1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_JSREGEXP_H_ 6 #define V8_JSREGEXP_H_ 7 8 #include "src/allocation.h" 9 #include "src/assembler.h" 10 #include "src/zone-inl.h" 11 12 namespace v8 { 13 namespace internal { 14 15 class NodeVisitor; 16 class RegExpCompiler; 17 class RegExpMacroAssembler; 18 class RegExpNode; 19 class RegExpTree; 20 class BoyerMooreLookahead; 21 22 class RegExpImpl { 23 public: 24 // Whether V8 is compiled with native regexp support or not. 25 static bool UsesNativeRegExp() { 26 #ifdef V8_INTERPRETED_REGEXP 27 return false; 28 #else 29 return true; 30 #endif 31 } 32 33 // Creates a regular expression literal in the old space. 34 // This function calls the garbage collector if necessary. 35 MUST_USE_RESULT static MaybeHandle<Object> CreateRegExpLiteral( 36 Handle<JSFunction> constructor, 37 Handle<String> pattern, 38 Handle<String> flags); 39 40 // Returns a string representation of a regular expression. 41 // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4. 42 // This function calls the garbage collector if necessary. 43 static Handle<String> ToString(Handle<Object> value); 44 45 // Parses the RegExp pattern and prepares the JSRegExp object with 46 // generic data and choice of implementation - as well as what 47 // the implementation wants to store in the data field. 48 // Returns false if compilation fails. 49 MUST_USE_RESULT static MaybeHandle<Object> Compile( 50 Handle<JSRegExp> re, 51 Handle<String> pattern, 52 Handle<String> flags); 53 54 // See ECMA-262 section 15.10.6.2. 55 // This function calls the garbage collector if necessary. 56 MUST_USE_RESULT static MaybeHandle<Object> Exec( 57 Handle<JSRegExp> regexp, 58 Handle<String> subject, 59 int index, 60 Handle<JSArray> lastMatchInfo); 61 62 // Prepares a JSRegExp object with Irregexp-specific data. 63 static void IrregexpInitialize(Handle<JSRegExp> re, 64 Handle<String> pattern, 65 JSRegExp::Flags flags, 66 int capture_register_count); 67 68 69 static void AtomCompile(Handle<JSRegExp> re, 70 Handle<String> pattern, 71 JSRegExp::Flags flags, 72 Handle<String> match_pattern); 73 74 75 static int AtomExecRaw(Handle<JSRegExp> regexp, 76 Handle<String> subject, 77 int index, 78 int32_t* output, 79 int output_size); 80 81 82 static Handle<Object> AtomExec(Handle<JSRegExp> regexp, 83 Handle<String> subject, 84 int index, 85 Handle<JSArray> lastMatchInfo); 86 87 enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 }; 88 89 // Prepare a RegExp for being executed one or more times (using 90 // IrregexpExecOnce) on the subject. 91 // This ensures that the regexp is compiled for the subject, and that 92 // the subject is flat. 93 // Returns the number of integer spaces required by IrregexpExecOnce 94 // as its "registers" argument. If the regexp cannot be compiled, 95 // an exception is set as pending, and this function returns negative. 96 static int IrregexpPrepare(Handle<JSRegExp> regexp, 97 Handle<String> subject); 98 99 // Execute a regular expression on the subject, starting from index. 100 // If matching succeeds, return the number of matches. This can be larger 101 // than one in the case of global regular expressions. 102 // The captures and subcaptures are stored into the registers vector. 103 // If matching fails, returns RE_FAILURE. 104 // If execution fails, sets a pending exception and returns RE_EXCEPTION. 105 static int IrregexpExecRaw(Handle<JSRegExp> regexp, 106 Handle<String> subject, 107 int index, 108 int32_t* output, 109 int output_size); 110 111 // Execute an Irregexp bytecode pattern. 112 // On a successful match, the result is a JSArray containing 113 // captured positions. On a failure, the result is the null value. 114 // Returns an empty handle in case of an exception. 115 MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec( 116 Handle<JSRegExp> regexp, 117 Handle<String> subject, 118 int index, 119 Handle<JSArray> lastMatchInfo); 120 121 // Set last match info. If match is NULL, then setting captures is omitted. 122 static Handle<JSArray> SetLastMatchInfo(Handle<JSArray> last_match_info, 123 Handle<String> subject, 124 int capture_count, 125 int32_t* match); 126 127 128 class GlobalCache { 129 public: 130 GlobalCache(Handle<JSRegExp> regexp, 131 Handle<String> subject, 132 bool is_global, 133 Isolate* isolate); 134 135 INLINE(~GlobalCache()); 136 137 // Fetch the next entry in the cache for global regexp match results. 138 // This does not set the last match info. Upon failure, NULL is returned. 139 // The cause can be checked with Result(). The previous 140 // result is still in available in memory when a failure happens. 141 INLINE(int32_t* FetchNext()); 142 143 INLINE(int32_t* LastSuccessfulMatch()); 144 145 INLINE(bool HasException()) { return num_matches_ < 0; } 146 147 private: 148 int num_matches_; 149 int max_matches_; 150 int current_match_index_; 151 int registers_per_match_; 152 // Pointer to the last set of captures. 153 int32_t* register_array_; 154 int register_array_size_; 155 Handle<JSRegExp> regexp_; 156 Handle<String> subject_; 157 }; 158 159 160 // Array index in the lastMatchInfo array. 161 static const int kLastCaptureCount = 0; 162 static const int kLastSubject = 1; 163 static const int kLastInput = 2; 164 static const int kFirstCapture = 3; 165 static const int kLastMatchOverhead = 3; 166 167 // Direct offset into the lastMatchInfo array. 168 static const int kLastCaptureCountOffset = 169 FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize; 170 static const int kLastSubjectOffset = 171 FixedArray::kHeaderSize + kLastSubject * kPointerSize; 172 static const int kLastInputOffset = 173 FixedArray::kHeaderSize + kLastInput * kPointerSize; 174 static const int kFirstCaptureOffset = 175 FixedArray::kHeaderSize + kFirstCapture * kPointerSize; 176 177 // Used to access the lastMatchInfo array. 178 static int GetCapture(FixedArray* array, int index) { 179 return Smi::cast(array->get(index + kFirstCapture))->value(); 180 } 181 182 static void SetLastCaptureCount(FixedArray* array, int to) { 183 array->set(kLastCaptureCount, Smi::FromInt(to)); 184 } 185 186 static void SetLastSubject(FixedArray* array, String* to) { 187 array->set(kLastSubject, to); 188 } 189 190 static void SetLastInput(FixedArray* array, String* to) { 191 array->set(kLastInput, to); 192 } 193 194 static void SetCapture(FixedArray* array, int index, int to) { 195 array->set(index + kFirstCapture, Smi::FromInt(to)); 196 } 197 198 static int GetLastCaptureCount(FixedArray* array) { 199 return Smi::cast(array->get(kLastCaptureCount))->value(); 200 } 201 202 // For acting on the JSRegExp data FixedArray. 