return isCopyOrMoveConstructor(Quals);
   2290   }
   2291 
   2292   /// Whether this constructor is a
   2293   /// converting constructor (C++ [class.conv.ctor]), which can be
   2294   /// used for user-defined conversions.
   2295   bool isConvertingConstructor(bool AllowExplicit) const;
   2296 
   2297   /// \brief Determine whether this is a member template specialization that
   2298   /// would copy the object to itself. Such constructors are never used to copy
   2299   /// an object.
   2300   bool isSpecializationCopyingObject() const;
   2301 
   2302   /// \brief Get the constructor that this inheriting constructor is based on.
   2303   const CXXConstructorDecl *getInheritedConstructor() const;
   2304 
   2305   /// \brief Set the constructor that this inheriting constructor is based on.
   2306   void setInheritedConstructor(const CXXConstructorDecl *BaseCtor);
   2307 
   2308   const CXXConstructorDecl *getCanonicalDecl() const override {
   2309     return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
   2310   }
   2311   CXXConstructorDecl *getCanonicalDecl() override {
   2312     return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
   2313   }
   2314 
   2315   // Implement isa/cast/dyncast/etc.
   2316   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2317   static bool classofKind(Kind K) { return K == CXXConstructor; }
   2318 
   2319   friend class ASTDeclReader;
   2320   friend class ASTDeclWriter;
   2321 };
   2322 
   2323 /// \brief Represents a C++ destructor within a class.
   2324 ///
   2325 /// For example:
   2326 ///
   2327 /// \code
   2328 /// class X {
   2329 /// public:
   2330 ///   ~X(); // represented by a CXXDestructorDecl.
   2331 /// };
   2332 /// \endcode
   2333 class CXXDestructorDecl : public CXXMethodDecl {
   2334   void anchor() override;
   2335 
   2336   FunctionDecl *OperatorDelete;
   2337 
   2338   CXXDestructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
   2339                     const DeclarationNameInfo &NameInfo,
   2340                     QualType T, TypeSourceInfo *TInfo,
   2341                     bool isInline, bool isImplicitlyDeclared)
   2342     : CXXMethodDecl(CXXDestructor, C, RD, StartLoc, NameInfo, T, TInfo,
   2343                     SC_None, isInline, /*isConstexpr=*/false, SourceLocation()),
   2344       OperatorDelete(nullptr) {
   2345     setImplicit(isImplicitlyDeclared);
   2346   }
   2347 
   2348 public:
   2349   static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
   2350                                    SourceLocation StartLoc,
   2351                                    const DeclarationNameInfo &NameInfo,
   2352                                    QualType T, TypeSourceInfo* TInfo,
   2353                                    bool isInline,
   2354                                    bool isImplicitlyDeclared);
   2355   static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
   2356 
   2357   void setOperatorDelete(FunctionDecl *OD) {
   2358     cast<CXXDestructorDecl>(getFirstDecl())->OperatorDelete = OD;
   2359   }
   2360   const FunctionDecl *getOperatorDelete() const {
   2361     return cast<CXXDestructorDecl>(getFirstDecl())->OperatorDelete;
   2362   }
   2363 
   2364   // Implement isa/cast/dyncast/etc.
   2365   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2366   static bool classofKind(Kind K) { return K == CXXDestructor; }
   2367 
   2368   friend class ASTDeclReader;
   2369   friend class ASTDeclWriter;
   2370 };
   2371 
   2372 /// \brief Represents a C++ conversion function within a class.
   2373 ///
   2374 /// For example:
   2375 ///
   2376 /// \code
   2377 /// class X {
   2378 /// public:
   2379 ///   operator bool();
   2380 /// };
   2381 /// \endcode
   2382 class CXXConversionDecl : public CXXMethodDecl {
   2383   void anchor() override;
   2384   /// Whether this conversion function declaration is marked
   2385   /// "explicit", meaning that it can only be applied when the user
   2386   /// explicitly wrote a cast. This is a C++0x feature.
   2387   bool IsExplicitSpecified : 1;
   2388 
   2389   CXXConversionDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
   2390                     const DeclarationNameInfo &NameInfo,
   2391                     QualType T, TypeSourceInfo *TInfo,
   2392                     bool isInline, bool isExplicitSpecified,
   2393                     bool isConstexpr, SourceLocation EndLocation)
   2394     : CXXMethodDecl(CXXConversion, C, RD, StartLoc, NameInfo, T, TInfo,
   2395                     SC_None, isInline, isConstexpr, EndLocation),
   2396       IsExplicitSpecified(isExplicitSpecified) { }
   2397 
   2398 public:
   2399   static CXXConversionDecl *Create(ASTContext &C, CXXRecordDecl *RD,
   2400                                    SourceLocation StartLoc,
   2401                                    const DeclarationNameInfo &NameInfo,
   2402                                    QualType T, TypeSourceInfo *TInfo,
   2403                                    bool isInline, bool isExplicit,
   2404                                    bool isConstexpr,
   2405                                    SourceLocation EndLocation);
   2406   static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2407 
   2408   /// Whether this conversion function declaration is marked
   2409   /// "explicit", meaning that it can only be used for direct initialization
   2410   /// (including explitly written casts).  This is a C++11 feature.
