1 2 /* ----------------------------------------------------------------------------------------------------------- 3 Software License for The Fraunhofer FDK AAC Codec Library for Android 4 5 Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Frderung der angewandten Forschung e.V. 6 All rights reserved. 7 8 1. INTRODUCTION 9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements 10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. 11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices. 12 13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual 14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by 15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part 16 of the MPEG specifications. 17 18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) 19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners 20 individually for the purpose of encoding or decoding bit streams in products that are compliant with 21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license 22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec 23 software may already be covered under those patent licenses when it is used for those licensed purposes only. 24 25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, 26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional 27 applications information and documentation. 28 29 2. COPYRIGHT LICENSE 30 31 Redistribution and use in source and binary forms, with or without modification, are permitted without 32 payment of copyright license fees provided that you satisfy the following conditions: 33 34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or 35 your modifications thereto in source code form. 36 37 You must retain the complete text of this software license in the documentation and/or other materials 38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. 39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your 40 modifications thereto to recipients of copies in binary form. 41 42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without 43 prior written permission. 44 45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec 46 software or your modifications thereto. 47 48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software 49 and the date of any change. For modified versions of the FDK AAC Codec, the term 50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term 51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." 52 53 3. NO PATENT LICENSE 54 55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, 56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with 57 respect to this software. 58 59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized 60 by appropriate patent licenses. 61 62 4. DISCLAIMER 63 64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors 65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties 66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, 68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits, 69 or business interruption, however caused and on any theory of liability, whether in contract, strict 70 liability, or tort (including negligence), arising in any way out of the use of this software, even if 71 advised of the possibility of such damage. 