203 static int IrregexpMaxRegisterCount(FixedArray* re); 204 static void SetIrregexpMaxRegisterCount(FixedArray* re, int value); 205 static int IrregexpNumberOfCaptures(FixedArray* re); 206 static int IrregexpNumberOfRegisters(FixedArray* re); 207 static ByteArray* IrregexpByteCode(FixedArray* re, bool is_one_byte); 208 static Code* IrregexpNativeCode(FixedArray* re, bool is_one_byte); 209 210 // Limit the space regexps take up on the heap. In order to limit this we 211 // would like to keep track of the amount of regexp code on the heap. This 212 // is not tracked, however. As a conservative approximation we track the 213 // total regexp code compiled including code that has subsequently been freed 214 // and the total executable memory at any point. 215 static const int kRegExpExecutableMemoryLimit = 16 * MB; 216 static const int kRegWxpCompiledLimit = 1 * MB; 217 218 private: 219 static bool CompileIrregexp(Handle<JSRegExp> re, 220 Handle<String> sample_subject, bool is_one_byte); 221 static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, 222 Handle<String> sample_subject, 223 bool is_one_byte); 224 }; 225 226 227 // Represents the location of one element relative to the intersection of 228 // two sets. Corresponds to the four areas of a Venn diagram. 229 enum ElementInSetsRelation { 230 kInsideNone = 0, 231 kInsideFirst = 1, 232 kInsideSecond = 2, 233 kInsideBoth = 3 234 }; 235 236 237 // Represents code units in the range from from_ to to_, both ends are 238 // inclusive. 239 class CharacterRange { 240 public: 241 CharacterRange() : from_(0), to_(0) { } 242 // For compatibility with the CHECK_OK macro 243 CharacterRange(void* null) { DCHECK_EQ(NULL, null); } //NOLINT 244 CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { } 245 static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges, 246 Zone* zone); 247 static Vector<const int> GetWordBounds(); 248 static inline CharacterRange Singleton(uc16 value) { 249 return CharacterRange(value, value); 250 } 251 static inline CharacterRange Range(uc16 from, uc16 to) { 252 DCHECK(from <= to); 253 return CharacterRange(from, to); 254 } 255 static inline CharacterRange Everything() { 256 return CharacterRange(0, 0xFFFF); 257 } 258 bool Contains(uc16 i) { return from_ <= i && i <= to_; } 259 uc16 from() const { return from_; } 260 void set_from(uc16 value) { from_ = value; } 261 uc16 to() const { return to_; } 262 void set_to(uc16 value) { to_ = value; } 263 bool is_valid() { return from_ <= to_; } 264 bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; } 265 bool IsSingleton() { return (from_ == to_); } 266 void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_one_byte, 267 Zone* zone); 268 static void Split(ZoneList<CharacterRange>* base, 269 Vector<const int> overlay, 270 ZoneList<CharacterRange>** included, 271 ZoneList<CharacterRange>** excluded, 272 Zone* zone); 273 // Whether a range list is in canonical form: Ranges ordered by from value, 274 // and ranges non-overlapping and non-adjacent. 275 static bool IsCanonical(ZoneList<CharacterRange>* ranges); 276 // Convert range list to canonical form. The characters covered by the ranges 277 // will still be the same, but no character is in more than one range, and 278 // adjacent ranges are merged. The resulting list may be shorter than the 279 // original, but cannot be longer. 280 static void Canonicalize(ZoneList<CharacterRange>* ranges); 281 // Negate the contents of a character range in canonical form. 282 static void Negate(ZoneList<CharacterRange>* src, 283 ZoneList<CharacterRange>* dst, 284 Zone* zone); 285 static const int kStartMarker = (1 << 24); 286 static const int kPayloadMask = (1 << 24) - 1; 287 288 private: 289 uc16 from_; 290 uc16 to_; 291 }; 292 293 294 // A set of unsigned integers that behaves especially well on small 295 // integers (< 32). May do zone-allocation. 296 class OutSet: public ZoneObject { 297 public: 298 OutSet() : first_(0), remaining_(NULL), successors_(NULL) { } 299 OutSet* Extend(unsigned value, Zone* zone); 300 bool Get(unsigned value) const; 301 static const unsigned kFirstLimit = 32; 302 303 private: 304 // Destructively set a value in this set. In most cases you want 305 // to use Extend instead to ensure that only one instance exists 306 // that contains the same values. 307 void Set(unsigned value, Zone* zone); 308 309 // The successors are a list of sets that contain the same values 310 // as this set and the one more value that is not present in this 311 // set. 312 ZoneList<OutSet*>* successors(Zone* zone) { return successors_; } 313 314 OutSet(uint32_t first, ZoneList<unsigned>* remaining) 315 : first_(first), remaining_(remaining), successors_(NULL) { } 316 uint32_t first_; 317 ZoneList<unsigned>* remaining_; 318 ZoneList<OutSet*>* successors_; 319 friend class Trace; 320 }; 321 322 323 // A mapping from integers, specified as ranges, to a set of integers. 324 // Used for mapping character ranges to choices. 325 class DispatchTable : public ZoneObject { 326 public: 327 explicit DispatchTable(Zone* zone) : tree_(zone) { } 328 329 class Entry { 330 public: 331 Entry() : from_(0), to_(0), out_set_(NULL) { } 332 Entry(uc16 from, uc16 to, OutSet* out_set) 333 : from_(from), to_(to), out_set_(out_set) { } 334 uc16 from() { return from_; } 335 uc16 to() { return to_; } 336 void set_to(uc16 value) { to_ = value; } 337 void AddValue(int value, Zone* zone) { 338 out_set_ = out_set_->Extend(value, zone); 339 } 340 OutSet* out_set() { return out_set_; } 341 private: 342 uc16 from_; 343 uc16 to_; 344 OutSet* out_set_; 345 }; 346 347 class Config { 348 public: 349 typedef uc16 Key; 350 typedef Entry Value; 351 static const uc16 kNoKey; 352 static const Entry NoValue() { return Value(); } 353 static inline int Compare(uc16 a, uc16 b) { 354 if (a == b) 355 return 0; 356 else if (a < b) 357 return -1; 358 else 359 return 1; 360 } 361 }; 362 363 void AddRange(CharacterRange range, int value, Zone* zone); 364 OutSet* Get(uc16 value); 365 void Dump(); 366 367 template <typename Callback> 368 void ForEach(Callback* callback) { 369 return tree()->ForEach(callback); 370 } 371 372 private: 373 // There can't be a static empty set since it allocates its 374 // successors in a zone and caches them. 375 OutSet* empty() { return &empty_; } 376 OutSet empty_; 377 ZoneSplayTree<Config>* tree() { return &tree_; } 378 ZoneSplayTree<Config> tree_; 379 }; 380 381 382 #define FOR_EACH_NODE_TYPE(VISIT) \ 383 VISIT(End) \ 384 VISIT(Action) \ 385 VISIT(Choice) \ 386 VISIT(BackReference) \ 387 VISIT(Assertion) \ 388 VISIT(Text) 389 390 391 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \ 392 VISIT(Disjunction) \ 393 VISIT(Alternative) \ 394 VISIT(Assertion) \ 395 VISIT(CharacterClass) \ 396 VISIT(Atom) \ 397 VISIT(Quantifier) \ 398 VISIT(Capture) \ 399 VISIT(Lookahead) \ 400 VISIT(BackReference) \ 401 VISIT(Empty) \ 402 VISIT(Text) 403 404 405 #define FORWARD_DECLARE(Name) class