   2411   bool isExplicitSpecified() const { return IsExplicitSpecified; }
   2412 
   2413   /// \brief Whether this is an explicit conversion operator (C++11 and later).
   2414   ///
   2415   /// Explicit conversion operators are only considered for direct
   2416   /// initialization, e.g., when the user has explicitly written a cast.
   2417   bool isExplicit() const {
   2418     return cast<CXXConversionDecl>(getFirstDecl())->isExplicitSpecified();
   2419   }
   2420 
   2421   /// \brief Returns the type that this conversion function is converting to.
   2422   QualType getConversionType() const {
   2423     return getType()->getAs<FunctionType>()->getReturnType();
   2424   }
   2425 
   2426   /// \brief Determine whether this conversion function is a conversion from
   2427   /// a lambda closure type to a block pointer.
   2428   bool isLambdaToBlockPointerConversion() const;
   2429 
   2430   // Implement isa/cast/dyncast/etc.
   2431   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2432   static bool classofKind(Kind K) { return K == CXXConversion; }
   2433 
   2434   friend class ASTDeclReader;
   2435   friend class ASTDeclWriter;
   2436 };
   2437 
   2438 /// \brief Represents a linkage specification.
   2439 ///
   2440 /// For example:
   2441 /// \code
   2442 ///   extern "C" void foo();
   2443 /// \endcode
   2444 class LinkageSpecDecl : public Decl, public DeclContext {
   2445   virtual void anchor();
   2446 public:
   2447   /// \brief Represents the language in a linkage specification.
   2448   ///
   2449   /// The values are part of the serialization ABI for
   2450   /// ASTs and cannot be changed without altering that ABI.  To help
   2451   /// ensure a stable ABI for this, we choose the DW_LANG_ encodings
   2452   /// from the dwarf standard.
   2453   enum LanguageIDs {
   2454     lang_c = /* DW_LANG_C */ 0x0002,
   2455     lang_cxx = /* DW_LANG_C_plus_plus */ 0x0004
   2456   };
   2457 private:
   2458   /// \brief The language for this linkage specification.
   2459   unsigned Language : 3;
   2460   /// \brief True if this linkage spec has braces.
   2461   ///
   2462   /// This is needed so that hasBraces() returns the correct result while the
   2463   /// linkage spec body is being parsed.  Once RBraceLoc has been set this is
   2464   /// not used, so it doesn't need to be serialized.
   2465   unsigned HasBraces : 1;
   2466   /// \brief The source location for the extern keyword.
   2467   SourceLocation ExternLoc;
   2468   /// \brief The source location for the right brace (if valid).
   2469   SourceLocation RBraceLoc;
   2470 
   2471   LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
   2472                   SourceLocation LangLoc, LanguageIDs lang, bool HasBraces)
   2473     : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
   2474       Language(lang), HasBraces(HasBraces), ExternLoc(ExternLoc),
   2475       RBraceLoc(SourceLocation()) { }
   2476 
   2477 public:
   2478   static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
   2479                                  SourceLocation ExternLoc,
   2480                                  SourceLocation LangLoc, LanguageIDs Lang,
   2481                                  bool HasBraces);
   2482   static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2483 
   2484   /// \brief Return the language specified by this linkage specification.
   2485   LanguageIDs getLanguage() const { return LanguageIDs(Language); }
   2486   /// \brief Set the language specified by this linkage specification.
   2487   void setLanguage(LanguageIDs L) { Language = L; }
   2488 
   2489   /// \brief Determines whether this linkage specification had braces in
   2490   /// its syntactic form.
   2491   bool hasBraces() const {
   2492     assert(!RBraceLoc.isValid() || HasBraces);
   2493     return HasBraces;
   2494   }
   2495 
   2496   SourceLocation getExternLoc() const { return ExternLoc; }
   2497   SourceLocation getRBraceLoc() const { return RBraceLoc; }
   2498   void setExternLoc(SourceLocation L) { ExternLoc = L; }
   2499   void setRBraceLoc(SourceLocation L) {
   2500     RBraceLoc = L;
   2501     HasBraces = RBraceLoc.isValid();
   2502   }
   2503 
   2504   SourceLocation getLocEnd() const LLVM_READONLY {
   2505     if (hasBraces())
   2506       return getRBraceLoc();
   2507     // No braces: get the end location of the (only) declaration in context
   2508     // (if present).
