Home | History | Annotate | Download | only in platform
      1 /*
      2  * Copyright (C) 2006, 2008 Apple Inc. All rights reserved.
      3  * Copyright (C) 2009 Google Inc. All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  *
     14  * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
     15  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     17  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR
     18  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     19  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     20  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
     22  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     24  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25  */
     26 
     27 #include "config.h"
     28 #include "platform/Timer.h"
     29 
     30 #include "platform/PlatformThreadData.h"
     31 #include "platform/ThreadTimers.h"
     32 #include "wtf/CurrentTime.h"
     33 #include "wtf/HashSet.h"
     34 #include <limits.h>
     35 #include <math.h>
     36 #include <limits>
     37 
     38 namespace blink {
     39 
     40 class TimerHeapReference;
     41 
     42 // Timers are stored in a heap data structure, used to implement a priority queue.
     43 // This allows us to efficiently determine which timer needs to fire the soonest.
     44 // Then we set a single shared system timer to fire at that time.
     45 //
     46 // When a timer's "next fire time" changes, we need to move it around in the priority queue.
     47 static Vector<TimerBase*>& threadGlobalTimerHeap()
     48 {
     49     return PlatformThreadData::current().threadTimers().timerHeap();
     50 }
     51 // ----------------
     52 
     53 class TimerHeapPointer {
     54 public:
     55     TimerHeapPointer(TimerBase** pointer) : m_pointer(pointer) { }
     56     TimerHeapReference operator*() const;
     57     TimerBase* operator->() const { return *m_pointer; }
     58 private:
     59     TimerBase** m_pointer;
     60 };
     61 
     62 class TimerHeapReference {
     63 public:
     64     TimerHeapReference(TimerBase*& reference) : m_reference(reference) { }
     65     operator TimerBase*() const { return m_reference; }
     66     TimerHeapPointer operator&() const { return &m_reference; }
     67     TimerHeapReference& operator=(TimerBase*);
     68     TimerHeapReference& operator=(TimerHeapReference);
     69 private:
     70     TimerBase*& m_reference;
     71 };
     72 
     73 inline TimerHeapReference TimerHeapPointer::operator*() const
     74 {
     75     return *m_pointer;
     76 }
     77 
     78 inline TimerHeapReference& TimerHeapReference::operator=(TimerBase* timer)
     79 {
     80     m_reference = timer;
     81     Vector<TimerBase*>& heap = timer->timerHeap();
     82     if (&m_reference >= heap.data() && &m_reference < heap.data() + heap.size())
     83         timer->m_heapIndex = &m_reference - heap.data();
     84     return *this;
     85 }
     86 
     87 inline TimerHeapReference& TimerHeapReference::operator=(TimerHeapReference b)
     88 {
     89     TimerBase* timer = b;
     90     return *this = timer;
     91 }
     92 
     93 inline void swap(TimerHeapReference a, TimerHeapReference b)
     94 {
     95     TimerBase* timerA = a;
     96     TimerBase* timerB = b;
     97 
     98     // Invoke the assignment operator, since that takes care of updating m_heapIndex.
     99     a = timerB;
    100     b = timerA;
    101 }
    102 
    103 // ----------------
    104 
    105 // Class to represent iterators in the heap when calling the standard library heap algorithms.
    106 // Uses a custom pointer and reference type that update indices for pointers in the heap.