RegExp##Name; 406 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE) 407 #undef FORWARD_DECLARE 408 409 410 class TextElement FINAL BASE_EMBEDDED { 411 public: 412 enum TextType { 413 ATOM, 414 CHAR_CLASS 415 }; 416 417 static TextElement Atom(RegExpAtom* atom); 418 static TextElement CharClass(RegExpCharacterClass* char_class); 419 420 int cp_offset() const { return cp_offset_; } 421 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; } 422 int length() const; 423 424 TextType text_type() const { return text_type_; } 425 426 RegExpTree* tree() const { return tree_; } 427 428 RegExpAtom* atom() const { 429 DCHECK(text_type() == ATOM); 430 return reinterpret_cast<RegExpAtom*>(tree()); 431 } 432 433 RegExpCharacterClass* char_class() const { 434 DCHECK(text_type() == CHAR_CLASS); 435 return reinterpret_cast<RegExpCharacterClass*>(tree()); 436 } 437 438 private: 439 TextElement(TextType text_type, RegExpTree* tree) 440 : cp_offset_(-1), text_type_(text_type), tree_(tree) {} 441 442 int cp_offset_; 443 TextType text_type_; 444 RegExpTree* tree_; 445 }; 446 447 448 class Trace; 449 struct PreloadState; 450 class GreedyLoopState; 451 class AlternativeGenerationList; 452 453 struct NodeInfo { 454 NodeInfo() 455 : being_analyzed(false), 456 been_analyzed(false), 457 follows_word_interest(false), 458 follows_newline_interest(false), 459 follows_start_interest(false), 460 at_end(false), 461 visited(false), 462 replacement_calculated(false) { } 463 464 // Returns true if the interests and assumptions of this node 465 // matches the given one. 466 bool Matches(NodeInfo* that) { 467 return (at_end == that->at_end) && 468 (follows_word_interest == that->follows_word_interest) && 469 (follows_newline_interest == that->follows_newline_interest) && 470 (follows_start_interest == that->follows_start_interest); 471 } 472 473 // Updates the interests of this node given the interests of the 474 // node preceding it. 475 void AddFromPreceding(NodeInfo* that) { 476 at_end |= that->at_end; 477 follows_word_interest |= that->follows_word_interest; 478 follows_newline_interest |= that->follows_newline_interest; 479 follows_start_interest |= that->follows_start_interest; 480 } 481 482 bool HasLookbehind() { 483 return follows_word_interest || 484 follows_newline_interest || 485 follows_start_interest; 486 } 487 488 // Sets the interests of this node to include the interests of the 489 // following node. 490 void AddFromFollowing(NodeInfo* that) { 491 follows_word_interest |= that->follows_word_interest; 492 follows_newline_interest |= that->follows_newline_interest; 493 follows_start_interest |= that->follows_start_interest; 494 } 495 496 void ResetCompilationState() { 497 being_analyzed = false; 498 been_analyzed = false; 499 } 500 501 bool being_analyzed: 1; 502 bool been_analyzed: 1; 503 504 // These bits are set of this node has to know what the preceding 505 // character was. 506 bool follows_word_interest: 1; 507 bool follows_newline_interest: 1; 508 bool follows_start_interest: 1; 509 510 bool at_end: 1; 511 bool visited: 1; 512 bool replacement_calculated: 1; 513 }; 514 515 516 // Details of a quick mask-compare check that can look ahead in the 517 // input stream. 518 class QuickCheckDetails { 519 public: 520 QuickCheckDetails() 521 : characters_(0), 522 mask_(0), 523 value_(0), 524 cannot_match_(false) { } 525 explicit QuickCheckDetails(int characters) 526 : characters_(characters), 527 mask_(0), 528 value_(0), 529 cannot_match_(false) { } 530 bool Rationalize(bool one_byte); 531 // Merge in the information from another branch of an alternation. 532 void Merge(QuickCheckDetails* other, int from_index); 533 // Advance the current position by some amount. 534 void Advance(int by, bool one_byte); 535 void Clear(); 536 bool cannot_match() { return cannot_match_; } 537 void set_cannot_match() { cannot_match_ = true; } 538 struct Position { 539 Position() : mask(0), value(0), determines_perfectly(false) { } 540 uc16 mask; 541 uc16 value; 542 bool determines_perfectly; 543 }; 544 int characters() { return characters_; } 545 void set_characters(int characters) { characters_ = characters; } 546 Position* positions(int index) { 547 DCHECK(index >= 0); 548 DCHECK(index < characters_); 549 return positions_ + index; 550 } 551 uint32_t mask() { return mask_; } 552 uint32_t value() { return value_; } 553 554 private: 555 // How many characters do we have quick check information from. This is 556 // the same for all branches of a choice node. 557 int characters_; 558 Position positions_[4]; 559 // These values are the condensate of the above array after Rationalize(). 560 uint32_t mask_; 561 uint32_t value_; 562 // If set to true, there is no way this quick check can match at all. 563 // E.g., if it requires to be at the start of the input, and isn't. 564 bool cannot_match_; 565 }; 566 567 568 extern int kUninitializedRegExpNodePlaceHolder; 569 570 571 class RegExpNode: public ZoneObject { 572 public: 573 explicit RegExpNode(Zone* zone) 574 : replacement_(NULL), trace_count_(0), zone_(zone) { 575 bm_info_[0] = bm_info_[1] = NULL; 576 } 577 virtual ~RegExpNode(); 578 virtual void Accept(NodeVisitor* visitor) = 0; 579 // Generates a goto to this node or actually generates the code at this point. 580 virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0; 581 // How many characters must this node consume at a minimum in order to 582 // succeed. If we have found at least 'still_to_find' characters that 583 // must be consumed there is no need to ask any following nodes whether 584 // they are sure to eat any more characters. The not_at_start argument is 585 // used to indicate that we know we are not at the start of the input. In 586 // this case anchored branches will always fail and can be ignored when 587 // determining how many characters are consumed on success. 588 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0; 589 // Emits some quick code that checks whether the preloaded characters match. 590 // Falls through on certain failure, jumps to the label on possible success. 591 // If the node cannot make a quick check it does nothing and returns false. 592 bool EmitQuickCheck(RegExpCompiler* compiler, 593 Trace* bounds_check_trace, 594 Trace* trace, 595 bool preload_has_checked_bounds, 596 Label* on_possible_success, 597 QuickCheckDetails* details_return, 598 bool fall_through_on_failure); 599 // For a given number of characters this returns a mask and a value. The 600 // next n characters are anded with the mask and compared with the value. 601 // A comparison failure indicates the node cannot match the next n characters. 602 // A comparison success indicates the node may match. 