   2509     return decls_empty() ? getLocation() : decls_begin()->getLocEnd();
   2510   }
   2511 
   2512   SourceRange getSourceRange() const override LLVM_READONLY {
   2513     return SourceRange(ExternLoc, getLocEnd());
   2514   }
   2515 
   2516   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2517   static bool classofKind(Kind K) { return K == LinkageSpec; }
   2518   static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
   2519     return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
   2520   }
   2521   static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
   2522     return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
   2523   }
   2524 };
   2525 
   2526 /// \brief Represents C++ using-directive.
   2527 ///
   2528 /// For example:
   2529 /// \code
   2530 ///    using namespace std;
   2531 /// \endcode
   2532 ///
   2533 /// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide
   2534 /// artificial names for all using-directives in order to store
   2535 /// them in DeclContext effectively.
   2536 class UsingDirectiveDecl : public NamedDecl {
   2537   void anchor() override;
   2538   /// \brief The location of the \c using keyword.
   2539   SourceLocation UsingLoc;
   2540 
   2541   /// \brief The location of the \c namespace keyword.
   2542   SourceLocation NamespaceLoc;
   2543 
   2544   /// \brief The nested-name-specifier that precedes the namespace.
   2545   NestedNameSpecifierLoc QualifierLoc;
   2546 
   2547   /// \brief The namespace nominated by this using-directive.
   2548   NamedDecl *NominatedNamespace;
   2549 
   2550   /// Enclosing context containing both using-directive and nominated
   2551   /// namespace.
   2552   DeclContext *CommonAncestor;
   2553 
   2554   /// \brief Returns special DeclarationName used by using-directives.
   2555   ///
   2556   /// This is only used by DeclContext for storing UsingDirectiveDecls in
   2557   /// its lookup structure.
   2558   static DeclarationName getName() {
   2559     return DeclarationName::getUsingDirectiveName();
   2560   }
   2561 
   2562   UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
   2563                      SourceLocation NamespcLoc,
   2564                      NestedNameSpecifierLoc QualifierLoc,
   2565                      SourceLocation IdentLoc,
   2566                      NamedDecl *Nominated,
   2567                      DeclContext *CommonAncestor)
   2568     : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
   2569       NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
   2570       NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) { }
   2571 
   2572 public:
   2573   /// \brief Retrieve the nested-name-specifier that qualifies the
   2574   /// name of the namespace, with source-location information.
   2575   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
   2576 
   2577   /// \brief Retrieve the nested-name-specifier that qualifies the
   2578   /// name of the namespace.
   2579   NestedNameSpecifier *getQualifier() const {
   2580     return QualifierLoc.getNestedNameSpecifier();
   2581   }
   2582 
   2583   NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
   2584   const NamedDecl *getNominatedNamespaceAsWritten() const {
   2585     return NominatedNamespace;
   2586   }
   2587 
   2588   /// \brief Returns the namespace nominated by this using-directive.
   2589   NamespaceDecl *getNominatedNamespace();
   2590 
   2591   const NamespaceDecl *getNominatedNamespace() const {
   2592     return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
   2593   }
   2594 
   2595   /// \brief Returns the common ancestor context of this using-directive and
   2596   /// its nominated namespace.
   2597   DeclContext *getCommonAncestor() { return CommonAncestor; }
   2598   const DeclContext *getCommonAncestor() const { return CommonAncestor; }
   2599 
   2600   /// \brief Return the location of the \c using keyword.
   2601   SourceLocation getUsingLoc() const { return UsingLoc; }
   2602 
   2603   // FIXME: Could omit 'Key' in name.
   2604   /// \brief Returns the location of the \c namespace keyword.
   2605   SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
   2606 
   2607   /// \brief Returns the location of this using declaration's identifier.
   2608   SourceLocation getIdentLocation() const { return getLocation(); }
   2609 
   2610   static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
   2611                                     SourceLocation UsingLoc,
   2612                                     SourceLocation NamespaceLoc,
   2613                                     NestedNameSpecifierLoc QualifierLoc,
   2614                                     SourceLocation IdentLoc,
   2615                                     NamedDecl *Nominated,
   2616                                     DeclContext *CommonAncestor);
   2617   static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2618 
   2619   SourceRange getSourceRange() const override LLVM_READONLY {
   2620     return SourceRange(UsingLoc, getLocation());
   2621   }
   2622 
   2623   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2624   static bool classofKind(Kind K) { return K == UsingDirective; }
   2625 
   2626   // Friend for getUsingDirectiveName.
