Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_JSREGEXP_H_
      6 #define V8_JSREGEXP_H_
      7 
      8 #include "src/allocation.h"
      9 #include "src/assembler.h"
     10 #include "src/zone-inl.h"
     11 
     12 namespace v8 {
     13 namespace internal {
     14 
     15 class NodeVisitor;
     16 class RegExpCompiler;
     17 class RegExpMacroAssembler;
     18 class RegExpNode;
     19 class RegExpTree;
     20 class BoyerMooreLookahead;
     21 
     22 class RegExpImpl {
     23  public:
     24   // Whether V8 is compiled with native regexp support or not.
     25   static bool UsesNativeRegExp() {
     26 #ifdef V8_INTERPRETED_REGEXP
     27     return false;
     28 #else
     29     return true;
     30 #endif
     31   }
     32 
     33   // Creates a regular expression literal in the old space.
     34   // This function calls the garbage collector if necessary.
     35   MUST_USE_RESULT static MaybeHandle<Object> CreateRegExpLiteral(
     36       Handle<JSFunction> constructor,
     37       Handle<String> pattern,
     38       Handle<String> flags);
     39 
     40   // Returns a string representation of a regular expression.
     41   // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
     42   // This function calls the garbage collector if necessary.
     43   static Handle<String> ToString(Handle<Object> value);
     44 
     45   // Parses the RegExp pattern and prepares the JSRegExp object with
     46   // generic data and choice of implementation - as well as what
     47   // the implementation wants to store in the data field.
     48   // Returns false if compilation fails.
     49   MUST_USE_RESULT static MaybeHandle<Object> Compile(
     50       Handle<JSRegExp> re,
     51       Handle<String> pattern,
     52       Handle<String> flags);
     53 
     54   // See ECMA-262 section 15.10.6.2.
     55   // This function calls the garbage collector if necessary.
     56   MUST_USE_RESULT static MaybeHandle<Object> Exec(
     57       Handle<JSRegExp> regexp,
     58       Handle<String> subject,
     59       int index,
     60       Handle<JSArray> lastMatchInfo);
     61 
     62   // Prepares a JSRegExp object with Irregexp-specific data.
     63   static void IrregexpInitialize(Handle<JSRegExp> re,
     64                                  Handle<String> pattern,
     65                                  JSRegExp::Flags flags,
     66                                  int capture_register_count);
     67 
     68 
     69   static void AtomCompile(Handle<JSRegExp> re,
     70                           Handle<String> pattern,
     71                           JSRegExp::Flags flags,
     72                           Handle<String> match_pattern);
     73 
     74 
     75   static int AtomExecRaw(Handle<JSRegExp> regexp,
     76                          Handle<String> subject,
     77                          int index,
     78                          int32_t* output,
     79                          int output_size);
     80 
     81 
     82   static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
     83                                  Handle<String> subject,
     84                                  int index,
     85                                  Handle<JSArray> lastMatchInfo);
     86 
     87   enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
     88 
     89   // Prepare a RegExp for being executed one or more times (using
     90   // IrregexpExecOnce) on the subject.
     91   // This ensures that the regexp is compiled for the subject, and that
     92   // the subject is flat.
     93   // Returns the number of integer spaces required by IrregexpExecOnce
     94   // as its "registers" argument.  If the regexp cannot be compiled,
     95   // an exception is set as pending, and this function returns negative.
     96   static int IrregexpPrepare(Handle<JSRegExp> regexp,
     97                              Handle<String> subject);
     98 
     99   // Execute a regular expression on the subject, starting from index.
    100   // If matching succeeds, return the number of matches.  This can be larger
    101   // than one in the case of global regular expressions.
    102   // The captures and subcaptures are stored into the registers vector.
    103   // If matching fails, returns RE_FAILURE.
    104   // If execution fails, sets a pending exception and returns RE_EXCEPTION.
    105   static int IrregexpExecRaw(Handle<JSRegExp> regexp,
    106                              Handle<String> subject,
    107                              int index,
    108                              int32_t* output,
    109                              int output_size);
    110 
    111   // Execute an Irregexp bytecode pattern.
    112   // On a successful match, the result is a JSArray containing
    113   // captured positions.  On a failure, the result is the null value.
    114   // Returns an empty handle in case of an exception.
    115   MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec(
    116       Handle<JSRegExp> regexp,
    117       Handle<String> subject,
    118       int index,
    119       Handle<JSArray> lastMatchInfo);
    120 
    121   // Set last match info.  If match is NULL, then setting captures is omitted.
    122   static Handle<JSArray> SetLastMatchInfo(Handle<JSArray> last_match_info,
    123                                           Handle<String> subject,
    124                                           int capture_count,
    125                                           int32_t* match);
    126 
    127 
    128   class GlobalCache {
    129    public:
    130     GlobalCache(Handle<JSRegExp> regexp,
    131                 Handle<String> subject,
    132                 bool is_global,
    133                 Isolate* isolate);
    134 
    135     INLINE(~GlobalCache());
    136 
    137     // Fetch the next entry in the cache for global regexp match results.
    138     // This does not set the last match info.  Upon failure, NULL is returned.
    139     // The cause can be checked with Result().  The previous
    140     // result is still in available in memory when a failure happens.
    141     INLINE(int32_t* FetchNext());
    142 
    143     INLINE(int32_t* LastSuccessfulMatch());
    144 
    145     INLINE(bool HasException()) { return num_matches_ < 0; }
    146 
    147    private:
    148     int num_matches_;
    149     int max_matches_;
    150     int current_match_index_;
    151     int registers_per_match_;
    152     // Pointer to the last set of captures.
    153     int32_t* register_array_;
    154     int register_array_size_;
    155     Handle<JSRegExp> regexp_;
    156     Handle<String> subject_;
    157   };
    158 
    159 
    160   // Array index in the lastMatchInfo array.
    161   static const int kLastCaptureCount = 0;
    162   static const int kLastSubject = 1;
    163   static const int kLastInput = 2;
    164   static const int kFirstCapture = 3;
    165   static const int kLastMatchOverhead = 3;
    166 
    167   // Direct offset into the lastMatchInfo array.
    168   static const int kLastCaptureCountOffset =
    169       FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
    170   static const int kLastSubjectOffset =
    171       FixedArray::kHeaderSize + kLastSubject * kPointerSize;
    172   static const int kLastInputOffset =
    173       FixedArray::kHeaderSize + kLastInput * kPointerSize;
    174   static const int kFirstCaptureOffset =
    175       FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
    176 
    177   // Used to access the lastMatchInfo array.
    178   static int GetCapture(FixedArray* array, int index) {
    179     return Smi::cast(array->get(index + kFirstCapture))->value();
    180   }
    181 
    182   static void SetLastCaptureCount(FixedArray* array, int to) {
    183     array->set(kLastCaptureCount, Smi::FromInt(to));
    184   }
    185 
    186   static void SetLastSubject(FixedArray* array, String* to) {
    187     array->set(kLastSubject, to);
    188   }
    189 
    190   static void SetLastInput(FixedArray* array, String* to) {
    191     array->set(kLastInput, to);
    192   }
    193 
    194   static void SetCapture(FixedArray* array, int index, int to) {
    195     array->set(index + kFirstCapture, Smi::FromInt(to));
    196   }
    197 
    198   static int GetLastCaptureCount(FixedArray* array) {
    199     return Smi::cast(array->get(kLastCaptureCount))->value();
    200   }
    201 
    202   // For acting on the JSRegExp data FixedArray.
    203   static int IrregexpMaxRegisterCount(FixedArray* re);
    204   static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
    205   static int IrregexpNumberOfCaptures(FixedArray* re);
    206   static int IrregexpNumberOfRegisters(FixedArray* re);
    207   static ByteArray* IrregexpByteCode(FixedArray* re, bool is_one_byte);
    208   static Code* IrregexpNativeCode(FixedArray* re, bool is_one_byte);
    209 
    210   // Limit the space regexps take up on the heap.  In order to limit this we
    211   // would like to keep track of the amount of regexp code on the heap.  This
    212   // is not tracked, however.  As a conservative approximation we track the
    213   // total regexp code compiled including code that has subsequently been freed
    214   // and the total executable memory at any point.