603 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 604 RegExpCompiler* compiler, 605 int characters_filled_in, 606 bool not_at_start) = 0; 607 static const int kNodeIsTooComplexForGreedyLoops = -1; 608 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } 609 // Only returns the successor for a text node of length 1 that matches any 610 // character and that has no guards on it. 611 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( 612 RegExpCompiler* compiler) { 613 return NULL; 614 } 615 616 // Collects information on the possible code units (mod 128) that can match if 617 // we look forward. This is used for a Boyer-Moore-like string searching 618 // implementation. TODO(erikcorry): This should share more code with 619 // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit 620 // the number of nodes we are willing to look at in order to create this data. 621 static const int kRecursionBudget = 200; 622 virtual void FillInBMInfo(int offset, 623 int budget, 624 BoyerMooreLookahead* bm, 625 bool not_at_start) { 626 UNREACHABLE(); 627 } 628 629 // If we know that the input is one-byte then there are some nodes that can 630 // never match. This method returns a node that can be substituted for 631 // itself, or NULL if the node can never match. 632 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) { 633 return this; 634 } 635 // Helper for FilterOneByte. 636 RegExpNode* replacement() { 637 DCHECK(info()->replacement_calculated); 638 return replacement_; 639 } 640 RegExpNode* set_replacement(RegExpNode* replacement) { 641 info()->replacement_calculated = true; 642 replacement_ = replacement; 643 return replacement; // For convenience. 644 } 645 646 // We want to avoid recalculating the lookahead info, so we store it on the 647 // node. Only info that is for this node is stored. We can tell that the 648 // info is for this node when offset == 0, so the information is calculated 649 // relative to this node. 650 void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) { 651 if (offset == 0) set_bm_info(not_at_start, bm); 652 } 653 654 Label* label() { return &label_; } 655 // If non-generic code is generated for a node (i.e. the node is not at the 656 // start of the trace) then it cannot be reused. This variable sets a limit 657 // on how often we allow that to happen before we insist on starting a new 658 // trace and generating generic code for a node that can be reused by flushing 659 // the deferred actions in the current trace and generating a goto. 660 static const int kMaxCopiesCodeGenerated = 10; 661 662 NodeInfo* info() { return &info_; } 663 664 BoyerMooreLookahead* bm_info(bool not_at_start) { 665 return bm_info_[not_at_start ? 1 : 0]; 666 } 667 668 Zone* zone() const { return zone_; } 669 670 protected: 671 enum LimitResult { DONE, CONTINUE }; 672 RegExpNode* replacement_; 673 674 LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace); 675 676 void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) { 677 bm_info_[not_at_start ? 1 : 0] = bm; 678 } 679 680 private: 681 static const int kFirstCharBudget = 10; 682 Label label_; 683 NodeInfo info_; 684 // This variable keeps track of how many times code has been generated for 685 // this node (in different traces). We don't keep track of where the 686 // generated code is located unless the code is generated at the start of 687 // a trace, in which case it is generic and can be reused by flushing the 688 // deferred operations in the current trace and generating a goto. 689 int trace_count_; 690 BoyerMooreLookahead* bm_info_[2]; 691 692 Zone* zone_; 693 }; 694 695 696 // A simple closed interval. 697 class Interval { 698 public: 699 Interval() : from_(kNone), to_(kNone) { } 700 Interval(int from, int to) : from_(from), to_(to) { } 701 Interval Union(Interval that) { 702 if (that.from_ == kNone) 703 return *this; 704 else if (from_ == kNone) 705 return that; 706 else 707 return Interval(Min(from_, that.from_), Max(to_, that.to_)); 708 } 709 bool Contains(int value) { 710 return (from_ <= value) && (value <= to_); 711 } 712 bool is_empty() { return from_ == kNone; } 713 int from() const { return from_; } 714 int to() const { return to_; } 715 static Interval Empty() { return Interval(); } 716 static const int kNone = -1; 717 private: 718 int from_; 719 int to_; 720 }; 721 722 723 class SeqRegExpNode: public RegExpNode { 724 public: 725 explicit SeqRegExpNode(RegExpNode* on_success) 726 : RegExpNode(on_success->zone()), on_success_(on_success) { } 727 RegExpNode* on_success() { return on_success_; } 728 void set_on_success(RegExpNode* node) { on_success_ = node; } 729 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); 730 virtual void FillInBMInfo(int offset, 731 int budget, 732 BoyerMooreLookahead* bm, 733 bool not_at_start) { 734 on_success_->FillInBMInfo(offset, budget - 1, bm, not_at_start); 735 if (offset == 0) set_bm_info(not_at_start, bm); 736 } 737 738 protected: 739 RegExpNode* FilterSuccessor(int depth, bool ignore_case); 740 741 private: 742 RegExpNode* on_success_; 743 }; 744 745 746 class ActionNode: public SeqRegExpNode { 747 public: 748 enum ActionType { 749 SET_REGISTER, 750 INCREMENT_REGISTER, 751 STORE_POSITION, 752 BEGIN_SUBMATCH, 753 POSITIVE_SUBMATCH_SUCCESS, 754 EMPTY_MATCH_CHECK, 755 CLEAR_CAPTURES 756 }; 757 static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success); 758 static ActionNode* IncrementRegister(int reg, RegExpNode* on_success); 759 static ActionNode* StorePosition(int reg, 760 bool is_capture, 761 RegExpNode* on_success); 762 static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success); 763 static ActionNode* BeginSubmatch(int stack_pointer_reg, 764 int position_reg, 765 RegExpNode* on_success); 766 static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg, 767 int restore_reg, 768 int clear_capture_count, 769 int clear_capture_from, 770 RegExpNode* on_success); 771 static ActionNode* EmptyMatchCheck(int start_register, 772 int repetition_register, 773 int repetition_limit, 774 RegExpNode* on_success); 775 virtual void Accept(NodeVisitor* visitor); 776 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 777 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 778 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 779 RegExpCompiler* compiler, 780 int filled_in, 781 bool not_at_start) { 782 return on_success()->GetQuickCheckDetails( 783 details, compiler, filled_in, not_at_start); 784 } 785 virtual void FillInBMInfo(int offset, 786 int budget, 787 BoyerMooreLookahead* bm, 788 bool not_at_start); 789 ActionType action_type() { return action_type_; } 790 // TODO(erikcorry): We should allow some action nodes in greedy loops. 