   2627   friend class DeclContext;
   2628 
   2629   friend class ASTDeclReader;
   2630 };
   2631 
   2632 /// \brief Represents a C++ namespace alias.
   2633 ///
   2634 /// For example:
   2635 ///
   2636 /// \code
   2637 /// namespace Foo = Bar;
   2638 /// \endcode
   2639 class NamespaceAliasDecl : public NamedDecl {
   2640   void anchor() override;
   2641 
   2642   /// \brief The location of the \c namespace keyword.
   2643   SourceLocation NamespaceLoc;
   2644 
   2645   /// \brief The location of the namespace's identifier.
   2646   ///
   2647   /// This is accessed by TargetNameLoc.
   2648   SourceLocation IdentLoc;
   2649 
   2650   /// \brief The nested-name-specifier that precedes the namespace.
   2651   NestedNameSpecifierLoc QualifierLoc;
   2652 
   2653   /// \brief The Decl that this alias points to, either a NamespaceDecl or
   2654   /// a NamespaceAliasDecl.
   2655   NamedDecl *Namespace;
   2656 
   2657   NamespaceAliasDecl(DeclContext *DC, SourceLocation NamespaceLoc,
   2658                      SourceLocation AliasLoc, IdentifierInfo *Alias,
   2659                      NestedNameSpecifierLoc QualifierLoc,
   2660                      SourceLocation IdentLoc, NamedDecl *Namespace)
   2661     : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias),
   2662       NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
   2663       QualifierLoc(QualifierLoc), Namespace(Namespace) { }
   2664 
   2665   friend class ASTDeclReader;
   2666 
   2667 public:
   2668   /// \brief Retrieve the nested-name-specifier that qualifies the
   2669   /// name of the namespace, with source-location information.
   2670   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
   2671 
   2672   /// \brief Retrieve the nested-name-specifier that qualifies the
   2673   /// name of the namespace.
   2674   NestedNameSpecifier *getQualifier() const {
   2675     return QualifierLoc.getNestedNameSpecifier();
   2676   }
   2677 
   2678   /// \brief Retrieve the namespace declaration aliased by this directive.
   2679   NamespaceDecl *getNamespace() {
   2680     if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
   2681       return AD->getNamespace();
   2682 
   2683     return cast<NamespaceDecl>(Namespace);
   2684   }
   2685 
   2686   const NamespaceDecl *getNamespace() const {
   2687     return const_cast<NamespaceAliasDecl*>(this)->getNamespace();
   2688   }
   2689 
   2690   /// Returns the location of the alias name, i.e. 'foo' in
   2691   /// "namespace foo = ns::bar;".
   2692   SourceLocation getAliasLoc() const { return getLocation(); }
   2693 
   2694   /// Returns the location of the \c namespace keyword.
   2695   SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
   2696 
   2697   /// Returns the location of the identifier in the named namespace.
   2698   SourceLocation getTargetNameLoc() const { return IdentLoc; }
   2699 
   2700   /// \brief Retrieve the namespace that this alias refers to, which
   2701   /// may either be a NamespaceDecl or a NamespaceAliasDecl.
   2702   NamedDecl *getAliasedNamespace() const { return Namespace; }
   2703 
   2704   static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
   2705                                     SourceLocation NamespaceLoc,
   2706                                     SourceLocation AliasLoc,
   2707                                     IdentifierInfo *Alias,
   2708                                     NestedNameSpecifierLoc QualifierLoc,
   2709                                     SourceLocation IdentLoc,
   2710                                     NamedDecl *Namespace);
   2711 
   2712   static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2713 
   2714   SourceRange getSourceRange() const override LLVM_READONLY {
   2715     return SourceRange(NamespaceLoc, IdentLoc);
   2716   }
   2717 
   2718   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2719   static bool classofKind(Kind K) { return K == NamespaceAlias; }
   2720 };
   2721 
   2722 /// \brief Represents a shadow declaration introduced into a scope by a
   2723 /// (resolved) using declaration.
   2724 ///
   2725 /// For example,
   2726 /// \code
   2727 /// namespace A {
   2728 ///   void foo();
   2729 /// }
   2730 /// namespace B {
   2731 ///   using A::foo; // <- a UsingDecl
   2732 ///                 // Also creates a UsingShadowDecl for A::foo() in B
   2733 /// }
   2734 /// \endcode
   2735 class UsingShadowDecl : public NamedDecl, public Redeclarable<UsingShadowDecl> {
   2736   void anchor() override;
   2737 
   2738   /// The referenced declaration.
   2739   NamedDecl *Underlying;
   2740 
   2741   /// \brief The using declaration which introduced this decl or the next using
   2742   /// shadow declaration contained in the aforementioned using declaration.