    215   static const int kRegExpExecutableMemoryLimit = 16 * MB;
    216   static const int kRegWxpCompiledLimit = 1 * MB;
    217 
    218  private:
    219   static bool CompileIrregexp(Handle<JSRegExp> re,
    220                               Handle<String> sample_subject, bool is_one_byte);
    221   static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re,
    222                                             Handle<String> sample_subject,
    223                                             bool is_one_byte);
    224 };
    225 
    226 
    227 // Represents the location of one element relative to the intersection of
    228 // two sets. Corresponds to the four areas of a Venn diagram.
    229 enum ElementInSetsRelation {
    230   kInsideNone = 0,
    231   kInsideFirst = 1,
    232   kInsideSecond = 2,
    233   kInsideBoth = 3
    234 };
    235 
    236 
    237 // Represents code units in the range from from_ to to_, both ends are
    238 // inclusive.
    239 class CharacterRange {
    240  public:
    241   CharacterRange() : from_(0), to_(0) { }
    242   // For compatibility with the CHECK_OK macro
    243   CharacterRange(void* null) { DCHECK_EQ(NULL, null); }  //NOLINT
    244   CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
    245   static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges,
    246                              Zone* zone);
    247   static Vector<const int> GetWordBounds();
    248   static inline CharacterRange Singleton(uc16 value) {
    249     return CharacterRange(value, value);
    250   }
    251   static inline CharacterRange Range(uc16 from, uc16 to) {
    252     DCHECK(from <= to);
    253     return CharacterRange(from, to);
    254   }
    255   static inline CharacterRange Everything() {
    256     return CharacterRange(0, 0xFFFF);
    257   }
    258   bool Contains(uc16 i) { return from_ <= i && i <= to_; }
    259   uc16 from() const { return from_; }
    260   void set_from(uc16 value) { from_ = value; }
    261   uc16 to() const { return to_; }
    262   void set_to(uc16 value) { to_ = value; }
    263   bool is_valid() { return from_ <= to_; }
    264   bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
    265   bool IsSingleton() { return (from_ == to_); }
    266   void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_one_byte,
    267                           Zone* zone);
    268   static void Split(ZoneList<CharacterRange>* base,
    269                     Vector<const int> overlay,
    270                     ZoneList<CharacterRange>** included,
    271                     ZoneList<CharacterRange>** excluded,
    272                     Zone* zone);
    273   // Whether a range list is in canonical form: Ranges ordered by from value,
    274   // and ranges non-overlapping and non-adjacent.
    275   static bool IsCanonical(ZoneList<CharacterRange>* ranges);
    276   // Convert range list to canonical form. The characters covered by the ranges
    277   // will still be the same, but no character is in more than one range, and
    278   // adjacent ranges are merged. The resulting list may be shorter than the
    279   // original, but cannot be longer.
    280   static void Canonicalize(ZoneList<CharacterRange>* ranges);
    281   // Negate the contents of a character range in canonical form.
    282   static void Negate(ZoneList<CharacterRange>* src,
    283                      ZoneList<CharacterRange>* dst,
    284                      Zone* zone);
    285   static const int kStartMarker = (1 << 24);
    286   static const int kPayloadMask = (1 << 24) - 1;
    287 
    288  private:
    289   uc16 from_;
    290   uc16 to_;
    291 };
    292 
    293 
    294 // A set of unsigned integers that behaves especially well on small
    295 // integers (< 32).  May do zone-allocation.
    296 class OutSet: public ZoneObject {
    297  public:
    298   OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
    299   OutSet* Extend(unsigned value, Zone* zone);
    300   bool Get(unsigned value) const;
    301   static const unsigned kFirstLimit = 32;
    302 
    303  private:
    304   // Destructively set a value in this set.  In most cases you want
    305   // to use Extend instead to ensure that only one instance exists
    306   // that contains the same values.
    307   void Set(unsigned value, Zone* zone);
    308 
    309   // The successors are a list of sets that contain the same values
    310   // as this set and the one more value that is not present in this
    311   // set.
    312   ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
    313 
    314   OutSet(uint32_t first, ZoneList<unsigned>* remaining)
    315       : first_(first), remaining_(remaining), successors_(NULL) { }
    316   uint32_t first_;
    317   ZoneList<unsigned>* remaining_;
    318   ZoneList<OutSet*>* successors_;
    319   friend class Trace;
    320 };
    321 
    322 
    323 // A mapping from integers, specified as ranges, to a set of integers.
    324 // Used for mapping character ranges to choices.
    325 class DispatchTable : public ZoneObject {
    326  public:
    327   explicit DispatchTable(Zone* zone) : tree_(zone) { }
    328 
    329   class Entry {
    330    public:
    331     Entry() : from_(0), to_(0), out_set_(NULL) { }
    332     Entry(uc16 from, uc16 to, OutSet* out_set)
    333         : from_(from), to_(to), out_set_(out_set) { }
    334     uc16 from() { return from_; }
    335     uc16 to() { return to_; }
    336     void set_to(uc16 value) { to_ = value; }
    337     void AddValue(int value, Zone* zone) {
    338       out_set_ = out_set_->Extend(value, zone);
    339     }
    340     OutSet* out_set() { return out_set_; }
    341    private:
    342     uc16 from_;
    343     uc16 to_;
    344     OutSet* out_set_;
    345   };
    346 
    347   class Config {
    348    public:
    349     typedef uc16 Key;
    350     typedef Entry Value;
    351     static const uc16 kNoKey;
    352     static const Entry NoValue() { return Value(); }
    353     static inline int Compare(uc16 a, uc16 b) {
    354       if (a == b)
    355         return 0;
    356       else if (a < b)
    357         return -1;
    358       else
    359         return 1;
    360     }
    361   };
    362 
    363   void AddRange(CharacterRange range, int value, Zone* zone);
    364   OutSet* Get(uc16 value);
    365   void Dump();
    366 
    367   template <typename Callback>
    368   void ForEach(Callback* callback) {
    369     return tree()->ForEach(callback);
    370   }
    371 
    372  private:
    373   // There can't be a static empty set since it allocates its
    374   // successors in a zone and caches them.