791 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } 792 793 private: 794 union { 795 struct { 796 int reg; 797 int value; 798 } u_store_register; 799 struct { 800 int reg; 801 } u_increment_register; 802 struct { 803 int reg; 804 bool is_capture; 805 } u_position_register; 806 struct { 807 int stack_pointer_register; 808 int current_position_register; 809 int clear_register_count; 810 int clear_register_from; 811 } u_submatch; 812 struct { 813 int start_register; 814 int repetition_register; 815 int repetition_limit; 816 } u_empty_match_check; 817 struct { 818 int range_from; 819 int range_to; 820 } u_clear_captures; 821 } data_; 822 ActionNode(ActionType action_type, RegExpNode* on_success) 823 : SeqRegExpNode(on_success), 824 action_type_(action_type) { } 825 ActionType action_type_; 826 friend class DotPrinter; 827 }; 828 829 830 class TextNode: public SeqRegExpNode { 831 public: 832 TextNode(ZoneList<TextElement>* elms, 833 RegExpNode* on_success) 834 : SeqRegExpNode(on_success), 835 elms_(elms) { } 836 TextNode(RegExpCharacterClass* that, 837 RegExpNode* on_success) 838 : SeqRegExpNode(on_success), 839 elms_(new(zone()) ZoneList<TextElement>(1, zone())) { 840 elms_->Add(TextElement::CharClass(that), zone()); 841 } 842 virtual void Accept(NodeVisitor* visitor); 843 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 844 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 845 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 846 RegExpCompiler* compiler, 847 int characters_filled_in, 848 bool not_at_start); 849 ZoneList<TextElement>* elements() { return elms_; } 850 void MakeCaseIndependent(bool is_one_byte); 851 virtual int GreedyLoopTextLength(); 852 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( 853 RegExpCompiler* compiler); 854 virtual void FillInBMInfo(int offset, 855 int budget, 856 BoyerMooreLookahead* bm, 857 bool not_at_start); 858 void CalculateOffsets(); 859 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); 860 861 private: 862 enum TextEmitPassType { 863 NON_LATIN1_MATCH, // Check for characters that can't match. 864 SIMPLE_CHARACTER_MATCH, // Case-dependent single character check. 865 NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs. 866 CASE_CHARACTER_MATCH, // Case-independent single character check. 867 CHARACTER_CLASS_MATCH // Character class. 868 }; 869 static bool SkipPass(int pass, bool ignore_case); 870 static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH; 871 static const int kLastPass = CHARACTER_CLASS_MATCH; 872 void TextEmitPass(RegExpCompiler* compiler, 873 TextEmitPassType pass, 874 bool preloaded, 875 Trace* trace, 876 bool first_element_checked, 877 int* checked_up_to); 878 int Length(); 879 ZoneList<TextElement>* elms_; 880 }; 881 882 883 class AssertionNode: public SeqRegExpNode { 884 public: 885 enum AssertionType { 886 AT_END, 887 AT_START, 888 AT_BOUNDARY, 889 AT_NON_BOUNDARY, 890 AFTER_NEWLINE 891 }; 892 static AssertionNode* AtEnd(RegExpNode* on_success) { 893 return new(on_success->zone()) AssertionNode(AT_END, on_success); 894 } 895 static AssertionNode* AtStart(RegExpNode* on_success) { 896 return new(on_success->zone()) AssertionNode(AT_START, on_success); 897 } 898 static AssertionNode* AtBoundary(RegExpNode* on_success) { 899 return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success); 900 } 901 static AssertionNode* AtNonBoundary(RegExpNode* on_success) { 902 return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success); 903 } 904 static AssertionNode* AfterNewline(RegExpNode* on_success) { 905 return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success); 906 } 907 virtual void Accept(NodeVisitor* visitor); 908 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 909 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 910 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 911 RegExpCompiler* compiler, 912 int filled_in, 913 bool not_at_start); 914 virtual void FillInBMInfo(int offset, 915 int budget, 916 BoyerMooreLookahead* bm, 917 bool not_at_start); 918 AssertionType assertion_type() { return assertion_type_; } 919 920 private: 921 void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace); 922 enum IfPrevious { kIsNonWord, kIsWord }; 923 void BacktrackIfPrevious(RegExpCompiler* compiler, 924 Trace* trace, 925 IfPrevious backtrack_if_previous); 926 AssertionNode(AssertionType t, RegExpNode* on_success) 927 : SeqRegExpNode(on_success), assertion_type_(t) { } 928 AssertionType assertion_type_; 929 }; 930 931 932 class BackReferenceNode: public SeqRegExpNode { 933 public: 934 BackReferenceNode(int start_reg, 935 int end_reg, 936 RegExpNode* on_success) 937 : SeqRegExpNode(on_success), 938 start_reg_(start_reg), 939 end_reg_(end_reg) { } 940 virtual void Accept(NodeVisitor* visitor); 941 int start_register() { return start_reg_; } 942 int end_register() { return end_reg_; } 943 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 944 virtual int EatsAtLeast(int still_to_find, 945 int recursion_depth, 946 bool not_at_start); 947 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 948 RegExpCompiler* compiler, 949 int characters_filled_in, 950 bool not_at_start) { 951 return; 952 } 953 virtual void FillInBMInfo(int offset, 954 int budget, 955 BoyerMooreLookahead* bm, 956 bool not_at_start); 957 958 private: 959 int start_reg_; 960 int end_reg_; 961 }; 962 963 964 class EndNode: public RegExpNode { 965 public: 966 enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS }; 967 explicit EndNode(Action action, Zone* zone) 968 : RegExpNode(zone), action_(action) { } 969 virtual void Accept(NodeVisitor* visitor); 970 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 971 virtual int EatsAtLeast(int still_to_find, 972 int recursion_depth, 973 bool not_at_start) { return 0; } 974 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 975 RegExpCompiler* compiler, 976 int characters_filled_in, 977 bool not_at_start) { 978 // Returning 0 from EatsAtLeast should ensure we never get here. 979 UNREACHABLE(); 980 } 981 virtual void FillInBMInfo(int offset, 982 int budget, 983 BoyerMooreLookahead* bm, 984 bool not_at_start) { 985 // Returning 0 from EatsAtLeast should ensure we never get here. 986 UNREACHABLE(); 987 } 988 989 private: 990 Action action_; 991 }; 992 993 994 class NegativeSubmatchSuccess: public EndNode { 995 public: 996 NegativeSubmatchSuccess(int stack_pointer_reg, 997 int position_reg, 998 int clear_capture_count, 999 int clear_capture_start, 1000 Zone* zone) 1001 : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone), 1002 stack_pointer_register_(stack_pointer_reg), 1003 current_position_register_(position_reg), 1004 clear_capture_count_(clear_capture_count), 1005 clear_capture_start_(clear_capture_start) { } 1006 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 1007 1008 private: 1009 int stack_pointer_register_; 1010 int current_position_register_; 1011 int clear_capture_count_; 1012 int clear_capture_start_; 