   2743   NamedDecl *UsingOrNextShadow;
   2744   friend class UsingDecl;
   2745 
   2746   UsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc,
   2747                   UsingDecl *Using, NamedDecl *Target)
   2748     : NamedDecl(UsingShadow, DC, Loc, DeclarationName()),
   2749       redeclarable_base(C), Underlying(Target),
   2750       UsingOrNextShadow(reinterpret_cast<NamedDecl *>(Using)) {
   2751     if (Target) {
   2752       setDeclName(Target->getDeclName());
   2753       IdentifierNamespace = Target->getIdentifierNamespace();
   2754     }
   2755     setImplicit();
   2756   }
   2757 
   2758   typedef Redeclarable<UsingShadowDecl> redeclarable_base;
   2759   UsingShadowDecl *getNextRedeclarationImpl() override {
   2760     return getNextRedeclaration();
   2761   }
   2762   UsingShadowDecl *getPreviousDeclImpl() override {
   2763     return getPreviousDecl();
   2764   }
   2765   UsingShadowDecl *getMostRecentDeclImpl() override {
   2766     return getMostRecentDecl();
   2767   }
   2768 
   2769 public:
   2770   static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
   2771                                  SourceLocation Loc, UsingDecl *Using,
   2772                                  NamedDecl *Target) {
   2773     return new (C, DC) UsingShadowDecl(C, DC, Loc, Using, Target);
   2774   }
   2775 
   2776   static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2777 
   2778   typedef redeclarable_base::redecl_range redecl_range;
   2779   typedef redeclarable_base::redecl_iterator redecl_iterator;
   2780   using redeclarable_base::redecls_begin;
   2781   using redeclarable_base::redecls_end;
   2782   using redeclarable_base::redecls;
   2783   using redeclarable_base::getPreviousDecl;
   2784   using redeclarable_base::getMostRecentDecl;
   2785 
   2786   UsingShadowDecl *getCanonicalDecl() override {
   2787     return getFirstDecl();
   2788   }
   2789   const UsingShadowDecl *getCanonicalDecl() const {
   2790     return getFirstDecl();
   2791   }
   2792 
   2793   /// \brief Gets the underlying declaration which has been brought into the
   2794   /// local scope.
   2795   NamedDecl *getTargetDecl() const { return Underlying; }
   2796 
   2797   /// \brief Sets the underlying declaration which has been brought into the
   2798   /// local scope.
   2799   void setTargetDecl(NamedDecl* ND) {
   2800     assert(ND && "Target decl is null!");
   2801     Underlying = ND;
   2802     IdentifierNamespace = ND->getIdentifierNamespace();
   2803   }
   2804 
   2805   /// \brief Gets the using declaration to which this declaration is tied.
   2806   UsingDecl *getUsingDecl() const;
   2807 
   2808   /// \brief The next using shadow declaration contained in the shadow decl
   2809   /// chain of the using declaration which introduced this decl.
   2810   UsingShadowDecl *getNextUsingShadowDecl() const {
   2811     return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
   2812   }
   2813 
   2814   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2815   static bool classofKind(Kind K) { return K == Decl::UsingShadow; }
   2816 
   2817   friend class ASTDeclReader;
   2818   friend class ASTDeclWriter;
   2819 };
   2820 
   2821 /// \brief Represents a C++ using-declaration.
   2822 ///
   2823 /// For example:
   2824 /// \code
   2825 ///    using someNameSpace::someIdentifier;
   2826 /// \endcode
   2827 class UsingDecl : public NamedDecl {
   2828   void anchor() override;
   2829 
   2830   /// \brief The source location of the 'using' keyword itself.
   2831   SourceLocation UsingLocation;
   2832 
   2833   /// \brief The nested-name-specifier that precedes the name.
   2834   NestedNameSpecifierLoc QualifierLoc;
   2835 
   2836   /// \brief Provides source/type location info for the declaration name
   2837   /// embedded in the ValueDecl base class.
   2838   DeclarationNameLoc DNLoc;
   2839 
   2840   /// \brief The first shadow declaration of the shadow decl chain associated
   2841   /// with this using declaration.
   2842   ///
   2843   /// The bool member of the pair store whether this decl has the \c typename
   2844   /// keyword.
   2845   llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
   2846 
   2847   UsingDecl(DeclContext *DC, SourceLocation UL,
   2848             NestedNameSpecifierLoc QualifierLoc,
   2849             const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword)
   2850     : NamedDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
   2851       UsingLocation(UL), QualifierLoc(QualifierLoc),
   2852       DNLoc(NameInfo.getInfo()), FirstUsingShadow(nullptr, HasTypenameKeyword) {
   2853   }
   2854 
   2855 public:
   2856   /// \brief Return the source location of the 'using' keyword.