72 73 5. CONTACT INFORMATION 74 75 Fraunhofer Institute for Integrated Circuits IIS 76 Attention: Audio and Multimedia Departments - FDK AAC LL 77 Am Wolfsmantel 33 78 91058 Erlangen, Germany 79 80 www.iis.fraunhofer.de/amm 81 amm-info (at) iis.fraunhofer.de 82 ----------------------------------------------------------------------------------------------------------- */ 83 84 /******************************** MPEG Audio Encoder ************************** 85 86 Initial author: A. Horndasch (code originally from lwr) / Josef Hoepfl (FDK) 87 contents/description: intensity stereo processing 88 89 ******************************************************************************/ 90 91 #include "intensity.h" 92 #include "interface.h" 93 #include "psy_configuration.h" 94 #include "psy_const.h" 95 #include "qc_main.h" 96 #include "bit_cnt.h" 97 98 /* only set an IS seed it left/right channel correlation is above IS_CORR_THRESH */ 99 #define IS_CORR_THRESH FL2FXCONST_DBL(0.95f) 100 101 /* when expanding the IS region to more SFBs only accept an error that is 102 * not more than IS_TOTAL_ERROR_THRESH overall and 103 * not more than IS_LOCAL_ERROR_THRESH for the current SFB */ 104 #define IS_TOTAL_ERROR_THRESH FL2FXCONST_DBL(0.04f) 105 #define IS_LOCAL_ERROR_THRESH FL2FXCONST_DBL(0.01f) 106 107 /* the maximum allowed change of the intensity direction (unit: IS scale) - scaled with factor 0.25 - */ 108 #define IS_DIRECTION_DEVIATION_THRESH_SF 2 109 #define IS_DIRECTION_DEVIATION_THRESH FL2FXCONST_DBL(2.0f/(1<<IS_DIRECTION_DEVIATION_THRESH_SF)) 110 111 /* IS regions need to have a minimal percentage of the overall loudness, e.g. 0.06 == 6% */ 112 #define IS_REGION_MIN_LOUDNESS FL2FXCONST_DBL(0.1f) 113 114 /* only perform IS if IS_MIN_SFBS neighboring SFBs can be processed */ 115 #define IS_MIN_SFBS 6 116 117 /* only do IS if 118 * if IS_LEFT_RIGHT_RATIO_THRESH < sfbEnergyLeft[sfb]/sfbEnergyRight[sfb] < 1 / IS_LEFT_RIGHT_RATIO_THRESH 119 * -> no IS if the panning angle is not far from the middle, MS will do */ 120 /* this is equivalent to a scale of +/-1.02914634566 */ 121 #define IS_LEFT_RIGHT_RATIO_THRESH FL2FXCONST_DBL(0.7f) 122 123 /* scalefactor of realScale */ 124 #define REAL_SCALE_SF 1 125 126 /* scalefactor overallLoudness */ 127 #define OVERALL_LOUDNESS_SF 6 128 129 /* scalefactor for sum over max samples per goup */ 130 #define MAX_SFB_PER_GROUP_SF 6 131 132 /* scalefactor for sum of mdct spectrum */ 133 #define MDCT_SPEC_SF 6 134 135 136 typedef struct 137 { 138 139 FIXP_DBL corr_thresh; /*!< Only set an IS seed it left/right channel correlation is above corr_thresh */ 140 141 FIXP_DBL total_error_thresh; /*!< When expanding the IS region to more SFBs only accept an error that is 142 not more than 'total_error_thresh' overall. */ 143 144 FIXP_DBL local_error_thresh; /*!< When expanding the IS region to more SFBs only accept an error that is 145 not more than 'local_error_thresh' for the current SFB. */ 146 147 FIXP_DBL direction_deviation_thresh; /*!< The maximum allowed change of the intensity direction (unit: IS scale) */ 148 149 FIXP_DBL is_region_min_loudness; /*!< IS regions need to have a minimal percentage of the overall loudness, e.g. 0.06 == 6% */ 150 151 INT min_is_sfbs; /*!< Only perform IS if 'min_is_sfbs' neighboring SFBs can be processed */ 152 153 FIXP_DBL left_right_ratio_threshold; /*!