1 /* 2 * Copyright (C) 2006, 2008 Apple Inc. All rights reserved. 3 * Copyright (C) 2009 Google Inc. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY 15 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 17 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR 18 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 19 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 20 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 22 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include "config.h" 28 #include "platform/Timer.h" 29 30 #include "platform/PlatformThreadData.h" 31 #include "platform/ThreadTimers.h" 32 #include "wtf/CurrentTime.h" 33 #include "wtf/HashSet.h" 34 #include <limits.h> 35 #include <math.h> 36 #include <limits> 37 38 namespace blink { 39 40 class TimerHeapReference; 41 42 // Timers are stored in a heap data structure, used to implement a priority queue. 43 // This allows us to efficiently determine which timer needs to fire the soonest. 44 // Then we set a single shared system timer to fire at that time. 45 // 46 // When a timer's "next fire time" changes, we need to move it around in the priority queue. 47 static Vector<TimerBase*>& threadGlobalTimerHeap() 48 { 49 return PlatformThreadData::current().threadTimers().timerHeap(); 50 } 51 // ---------------- 52 53 class TimerHeapPointer { 54 public: 55 TimerHeapPointer(TimerBase** pointer) : m_pointer(pointer) { } 56 TimerHeapReference operator*() const; 57 TimerBase* operator->() const { return *m_pointer; } 58 private: 59 TimerBase** m_pointer; 60 }; 61 62 class TimerHeapReference { 63 public: 64 TimerHeapReference(TimerBase*& reference) : m_reference(reference) { } 65 operator TimerBase*() const { return m_reference; } 66 TimerHeapPointer operator&() const { return &m_reference; } 67 TimerHeapReference& operator=(TimerBase*); 68 TimerHeapReference& operator=(TimerHeapReference); 69 private: 70 TimerBase*& m_reference; 71 }; 72 73 inline TimerHeapReference TimerHeapPointer::operator*() const 74 { 75 return *m_pointer; 76 } 77 78 inline TimerHeapReference& TimerHeapReference::operator=(TimerBase* timer) 79 { 80 m_reference = timer; 81 Vector<TimerBase*>& heap = timer->timerHeap(); 82 if (&m_reference >= heap.data() && &m_reference < heap.data() + heap.size()) 83 timer->m_heapIndex = &m_reference - heap.data(); 84 return *this; 85 } 86 87 inline TimerHeapReference& TimerHeapReference::operator=(TimerHeapReference b) 88 { 89 TimerBase* timer = b; 90 return *this = timer; 91 } 92 93 inline void swap(TimerHeapReference a, TimerHeapReference b) 94 { 95 TimerBase* timerA = a; 96 TimerBase* timerB = b; 97 98 // Invoke the assignment operator, since that takes care of updating m_heapIndex. 99 a = timerB; 100 b = timerA; 101 } 102 103 // ---------------- 104 105 // Class to represent iterators in the heap when calling the standard library heap algorithms. 106 // Uses a custom pointer and reference type that update indices for pointers in the heap. 107 class TimerHeapIterator : public std::iterator<std::random_access_iterator_tag, TimerBase*, ptrdiff_t, TimerHeapPointer, TimerHeapReference> { 108 public: 109 explicit TimerHeapIterator(TimerBase** pointer) : m_pointer(pointer) { checkConsistency(); } 110 111 TimerHeapIterator& operator++() { checkConsistency(); ++m_pointer; checkConsistency(); return *this; } 112 TimerHeapIterator operator++(int) { checkConsistency(1); return TimerHeapIterator(m_pointer++); } 113 114 TimerHeapIterator& operator--() { checkConsistency(); --m_pointer; checkConsistency(); return *this; } 115 TimerHeapIterator operator--(int) { checkConsistency(-1); return TimerHeapIterator(m_pointer--); } 116 117 TimerHeapIterator& operator+=(ptrdiff_t i) { checkConsistency(); m_pointer += i; checkConsistency(); return *this; } 118 TimerHeapIterator& operator-=(ptrdiff_t i) { checkConsistency(); m_pointer -= i; checkConsistency(); return *this; } 119 120 TimerHeapReference operator*() const { return TimerHeapReference(*m_pointer); } 121 TimerHeapReference operator[](ptrdiff_t i) const { return TimerHeapReference(m_pointer[i]); } 122 TimerBase* operator->() const { return *m_pointer; } 123 124 private: 125 void checkConsistency(ptrdiff_t offset = 0) const 126 { 127 ASSERT(m_pointer >= threadGlobalTimerHeap().data()); 128 ASSERT(m_pointer <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size()); 129 ASSERT_UNUSED(offset, m_pointer + offset >= threadGlobalTimerHeap().data()); 130 ASSERT_UNUSED(offset, m_pointer + offset <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size()); 131 } 132 133 friend bool operator==(TimerHeapIterator, TimerHeapIterator); 134 friend bool operator!