1013 }; 1014 1015 1016 class Guard: public ZoneObject { 1017 public: 1018 enum Relation { LT, GEQ }; 1019 Guard(int reg, Relation op, int value) 1020 : reg_(reg), 1021 op_(op), 1022 value_(value) { } 1023 int reg() { return reg_; } 1024 Relation op() { return op_; } 1025 int value() { return value_; } 1026 1027 private: 1028 int reg_; 1029 Relation op_; 1030 int value_; 1031 }; 1032 1033 1034 class GuardedAlternative { 1035 public: 1036 explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { } 1037 void AddGuard(Guard* guard, Zone* zone); 1038 RegExpNode* node() { return node_; } 1039 void set_node(RegExpNode* node) { node_ = node; } 1040 ZoneList<Guard*>* guards() { return guards_; } 1041 1042 private: 1043 RegExpNode* node_; 1044 ZoneList<Guard*>* guards_; 1045 }; 1046 1047 1048 class AlternativeGeneration; 1049 1050 1051 class ChoiceNode: public RegExpNode { 1052 public: 1053 explicit ChoiceNode(int expected_size, Zone* zone) 1054 : RegExpNode(zone), 1055 alternatives_(new(zone) 1056 ZoneList<GuardedAlternative>(expected_size, zone)), 1057 table_(NULL), 1058 not_at_start_(false), 1059 being_calculated_(false) { } 1060 virtual void Accept(NodeVisitor* visitor); 1061 void AddAlternative(GuardedAlternative node) { 1062 alternatives()->Add(node, zone()); 1063 } 1064 ZoneList<GuardedAlternative>* alternatives() { return alternatives_; } 1065 DispatchTable* GetTable(bool ignore_case); 1066 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 1067 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 1068 int EatsAtLeastHelper(int still_to_find, 1069 int budget, 1070 RegExpNode* ignore_this_node, 1071 bool not_at_start); 1072 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 1073 RegExpCompiler* compiler, 1074 int characters_filled_in, 1075 bool not_at_start); 1076 virtual void FillInBMInfo(int offset, 1077 int budget, 1078 BoyerMooreLookahead* bm, 1079 bool not_at_start); 1080 1081 bool being_calculated() { return being_calculated_; } 1082 bool not_at_start() { return not_at_start_; } 1083 void set_not_at_start() { not_at_start_ = true; } 1084 void set_being_calculated(bool b) { being_calculated_ = b; } 1085 virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { 1086 return true; 1087 } 1088 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); 1089 1090 protected: 1091 int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative); 1092 ZoneList<GuardedAlternative>* alternatives_; 1093 1094 private: 1095 friend class DispatchTableConstructor; 1096 friend class Analysis; 1097 void GenerateGuard(RegExpMacroAssembler* macro_assembler, 1098 Guard* guard, 1099 Trace* trace); 1100 int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least); 1101 void EmitOutOfLineContinuation(RegExpCompiler* compiler, 1102 Trace* trace, 1103 GuardedAlternative alternative, 1104 AlternativeGeneration* alt_gen, 1105 int preload_characters, 1106 bool next_expects_preload); 1107 void SetUpPreLoad(RegExpCompiler* compiler, 1108 Trace* current_trace, 1109 PreloadState* preloads); 1110 void AssertGuardsMentionRegisters(Trace* trace); 1111 int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace); 1112 Trace* EmitGreedyLoop(RegExpCompiler* compiler, 1113 Trace* trace, 1114 AlternativeGenerationList* alt_gens, 1115 PreloadState* preloads, 1116 GreedyLoopState* greedy_loop_state, 1117 int text_length); 1118 void EmitChoices(RegExpCompiler* compiler, 1119 AlternativeGenerationList* alt_gens, 1120 int first_choice, 1121 Trace* trace, 1122 PreloadState* preloads); 1123 DispatchTable* table_; 1124 // If true, this node is never checked at the start of the input. 1125 // Allows a new trace to start with at_start() set to false. 1126 bool not_at_start_; 1127 bool being_calculated_; 1128 }; 1129 1130 1131 class NegativeLookaheadChoiceNode: public ChoiceNode { 1132 public: 1133 explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail, 1134 GuardedAlternative then_do_this, 1135 Zone* zone) 1136 : ChoiceNode(2, zone) { 1137 AddAlternative(this_must_fail); 1138 AddAlternative(then_do_this); 1139 } 1140 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 1141 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 1142 RegExpCompiler* compiler, 1143 int characters_filled_in, 1144 bool not_at_start); 1145 virtual void FillInBMInfo(int offset, 1146 int budget, 1147 BoyerMooreLookahead* bm, 1148 bool not_at_start) { 1149 alternatives_->at(1).node()->FillInBMInfo( 1150 offset, budget - 1, bm, not_at_start); 1151 if (offset == 0) set_bm_info(not_at_start, bm); 1152 } 1153 // For a negative lookahead we don't emit the quick check for the 1154 // alternative that is expected to fail. This is because quick check code 1155 // starts by loading enough characters for the alternative that takes fewest 1156 // characters, but on a negative lookahead the negative branch did not take 1157 // part in that calculation (EatsAtLeast) so the assumptions don't hold. 1158 virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { 1159 return !is_first; 1160 } 1161 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); 1162 }; 1163 1164 1165 class LoopChoiceNode: public ChoiceNode { 1166 public: 1167 explicit LoopChoiceNode(bool body_can_be_zero_length, Zone* zone) 1168 : ChoiceNode(2, zone), 1169 loop_node_(NULL), 1170 continue_node_(NULL), 1171 body_can_be_zero_length_(body_can_be_zero_length) 1172 { } 1173 void AddLoopAlternative(GuardedAlternative alt); 1174 void AddContinueAlternative(GuardedAlternative alt); 1175 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 1176 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 1177 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 1178 RegExpCompiler* compiler, 1179 int characters_filled_in, 1180 bool not_at_start); 1181 virtual void FillInBMInfo(int offset, 1182 int budget, 1183 BoyerMooreLookahead* bm, 1184 bool not_at_start); 1185 RegExpNode* loop_node() { return loop_node_; } 1186 RegExpNode* continue_node() { return continue_node_; } 1187 bool body_can_be_zero_length() { return body_can_be_zero_length_; } 1188 virtual void Accept(NodeVisitor* visitor); 1189 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); 1190 1191 private: 1192 // AddAlternative is made private for loop nodes because alternatives 1193 // should not be added freely, we need to keep track of which node 1194 // goes back to the node itself. 1195 void AddAlternative(GuardedAlternative node) { 1196 ChoiceNode::AddAlternative(node); 1197 } 1198 1199 RegExpNode* loop_node_; 1200 RegExpNode* continue_node_; 1201 bool body_can_be_zero_length_; 1202 }; 1203 1204 1205 // Improve the speed that we scan for an initial point where a non-anchored 1206 // regexp can match by using a Boyer-Moore-like table. This is done by 1207 // identifying non-greedy non-capturing loops in the nodes that eat any 1208 // character one at a time. For example in the middle of the regexp 1209 // /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly 1210 // inserted at the start of any non-anchored regexp. 