< No IS if the panning angle is not far from the middle, MS will do */ 154 155 } INTENSITY_PARAMETERS; 156 157 158 /***************************************************************************** 159 160 functionname: calcSfbMaxScale 161 162 description: Calc max value in scalefactor band 163 164 input: *mdctSpectrum 165 l1 166 l2 167 168 output: none 169 170 returns: scalefactor 171 172 *****************************************************************************/ 173 static INT 174 calcSfbMaxScale(const FIXP_DBL *mdctSpectrum, 175 const INT l1, 176 const INT l2) 177 { 178 INT i; 179 INT sfbMaxScale; 180 FIXP_DBL maxSpc; 181 182 maxSpc = FL2FXCONST_DBL(0.0); 183 for (i=l1; i<l2; i++) { 184 FIXP_DBL tmp = fixp_abs((FIXP_DBL)mdctSpectrum[i]); 185 maxSpc = fixMax(maxSpc, tmp); 186 } 187 sfbMaxScale = (maxSpc==FL2FXCONST_DBL(0.0)) ? (DFRACT_BITS-2) : CntLeadingZeros(maxSpc)-1; 188 189 return sfbMaxScale; 190 } 191 192 193 /***************************************************************************** 194 195 functionname: FDKaacEnc_initIsParams 196 197 description: Initialization of intensity parameters 198 199 input: isParams 200 201 output: isParams 202 203 returns: none 204 205 *****************************************************************************/ 206 static void 207 FDKaacEnc_initIsParams(INTENSITY_PARAMETERS *isParams) 208 { 209 isParams->corr_thresh = IS_CORR_THRESH; 210 isParams->total_error_thresh = IS_TOTAL_ERROR_THRESH; 211 isParams->local_error_thresh = IS_LOCAL_ERROR_THRESH; 212 isParams->direction_deviation_thresh = IS_DIRECTION_DEVIATION_THRESH; 213 isParams->is_region_min_loudness = IS_REGION_MIN_LOUDNESS; 214 isParams->min_is_sfbs = IS_MIN_SFBS; 215 isParams->left_right_ratio_threshold = IS_LEFT_RIGHT_RATIO_THRESH; 216 } 217 218 219 /***************************************************************************** 220 221 functionname: FDKaacEnc_prepareIntensityDecision 222 223 description: Prepares intensity decision 224 225 input: sfbEnergyLeft 226 sfbEnergyRight 227 sfbEnergyLdDataLeft 228 sfbEnergyLdDataRight 229 mdctSpectrumLeft 230 sfbEnergyLdDataRight 231 isParams 232 233 output: hrrErr scale: none 234 isMask scale: none 235 realScale scale: LD_DATA_SHIFT + REAL_SCALE_SF 236 normSfbLoudness scale: none 237 238 returns: none 239 240 *****************************************************************************/ 241 static void 242 FDKaacEnc_prepareIntensityDecision(const FIXP_DBL *sfbEnergyLeft, 243 const FIXP_DBL *sfbEnergyRight, 244 const FIXP_DBL *sfbEnergyLdDataLeft, 245 const FIXP_DBL *sfbEnergyLdDataRight, 246 const FIXP_DBL *mdctSpectrumLeft, 247 const FIXP_DBL *mdctSpectrumRight, 248 const INTENSITY_PARAMETERS *isParams, 249 FIXP_DBL *hrrErr, 250 INT *isMask, 251 FIXP_DBL *realScale, 252 FIXP_DBL *normSfbLoudness, 253 const INT sfbCnt, 254 const INT sfbPerGroup, 255 const INT maxSfbPerGroup, 256 const INT *sfbOffset) 257 { 258 INT j,sfb,sfboffs; 259 INT grpCounter; 260 261 /* temporary variables to compute loudness */ 262 FIXP_DBL overallLoudness[MAX_NO_OF_GROUPS]; 263 264 /* temporary variables to compute correlation */ 265 FIXP_DBL channelCorr[MAX_GROUPED_SFB]; 266 FIXP_DBL ml, mr; 267 FIXP_DBL prod_lr; 268 FIXP_DBL square_l, square_r; 269 FIXP_DBL tmp_l, tmp_r; 270 FIXP_DBL inv_n; 271 272 FDKmemclear(channelCorr, MAX_GROUPED_SFB*sizeof(FIXP_DBL)); 273 FDKmemclear(normSfbLoudness, MAX_GROUPED_SFB*sizeof(FIXP_DBL)); 274 FDKmemclear(overallLoudness, MAX_NO_OF_GROUPS*sizeof(FIXP_DBL)); 275 FDKmemclear(realScale, MAX_GROUPED_SFB*sizeof(FIXP_DBL)); 276 277 for (grpCounter = 0, sfboffs = 0; sfboffs < sfbCnt; sfboffs += sfbPerGroup, grpCounter++) { 278 overallLoudness[grpCounter] = FL2FXCONST_DBL(0.0f); 279 for (sfb = 0; sfb < maxSfbPerGroup; sfb++) { 280 INT sL,sR,s; 281 FIXP_DBL isValue = sfbEnergyLdDataLeft[sfb+sfboffs]-sfbEnergyLdDataRight[sfb+sfboffs]; 