    107 class TimerHeapIterator : public std::iterator<std::random_access_iterator_tag, TimerBase*, ptrdiff_t, TimerHeapPointer, TimerHeapReference> {
    108 public:
    109     explicit TimerHeapIterator(TimerBase** pointer) : m_pointer(pointer) { checkConsistency(); }
    110 
    111     TimerHeapIterator& operator++() { checkConsistency(); ++m_pointer; checkConsistency(); return *this; }
    112     TimerHeapIterator operator++(int) { checkConsistency(1); return TimerHeapIterator(m_pointer++); }
    113 
    114     TimerHeapIterator& operator--() { checkConsistency(); --m_pointer; checkConsistency(); return *this; }
    115     TimerHeapIterator operator--(int) { checkConsistency(-1); return TimerHeapIterator(m_pointer--); }
    116 
    117     TimerHeapIterator& operator+=(ptrdiff_t i) { checkConsistency(); m_pointer += i; checkConsistency(); return *this; }
    118     TimerHeapIterator& operator-=(ptrdiff_t i) { checkConsistency(); m_pointer -= i; checkConsistency(); return *this; }
    119 
    120     TimerHeapReference operator*() const { return TimerHeapReference(*m_pointer); }
    121     TimerHeapReference operator[](ptrdiff_t i) const { return TimerHeapReference(m_pointer[i]); }
    122     TimerBase* operator->() const { return *m_pointer; }
    123 
    124 private:
    125     void checkConsistency(ptrdiff_t offset = 0) const
    126     {
    127         ASSERT(m_pointer >= threadGlobalTimerHeap().data());
    128         ASSERT(m_pointer <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size());
    129         ASSERT_UNUSED(offset, m_pointer + offset >= threadGlobalTimerHeap().data());
    130         ASSERT_UNUSED(offset, m_pointer + offset <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size());
    131     }
    132 
    133     friend bool operator==(TimerHeapIterator, TimerHeapIterator);
    134     friend bool operator!=(TimerHeapIterator, TimerHeapIterator);
    135     friend bool operator<(TimerHeapIterator, TimerHeapIterator);
    136     friend bool operator>(TimerHeapIterator, TimerHeapIterator);
    137     friend bool operator<=(TimerHeapIterator, TimerHeapIterator);
    138     friend bool operator>=(TimerHeapIterator, TimerHeapIterator);
    139 
    140     friend TimerHeapIterator operator+(TimerHeapIterator, size_t);
    141     friend TimerHeapIterator operator+(size_t, TimerHeapIterator);
    142 
    143     friend TimerHeapIterator operator-(TimerHeapIterator, size_t);
    144     friend ptrdiff_t operator-(TimerHeapIterator, TimerHeapIterator);
    145 
    146     TimerBase** m_pointer;
    147 };
    148 
    149 inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer == b.m_pointer; }
    150 inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer != b.m_pointer; }
    151 inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer < b.m_pointer; }
    152 inline bool operator>(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer > b.m_pointer; }
    153 inline bool operator<=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer <= b.m_pointer; }
    154 inline bool operator>=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer >= b.m_pointer; }
    155 
    156 inline TimerHeapIterator operator+(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer + b); }
    157 inline TimerHeapIterator operator+(size_t a, TimerHeapIterator b) { return TimerHeapIterator(a + b.m_pointer); }
    158 
    159 inline TimerHeapIterator operator-(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer - b); }
    160 inline ptrdiff_t operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer - b.m_pointer; }
    161 
    162 // ----------------
    163 
    164 class TimerHeapLessThanFunction {
    165 public:
    166     bool operator()(const TimerBase*, const TimerBase*) const;
    167 };
    168 
    169 inline bool TimerHeapLessThanFunction::operator()(const TimerBase* a, const TimerBase* b) const
    170 {
    171     // The comparisons below are "backwards" because the heap puts the largest
    172     // element first and we want the lowest time to be the first one in the heap.
    173     double aFireTime = a->m_nextFireTime;
    174     double bFireTime = b->m_nextFireTime;
    175     if (bFireTime != aFireTime)
    176         return bFireTime < aFireTime;
    177 
    178     // We need to look at the difference of the insertion orders instead of comparing the two
    179     // outright in case of overflow.