    375   OutSet* empty() { return &empty_; }
    376   OutSet empty_;
    377   ZoneSplayTree<Config>* tree() { return &tree_; }
    378   ZoneSplayTree<Config> tree_;
    379 };
    380 
    381 
    382 #define FOR_EACH_NODE_TYPE(VISIT)                                    \
    383   VISIT(End)                                                         \
    384   VISIT(Action)                                                      \
    385   VISIT(Choice)                                                      \
    386   VISIT(BackReference)                                               \
    387   VISIT(Assertion)                                                   \
    388   VISIT(Text)
    389 
    390 
    391 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT)                            \
    392   VISIT(Disjunction)                                                 \
    393   VISIT(Alternative)                                                 \
    394   VISIT(Assertion)                                                   \
    395   VISIT(CharacterClass)                                              \
    396   VISIT(Atom)                                                        \
    397   VISIT(Quantifier)                                                  \
    398   VISIT(Capture)                                                     \
    399   VISIT(Lookahead)                                                   \
    400   VISIT(BackReference)                                               \
    401   VISIT(Empty)                                                       \
    402   VISIT(Text)
    403 
    404 
    405 #define FORWARD_DECLARE(Name) class RegExp##Name;
    406 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
    407 #undef FORWARD_DECLARE
    408 
    409 
    410 class TextElement FINAL BASE_EMBEDDED {
    411  public:
    412   enum TextType {
    413     ATOM,
    414     CHAR_CLASS
    415   };
    416 
    417   static TextElement Atom(RegExpAtom* atom);
    418   static TextElement CharClass(RegExpCharacterClass* char_class);
    419 
    420   int cp_offset() const { return cp_offset_; }
    421   void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
    422   int length() const;
    423 
    424   TextType text_type() const { return text_type_; }
    425 
    426   RegExpTree* tree() const { return tree_; }
    427 
    428   RegExpAtom* atom() const {
    429     DCHECK(text_type() == ATOM);
    430     return reinterpret_cast<RegExpAtom*>(tree());
    431   }
    432 
    433   RegExpCharacterClass* char_class() const {
    434     DCHECK(text_type() == CHAR_CLASS);
    435     return reinterpret_cast<RegExpCharacterClass*>(tree());
    436   }
    437 
    438  private:
    439   TextElement(TextType text_type, RegExpTree* tree)
    440       : cp_offset_(-1), text_type_(text_type), tree_(tree) {}
    441 
    442   int cp_offset_;
    443   TextType text_type_;
    444   RegExpTree* tree_;
    445 };
    446 
    447 
    448 class Trace;
    449 struct PreloadState;
    450 class GreedyLoopState;
    451 class AlternativeGenerationList;
    452 
    453 struct NodeInfo {
    454   NodeInfo()
    455       : being_analyzed(false),
    456         been_analyzed(false),
    457         follows_word_interest(false),
    458         follows_newline_interest(false),
    459         follows_start_interest(false),
    460         at_end(false),
    461         visited(false),
    462         replacement_calculated(false) { }
    463 
    464   // Returns true if the interests and assumptions of this node
    465   // matches the given one.
    466   bool Matches(NodeInfo* that) {
    467     return (at_end == that->at_end) &&
    468            (follows_word_interest == that->follows_word_interest) &&
    469            (follows_newline_interest == that->follows_newline_interest) &&
    470            (follows_start_interest == that->follows_start_interest);
    471   }
    472 
    473   // Updates the interests of this node given the interests of the
    474   // node preceding it.
    475   void AddFromPreceding(NodeInfo* that) {
    476     at_end |= that->at_end;
    477     follows_word_interest |= that->follows_word_interest;
    478     follows_newline_interest |= that->follows_newline_interest;
    479     follows_start_interest |= that->follows_start_interest;
    480   }
    481 
    482   bool HasLookbehind() {
    483     return follows_word_interest ||
    484            follows_newline_interest ||
    485            follows_start_interest;
    486   }
    487 
    488   // Sets the interests of this node to include the interests of the
    489   // following node.
    490   void AddFromFollowing(NodeInfo* that) {
    491     follows_word_interest |= that->follows_word_interest;
    492     follows_newline_interest |= that->follows_newline_interest;
    493     follows_start_interest |= that->follows_start_interest;
    494   }
    495 
    496   void ResetCompilationState() {
    497     being_analyzed = false;
    498     been_analyzed = false;
    499   }
    500 
    501   bool being_analyzed: 1;
    502   bool been_analyzed: 1;
    503 
    504   // These bits are set of this node has to know what the preceding
    505   // character was.
    506   bool follows_word_interest: 1;
    507   bool follows_newline_interest: 1;
    508   bool follows_start_interest: 1;
    509 
    510   bool at_end: 1;
    511   bool visited: 1;
    512   bool replacement_calculated: 1;
    513 };
    514 
    515 
    516 // Details of a quick mask-compare check that can look ahead in the
    517 // input stream.
    518 class QuickCheckDetails {
    519  public:
    520   QuickCheckDetails()
    521       : characters_(0),
    522         mask_(0),
    523         value_(0),
    524         cannot_match_(false) { }
    525   explicit QuickCheckDetails(int characters)
    526       : characters_(characters),
    527         mask_(0),
    528         value_(0),
    529         cannot_match_(false) { }
    530   bool Rationalize(bool one_byte);
    531   // Merge in the information from another branch of an alternation.
    532   void Merge(QuickCheckDetails* other, int from_index);
    533   // Advance the current position by some amount.
    534   void Advance(int by, bool one_byte);
    535   void Clear();
    536   bool cannot_match() { return cannot_match_; }
    537   void set_cannot_match() { cannot_match_ = true; }
    538   struct Position {
    539     Position() : mask(0), value(0), determines_perfectly(false) { }
    540     uc16 mask;
    541     uc16 value;
    542     bool determines_perfectly;
    543   };
    544   int characters() { return characters_; }
    545   void set_characters(int characters) { characters_ = characters; }
    546   Position* positions(int index) {
    547     DCHECK(index >= 0);
    548     DCHECK(index < characters_);
    549     return positions_ + index;
    550   }
    551   uint32_t mask() { return mask_; }
    552   uint32_t value() { return value_; }
    553 
    554  private:
    555   // How many characters do we have quick check information from.  This is
    556   // the same for all branches of a choice node.
    557   int characters_;
    558   Position positions_[4];
    559   // These values are the condensate of the above array after Rationalize().
    560   uint32_t mask_;
    561   uint32_t value_;
    562   // If set to true, there is no way this quick check can match at all.
    563   // E.g., if it requires to be at the start of the input, and isn't.
    564   bool cannot_match_;
    565 };
    566 
    567 
    568 extern int kUninitializedRegExpNodePlaceHolder;
    569 
    570 
    571 class RegExpNode: public ZoneObject {
    572  public:
    573   explicit RegExpNode(Zone* zone)
    574   : replacement_(NULL), trace_count_(0), zone_(zone) {
    575     bm_info_[0] = bm_info_[1] = NULL;
    576   }
    577   virtual ~RegExpNode();
    578   virtual void Accept(NodeVisitor* visitor) = 0;
    579   // Generates a goto to this node or actually generates the code at this point.
    580   virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
    581   // How many characters must this node consume at a minimum in order to
    582   // succeed.  If we have found at least 'still_to_find' characters that
    583   // must be consumed there is no need to ask any following nodes whether
    584   // they are sure to eat any more characters.  The not_at_start argument is
    585   // used to indicate that we know we are not at the start of the input.  In
    586   // this case anchored branches will always fail and can be ignored when
    587   // determining how many characters are consumed on success.
    588   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
    589   // Emits some quick code that checks whether the preloaded characters match.
    590   // Falls through on certain failure, jumps to the label on possible success.
    591   // If the node cannot make a quick check it does nothing and returns false.
    592   bool EmitQuickCheck(RegExpCompiler* compiler,
    593                       Trace* bounds_check_trace,
    594                       Trace* trace,
    595                       bool preload_has_checked_bounds,
    596                       Label* on_possible_success,
    597                       QuickCheckDetails* details_return,
    598                       bool fall_through_on_failure);
    599   // For a given number of characters this returns a mask and a value.  The
    600   // next n characters are anded with the mask and compared with the value.
    601   // A comparison failure indicates the node cannot match the next n characters.
    602   // A comparison success indicates the node may match.
    603   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    604                                     RegExpCompiler* compiler,
    605                                     int characters_filled_in,
    606                                     bool not_at_start) = 0;
    607   static const int kNodeIsTooComplexForGreedyLoops = -1;
    608   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
    609   // Only returns the successor for a text node of length 1 that matches any
    610   // character and that has no guards on it.
    611   virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
    612       RegExpCompiler* compiler) {
    613     return NULL;
    614   }
    615 
    616   // Collects information on the possible code units (mod 128) that can match if
    617   // we look forward.  This is used for a Boyer-Moore-like string searching
    618   // implementation.  TODO(erikcorry):  This should share more code with
    619   // EatsAtLeast, GetQuickCheckDetails.  The budget argument is used to limit
    620   // the number of nodes we are willing to look at in order to create this data.