282 283 /* delimitate intensity scale value to representable range */ 284 realScale[sfb + sfboffs] = fixMin(FL2FXCONST_DBL(60.f/(1<<(REAL_SCALE_SF+LD_DATA_SHIFT))), fixMax(FL2FXCONST_DBL(-60.f/(1<<(REAL_SCALE_SF+LD_DATA_SHIFT))), isValue)); 285 286 sL = fixMax(0,(CntLeadingZeros(sfbEnergyLeft[sfb + sfboffs])-1)); 287 sR = fixMax(0,(CntLeadingZeros(sfbEnergyRight[sfb + sfboffs])-1)); 288 s = (fixMin(sL,sR)>>2)<<2; 289 normSfbLoudness[sfb + sfboffs] = sqrtFixp(sqrtFixp(((sfbEnergyLeft[sfb + sfboffs]<<s) >> 1) + ((sfbEnergyRight[sfb + sfboffs]<<s) >> 1))) >> (s>>2); 290 291 overallLoudness[grpCounter] += normSfbLoudness[sfb + sfboffs] >> OVERALL_LOUDNESS_SF; 292 /* don't do intensity if 293 * - panning angle is too close to the middle or 294 * - one channel is non-existent or 295 * - if it is dual mono */ 296 if( (sfbEnergyLeft[sfb + sfboffs] >= fMult(isParams->left_right_ratio_threshold,sfbEnergyRight[sfb + sfboffs])) 297 && (fMult(isParams->left_right_ratio_threshold,sfbEnergyLeft[sfb + sfboffs]) <= sfbEnergyRight[sfb + sfboffs]) ) { 298 299 /* this will prevent post processing from considering this SFB for merging */ 300 hrrErr[sfb + sfboffs] = FL2FXCONST_DBL(1.0/8.0); 301 } 302 } 303 } 304 305 for (grpCounter = 0, sfboffs = 0; sfboffs < sfbCnt; sfboffs += sfbPerGroup, grpCounter++) { 306 INT invOverallLoudnessSF; 307 FIXP_DBL invOverallLoudness; 308 309 if (overallLoudness[grpCounter] == FL2FXCONST_DBL(0.0)) { 310 invOverallLoudness = FL2FXCONST_DBL(0.0); 311 invOverallLoudnessSF = 0; 312 } 313 else { 314 invOverallLoudness = fDivNorm((FIXP_DBL)MAXVAL_DBL, overallLoudness[grpCounter],&invOverallLoudnessSF); 315 invOverallLoudnessSF = invOverallLoudnessSF - OVERALL_LOUDNESS_SF + 1; /* +1: compensate fMultDiv2() in subsequent loop */ 316 } 317 invOverallLoudnessSF = fixMin(fixMax(invOverallLoudnessSF,-(DFRACT_BITS-1)),DFRACT_BITS-1); 318 319 for (sfb = 0; sfb < maxSfbPerGroup; sfb++) { 320 FIXP_DBL tmp; 321 322 tmp = fMultDiv2((normSfbLoudness[sfb + sfboffs]>>OVERALL_LOUDNESS_SF)<<OVERALL_LOUDNESS_SF,invOverallLoudness); 323 324 normSfbLoudness[sfb + sfboffs] = scaleValue(tmp, invOverallLoudnessSF); 325 326 channelCorr[sfb + sfboffs] = FL2FXCONST_DBL(0.0f); 327 328 FDK_ASSERT(50 >= 49); 329 /* max width of scalefactorband is 96; width's are always even */ 330 /* inv_n is scaled with factor 2 to compensate fMultDiv2() in subsequent loops */ 331 inv_n = GetInvInt((sfbOffset[sfb + sfboffs + 1] - sfbOffset[sfb + sfboffs])>>1); 332 333 if (inv_n > FL2FXCONST_DBL(0.0f)) { 334 INT s,sL,sR; 335 336 /* correlation := Pearson's product-moment coefficient */ 337 /* compute correlation between channels and check if it is over threshold */ 338 ml = FL2FXCONST_DBL(0.0f); 339 mr = FL2FXCONST_DBL(0.0f); 340 prod_lr = FL2FXCONST_DBL(0.0f); 341 square_l = FL2FXCONST_DBL(0.0f); 342 square_r = FL2FXCONST_DBL(0.0f); 343 344 sL = calcSfbMaxScale(mdctSpectrumLeft,sfbOffset[sfb+sfboffs],sfbOffset[sfb+sfboffs+1]); 345 sR = calcSfbMaxScale(mdctSpectrumRight,sfbOffset[sfb+sfboffs],sfbOffset[sfb+sfboffs+1]); 346 s = fixMin(sL,sR); 347 348 for (j = sfbOffset[sfb + sfboffs]; j < sfbOffset[sfb + sfboffs + 1]; j++) { 349 ml += fMultDiv2((mdctSpectrumLeft[j] << s),inv_n); // scaled with mdctScale - s + inv_n 350 mr += fMultDiv2((mdctSpectrumRight[j] << s),inv_n); // scaled with mdctScale - s + inv_n 351 } 352 ml = fMultDiv2(ml,inv_n); // scaled with mdctScale - s + inv_n 353 mr = fMultDiv2(mr,inv_n); // scaled with