    180     unsigned difference = a->m_heapInsertionOrder - b->m_heapInsertionOrder;
    181     return difference < std::numeric_limits<unsigned>::max() / 2;
    182 }
    183 
    184 // ----------------
    185 
    186 TimerBase::TimerBase()
    187     : m_nextFireTime(0)
    188     , m_unalignedNextFireTime(0)
    189     , m_repeatInterval(0)
    190     , m_heapIndex(-1)
    191     , m_cachedThreadGlobalTimerHeap(0)
    192 #if ENABLE(ASSERT)
    193     , m_thread(currentThread())
    194 #endif
    195 {
    196 }
    197 
    198 TimerBase::~TimerBase()
    199 {
    200     stop();
    201     ASSERT(!inHeap());
    202 }
    203 
    204 void TimerBase::start(double nextFireInterval, double repeatInterval, const TraceLocation& caller)
    205 {
    206     ASSERT(m_thread == currentThread());
    207 
    208     m_location = caller;
    209     m_repeatInterval = repeatInterval;
    210     setNextFireTime(monotonicallyIncreasingTime() + nextFireInterval);
    211 }
    212 
    213 void TimerBase::stop()
    214 {
    215     ASSERT(m_thread == currentThread());
    216 
    217     m_repeatInterval = 0;
    218     setNextFireTime(0);
    219 
    220     ASSERT(m_nextFireTime == 0);
    221     ASSERT(m_repeatInterval == 0);
    222     ASSERT(!inHeap());
    223 }
    224 
    225 double TimerBase::nextFireInterval() const
    226 {
    227     ASSERT(isActive());
    228     double current = monotonicallyIncreasingTime();
    229     if (m_nextFireTime < current)
    230         return 0;
    231     return m_nextFireTime - current;
    232 }
    233 
    234 inline void TimerBase::checkHeapIndex() const
    235 {
    236     ASSERT(timerHeap() == threadGlobalTimerHeap());
    237     ASSERT(!timerHeap().isEmpty());
    238     ASSERT(m_heapIndex >= 0);
    239     ASSERT(m_heapIndex < static_cast<int>(timerHeap().size()));
    240     ASSERT(timerHeap()[m_heapIndex] == this);
    241 }
    242 
    243 inline void TimerBase::checkConsistency() const
    244 {
    245     // Timers should be in the heap if and only if they have a non-zero next fire time.
    246     ASSERT(inHeap() == (m_nextFireTime != 0));
    247     if (inHeap())
    248         checkHeapIndex();
    249 }
    250 
    251 void TimerBase::heapDecreaseKey()
    252 {
    253     ASSERT(m_nextFireTime != 0);
    254     checkHeapIndex();
    255     TimerBase** heapData = timerHeap().data();
    256     push_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + m_heapIndex + 1), TimerHeapLessThanFunction());
    257     checkHeapIndex();
    258 }
    259 
    260 inline void TimerBase::heapDelete()
    261 {
    262     ASSERT(m_nextFireTime == 0);
    263     heapPop();
    264     timerHeap().removeLast();
    265     m_heapIndex = -1;
    266 }
    267 
    268 void TimerBase::heapDeleteMin()
    269 {
    270     ASSERT(m_nextFireTime == 0);
    271     heapPopMin();
    272     timerHeap().removeLast();
    273     m_heapIndex = -1;
    274 }
    275 
    276 inline void TimerBase::heapIncreaseKey()
    277 {
    278     ASSERT(m_nextFireTime != 0);
    279     heapPop();
    280     heapDecreaseKey();
    281 }
    282 
    283 inline void TimerBase::heapInsert()
    284 {
    285     ASSERT(!inHeap());
    286     timerHeap().append(this);
    287     m_heapIndex = timerHeap().size() - 1;
    288     heapDecreaseKey();
    289 }
    290 
    291 inline void TimerBase::heapPop()
    292 {
    293     // Temporarily force this timer to have the minimum key so we can pop it.
    294     double fireTime = m_nextFireTime;
    295     m_nextFireTime = -std::numeric_limits<double>::infinity();
    296     heapDecreaseKey();
    297     heapPopMin();
    298     m_nextFireTime = fireTime;
    299 }
    300 
    301 void TimerBase::heapPopMin()
    302 {
    303     ASSERT(this == timerHeap().first());
    304     checkHeapIndex();
    305     Vector<TimerBase*>& heap = timerHeap();
    306     TimerBase** heapData = heap.data();
    307     pop_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + heap.size()), TimerHeapLessThanFunction());
    308     checkHeapIndex();
    309     ASSERT(this == timerHeap().last());
    310 }
    311 
    312 static inline bool parentHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned currentIndex)
    313 {
    314     if (!currentIndex)
    315         return true;
    316     unsigned parentIndex = (currentIndex - 1) / 2;
    317     TimerHeapLessThanFunction compareHeapPosition;
    318     return compareHeapPosition(current, heap[parentIndex]);
    319 }
    320 
    321 static inline bool childHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned childIndex)
    322 {
    323     if (childIndex >= heap.size())
    324         return true;
    325     TimerHeapLessThanFunction compareHeapPosition;
    326     return compareHeapPosition(heap[childIndex], current);
    327 }
    328 
    329 bool TimerBase::hasValidHeapPosition() const
    330 {
    331     ASSERT(m_nextFireTime);
    332     if (!inHeap())
    333         return false;
    334     // Check if the heap property still holds with the new fire time. If it does we don't need to do anything.