    621   static const int kRecursionBudget = 200;
    622   virtual void FillInBMInfo(int offset,
    623                             int budget,
    624                             BoyerMooreLookahead* bm,
    625                             bool not_at_start) {
    626     UNREACHABLE();
    627   }
    628 
    629   // If we know that the input is one-byte then there are some nodes that can
    630   // never match.  This method returns a node that can be substituted for
    631   // itself, or NULL if the node can never match.
    632   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) {
    633     return this;
    634   }
    635   // Helper for FilterOneByte.
    636   RegExpNode* replacement() {
    637     DCHECK(info()->replacement_calculated);
    638     return replacement_;
    639   }
    640   RegExpNode* set_replacement(RegExpNode* replacement) {
    641     info()->replacement_calculated = true;
    642     replacement_ =  replacement;
    643     return replacement;  // For convenience.
    644   }
    645 
    646   // We want to avoid recalculating the lookahead info, so we store it on the
    647   // node.  Only info that is for this node is stored.  We can tell that the
    648   // info is for this node when offset == 0, so the information is calculated
    649   // relative to this node.
    650   void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
    651     if (offset == 0) set_bm_info(not_at_start, bm);
    652   }
    653 
    654   Label* label() { return &label_; }
    655   // If non-generic code is generated for a node (i.e. the node is not at the
    656   // start of the trace) then it cannot be reused.  This variable sets a limit
    657   // on how often we allow that to happen before we insist on starting a new
    658   // trace and generating generic code for a node that can be reused by flushing
    659   // the deferred actions in the current trace and generating a goto.
    660   static const int kMaxCopiesCodeGenerated = 10;
    661 
    662   NodeInfo* info() { return &info_; }
    663 
    664   BoyerMooreLookahead* bm_info(bool not_at_start) {
    665     return bm_info_[not_at_start ? 1 : 0];
    666   }
    667 
    668   Zone* zone() const { return zone_; }
    669 
    670  protected:
    671   enum LimitResult { DONE, CONTINUE };
    672   RegExpNode* replacement_;
    673 
    674   LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
    675 
    676   void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
    677     bm_info_[not_at_start ? 1 : 0] = bm;
    678   }
    679 
    680  private:
    681   static const int kFirstCharBudget = 10;
    682   Label label_;
    683   NodeInfo info_;
    684   // This variable keeps track of how many times code has been generated for
    685   // this node (in different traces).  We don't keep track of where the
    686   // generated code is located unless the code is generated at the start of
    687   // a trace, in which case it is generic and can be reused by flushing the
    688   // deferred operations in the current trace and generating a goto.
    689   int trace_count_;
    690   BoyerMooreLookahead* bm_info_[2];
    691 
    692   Zone* zone_;
    693 };
    694 
    695 
    696 // A simple closed interval.
    697 class Interval {
    698  public:
    699   Interval() : from_(kNone), to_(kNone) { }
    700   Interval(int from, int to) : from_(from), to_(to) { }
    701   Interval Union(Interval that) {
    702     if (that.from_ == kNone)
    703       return *this;
    704     else if (from_ == kNone)
    705       return that;
    706     else
    707       return Interval(Min(from_, that.from_), Max(to_, that.to_));
    708   }
    709   bool Contains(int value) {
    710     return (from_ <= value) && (value <= to_);
    711   }
    712   bool is_empty() { return from_ == kNone; }
    713   int from() const { return from_; }
    714   int to() const { return to_; }
    715   static Interval Empty() { return Interval(); }
    716   static const int kNone = -1;
    717  private:
    718   int from_;
    719   int to_;
    720 };
    721 
    722 
    723 class SeqRegExpNode: public RegExpNode {
    724  public:
    725   explicit SeqRegExpNode(RegExpNode* on_success)
    726       : RegExpNode(on_success->zone()), on_success_(on_success) { }
    727   RegExpNode* on_success() { return on_success_; }
    728   void set_on_success(RegExpNode* node) { on_success_ = node; }
    729   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
    730   virtual void FillInBMInfo(int offset,
    731                             int budget,
    732                             BoyerMooreLookahead* bm,
    733                             bool not_at_start) {
    734     on_success_->FillInBMInfo(offset, budget - 1, bm, not_at_start);
    735     if (offset == 0) set_bm_info(not_at_start, bm);
    736   }
    737 
    738  protected:
    739   RegExpNode* FilterSuccessor(int depth, bool ignore_case);
    740 
    741  private:
    742   RegExpNode* on_success_;
    743 };
    744 
    745 
    746 class ActionNode: public SeqRegExpNode {
    747  public:
    748   enum ActionType {
    749     SET_REGISTER,
    750     INCREMENT_REGISTER,
    751     STORE_POSITION,
    752     BEGIN_SUBMATCH,
    753     POSITIVE_SUBMATCH_SUCCESS,
    754     EMPTY_MATCH_CHECK,
    755     CLEAR_CAPTURES
    756   };
    757   static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
    758   static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
    759   static ActionNode* StorePosition(int reg,
    760                                    bool is_capture,
    761                                    RegExpNode* on_success);
    762   static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
    763   static ActionNode* BeginSubmatch(int stack_pointer_reg,
    764                                    int position_reg,
    765                                    RegExpNode* on_success);
    766   static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
    767                                              int restore_reg,
    768                                              int clear_capture_count,
    769                                              int clear_capture_from,
    770                                              RegExpNode* on_success);
    771   static ActionNode* EmptyMatchCheck(int start_register,
    772                                      int repetition_register,
    773                                      int repetition_limit,
    774                                      RegExpNode* on_success);
    775   virtual void Accept(NodeVisitor* visitor);
    776   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    777   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
    778   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    779                                     RegExpCompiler* compiler,
    780                                     int filled_in,
    781                                     bool not_at_start) {
    782     return on_success()->GetQuickCheckDetails(
    783         details, compiler, filled_in, not_at_start);
    784   }
    785   virtual void FillInBMInfo(int offset,
    786                             int budget,
    787                             BoyerMooreLookahead* bm,
    788                             bool not_at_start);
    789   ActionType action_type() { return action_type_; }
    790   // TODO(erikcorry): We should allow some action nodes in greedy loops.
    791   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
    792 
    793  private:
    794   union {
    795     struct {
    796       int reg;
    797       int value;
    798     } u_store_register;
    799     struct {
    800       int reg;
    801     } u_increment_register;
    802     struct {
    803       int reg;
    804       bool is_capture;
    805     } u_position_register;
    806     struct {
    807       int stack_pointer_register;
    808       int current_position_register;
    809       int clear_register_count;
    810       int clear_register_from;
    811     } u_submatch;
    812     struct {
    813       int start_register;
    814       int repetition_register;
    815       int repetition_limit;
    816     } u_empty_match_check;
    817     struct {
    818       int range_from;
    819       int range_to;
    820     } u_clear_captures;
    821   } data_;
    822   ActionNode(ActionType action_type, RegExpNode* on_success)
    823       : SeqRegExpNode(on_success),
    824         action_type_(action_type) { }
    825   ActionType action_type_;
    826   friend class DotPrinter;
    827 };
    828 
    829 
    830 class TextNode: public SeqRegExpNode {
    831  public:
    832   TextNode(ZoneList<TextElement>* elms,
    833            RegExpNode* on_success)
    834       : SeqRegExpNode(on_success),
    835         elms_(elms) { }
    836   TextNode(RegExpCharacterClass* that,
    837            RegExpNode* on_success)
    838       : SeqRegExpNode(on_success),
    839         elms_(new(zone()) ZoneList<TextElement>(1, zone())) {
    840     elms_->Add(TextElement::CharClass(that), zone());
    841   }
    842   virtual void Accept(NodeVisitor* visitor);
    843   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    844   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
    845   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    846                                     RegExpCompiler* compiler,
    847                                     int characters_filled_in,
    848                                     bool not_at_start);
    849   ZoneList<TextElement>* elements() { return elms_; }
    850   void MakeCaseIndependent(bool is_one_byte);
    851   virtual int GreedyLoopTextLength();
    852   virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
    853       RegExpCompiler* compiler);
    854   virtual void FillInBMInfo(int offset,
    855                             int budget,
    856                             BoyerMooreLookahead* bm,
    857                             bool not_at_start);
    858   void CalculateOffsets();
    859   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
    860 
    861  private:
    862   enum TextEmitPassType {
    863     NON_LATIN1_MATCH,            // Check for characters that can't match.
    864     SIMPLE_CHARACTER_MATCH,      // Case-dependent single character check.
    865     NON_LETTER_CHARACTER_MATCH,  // Check characters that have no case equivs.
    866     CASE_CHARACTER_MATCH,        // Case-independent single character check.
    867     CHARACTER_CLASS_MATCH        // Character class.
    868   };
    869   static bool SkipPass(int pass, bool ignore_case);
    870   static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
    871   static const int kLastPass = CHARACTER_CLASS_MATCH;
    872   void TextEmitPass(RegExpCompiler* compiler,
    873                     TextEmitPassType pass,
    874                     bool preloaded,
    875                     Trace* trace,
    876                     bool first_element_checked,
    877                     int* checked_up_to);
    878   int Length();
    879   ZoneList<TextElement>* elms_;
    880 };
    881 
    882 
    883 class AssertionNode: public SeqRegExpNode {
    884  public:
    885   enum AssertionType {
    886     AT_END,
    887     AT_START,
    888     AT_BOUNDARY,
    889     AT_NON_BOUNDARY,
    890     AFTER_NEWLINE
    891   };
    892   static AssertionNode* AtEnd(RegExpNode* on_success) {
    893     return new(on_success->zone()) AssertionNode(AT_END, on_success);
    894   }
    895   static AssertionNode* AtStart(RegExpNode* on_success) {
    896     return new(on_success->zone()) AssertionNode(AT_START, on_success);
    897   }
    898   static AssertionNode* AtBoundary(RegExpNode* on_success) {
    899     return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
    900   }
    901   static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
    902     return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
    903   }
    904   static AssertionNode* AfterNewline(RegExpNode* on_success) {
    905     return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
    906   }
    907   virtual void Accept(NodeVisitor* visitor);
    908   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    909   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
    910   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    911                                     RegExpCompiler* compiler,
    912                                     int filled_in,
    913                                     bool not_at_start);
    914   virtual void FillInBMInfo(int offset,
    915                             int budget,
    916                             BoyerMooreLookahead* bm,
    917                             bool not_at_start);
    918   AssertionType assertion_type() { return assertion_type_; }
    919 
    920  private:
    921   void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
    922   enum IfPrevious { kIsNonWord, kIsWord };
    923   void BacktrackIfPrevious(RegExpCompiler* compiler,
    924                            Trace* trace,
    925                            IfPrevious backtrack_if_previous);
    926   AssertionNode(AssertionType t, RegExpNode* on_success)
    927       : SeqRegExpNode(on_success), assertion_type_(t) { }
    928   AssertionType assertion_type_;
    929 };
    930 
    931 
    932 class BackReferenceNode: public SeqRegExpNode {
    933  public:
    934   BackReferenceNode(int start_reg,
    935                     int end_reg,
    936                     RegExpNode* on_success)
    937       : SeqRegExpNode(on_success),
    938         start_reg_(start_reg),
    939         end_reg_(end_reg) { }
    940   virtual void Accept(NodeVisitor* visitor);
    941   int start_register() { return start_reg_; }
    942   int end_register() { return end_reg_; }
    943   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    944   virtual int EatsAtLeast(int still_to_find,
    945                           int recursion_depth,
    946                           bool not_at_start);
    947   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    948                                     RegExpCompiler* compiler,
    949                                     int characters_filled_in,
    950                                     bool not_at_start) {
    951     return;
    952   }
    953   virtual void FillInBMInfo(int offset,
    954                             int budget,
    955                             BoyerMooreLookahead* bm,
    956                             bool not_at_start);
    957 
    958  private:
    959   int start_reg_;
    960   int end_reg_;
    961 };
    962 
    963 
    964 class EndNode: public RegExpNode {
    965  public:
    966   enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
    967   explicit EndNode(Action action, Zone* zone)
    968       : RegExpNode(zone), action_(action) { }
    969   virtual void Accept(NodeVisitor* visitor);
    970   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    971   virtual int EatsAtLeast(int still_to_find,
    972                           int recursion_depth,
    973                           bool not_at_start) { return 0; }
    974   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    975                                     RegExpCompiler* compiler,
    976                                     int characters_filled_in,
    977                                     bool not_at_start) {
    978     // Returning 0 from EatsAtLeast should ensure we never get here.
    979     UNREACHABLE();
    980   }
    981   virtual void FillInBMInfo(int offset,
    982                             int budget,
    983                             BoyerMooreLookahead* bm,
    984                             bool not_at_start) {
    985     // Returning 0 from EatsAtLeast should ensure we never get here.
    986     UNREACHABLE();
    987   }
    988 
    989  private:
    990   Action action_;
    991 };
    992 
    993 
    994 class NegativeSubmatchSuccess: public EndNode {
    995  public:
    996   NegativeSubmatchSuccess(int stack_pointer_reg,
    997                           int position_reg,
    998                           int clear_capture_count,
    999                           int clear_capture_start,
   1000                           Zone* zone)
   1001       : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
   1002         stack_pointer_register_(stack_pointer_reg),
   1003         current_position_register_(position_reg),
   1004         clear_capture_count_(clear_capture_count),
   1005         clear_capture_start_(clear_capture_start) { }
   1006   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
   1007 
   1008  private:
   1009   int stack_pointer_register_;
   1010   int current_position_register_;
   1011   int clear_capture_count_;
   1012   int clear_capture_start_;
   1013 };
   1014 
   1015 
   1016 class Guard: public ZoneObject {
   1017  public:
   1018   enum Relation { LT, GEQ };
   1019   Guard(int reg, Relation op, int value)
   1020       : reg_(reg),
   1021         op_(op),
   1022         value_(value) { }
   1023   int reg() { return reg_; }
   1024   Relation op() { return op_; }
   1025   int value() { return value_; }
   1026 
   1027  private:
   1028   int reg_;
   1029   Relation op_;
   1030   int value_;
   1031 };
   1032 
   1033 
   1034 class GuardedAlternative {
   1035  public:
   1036   explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
   1037   void AddGuard(Guard* guard, Zone* zone);
   1038   RegExpNode* node() { return node_; }
   1039   void set_node(RegExpNode* node) { node_ = node; }
   1040   ZoneList<Guard*>* guards() { return guards_; }
   1041 
   1042  private:
   1043   RegExpNode* node_;
   1044   ZoneList<Guard*>* guards_;
   1045 };
   1046 
   1047 
   1048 class AlternativeGeneration;
   1049 
   1050 
   1051 class ChoiceNode: public RegExpNode {
   1052  public:
   1053   explicit ChoiceNode(int expected_size, Zone* zone)
   1054       : RegExpNode(zone),
   1055         alternatives_(new(zone)
   1056                       ZoneList<GuardedAlternative>(expected_size, zone)),
   1057         table_(NULL),
   1058         not_at_start_(false),
   1059         being_calculated_(false) { }
   1060   virtual void Accept(NodeVisitor* visitor);
   1061   void AddAlternative(GuardedAlternative node) {
   1062     alternatives()->Add(node, zone());
   1063   }
   1064   ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
   1065   DispatchTable* GetTable(bool ignore_case);
   1066   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
   1067   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
   1068   int EatsAtLeastHelper(int still_to_find,
   1069                         int budget,
   1070                         RegExpNode* ignore_this_node,
   1071                         bool not_at_start);
   1072   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
   1073                                     RegExpCompiler* compiler,
   1074                                     int characters_filled_in,
   1075                                     bool not_at_start);
   1076   virtual void FillInBMInfo(int offset,
   1077                             int budget,
   1078                             BoyerMooreLookahead* bm,
   1079                             bool not_at_start);
   1080 
   1081   bool being_calculated() { return being_calculated_; }
   1082   bool not_at_start() { return not_at_start_; }
   1083   void set_not_at_start() { not_at_start_ = true; }
   1084   void set_being_calculated(bool b) { being_calculated_ = b; }
   1085   virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
   1086     return true;
   1087   }
   1088   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
   1089 
   1090  protected:
   1091   int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
   1092   ZoneList<GuardedAlternative>* alternatives_;
   1093 
   1094  private:
   1095   friend class DispatchTableConstructor;
   1096   friend class Analysis;
   1097   void GenerateGuard(RegExpMacroAssembler* macro_assembler,
   1098                      Guard* guard,
   1099                      Trace* trace);
   1100   int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
   1101   void EmitOutOfLineContinuation(RegExpCompiler* compiler,
   1102                                  Trace* trace,
   1103                                  GuardedAlternative alternative,
   1104                                  AlternativeGeneration* alt_gen,
   1105                                  int preload_characters,
   1106                                  bool next_expects_preload);
   1107   void SetUpPreLoad(RegExpCompiler* compiler,
   1108                     Trace* current_trace,
   1109                     PreloadState* preloads);
   1110   void AssertGuardsMentionRegisters(Trace* trace);
   1111   int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace);
   1112   Trace* EmitGreedyLoop(RegExpCompiler* compiler,
   1113                         Trace* trace,
   1114                         AlternativeGenerationList* alt_gens,
   1115                         PreloadState* preloads,
   1116                         GreedyLoopState* greedy_loop_state,
   1117                         int text_length);
   1118   void EmitChoices(RegExpCompiler* compiler,
   1119                    AlternativeGenerationList* alt_gens,
   1120                    int first_choice,
   1121                    Trace* trace,
   1122                    PreloadState* preloads);
   1123   DispatchTable* table_;
   1124   // If true, this node is never checked at the start of the input.