mdctScale - s + inv_n 354 355 for (j = sfbOffset[sfb + sfboffs]; j < sfbOffset[sfb + sfboffs + 1]; j++) { 356 tmp_l = fMultDiv2((mdctSpectrumLeft[j] << s),inv_n) - ml; // scaled with mdctScale - s + inv_n 357 tmp_r = fMultDiv2((mdctSpectrumRight[j] << s),inv_n) - mr; // scaled with mdctScale - s + inv_n 358 359 prod_lr += fMultDiv2(tmp_l,tmp_r); // scaled with 2*(mdctScale - s + inv_n) + 1 360 square_l += fPow2Div2(tmp_l); // scaled with 2*(mdctScale - s + inv_n) + 1 361 square_r += fPow2Div2(tmp_r); // scaled with 2*(mdctScale - s + inv_n) + 1 362 } 363 prod_lr = prod_lr << 1; // scaled with 2*(mdctScale - s + inv_n) 364 square_l = square_l << 1; // scaled with 2*(mdctScale - s + inv_n) 365 square_r = square_r << 1; // scaled with 2*(mdctScale - s + inv_n) 366 367 if (square_l > FL2FXCONST_DBL(0.0f) && square_r > FL2FXCONST_DBL(0.0f)) { 368 INT channelCorrSF = 0; 369 370 /* local scaling of square_l and square_r is compensated after sqrt calculation */ 371 sL = fixMax(0,(CntLeadingZeros(square_l)-1)); 372 sR = fixMax(0,(CntLeadingZeros(square_r)-1)); 373 s = ((sL + sR)>>1)<<1; 374 sL = fixMin(sL,s); 375 sR = s-sL; 376 tmp = fMult(square_l<<sL,square_r<<sR); 377 tmp = sqrtFixp(tmp); 378 379 FDK_ASSERT(tmp > FL2FXCONST_DBL(0.0f)); 380 381 /* numerator and denominator have the same scaling */ 382 if (prod_lr < FL2FXCONST_DBL(0.0f) ) { 383 channelCorr[sfb + sfboffs] = -(fDivNorm(-prod_lr,tmp,&channelCorrSF)); 384 385 } 386 else { 387 channelCorr[sfb + sfboffs] = (fDivNorm( prod_lr,tmp,&channelCorrSF)); 388 } 389 channelCorrSF = fixMin(fixMax(( channelCorrSF + ((sL+sR)>>1)),-(DFRACT_BITS-1)),DFRACT_BITS-1); 390 391 if (channelCorrSF < 0) { 392 channelCorr[sfb + sfboffs] = channelCorr[sfb + sfboffs] >> (-channelCorrSF); 393 } 394 else { 395 /* avoid overflows due to limited computational accuracy */ 396 if ( fAbs(channelCorr[sfb + sfboffs]) > (((FIXP_DBL)MAXVAL_DBL)>>channelCorrSF) ) { 397 if (channelCorr[sfb + sfboffs] < FL2FXCONST_DBL(0.0f)) 398 channelCorr[sfb + sfboffs] = -(FIXP_DBL) MAXVAL_DBL; 399 else 400 channelCorr[sfb + sfboffs] = (FIXP_DBL) MAXVAL_DBL; 401 } 402 else { 403 channelCorr[sfb + sfboffs] = channelCorr[sfb + sfboffs] << channelCorrSF; 404 } 405 } 406 } 407 } 408 409 /* for post processing: hrrErr is the error in terms of (too little) correlation 410 * weighted with the loudness of the SFB; SFBs with small hrrErr can be merged */ 411 if (hrrErr[sfb + sfboffs] == FL2FXCONST_DBL(1.0/8.0)) { 412 continue; 413 } 414 415 hrrErr[sfb + sfboffs] = fMultDiv2((FL2FXCONST_DBL(0.25f)-(channelCorr[sfb + sfboffs]>>2)),normSfbLoudness[sfb + sfboffs]); 416 417 /* set IS mask/vector to 1, if correlation is high enough */ 418 if (fAbs(channelCorr[sfb + sfboffs]) >= isParams->corr_thresh) { 419 isMask[sfb + sfboffs] = 1; 420 } 421 } 422 } 423 } 424 425 426 /***************************************************************************** 427 428 functionname: FDKaacEnc_finalizeIntensityDecision 429 430 description: Finalizes intensity decision 431 432 input: isParams scale: none 433 hrrErr scale: none 434 realIsScale scale: LD_DATA_SHIFT + REAL_SCALE_SF 435 normSfbLoudness scale: none 436 437 output: isMask scale: none 438 439 returns: none 440 441 *****************************************************************************/ 442 static void 443 FDKaacEnc_finalizeIntensityDecision(const FIXP_DBL *hrrErr, 444 INT *isMask, 445 const FIXP_DBL *realIsScale, 446 const FIXP_DBL *normSfbLoudness, 447 const INTENSITY_PARAMETERS *isParams, 448 const INT sfbCnt, 449 const INT sfbPerGroup, 450 const INT maxSfbPerGroup) 451 { 452 INT sfb,sfboffs, j; 453 FIXP_DBL isScaleLast = FL2FXCONST_DBL(0.0f); 454 INT isStartValueFound = 0; 455 456 for (sfboffs = 0; sfboffs < sfbCnt; sfboffs += sfbPerGroup) { 457 INT startIsSfb = 0; 458 INT inIsBlock = 0; 459 INT currentIsSfbCount = 0; 460 FIXP_DBL overallHrrError = FL2FXCONST_DBL(0.0f); 461 FIXP_DBL isRegionLoudness = FL2FXCONST_DBL(0.0f); 462 463 for (sfb = 0; sfb < maxSfbPerGroup; sfb++) { 464 if (isMask[sfboffs + sfb] == 1) { 465 if (currentIsSfbCount == 0) { 466 startIsSfb = sfboffs + sfb; 467 } 468 if (isStartValueFound==0) { 469 isScaleLast = realIsScale[sfboffs + sfb]; 470 isStartValueFound = 1; 471 } 472 inIsBlock = 1; 473 currentIsSfbCount++; 474 overallHrrError += hrrErr[sfboffs + sfb] >> (MAX_SFB_PER_GROUP_SF-3); 475 isRegionLoudness += normSfbLoudness[sfboffs + sfb] >> MAX_SFB_PER_GROUP_SF; 476 } 477 else { 478 /* based on correlation, IS should not be used 479 * -> use it anyway, if overall error is below threshold 480 * and if local error does not exceed threshold 481 * otherwise: check if there are enough IS SFBs 482 */ 483 if (inIsBlock) { 484 overallHrrError += hrrErr[sfboffs + sfb] >> (MAX_SFB_PER_GROUP_SF-3); 485 isRegionLoudness += normSfbLoudness[sfboffs + sfb] >> MAX_SFB_PER_GROUP_SF; 486 487 if ( (hrrErr[sfboffs + sfb] < (isParams->local_error_thresh>>3)) && (overallHrrError < (isParams->total_error_thresh>>MAX_SFB_PER_GROUP_SF)) ) { 488 currentIsSfbCount++; 489 /* overwrite correlation based decision */ 490 isMask[sfboffs + sfb] = 1; 491 } else { 492 inIsBlock = 0; 493 } 494 } 495 } 496 /* check for large direction deviation */ 497 if (inIsBlock) { 498 if( fAbs(isScaleLast-realIsScale[sfboffs + sfb]) < (isParams->direction_deviation_thresh>>(REAL_SCALE_SF+LD_DATA_SHIFT-IS_DIRECTION_DEVIATION_THRESH_SF)) ) { 499 isScaleLast = realIsScale[sfboffs + sfb]; 500 } 501 else{ 502 isMask[sfboffs + sfb] = 0; 503 inIsBlock = 0; 504 currentIsSfbCount--; 505 } 506 } 507 508 if (currentIsSfbCount > 0 && (!inIsBlock || sfb == maxSfbPerGroup - 1)) { 509 /* not enough SFBs -> do not use IS */ 510 if (currentIsSfbCount < isParams->min_is_sfbs || (isRegionLoudness < isParams->is_region_min_loudness>>MAX_SFB_PER_GROUP_SF)) { 511 for(j = startIsSfb; j <= sfboffs + sfb; j++) { 512 isMask[j] = 0; 513 } 514 isScaleLast = FL2FXCONST_DBL(0.0f); 515 isStartValueFound = 0; 516 for (j=0; j < startIsSfb; j++) { 517 if (isMask[j]!=0) { 518 isScaleLast = realIsScale[j]; 519 isStartValueFound = 1; 520 } 521 } 522 } 523 currentIsSfbCount = 0; 524 overallHrrError = FL2FXCONST_DBL(0.0f); 525 isRegionLoudness = FL2FXCONST_DBL(0.0f); 526 } 527 } 528 } 529 } 530 531 532 /***************************************************************************** 533 534 functionname: FDKaacEnc_IntensityStereoProcessing 535 536 description: Intensity stereo processing tool 537 538 input: sfbEnergyLeft 539 sfbEnergyRight 540 mdctSpectrumLeft 541 mdctSpectrumRight 542 sfbThresholdLeft 543 sfbThresholdRight 544 sfbSpreadEnLeft 545 sfbSpreadEnRight 546 sfbEnergyLdDataLeft 547 sfbEnergyLdDataRight 548 549 output: isBook 550 isScale 551 pnsData->pnsFlag 552 msDigest zeroed from start to sfbCnt 553 msMask zeroed from start to sfbCnt 554 mdctSpectrumRight zeroed where isBook!=0 555 sfbEnergyRight zeroed where isBook!=0 556 sfbSpreadEnRight zeroed where isBook!=0 557 sfbThresholdRight zeroed where isBook!=0 558 sfbEnergyLdDataRight FL2FXCONST_DBL(-1.0) where isBook!