    335     // This assumes that the STL heap is a standard binary heap. In an unlikely event it is not, the assertions
    336     // in updateHeapIfNeeded() will get hit.
    337     const Vector<TimerBase*>& heap = timerHeap();
    338     if (!parentHeapPropertyHolds(this, heap, m_heapIndex))
    339         return false;
    340     unsigned childIndex1 = 2 * m_heapIndex + 1;
    341     unsigned childIndex2 = childIndex1 + 1;
    342     return childHeapPropertyHolds(this, heap, childIndex1) && childHeapPropertyHolds(this, heap, childIndex2);
    343 }
    344 
    345 void TimerBase::updateHeapIfNeeded(double oldTime)
    346 {
    347     if (m_nextFireTime && hasValidHeapPosition())
    348         return;
    349 #if ENABLE(ASSERT)
    350     int oldHeapIndex = m_heapIndex;
    351 #endif
    352     if (!oldTime)
    353         heapInsert();
    354     else if (!m_nextFireTime)
    355         heapDelete();
    356     else if (m_nextFireTime < oldTime)
    357         heapDecreaseKey();
    358     else
    359         heapIncreaseKey();
    360     ASSERT(m_heapIndex != oldHeapIndex);
    361     ASSERT(!inHeap() || hasValidHeapPosition());
    362 }
    363 
    364 void TimerBase::setNextFireTime(double newUnalignedTime)
    365 {
    366     ASSERT(m_thread == currentThread());
    367 
    368     if (m_unalignedNextFireTime != newUnalignedTime)
    369         m_unalignedNextFireTime = newUnalignedTime;
    370 
    371     // Accessing thread global data is slow. Cache the heap pointer.
    372     if (!m_cachedThreadGlobalTimerHeap)
    373         m_cachedThreadGlobalTimerHeap = &threadGlobalTimerHeap();
    374 
    375     // Keep heap valid while changing the next-fire time.
    376     double oldTime = m_nextFireTime;
    377     double newTime = alignedFireTime(newUnalignedTime);
    378     if (oldTime != newTime) {
    379         m_nextFireTime = newTime;
    380         static unsigned currentHeapInsertionOrder;
    381         m_heapInsertionOrder = currentHeapInsertionOrder++;
    382 
    383         bool wasFirstTimerInHeap = m_heapIndex == 0;
    384 
    385         updateHeapIfNeeded(oldTime);
    386 
    387         bool isFirstTimerInHeap = m_heapIndex == 0;
    388 
    389         if (wasFirstTimerInHeap || isFirstTimerInHeap)
    390             PlatformThreadData::current().threadTimers().updateSharedTimer();
    391     }
    392 
    393     checkConsistency();
    394 }
    395 
    396 void TimerBase::fireTimersInNestedEventLoop()
    397 {
    398     // Redirect to ThreadTimers.
    399     PlatformThreadData::current().threadTimers().fireTimersInNestedEventLoop();
    400 }
    401 
    402 void TimerBase::didChangeAlignmentInterval()
    403 {
    404     setNextFireTime(m_unalignedNextFireTime);
    405 }
    406 
    407 double TimerBase::nextUnalignedFireInterval() const
    408 {
    409     ASSERT(isActive());
    410     return std::max(m_unalignedNextFireTime - monotonicallyIncreasingTime(), 0.0);
    411 }
    412 
    413 } // namespace blink
    414 
    415