=(TimerHeapIterator, TimerHeapIterator); 135 friend bool operator<(TimerHeapIterator, TimerHeapIterator); 136 friend bool operator>(TimerHeapIterator, TimerHeapIterator); 137 friend bool operator<=(TimerHeapIterator, TimerHeapIterator); 138 friend bool operator>=(TimerHeapIterator, TimerHeapIterator); 139 140 friend TimerHeapIterator operator+(TimerHeapIterator, size_t); 141 friend TimerHeapIterator operator+(size_t, TimerHeapIterator); 142 143 friend TimerHeapIterator operator-(TimerHeapIterator, size_t); 144 friend ptrdiff_t operator-(TimerHeapIterator, TimerHeapIterator); 145 146 TimerBase** m_pointer; 147 }; 148 149 inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer == b.m_pointer; } 150 inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer != b.m_pointer; } 151 inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer < b.m_pointer; } 152 inline bool operator>(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer > b.m_pointer; } 153 inline bool operator<=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer <= b.m_pointer; } 154 inline bool operator>=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer >= b.m_pointer; } 155 156 inline TimerHeapIterator operator+(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer + b); } 157 inline TimerHeapIterator operator+(size_t a, TimerHeapIterator b) { return TimerHeapIterator(a + b.m_pointer); } 158 159 inline TimerHeapIterator operator-(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer - b); } 160 inline ptrdiff_t operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer - b.m_pointer; } 161 162 // ---------------- 163 164 class TimerHeapLessThanFunction { 165 public: 166 bool operator()(const TimerBase*, const TimerBase*) const; 167 }; 168 169 inline bool TimerHeapLessThanFunction::operator()(const TimerBase* a, const TimerBase* b) const 170 { 171 // The comparisons below are "backwards" because the heap puts the largest 172 // element first and we want the lowest time to be the first one in the heap. 173 double aFireTime = a->m_nextFireTime; 174 double bFireTime = b->m_nextFireTime; 175 if (bFireTime != aFireTime) 176 return bFireTime < aFireTime; 177 178 // We need to look at the difference of the insertion orders instead of comparing the two 179 // outright in case of overflow. 180 unsigned difference = a->m_heapInsertionOrder - b->m_heapInsertionOrder; 181 return difference < std::numeric_limits<unsigned>::max() / 2; 182 } 183 184 // ---------------- 185 186 TimerBase::TimerBase() 187 : m_nextFireTime(0) 188 , m_unalignedNextFireTime(0) 189 , m_repeatInterval(0) 190 , m_heapIndex(-1) 191 , m_cachedThreadGlobalTimerHeap(0) 192 #if ENABLE(ASSERT) 193 , m_thread(currentThread()) 194 #endif 195 { 196 } 197 198 TimerBase::~TimerBase() 199 { 200 stop(); 201 ASSERT(!inHeap()); 202 } 203 204 void TimerBase::start(double nextFireInterval, double repeatInterval, const TraceLocation& caller) 205 { 206 ASSERT(m_thread == currentThread()); 207 208 m_location = caller; 209 m_repeatInterval = repeatInterval; 210 setNextFireTime(monotonicallyIncreasingTime() + nextFireInterval); 211 } 212 213 void TimerBase::stop() 214 { 215 ASSERT(m_thread == currentThread()); 216 217 m_repeatInterval = 0; 218 setNextFireTime(0); 219 220 ASSERT(m_nextFireTime == 0); 221 ASSERT(m_repeatInterval == 0); 222 ASSERT(!inHeap()); 223 } 224 225 double TimerBase::nextFireInterval() const 226 { 227 ASSERT(isActive()); 228 double current = monotonicallyIncreasingTime(); 229 if (m_nextFireTime < current) 230 return 0; 231 return m_nextFireTime - current; 232 } 233 234 inline void TimerBase::checkHeapIndex() const 235 { 236 ASSERT(timerHeap() == threadGlobalTimerHeap()); 237 ASSERT(!timerHeap().isEmpty()); 238 ASSERT(m_heapIndex >= 0); 239 ASSERT(m_heapIndex < static_cast<int>(timerHeap().size())); 240 ASSERT(timerHeap()[m_heapIndex] == this); 241 } 242 243 inline void TimerBase::checkConsistency() const 244 { 245 // Timers should be in the heap if and only if they have a non-zero next fire time. 246 ASSERT(inHeap() == (m_nextFireTime != 0)); 247 if (inHeap()) 248 checkHeapIndex(); 249 } 250 251 void TimerBase::heapDecreaseKey() 252 { 253 ASSERT(m_nextFireTime != 0); 254 checkHeapIndex(); 255 TimerBase** heapData = timerHeap().data(); 256 push_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + m_heapIndex + 1), TimerHeapLessThanFunction()); 257 checkHeapIndex(); 258 } 259 260 inline void TimerBase::heapDelete() 261 { 