=0 559 sfbThresholdLdDataRight FL2FXCONST_DBL(-0.515625f) where isBook!=0 560 561 returns: none 562 563 *****************************************************************************/ 564 void FDKaacEnc_IntensityStereoProcessing( 565 FIXP_DBL *sfbEnergyLeft, 566 FIXP_DBL *sfbEnergyRight, 567 FIXP_DBL *mdctSpectrumLeft, 568 FIXP_DBL *mdctSpectrumRight, 569 FIXP_DBL *sfbThresholdLeft, 570 FIXP_DBL *sfbThresholdRight, 571 FIXP_DBL *sfbThresholdLdDataRight, 572 FIXP_DBL *sfbSpreadEnLeft, 573 FIXP_DBL *sfbSpreadEnRight, 574 FIXP_DBL *sfbEnergyLdDataLeft, 575 FIXP_DBL *sfbEnergyLdDataRight, 576 INT *msDigest, 577 INT *msMask, 578 const INT sfbCnt, 579 const INT sfbPerGroup, 580 const INT maxSfbPerGroup, 581 const INT *sfbOffset, 582 const INT allowIS, 583 INT *isBook, 584 INT *isScale, 585 PNS_DATA *RESTRICT pnsData[2] 586 ) 587 { 588 INT sfb,sfboffs, j; 589 FIXP_DBL scale; 590 FIXP_DBL lr; 591 FIXP_DBL hrrErr[MAX_GROUPED_SFB]; 592 FIXP_DBL normSfbLoudness[MAX_GROUPED_SFB]; 593 FIXP_DBL realIsScale[MAX_GROUPED_SFB]; 594 INTENSITY_PARAMETERS isParams; 595 INT isMask[MAX_GROUPED_SFB]; 596 597 FDKmemclear((void*)isBook,sfbCnt*sizeof(INT)); 598 FDKmemclear((void*)isMask,sfbCnt*sizeof(INT)); 599 FDKmemclear((void*)realIsScale,sfbCnt*sizeof(FIXP_DBL)); 600 FDKmemclear((void*)isScale,sfbCnt*sizeof(INT)); 601 FDKmemclear((void*)hrrErr,sfbCnt*sizeof(FIXP_DBL)); 602 603 if (!allowIS) 604 return; 605 606 FDKaacEnc_initIsParams(&isParams); 607 608 /* compute / set the following values per SFB: 609 * - left/right ratio between channels 610 * - normalized loudness 611 * + loudness == average of energy in channels to 0.25 612 * + normalization: division by sum of all SFB loudnesses 613 * - isMask (is set to 0 if channels are the same or one is 0) 614 */ 615 FDKaacEnc_prepareIntensityDecision(sfbEnergyLeft, 616 sfbEnergyRight, 617 sfbEnergyLdDataLeft, 618 sfbEnergyLdDataRight, 619 mdctSpectrumLeft, 620 mdctSpectrumRight, 621 &isParams, 622 hrrErr, 623 isMask, 624 realIsScale, 625 normSfbLoudness, 626 sfbCnt, 627 sfbPerGroup, 628 maxSfbPerGroup, 629 sfbOffset); 630 631 FDKaacEnc_finalizeIntensityDecision(hrrErr, 632 isMask, 633 realIsScale, 634 normSfbLoudness, 635 &isParams, 636 sfbCnt, 637 sfbPerGroup, 638 maxSfbPerGroup); 639 640 for (sfb=0; sfb<sfbCnt; sfb+=sfbPerGroup) { 641 for (sfboffs=0; sfboffs<maxSfbPerGroup; sfboffs++) { 642 INT sL, sR; 643 FIXP_DBL inv_n; 644 645 msMask[sfb+sfboffs] = 0; 646 if (isMask[sfb+sfboffs] == 0) { 647 continue; 648 } 649 650 if ( (sfbEnergyLeft[sfb+sfboffs] < sfbThresholdLeft[sfb+sfboffs]) 651 &&(fMult(FL2FXCONST_DBL(1.0f/1.5f),sfbEnergyRight[sfb+sfboffs]) > sfbThresholdRight[sfb+sfboffs]) ) { 652 continue; 653 } 654 /* NEW: if there is a big-enough IS region, switch off PNS */ 655 if (pnsData[0]) { 656 if(pnsData[0]->pnsFlag[sfb+sfboffs]) { 657 pnsData[0]->pnsFlag[sfb+sfboffs] = 0; 658 } 659 if(pnsData[1]->pnsFlag[sfb+sfboffs]) { 660 pnsData[1]->pnsFlag[sfb+sfboffs] = 0; 661 } 662 } 663 664 inv_n = GetInvInt((sfbOffset[sfb + sfboffs + 1] - sfbOffset[sfb + sfboffs])>>1); // scaled with 2 to compensate fMultDiv2() in subsequent loop 665 sL = calcSfbMaxScale(mdctSpectrumLeft,sfbOffset[sfb+sfboffs],sfbOffset[sfb+sfboffs+1]); 666 sR = calcSfbMaxScale(mdctSpectrumRight,sfbOffset[sfb+sfboffs],sfbOffset[sfb+sfboffs+1]); 667 668 lr = FL2FXCONST_DBL(0.0f); 669 for (j=sfbOffset[sfb+sfboffs]; j<sfbOffset[sfb+sfboffs+1]; j++) 670 lr += fMultDiv2(fMultDiv2(mdctSpectrumLeft[j]<<sL,mdctSpectrumRight[j]<<sR),inv_n); 