   1125   // Allows a new trace to start with at_start() set to false.
   1126   bool not_at_start_;
   1127   bool being_calculated_;
   1128 };
   1129 
   1130 
   1131 class NegativeLookaheadChoiceNode: public ChoiceNode {
   1132  public:
   1133   explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
   1134                                        GuardedAlternative then_do_this,
   1135                                        Zone* zone)
   1136       : ChoiceNode(2, zone) {
   1137     AddAlternative(this_must_fail);
   1138     AddAlternative(then_do_this);
   1139   }
   1140   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
   1141   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
   1142                                     RegExpCompiler* compiler,
   1143                                     int characters_filled_in,
   1144                                     bool not_at_start);
   1145   virtual void FillInBMInfo(int offset,
   1146                             int budget,
   1147                             BoyerMooreLookahead* bm,
   1148                             bool not_at_start) {
   1149     alternatives_->at(1).node()->FillInBMInfo(
   1150         offset, budget - 1, bm, not_at_start);
   1151     if (offset == 0) set_bm_info(not_at_start, bm);
   1152   }
   1153   // For a negative lookahead we don't emit the quick check for the
   1154   // alternative that is expected to fail.  This is because quick check code
   1155   // starts by loading enough characters for the alternative that takes fewest
   1156   // characters, but on a negative lookahead the negative branch did not take
   1157   // part in that calculation (EatsAtLeast) so the assumptions don't hold.
   1158   virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
   1159     return !is_first;
   1160   }
   1161   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
   1162 };
   1163 
   1164 
   1165 class LoopChoiceNode: public ChoiceNode {
   1166  public:
   1167   explicit LoopChoiceNode(bool body_can_be_zero_length, Zone* zone)
   1168       : ChoiceNode(2, zone),
   1169         loop_node_(NULL),
   1170         continue_node_(NULL),
   1171         body_can_be_zero_length_(body_can_be_zero_length)
   1172         { }
   1173   void AddLoopAlternative(GuardedAlternative alt);
   1174   void AddContinueAlternative(GuardedAlternative alt);
   1175   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
   1176   virtual int EatsAtLeast(int still_to_find,  int budget, bool not_at_start);
   1177   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
   1178                                     RegExpCompiler* compiler,
   1179                                     int characters_filled_in,
   1180                                     bool not_at_start);
   1181   virtual void FillInBMInfo(int offset,
   1182                             int budget,
   1183                             BoyerMooreLookahead* bm,
   1184                             bool not_at_start);
   1185   RegExpNode* loop_node() { return loop_node_; }
   1186   RegExpNode* continue_node() { return continue_node_; }
   1187   bool body_can_be_zero_length() { return body_can_be_zero_length_; }
   1188   virtual void Accept(NodeVisitor* visitor);
   1189   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
   1190 
   1191  private:
   1192   // AddAlternative is made private for loop nodes because alternatives
   1193   // should not be added freely, we need to keep track of which node
   1194   // goes back to the node itself.
   1195   void AddAlternative(GuardedAlternative node) {
   1196     ChoiceNode::AddAlternative(node);
   1197   }
   1198 
   1199   RegExpNode* loop_node_;
   1200   RegExpNode* continue_node_;
   1201   bool body_can_be_zero_length_;
   1202 };
   1203 
   1204 
   1205 // Improve the speed that we scan for an initial point where a non-anchored
   1206 // regexp can match by using a Boyer-Moore-like table. This is done by
   1207 // identifying non-greedy non-capturing loops in the nodes that eat any
   1208 // character one at a time.  For example in the middle of the regexp
   1209 // /foo[\s\S]*?bar/ we find such a loop.  There is also such a loop implicitly
   1210 // inserted at the start of any non-anchored regexp.
   1211 //
   1212 // When we have found such a loop we look ahead in the nodes to find the set of
   1213 // characters that can come at given distances. For example for the regexp
   1214 // /.?foo/ we know that there are at least 3 characters ahead of us, and the
   1215 // sets of characters that can occur are [any, [f, o], [o]]. We find a range in
   1216 // the lookahead info where the set of characters is reasonably constrained. In
   1217 // our example this is from index 1 to 2 (0 is not constrained). We can now
   1218 // look 3 characters ahead and if we don't find one of [f, o] (the union of
   1219 // [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
   1220 //
   1221 // For Unicode input strings we do the same, but modulo 128.
   1222 //
   1223 // We also look at the first string fed to the regexp and use that to get a hint
   1224 // of the character frequencies in the inputs. This affects the assessment of
   1225 // whether the set of characters is 'reasonably constrained'.
   1226 //
   1227 // We also have another lookahead mechanism (called quick check in the code),
   1228 // which uses a wide load of multiple characters followed by a mask and compare
   1229 // to determine whether a match is possible at this point.
   1230 enum ContainedInLattice {
   1231   kNotYet = 0,
   1232   kLatticeIn = 1,
   1233   kLatticeOut = 2,
   1234   kLatticeUnknown = 3  // Can also mean both in and out.
   1235 };
   1236 
   1237 
   1238 inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
   1239   return static_cast<ContainedInLattice>(a | b);
   1240 }
   1241 
   1242 
   1243 ContainedInLattice AddRange(ContainedInLattice a,
   1244                             const int* ranges,
   1245                             int ranges_size,
   1246                             Interval new_range);
   1247 
   1248 
   1249 class BoyerMoorePositionInfo : public ZoneObject {
   1250  public:
   1251   explicit BoyerMoorePositionInfo(Zone* zone)
   1252       : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
   1253         map_count_(0),
   1254         w_(kNotYet),
   1255         s_(kNotYet),
   1256         d_(kNotYet),
   1257         surrogate_(kNotYet) {
   1258      for (int i = 0; i < kMapSize; i++) {
   1259        map_->Add(false, zone);
   1260      }
   1261   }
   1262 
   1263   bool& at(int i) { return map_->at(i); }
   1264 
   1265   static const int kMapSize = 128;
   1266   static const int kMask = kMapSize - 1;
   1267 
   1268   int map_count() const { return map_count_; }
   1269 
   1270   void Set(int character);
   1271   void SetInterval(const Interval& interval);
   1272   void SetAll();
   1273   bool is_non_word() { return w_ == kLatticeOut; }
   1274   bool is_word() { return w_ == kLatticeIn; }
   1275 
   1276  private:
   1277   ZoneList<bool>* map_;
   1278   int map_count_;  // Number of set bits in the map.