1211 // 1212 // When we have found such a loop we look ahead in the nodes to find the set of 1213 // characters that can come at given distances. For example for the regexp 1214 // /.?foo/ we know that there are at least 3 characters ahead of us, and the 1215 // sets of characters that can occur are [any, [f, o], [o]]. We find a range in 1216 // the lookahead info where the set of characters is reasonably constrained. In 1217 // our example this is from index 1 to 2 (0 is not constrained). We can now 1218 // look 3 characters ahead and if we don't find one of [f, o] (the union of 1219 // [f, o] and [o]) then we can skip forwards by the range size (in this case 2). 1220 // 1221 // For Unicode input strings we do the same, but modulo 128. 1222 // 1223 // We also look at the first string fed to the regexp and use that to get a hint 1224 // of the character frequencies in the inputs. This affects the assessment of 1225 // whether the set of characters is 'reasonably constrained'. 1226 // 1227 // We also have another lookahead mechanism (called quick check in the code), 1228 // which uses a wide load of multiple characters followed by a mask and compare 1229 // to determine whether a match is possible at this point. 1230 enum ContainedInLattice { 1231 kNotYet = 0, 1232 kLatticeIn = 1, 1233 kLatticeOut = 2, 1234 kLatticeUnknown = 3 // Can also mean both in and out. 1235 }; 1236 1237 1238 inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) { 1239 return static_cast<ContainedInLattice>(a | b); 1240 } 1241 1242 1243 ContainedInLattice AddRange(ContainedInLattice a, 1244 const int* ranges, 1245 int ranges_size, 1246 Interval new_range); 1247 1248 1249 class BoyerMoorePositionInfo : public ZoneObject { 1250 public: 1251 explicit BoyerMoorePositionInfo(Zone* zone) 1252 : map_(new(zone) ZoneList<bool>(kMapSize, zone)), 1253 map_count_(0), 1254 w_(kNotYet), 1255 s_(kNotYet), 1256 d_(kNotYet), 1257 surrogate_(kNotYet) { 1258 for (int i = 0; i < kMapSize; i++) { 1259 map_->Add(false, zone); 1260 } 1261 } 1262 1263 bool& at(int i) { return map_->at(i); } 1264 1265 static const int kMapSize = 128; 1266 static const int kMask = kMapSize - 1; 1267 1268 int map_count() const { return map_count_; } 1269 1270 void Set(int character); 1271 void SetInterval(const Interval& interval); 1272 void SetAll(); 1273 bool is_non_word() { return w_ == kLatticeOut; } 1274 bool is_word() { return w_ == kLatticeIn; } 1275 1276 private: 1277 ZoneList<bool>* map_; 1278 int map_count_; // Number of set bits in the map. 1279 ContainedInLattice w_; // The \w character class. 1280 ContainedInLattice s_; // The \s character class. 1281 ContainedInLattice d_; // The \d character class. 1282 ContainedInLattice surrogate_; // Surrogate UTF-16 code units. 1283 }; 1284 1285 1286 class BoyerMooreLookahead : public ZoneObject { 1287 public: 1288 BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone); 1289 1290 int length() { return length_; } 1291 int max_char() { return max_char_; } 1292 RegExpCompiler* compiler() { return compiler_; } 1293 1294 int Count(int map_number) { 1295 return bitmaps_->at(map_number)->map_count(); 1296 } 1297 1298 BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); } 1299 1300 void Set(int map_number, int character) { 1301 if (character > max_char_) return; 1302 BoyerMoorePositionInfo* info = bitmaps_->at(map_number); 1303 info->Set(character); 1304 } 1305 1306 void SetInterval(int map_number, const Interval& interval) { 1307 if (interval.from() > max_char_) return; 1308 BoyerMoorePositionInfo* info = bitmaps_->at(map_number); 1309 if (interval.to() > max_char_) { 1310 info->SetInterval(Interval(interval.from(), max_char_)); 1311 } else { 1312 info->SetInterval(interval); 1313 } 1314 } 1315 1316 void SetAll(int map_number) { 1317 bitmaps_->at(map_number)->SetAll(); 1318 } 1319 1320 void SetRest(int from_map) { 1321 for (int i = from_map; i < length_; i++) SetAll(i); 1322 } 1323 void EmitSkipInstructions(RegExpMacroAssembler* masm); 1324 1325 private: 1326 // This is the value obtained by EatsAtLeast. If we do not have at least this 1327 // many characters left in the sample string then the match is bound to fail. 1328 // Therefore it is OK to read a character this far ahead of the current match 1329 // point. 1330 int length_; 1331 RegExpCompiler* compiler_; 1332 // 0xff for Latin1, 0xffff for UTF-16. 1333 int max_char_; 1334 ZoneList<BoyerMoorePositionInfo*>* bitmaps_; 1335 1336 int GetSkipTable(int min_lookahead, 1337 int max_lookahead, 1338 Handle<ByteArray> boolean_skip_table); 1339 bool FindWorthwhileInterval(int* from, int* to); 1340 int FindBestInterval( 1341 int max_number_of_chars, int old_biggest_points, int* from, int* to); 1342 }; 1343 1344 1345 // There are many ways to generate code for a node. This class encapsulates 1346 // the current way we should be generating. In other words it encapsulates 1347 // the current state of the code generator. The effect of this is that we 1348 // generate code for paths that the matcher can take through the regular 1349 // expression. A given node in the regexp can be code-generated several times 1350 // as it can be part of several traces. For example for the regexp: 1351 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part 1352 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code 1353 // to match foo is generated only once (the traces have a common prefix). The 1354 // code to store the capture is deferred and generated (twice) after the places 1355 // where baz has been matched. 1356 class Trace { 1357 public: 1358 // A value for a property that is either known to be true, know to be false, 1359 // or not known. 