671 lr = lr<<1; 672 673 if (lr < FL2FXCONST_DBL(0.0f)) { 674 /* This means OUT OF phase intensity stereo, cf. standard */ 675 INT s0, s1, s2; 676 FIXP_DBL tmp, d, ed = FL2FXCONST_DBL(0.0f); 677 678 s0 = fixMin(sL,sR); 679 for (j=sfbOffset[sfb+sfboffs]; j<sfbOffset[sfb+sfboffs+1]; j++) { 680 d = ((mdctSpectrumLeft[j]<<s0)>>1) - ((mdctSpectrumRight[j]<<s0)>>1); 681 ed += fMultDiv2(d,d)>>(MDCT_SPEC_SF-1); 682 } 683 msMask[sfb+sfboffs] = 1; 684 tmp = fDivNorm(sfbEnergyLeft[sfb+sfboffs],ed,&s1); 685 s2 = (s1) + (2*s0) - 2 - MDCT_SPEC_SF; 686 if (s2 & 1) { 687 tmp = tmp>>1; 688 s2 = s2+1; 689 } 690 s2 = (s2>>1) + 1; // +1 compensate fMultDiv2() in subsequent loop 691 s2 = fixMin(fixMax(s2,-(DFRACT_BITS-1)),(DFRACT_BITS-1)); 692 scale = sqrtFixp(tmp); 693 if (s2 < 0) { 694 s2 = -s2; 695 for (j=sfbOffset[sfb+sfboffs]; j<sfbOffset[sfb+sfboffs+1]; j++) { 696 mdctSpectrumLeft[j] = (fMultDiv2(mdctSpectrumLeft[j],scale) - fMultDiv2(mdctSpectrumRight[j],scale)) >> s2; 697 mdctSpectrumRight[j] = FL2FXCONST_DBL(0.0f); 698 } 699 } 700 else { 701 for (j=sfbOffset[sfb+sfboffs]; j<sfbOffset[sfb+sfboffs+1]; j++) { 702 mdctSpectrumLeft[j] = (fMultDiv2(mdctSpectrumLeft[j],scale) - fMultDiv2(mdctSpectrumRight[j],scale)) << s2; 703 mdctSpectrumRight[j] = FL2FXCONST_DBL(0.0f); 704 } 705 } 706 } 707 else { 708 /* This means IN phase intensity stereo, cf. standard */ 709 INT s0,s1,s2; 710 FIXP_DBL tmp, s, es = FL2FXCONST_DBL(0.0f); 711 712 s0 = fixMin(sL,sR); 713 for (j=sfbOffset[sfb+sfboffs]; j<sfbOffset[sfb+sfboffs+1]; j++) { 714 s = ((mdctSpectrumLeft[j]<<s0)>>1) + ((mdctSpectrumRight[j]<<s0)>>1); 715 es += fMultDiv2(s,s)>>(MDCT_SPEC_SF-1); // scaled 2*(mdctScale - s0 + 1) + MDCT_SPEC_SF 716 } 717 msMask[sfb+sfboffs] = 0; 718 tmp = fDivNorm(sfbEnergyLeft[sfb+sfboffs],es,&s1); 719 s2 = (s1) + (2*s0) - 2 - MDCT_SPEC_SF; 720 if (s2 & 1) { 721 tmp = tmp>>1; 722 s2 = s2 + 1; 723 } 724 s2 = (s2>>1) + 1; // +1 compensate fMultDiv2() in subsequent loop 725 s2 = fixMin(fixMax(s2,-(DFRACT_BITS-1)),(DFRACT_BITS-1)); 726 scale = sqrtFixp(tmp); 727 if (s2 < 0) { 728 s2 = -s2; 729 for (j=sfbOffset[sfb+sfboffs]; j<sfbOffset[sfb+sfboffs+1]; j++) { 730 mdctSpectrumLeft[j] = (fMultDiv2(mdctSpectrumLeft[j],scale) + fMultDiv2(mdctSpectrumRight[j],scale)) >> s2; 731 mdctSpectrumRight[j] = FL2FXCONST_DBL(0.0f); 732 } 733 } 734 else { 735 for (j=sfbOffset[sfb+sfboffs]; j<sfbOffset[sfb+sfboffs+1]; j++) { 736 mdctSpectrumLeft[j] = (fMultDiv2(mdctSpectrumLeft[j],scale) + fMultDiv2(mdctSpectrumRight[j],scale)) << s2; 737 mdctSpectrumRight[j] = FL2FXCONST_DBL(0.0f); 738 } 739 } 740 } 741 742 isBook[sfb+sfboffs] = CODE_BOOK_IS_IN_PHASE_NO; 743 744 if ( realIsScale[sfb+sfboffs] < FL2FXCONST_DBL(0.0f) ) { 745 isScale[sfb+sfboffs] = (INT)(((realIsScale[sfb+sfboffs]>>1)-FL2FXCONST_DBL(0.5f/(1<<(REAL_SCALE_SF+LD_DATA_SHIFT+1))))>>(DFRACT_BITS-1-REAL_SCALE_SF-LD_DATA_SHIFT-1)) + 1; 746 } 747 else { 748 isScale[sfb+sfboffs] = (INT)(((realIsScale[sfb+sfboffs]>>1)+FL2FXCONST_DBL(0.5f/(1<<(REAL_SCALE_SF+LD_DATA_SHIFT+1))))>>(DFRACT_BITS-1-REAL_SCALE_SF-LD_DATA_SHIFT-1)); 749 } 750 751 sfbEnergyRight[sfb+sfboffs] = FL2FXCONST_DBL(0.0f); 752 sfbEnergyLdDataRight[sfb+sfboffs] = FL2FXCONST_DBL(-1.0f); 753 sfbThresholdRight[sfb+sfboffs] = FL2FXCONST_DBL(0.0f); 754 sfbThresholdLdDataRight[sfb+sfboffs] = FL2FXCONST_DBL(-0.515625f); 755 sfbSpreadEnRight[sfb+sfboffs] = FL2FXCONST_DBL(0.0f); 756 757 *msDigest = MS_SOME; 758 } 759 } 760 } 761 762