   2857   SourceLocation getUsingLoc() const { return UsingLocation; }
   2858 
   2859   /// \brief Set the source location of the 'using' keyword.
   2860   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
   2861 
   2862   /// \brief Retrieve the nested-name-specifier that qualifies the name,
   2863   /// with source-location information.
   2864   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
   2865 
   2866   /// \brief Retrieve the nested-name-specifier that qualifies the name.
   2867   NestedNameSpecifier *getQualifier() const {
   2868     return QualifierLoc.getNestedNameSpecifier();
   2869   }
   2870 
   2871   DeclarationNameInfo getNameInfo() const {
   2872     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
   2873   }
   2874 
   2875   /// \brief Return true if it is a C++03 access declaration (no 'using').
   2876   bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
   2877 
   2878   /// \brief Return true if the using declaration has 'typename'.
   2879   bool hasTypename() const { return FirstUsingShadow.getInt(); }
   2880 
   2881   /// \brief Sets whether the using declaration has 'typename'.
   2882   void setTypename(bool TN) { FirstUsingShadow.setInt(TN); }
   2883 
   2884   /// \brief Iterates through the using shadow declarations associated with
   2885   /// this using declaration.
   2886   class shadow_iterator {
   2887     /// \brief The current using shadow declaration.
   2888     UsingShadowDecl *Current;
   2889 
   2890   public:
   2891     typedef UsingShadowDecl*          value_type;
   2892     typedef UsingShadowDecl*          reference;
   2893     typedef UsingShadowDecl*          pointer;
   2894     typedef std::forward_iterator_tag iterator_category;
   2895     typedef std::ptrdiff_t            difference_type;
   2896 
   2897     shadow_iterator() : Current(nullptr) { }
   2898     explicit shadow_iterator(UsingShadowDecl *C) : Current(C) { }
   2899 
   2900     reference operator*() const { return Current; }
   2901     pointer operator->() const { return Current; }
   2902 
   2903     shadow_iterator& operator++() {
   2904       Current = Current->getNextUsingShadowDecl();
   2905       return *this;
   2906     }
   2907 
   2908     shadow_iterator operator++(int) {
   2909       shadow_iterator tmp(*this);
   2910       ++(*this);
   2911       return tmp;
   2912     }
   2913 
   2914     friend bool operator==(shadow_iterator x, shadow_iterator y) {
   2915       return x.Current == y.Current;
   2916     }
   2917     friend bool operator!=(shadow_iterator x, shadow_iterator y) {
   2918       return x.Current != y.Current;
   2919     }
   2920   };
   2921 
   2922   typedef llvm::iterator_range<shadow_iterator> shadow_range;
   2923 
   2924   shadow_range shadows() const {
   2925     return shadow_range(shadow_begin(), shadow_end());
   2926   }
   2927   shadow_iterator shadow_begin() const {
   2928     return shadow_iterator(FirstUsingShadow.getPointer());
   2929   }
   2930   shadow_iterator shadow_end() const { return shadow_iterator(); }
   2931 
   2932   /// \brief Return the number of shadowed declarations associated with this
   2933   /// using declaration.
   2934   unsigned shadow_size() const {
   2935     return std::distance(shadow_begin(), shadow_end());
   2936   }
   2937 
   2938   void addShadowDecl(UsingShadowDecl *S);
   2939   void removeShadowDecl(UsingShadowDecl *S);
   2940 
   2941   static UsingDecl *Create(ASTContext &C, DeclContext *DC,
   2942                            SourceLocation UsingL,
   2943                            NestedNameSpecifierLoc QualifierLoc,
   2944                            const DeclarationNameInfo &NameInfo,
   2945                            bool HasTypenameKeyword);
   2946 
   2947   static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2948 
   2949   SourceRange getSourceRange() const override LLVM_READONLY;
   2950 
   2951   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2952   static bool classofKind(Kind K) { return K == Using; }
   2953 
   2954   friend class ASTDeclReader;
   2955   friend class ASTDeclWriter;
   2956 };
   2957 
   2958 /// \brief Represents a dependent using declaration which was not marked with
   2959 /// \c typename.
   2960 ///
   2961 /// Unlike non-dependent using declarations, these *only* bring through
   2962 /// non-types; otherwise they would break two-phase lookup.
   2963 ///
   2964 /// \code
   2965 /// template \<class T> class A : public Base<T> {
   2966 ///   using Base<T>::foo;
   2967 /// };
   2968 /// \endcode
   2969 class UnresolvedUsingValueDecl : public ValueDecl {
   2970   void anchor() override;
   2971 
   2972   /// \brief The source location of the 'using' keyword
   2973   SourceLocation UsingLocation;
   2974 
   2975   /// \brief The nested-name-specifier that precedes the name.