   1279   ContainedInLattice w_;  // The \w character class.
   1280   ContainedInLattice s_;  // The \s character class.
   1281   ContainedInLattice d_;  // The \d character class.
   1282   ContainedInLattice surrogate_;  // Surrogate UTF-16 code units.
   1283 };
   1284 
   1285 
   1286 class BoyerMooreLookahead : public ZoneObject {
   1287  public:
   1288   BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
   1289 
   1290   int length() { return length_; }
   1291   int max_char() { return max_char_; }
   1292   RegExpCompiler* compiler() { return compiler_; }
   1293 
   1294   int Count(int map_number) {
   1295     return bitmaps_->at(map_number)->map_count();
   1296   }
   1297 
   1298   BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
   1299 
   1300   void Set(int map_number, int character) {
   1301     if (character > max_char_) return;
   1302     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
   1303     info->Set(character);
   1304   }
   1305 
   1306   void SetInterval(int map_number, const Interval& interval) {
   1307     if (interval.from() > max_char_) return;
   1308     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
   1309     if (interval.to() > max_char_) {
   1310       info->SetInterval(Interval(interval.from(), max_char_));
   1311     } else {
   1312       info->SetInterval(interval);
   1313     }
   1314   }
   1315 
   1316   void SetAll(int map_number) {
   1317     bitmaps_->at(map_number)->SetAll();
   1318   }
   1319 
   1320   void SetRest(int from_map) {
   1321     for (int i = from_map; i < length_; i++) SetAll(i);
   1322   }
   1323   void EmitSkipInstructions(RegExpMacroAssembler* masm);
   1324 
   1325  private:
   1326   // This is the value obtained by EatsAtLeast.  If we do not have at least this
   1327   // many characters left in the sample string then the match is bound to fail.
   1328   // Therefore it is OK to read a character this far ahead of the current match
   1329   // point.
   1330   int length_;
   1331   RegExpCompiler* compiler_;
   1332   // 0xff for Latin1, 0xffff for UTF-16.
   1333   int max_char_;
   1334   ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
   1335 
   1336   int GetSkipTable(int min_lookahead,
   1337                    int max_lookahead,
   1338                    Handle<ByteArray> boolean_skip_table);
   1339   bool FindWorthwhileInterval(int* from, int* to);
   1340   int FindBestInterval(
   1341     int max_number_of_chars, int old_biggest_points, int* from, int* to);
   1342 };
   1343 
   1344 
   1345 // There are many ways to generate code for a node.  This class encapsulates
   1346 // the current way we should be generating.  In other words it encapsulates
   1347 // the current state of the code generator.  The effect of this is that we
   1348 // generate code for paths that the matcher can take through the regular
   1349 // expression.  A given node in the regexp can be code-generated several times
   1350 // as it can be part of several traces.  For example for the regexp:
   1351 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
   1352 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
   1353 // to match foo is generated only once (the traces have a common prefix).  The
   1354 // code to store the capture is deferred and generated (twice) after the places
   1355 // where baz has been matched.
   1356 class Trace {
   1357  public:
   1358   // A value for a property that is either known to be true, know to be false,
   1359   // or not known.
   1360   enum TriBool {
   1361     UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
   1362   };
   1363 
   1364   class DeferredAction {
   1365    public:
   1366     DeferredAction(ActionNode::ActionType action_type, int reg)
   1367         : action_type_(action_type), reg_(reg), next_(NULL) { }
   1368     DeferredAction* next() { return next_; }
   1369     bool Mentions(int reg);
   1370     int reg() { return reg_; }
   1371     ActionNode::ActionType action_type() { return action_type_; }
   1372    private:
   1373     ActionNode::ActionType action_type_;
   1374     int reg_;
   1375     DeferredAction* next_;
   1376     friend class Trace;
   1377   };
   1378 
   1379   class DeferredCapture : public DeferredAction {
   1380    public:
   1381     DeferredCapture(int reg, bool is_capture, Trace* trace)
   1382         : DeferredAction(ActionNode::STORE_POSITION, reg),
   1383           cp_offset_(trace->cp_offset()),
   1384           is_capture_(is_capture) { }
   1385     int cp_offset() { return cp_offset_; }
   1386     bool is_capture() { return is_capture_; }
   1387    private:
   1388     int cp_offset_;
   1389     bool is_capture_;
   1390     void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
   1391   };
   1392 
   1393   class DeferredSetRegister : public DeferredAction {
   1394    public:
   1395     DeferredSetRegister(int reg, int value)
   1396         : DeferredAction(ActionNode::SET_REGISTER, reg),
   1397           value_(value) { }
   1398     int value() { return value_; }
   1399    private:
   1400     int value_;
   1401   };
   1402 
   1403   class DeferredClearCaptures : public DeferredAction {
   1404    public:
   1405     explicit DeferredClearCaptures(Interval range)
   1406         : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
   1407           range_(range) { }
   1408     Interval range() { return range_; }
   1409    private:
   1410     Interval range_;
   1411   };
   1412 
   1413   class DeferredIncrementRegister : public DeferredAction {
   1414    public:
   1415     explicit DeferredIncrementRegister(int reg)
   1416         : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
   1417   };
   1418 
   1419   Trace()
   1420       : cp_offset_(0),
   1421         actions_(NULL),
   1422         backtrack_(NULL),
   1423         stop_node_(NULL),
   1424         loop_label_(NULL),
   1425         characters_preloaded_(0),
   1426         bound_checked_up_to_(0),
   1427         flush_budget_(100),
   1428         at_start_(UNKNOWN) { }
   1429 
   1430   // End the trace.  This involves flushing the deferred actions in the trace
   1431   // and pushing a backtrack location onto the backtrack stack.  Once this is
   1432   // done we can start a new trace or go to one that has already been
   1433   // generated.
   1434   void Flush(RegExpCompiler* compiler, RegExpNode* successor);
   1435   int cp_offset() { return cp_offset_; }
   1436   DeferredAction* actions() { return actions_; }
   1437   // A trivial trace is one that has no deferred actions or other state that
   1438   // affects the assumptions used when generating code.  There is no recorded
   1439   // backtrack location in a trivial trace, so with a trivial trace we will
   1440   // generate code that, on a failure to match, gets the backtrack location
   1441   // from the backtrack stack rather than using a direct jump instruction.  We
   1442   // always start code generation with a trivial trace and non-trivial traces
   1443   // are created as we emit code for nodes or add to the list of deferred
   1444   // actions in the trace.  The location of the code generated for a node using
   1445   // a trivial trace is recorded in a label in the node so that gotos can be
   1446   // generated to that code.
   1447   bool is_trivial() {
   1448     return backtrack_ == NULL &&
   1449            actions_ == NULL &&
   1450            cp_offset_ == 0 &&
   1451            characters_preloaded_ == 0 &&
   1452            bound_checked_up_to_ == 0 &&
   1453            quick_check_performed_.characters() == 0 &&
   1454            at_start_ == UNKNOWN;
   1455   }
   1456   TriBool at_start() { return at_start_; }
   1457   void set_at_start(bool at_start) {
   1458     at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE;
   1459   }
   1460   Label* backtrack() { return backtrack_; }
   1461   Label* loop_label() { return loop_label_; }
   1462   RegExpNode* stop_node() { return stop_node_; }
   1463   int characters_preloaded() { return characters_preloaded_; }
   1464   int bound_checked_up_to() { return bound_checked_up_to_; }
   1465   int flush_budget() { return flush_budget_; }
   1466   QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
   1467   bool mentions_reg(int reg);
   1468   // Returns true if a deferred position store exists to the specified
   1469   // register and stores the offset in the out-parameter.  Otherwise
   1470   // returns false.