262 ASSERT(m_nextFireTime == 0); 263 heapPop(); 264 timerHeap().removeLast(); 265 m_heapIndex = -1; 266 } 267 268 void TimerBase::heapDeleteMin() 269 { 270 ASSERT(m_nextFireTime == 0); 271 heapPopMin(); 272 timerHeap().removeLast(); 273 m_heapIndex = -1; 274 } 275 276 inline void TimerBase::heapIncreaseKey() 277 { 278 ASSERT(m_nextFireTime != 0); 279 heapPop(); 280 heapDecreaseKey(); 281 } 282 283 inline void TimerBase::heapInsert() 284 { 285 ASSERT(!inHeap()); 286 timerHeap().append(this); 287 m_heapIndex = timerHeap().size() - 1; 288 heapDecreaseKey(); 289 } 290 291 inline void TimerBase::heapPop() 292 { 293 // Temporarily force this timer to have the minimum key so we can pop it. 294 double fireTime = m_nextFireTime; 295 m_nextFireTime = -std::numeric_limits<double>::infinity(); 296 heapDecreaseKey(); 297 heapPopMin(); 298 m_nextFireTime = fireTime; 299 } 300 301 void TimerBase::heapPopMin() 302 { 303 ASSERT(this == timerHeap().first()); 304 checkHeapIndex(); 305 Vector<TimerBase*>& heap = timerHeap(); 306 TimerBase** heapData = heap.data(); 307 pop_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + heap.size()), TimerHeapLessThanFunction()); 308 checkHeapIndex(); 309 ASSERT(this == timerHeap().last()); 310 } 311 312 static inline bool parentHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned currentIndex) 313 { 314 if (!currentIndex) 315 return true; 316 unsigned parentIndex = (currentIndex - 1) / 2; 317 TimerHeapLessThanFunction compareHeapPosition; 318 return compareHeapPosition(current, heap[parentIndex]); 319 } 320 321 static inline bool childHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned childIndex) 322 { 323 if (childIndex >= heap.size()) 324 return true; 325 TimerHeapLessThanFunction compareHeapPosition; 326 return compareHeapPosition(heap[childIndex], current); 327 } 328 329 bool TimerBase::hasValidHeapPosition() const 330 { 331 ASSERT(m_nextFireTime); 332 if (!inHeap()) 333 return false; 334 // Check if the heap property still holds with the new fire time. If it does we don't need to do anything. 335 // This assumes that the STL heap is a standard binary heap. In an unlikely event it is not, the assertions 336 // in updateHeapIfNeeded() will get hit. 337 const Vector<TimerBase*>& heap = timerHeap(); 338 if (!parentHeapPropertyHolds(this, heap, m_heapIndex)) 339 return false; 340 unsigned childIndex1 = 2 * m_heapIndex + 1; 341 unsigned childIndex2 = childIndex1 + 1; 342 return childHeapPropertyHolds(this, heap, childIndex1) && childHeapPropertyHolds(this, heap, childIndex2); 343 } 344 345 void TimerBase::updateHeapIfNeeded(double oldTime) 346 { 347 if (m_nextFireTime && hasValidHeapPosition()) 348 return; 349 #if ENABLE(ASSERT) 350 int oldHeapIndex = m_heapIndex; 351 #endif 352 if (!oldTime) 353 heapInsert(); 354 else if (!m_nextFireTime) 355 heapDelete(); 356 else if (m_nextFireTime < oldTime) 357 heapDecreaseKey(); 358 else 359 heapIncreaseKey(); 360 ASSERT(m_heapIndex != oldHeapIndex); 361 ASSERT(!inHeap() || hasValidHeapPosition()); 362 } 363 364 void TimerBase::setNextFireTime(double newUnalignedTime) 365 { 366 ASSERT(m_thread == currentThread()); 367 368 if (m_unalignedNextFireTime != newUnalignedTime) 369 m_unalignedNextFireTime = newUnalignedTime; 370 371 // Accessing thread global data is slow. Cache the heap pointer. 372 if (!m_cachedThreadGlobalTimerHeap) 373 m_cachedThreadGlobalTimerHeap = &threadGlobalTimerHeap(); 374 375 // Keep heap valid while changing the next-fire time. 376 double oldTime = m_nextFireTime; 377 double newTime = alignedFireTime(newUnalignedTime); 378 if (oldTime != newTime) { 379 m_nextFireTime = newTime; 380 static unsigned currentHeapInsertionOrder; 381 m_heapInsertionOrder = currentHeapInsertionOrder++; 382 383 bool wasFirstTimerInHeap = m_heapIndex == 0; 384 385 updateHeapIfNeeded(oldTime); 386 387 bool isFirstTimerInHeap = m_heapIndex == 0; 388 389 if (wasFirstTimerInHeap || isFirstTimerInHeap) 390 PlatformThreadData::current().threadTimers().updateSharedTimer(); 391 } 392 393 checkConsistency(); 394 } 395 396 void TimerBase::fireTimersInNestedEventLoop() 397 { 398 // Redirect to ThreadTimers. 399 PlatformThreadData::current().threadTimers().fireTimersInNestedEventLoop(); 400 } 401 402 void TimerBase::didChangeAlignmentInterval() 403 { 404 setNextFireTime(m_unalignedNextFireTime); 405 } 406 407 double TimerBase::nextUnalignedFireInterval() const 408 { 409 ASSERT(isActive()); 410 return std::max(m_unalignedNextFireTime - monotonicallyIncreasingTime(), 0.0); 411 } 412 413 } // namespace blink 414 415