   2976   NestedNameSpecifierLoc QualifierLoc;
   2977 
   2978   /// \brief Provides source/type location info for the declaration name
   2979   /// embedded in the ValueDecl base class.
   2980   DeclarationNameLoc DNLoc;
   2981 
   2982   UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
   2983                            SourceLocation UsingLoc,
   2984                            NestedNameSpecifierLoc QualifierLoc,
   2985                            const DeclarationNameInfo &NameInfo)
   2986     : ValueDecl(UnresolvedUsingValue, DC,
   2987                 NameInfo.getLoc(), NameInfo.getName(), Ty),
   2988       UsingLocation(UsingLoc), QualifierLoc(QualifierLoc),
   2989       DNLoc(NameInfo.getInfo())
   2990   { }
   2991 
   2992 public:
   2993   /// \brief Returns the source location of the 'using' keyword.
   2994   SourceLocation getUsingLoc() const { return UsingLocation; }
   2995 
   2996   /// \brief Set the source location of the 'using' keyword.
   2997   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
   2998 
   2999   /// \brief Return true if it is a C++03 access declaration (no 'using').
   3000   bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
   3001 
   3002   /// \brief Retrieve the nested-name-specifier that qualifies the name,
   3003   /// with source-location information.
   3004   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
   3005 
   3006   /// \brief Retrieve the nested-name-specifier that qualifies the name.
   3007   NestedNameSpecifier *getQualifier() const {
   3008     return QualifierLoc.getNestedNameSpecifier();
   3009   }
   3010 
   3011   DeclarationNameInfo getNameInfo() const {
   3012     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
   3013   }
   3014 
   3015   static UnresolvedUsingValueDecl *
   3016     Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
   3017            NestedNameSpecifierLoc QualifierLoc,
   3018            const DeclarationNameInfo &NameInfo);
   3019 
   3020   static UnresolvedUsingValueDecl *
   3021   CreateDeserialized(ASTContext &C, unsigned ID);
   3022 
   3023   SourceRange getSourceRange() const override LLVM_READONLY;
   3024 
   3025   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   3026   static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
   3027 
   3028   friend class ASTDeclReader;
   3029   friend class ASTDeclWriter;
   3030 };
   3031 
   3032 /// \brief Represents a dependent using declaration which was marked with
   3033 /// \c typename.
   3034 ///
   3035 /// \code
   3036 /// template \<class T> class A : public Base<T> {
   3037 ///   using typename Base<T>::foo;
   3038 /// };
   3039 /// \endcode
   3040 ///
   3041 /// The type associated with an unresolved using typename decl is
   3042 /// currently always a typename type.
   3043 class UnresolvedUsingTypenameDecl : public TypeDecl {
   3044   void anchor() override;
   3045 
   3046   /// \brief The source location of the 'typename' keyword
   3047   SourceLocation TypenameLocation;
   3048 
   3049   /// \brief The nested-name-specifier that precedes the name.
   3050   NestedNameSpecifierLoc QualifierLoc;
   3051 
   3052   UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
   3053                               SourceLocation TypenameLoc,
   3054                               NestedNameSpecifierLoc QualifierLoc,
   3055                               SourceLocation TargetNameLoc,
   3056                               IdentifierInfo *TargetName)
   3057     : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
   3058                UsingLoc),
   3059       TypenameLocation(TypenameLoc), QualifierLoc(QualifierLoc) { }
   3060 
   3061   friend class ASTDeclReader;
   3062 
   3063 public:
   3064   /// \brief Returns the source location of the 'using' keyword.
   3065   SourceLocation getUsingLoc() const { return getLocStart(); }
   3066 
   3067   /// \brief Returns the source location of the 'typename' keyword.
   3068   SourceLocation getTypenameLoc() const { return TypenameLocation; }
   3069 
   3070   /// \brief Retrieve the nested-name-specifier that qualifies the name,
   3071   /// with source-location information.
   3072   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
   3073 
   3074   /// \brief Retrieve the nested-name-specifier that qualifies the name.
   3075   NestedNameSpecifier *getQualifier() const {
   3076     return QualifierLoc.getNestedNameSpecifier();
   3077   }
   3078 
   3079   static UnresolvedUsingTypenameDecl *
   3080     Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
   3081            SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
   3082            SourceLocation TargetNameLoc, DeclarationName TargetName);
   3083 
   3084   static UnresolvedUsingTypenameDecl *
   3085   CreateDeserialized(ASTContext &C, unsigned ID);
   3086 
   3087   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   3088   static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
   3089 };
   3090 
   3091 /// \brief Represents a C++11 static_assert declaration.