   1471   bool GetStoredPosition(int reg, int* cp_offset);
   1472   // These set methods and AdvanceCurrentPositionInTrace should be used only on
   1473   // new traces - the intention is that traces are immutable after creation.
   1474   void add_action(DeferredAction* new_action) {
   1475     DCHECK(new_action->next_ == NULL);
   1476     new_action->next_ = actions_;
   1477     actions_ = new_action;
   1478   }
   1479   void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
   1480   void set_stop_node(RegExpNode* node) { stop_node_ = node; }
   1481   void set_loop_label(Label* label) { loop_label_ = label; }
   1482   void set_characters_preloaded(int count) { characters_preloaded_ = count; }
   1483   void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
   1484   void set_flush_budget(int to) { flush_budget_ = to; }
   1485   void set_quick_check_performed(QuickCheckDetails* d) {
   1486     quick_check_performed_ = *d;
   1487   }
   1488   void InvalidateCurrentCharacter();
   1489   void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
   1490 
   1491  private:
   1492   int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
   1493   void PerformDeferredActions(RegExpMacroAssembler* macro,
   1494                               int max_register,
   1495                               const OutSet& affected_registers,
   1496                               OutSet* registers_to_pop,
   1497                               OutSet* registers_to_clear,
   1498                               Zone* zone);
   1499   void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
   1500                                 int max_register,
   1501                                 const OutSet& registers_to_pop,
   1502                                 const OutSet& registers_to_clear);
   1503   int cp_offset_;
   1504   DeferredAction* actions_;
   1505   Label* backtrack_;
   1506   RegExpNode* stop_node_;
   1507   Label* loop_label_;
   1508   int characters_preloaded_;
   1509   int bound_checked_up_to_;
   1510   QuickCheckDetails quick_check_performed_;
   1511   int flush_budget_;
   1512   TriBool at_start_;
   1513 };
   1514 
   1515 
   1516 class GreedyLoopState {
   1517  public:
   1518   explicit GreedyLoopState(bool not_at_start);
   1519 
   1520   Label* label() { return &label_; }
   1521   Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
   1522 
   1523  private:
   1524   Label label_;
   1525   Trace counter_backtrack_trace_;
   1526 };
   1527 
   1528 
   1529 struct PreloadState {
   1530   static const int kEatsAtLeastNotYetInitialized = -1;
   1531   bool preload_is_current_;
   1532   bool preload_has_checked_bounds_;
   1533   int preload_characters_;
   1534   int eats_at_least_;
   1535   void init() {
   1536     eats_at_least_ = kEatsAtLeastNotYetInitialized;
   1537   }
   1538 };
   1539 
   1540 
   1541 class NodeVisitor {
   1542  public:
   1543   virtual ~NodeVisitor() { }
   1544 #define DECLARE_VISIT(Type)                                          \
   1545   virtual void Visit##Type(Type##Node* that) = 0;
   1546 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1547 #undef DECLARE_VISIT
   1548   virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
   1549 };
   1550 
   1551 
   1552 // Node visitor used to add the start set of the alternatives to the
   1553 // dispatch table of a choice node.
   1554 class DispatchTableConstructor: public NodeVisitor {
   1555  public:
   1556   DispatchTableConstructor(DispatchTable* table, bool ignore_case,
   1557                            Zone* zone)
   1558       : table_(table),
   1559         choice_index_(-1),
   1560         ignore_case_(ignore_case),
   1561         zone_(zone) { }
   1562 
   1563   void BuildTable(ChoiceNode* node);
   1564 
   1565   void AddRange(CharacterRange range) {
   1566     table()->AddRange(range, choice_index_, zone_);
   1567   }
   1568 
   1569   void AddInverse(ZoneList<CharacterRange>* ranges);
   1570 
   1571 #define DECLARE_VISIT(Type)                                          \
   1572   virtual void Visit##Type(Type##Node* that);
   1573 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1574 #undef DECLARE_VISIT
   1575 
   1576   DispatchTable* table() { return table_; }
   1577   void set_choice_index(int value) { choice_index_ = value; }
   1578 
   1579  protected:
   1580   DispatchTable* table_;
   1581   int choice_index_;
   1582   bool ignore_case_;
   1583   Zone* zone_;
   1584 };
   1585 
   1586 
   1587 // Assertion propagation moves information about assertions such as
   1588 // \b to the affected nodes.  For instance, in /.\b./ information must
   1589 // be propagated to the first '.' that whatever follows needs to know
   1590 // if it matched a word or a non-word, and to the second '.' that it
   1591 // has to check if it succeeds a word or non-word.  In this case the
   1592 // result will be something like:
   1593 //
   1594 //   +-------+        +------------+
   1595 //   |   .   |        |      .     |
   1596 //   +-------+  --->  +------------+
   1597 //   | word? |        | check word |
   1598 //   +-------+        +------------+
   1599 class Analysis: public NodeVisitor {
   1600  public:
   1601   Analysis(bool ignore_case, bool is_one_byte)
   1602       : ignore_case_(ignore_case),
   1603         is_one_byte_(is_one_byte),
   1604         error_message_(NULL) {}
   1605   void EnsureAnalyzed(RegExpNode* node);
   1606 
   1607 #define DECLARE_VISIT(Type)                                          \
   1608   virtual void Visit##Type(Type##Node* that);
   1609 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1610 #undef DECLARE_VISIT
   1611   virtual void VisitLoopChoice(LoopChoiceNode* that);
   1612 
   1613   bool has_failed() { return error_message_ != NULL; }
   1614   const char* error_message() {
   1615     DCHECK(error_message_ != NULL);
   1616     return error_message_;
   1617   }
   1618   void fail(const char* error_message) {
   1619     error_message_ = error_message;
   1620   }
   1621 
   1622  private:
   1623   bool ignore_case_;
   1624   bool is_one_byte_;
   1625   const char* error_message_;
   1626 
   1627   DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
   1628 };
   1629 
   1630 
   1631 struct RegExpCompileData {
   1632   RegExpCompileData()
   1633     : tree(NULL),
   1634       node(NULL),
   1635       simple(true),
   1636       contains_anchor(false),
   1637       capture_count(0) { }
   1638   RegExpTree* tree;
   1639   RegExpNode* node;
   1640   bool simple;
   1641   bool contains_anchor;
   1642   Handle<String> error;
   1643   int capture_count;
   1644 };
   1645 
   1646 
   1647 class RegExpEngine: public AllStatic {
   1648  public:
   1649   struct CompilationResult {
   1650     CompilationResult(Isolate* isolate, const char* error_message)
   1651         : error_message(error_message),
   1652           code(isolate->heap()->the_hole_value()),
   1653           num_registers(0) {}
   1654     CompilationResult(Object* code, int registers)
   1655       : error_message(NULL),
   1656         code(code),
   1657         num_registers(registers) {}
   1658     const char* error_message;
   1659     Object* code;
   1660     int num_registers;
   1661   };
   1662 
   1663   static CompilationResult Compile(RegExpCompileData* input, bool ignore_case,
   1664                                    bool global, bool multiline, bool sticky,
   1665                                    Handle<String> pattern,
   1666                                    Handle<String> sample_subject,
   1667                                    bool is_one_byte, Zone* zone);
   1668 
   1669   static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
   1670 };
   1671 
   1672 
   1673 } }  // namespace v8::internal
   1674 
   1675 #endif  // V8_JSREGEXP_H_
   1676