   3092 class StaticAssertDecl : public Decl {
   3093   virtual void anchor();
   3094   llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
   3095   StringLiteral *Message;
   3096   SourceLocation RParenLoc;
   3097 
   3098   StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
   3099                    Expr *AssertExpr, StringLiteral *Message,
   3100                    SourceLocation RParenLoc, bool Failed)
   3101     : Decl(StaticAssert, DC, StaticAssertLoc),
   3102       AssertExprAndFailed(AssertExpr, Failed), Message(Message),
   3103       RParenLoc(RParenLoc) { }
   3104 
   3105 public:
   3106   static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
   3107                                   SourceLocation StaticAssertLoc,
   3108                                   Expr *AssertExpr, StringLiteral *Message,
   3109                                   SourceLocation RParenLoc, bool Failed);
   3110   static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   3111 
   3112   Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
   3113   const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
   3114 
   3115   StringLiteral *getMessage() { return Message; }
   3116   const StringLiteral *getMessage() const { return Message; }
   3117 
   3118   bool isFailed() const { return AssertExprAndFailed.getInt(); }
   3119 
   3120   SourceLocation getRParenLoc() const { return RParenLoc; }
   3121 
   3122   SourceRange getSourceRange() const override LLVM_READONLY {
   3123     return SourceRange(getLocation(), getRParenLoc());
   3124   }
   3125 
   3126   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   3127   static bool classofKind(Kind K) { return K == StaticAssert; }
   3128 
   3129   friend class ASTDeclReader;
   3130 };
   3131 
   3132 /// An instance of this class represents the declaration of a property
   3133 /// member.  This is a Microsoft extension to C++, first introduced in
   3134 /// Visual Studio .NET 2003 as a parallel to similar features in C#
   3135 /// and Managed C++.
   3136 ///
   3137 /// A property must always be a non-static class member.
   3138 ///
   3139 /// A property member superficially resembles a non-static data
   3140 /// member, except preceded by a property attribute:
   3141 ///   __declspec(property(get=GetX, put=PutX)) int x;
   3142 /// Either (but not both) of the 'get' and 'put' names may be omitted.
   3143 ///
   3144 /// A reference to a property is always an lvalue.  If the lvalue
   3145 /// undergoes lvalue-to-rvalue conversion, then a getter name is
   3146 /// required, and that member is called with no arguments.
   3147 /// If the lvalue is assigned into, then a setter name is required,
   3148 /// and that member is called with one argument, the value assigned.
   3149 /// Both operations are potentially overloaded.  Compound assignments
   3150 /// are permitted, as are the increment and decrement operators.
   3151 ///
   3152 /// The getter and putter methods are permitted to be overloaded,
   3153 /// although their return and parameter types are subject to certain
   3154 /// restrictions according to the type of the property.
   3155 ///
   3156 /// A property declared using an incomplete array type may
   3157 /// additionally be subscripted, adding extra parameters to the getter
   3158 /// and putter methods.
   3159 class MSPropertyDecl : public DeclaratorDecl {
   3160   IdentifierInfo *GetterId, *SetterId;
   3161 
   3162   MSPropertyDecl(DeclContext *DC, SourceLocation L, DeclarationName N,
   3163                  QualType T, TypeSourceInfo *TInfo, SourceLocation StartL,
   3164                  IdentifierInfo *Getter, IdentifierInfo *Setter)
   3165       : DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL),
   3166         GetterId(Getter), SetterId(Setter) {}
   3167 
   3168 public:
   3169   static MSPropertyDecl *Create(ASTContext &C, DeclContext *DC,
   3170                                 SourceLocation L, DeclarationName N, QualType T,
   3171                                 TypeSourceInfo *TInfo, SourceLocation StartL,
   3172                                 IdentifierInfo *Getter, IdentifierInfo *Setter);
   3173   static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   3174 
   3175   static bool classof(const Decl *D) { return D->getKind() == MSProperty; }
   3176 
   3177   bool hasGetter() const { return GetterId != nullptr; }
   3178   IdentifierInfo* getGetterId() const { return GetterId; }
   3179   bool hasSetter() const { return SetterId != nullptr; }
   3180   IdentifierInfo* getSetterId() const { return SetterId; }
   3181 
   3182   friend class ASTDeclReader;
   3183 };
   3184 
   3185 /// Insertion operator for diagnostics.  This allows sending an AccessSpecifier
   3186 /// into a diagnostic with <<.
   3187 const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
   3188                                     AccessSpecifier AS);
   3189 
   3190 const PartialDiagnostic &operator<<(const PartialDiagnostic &DB,
   3191                                     AccessSpecifier AS);
   3192 
   3193 } // end namespace clang
   3194 
   3195 #endif
   3196