1360 enum TriBool { 1361 UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1 1362 }; 1363 1364 class DeferredAction { 1365 public: 1366 DeferredAction(ActionNode::ActionType action_type, int reg) 1367 : action_type_(action_type), reg_(reg), next_(NULL) { } 1368 DeferredAction* next() { return next_; } 1369 bool Mentions(int reg); 1370 int reg() { return reg_; } 1371 ActionNode::ActionType action_type() { return action_type_; } 1372 private: 1373 ActionNode::ActionType action_type_; 1374 int reg_; 1375 DeferredAction* next_; 1376 friend class Trace; 1377 }; 1378 1379 class DeferredCapture : public DeferredAction { 1380 public: 1381 DeferredCapture(int reg, bool is_capture, Trace* trace) 1382 : DeferredAction(ActionNode::STORE_POSITION, reg), 1383 cp_offset_(trace->cp_offset()), 1384 is_capture_(is_capture) { } 1385 int cp_offset() { return cp_offset_; } 1386 bool is_capture() { return is_capture_; } 1387 private: 1388 int cp_offset_; 1389 bool is_capture_; 1390 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; } 1391 }; 1392 1393 class DeferredSetRegister : public DeferredAction { 1394 public: 1395 DeferredSetRegister(int reg, int value) 1396 : DeferredAction(ActionNode::SET_REGISTER, reg), 1397 value_(value) { } 1398 int value() { return value_; } 1399 private: 1400 int value_; 1401 }; 1402 1403 class DeferredClearCaptures : public DeferredAction { 1404 public: 1405 explicit DeferredClearCaptures(Interval range) 1406 : DeferredAction(ActionNode::CLEAR_CAPTURES, -1), 1407 range_(range) { } 1408 Interval range() { return range_; } 1409 private: 1410 Interval range_; 1411 }; 1412 1413 class DeferredIncrementRegister : public DeferredAction { 1414 public: 1415 explicit DeferredIncrementRegister(int reg) 1416 : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { } 1417 }; 1418 1419 Trace() 1420 : cp_offset_(0), 1421 actions_(NULL), 1422 backtrack_(NULL), 1423 stop_node_(NULL), 1424 loop_label_(NULL), 1425 characters_preloaded_(0), 1426 bound_checked_up_to_(0), 1427 flush_budget_(100), 1428 at_start_(UNKNOWN) { } 1429 1430 // End the trace. This involves flushing the deferred actions in the trace 1431 // and pushing a backtrack location onto the backtrack stack. Once this is 1432 // done we can start a new trace or go to one that has already been 1433 // generated. 1434 void Flush(RegExpCompiler* compiler, RegExpNode* successor); 1435 int cp_offset() { return cp_offset_; } 1436 DeferredAction* actions() { return actions_; } 1437 // A trivial trace is one that has no deferred actions or other state that 1438 // affects the assumptions used when generating code. There is no recorded 1439 // backtrack location in a trivial trace, so with a trivial trace we will 1440 // generate code that, on a failure to match, gets the backtrack location 1441 // from the backtrack stack rather than using a direct jump instruction. We 1442 // always start code generation with a trivial trace and non-trivial traces 1443 // are created as we emit code for nodes or add to the list of deferred 1444 // actions in the trace. The location of the code generated for a node using 1445 // a trivial trace is recorded in a label in the node so that gotos can be 1446 // generated to that code. 1447 bool is_trivial() { 1448 return backtrack_ == NULL && 1449 actions_ == NULL && 1450 cp_offset_ == 0 && 1451 characters_preloaded_ == 0 && 1452 bound_checked_up_to_ == 0 && 1453 quick_check_performed_.characters() == 0 && 1454 at_start_ == UNKNOWN; 1455 } 1456 TriBool at_start() { return at_start_; } 1457 void set_at_start(bool at_start) { 1458 at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE; 1459 } 1460 Label* backtrack() { return backtrack_; } 1461 Label* loop_label() { return loop_label_; } 1462 RegExpNode* stop_node() { return stop_node_; } 1463 int characters_preloaded() { return characters_preloaded_; } 1464 int bound_checked_up_to() { return bound_checked_up_to_; } 1465 int flush_budget() { return flush_budget_; } 1466 QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; } 1467 bool mentions_reg(int reg); 1468 // Returns true if a deferred position store exists to the specified 1469 // register and stores the offset in the out-parameter. Otherwise 1470 // returns false. 1471 bool GetStoredPosition(int reg, int* cp_offset); 1472 // These set methods and AdvanceCurrentPositionInTrace should be used only on 1473 // new traces - the intention is that traces are immutable after creation. 1474 void add_action(DeferredAction* new_action) { 1475 DCHECK(new_action->next_ == NULL); 1476 new_action->next_ = actions_; 1477 actions_ = new_action; 1478 } 1479 void set_backtrack(Label* backtrack) { backtrack_ = backtrack; } 1480 void set_stop_node(RegExpNode* node) { stop_node_ = node; } 1481 void set_loop_label(Label* label) { loop_label_ = label; } 1482 void set_characters_preloaded(int count) { characters_preloaded_ = count; } 1483 void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; } 1484 void set_flush_budget(int to) { flush_budget_ = to; } 1485 void set_quick_check_performed(QuickCheckDetails* d) { 1486 quick_check_performed_ = *d; 1487 } 1488 void InvalidateCurrentCharacter(); 1489 void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler); 1490 1491 private: 1492 int FindAffectedRegisters(OutSet* affected_registers, Zone* zone); 1493 void PerformDeferredActions(RegExpMacroAssembler* macro, 1494 int max_register, 1495 const OutSet& affected_registers, 1496 OutSet* registers_to_pop, 1497 OutSet* registers_to_clear, 1498 Zone* zone); 1499 void RestoreAffectedRegisters(RegExpMacroAssembler* macro, 1500 int max_register, 1501 const OutSet& registers_to_pop, 1502 const OutSet& registers_to_clear); 1503 int cp_offset_; 1504 DeferredAction* actions_; 1505 Label* backtrack_; 1506 RegExpNode* stop_node_; 1507 Label* loop_label_; 1508 int characters_preloaded_; 1509 int bound_checked_up_to_; 1510 QuickCheckDetails quick_check_performed_; 1511 int flush_budget_; 1512 TriBool at_start_; 1513 }; 1514 1515 1516 class GreedyLoopState { 1517 public: 1518 explicit GreedyLoopState(bool not_at_start); 1519 1520 Label* label() { return &label_; } 1521 Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; } 1522 1523 private: 1524 Label label_; 1525 Trace counter_backtrack_trace_; 1526 }; 1527 1528 1529 struct PreloadState { 1530 static const int kEatsAtLeastNotYetInitialized = -1; 1531 bool preload_is_current_; 1532 bool preload_has_checked_bounds_; 1533 int preload_characters_; 1534 int eats_at_least_; 1535 void init() { 1536 eats_at_least_ = kEatsAtLeastNotYetInitialized; 1537 } 1538 }; 1539 1540 1541 class NodeVisitor { 1542 public: 1543 virtual ~NodeVisitor() { } 1544 #define DECLARE_VISIT(Type) \ 1545 virtual void Visit##Type(Type##Node* that) = 0; 1546 FOR_EACH_NODE_TYPE(DECLARE_VISIT) 1547 #undef DECLARE_VISIT 1548 virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); } 1549 }; 1550 1551 1552 // Node visitor used to add the start set of the alternatives to the 1553 // dispatch table of a choice node. 1554 class DispatchTableConstructor: public NodeVisitor { 1555 public: 1556 DispatchTableConstructor(DispatchTable* table, bool ignore_case, 1557 Zone* zone) 1558 : table_(table), 1559 choice_index_(-1), 1560 ignore_case_(ignore_case), 1561 zone_(zone) { } 1562 1563 void BuildTable(ChoiceNode* node); 1564 1565 void AddRange(CharacterRange range) { 1566 table()->AddRange(range, choice_index_, zone_); 1567 } 1568 1569 void AddInverse(ZoneList<CharacterRange>* ranges); 1570 1571 #define DECLARE_VISIT(Type) \ 1572 virtual void Visit##Type(Type##Node* that); 1573 FOR_EACH_NODE_TYPE(DECLARE_VISIT) 1574 #undef DECLARE_VISIT 1575 1576 DispatchTable* table() { return table_; } 1577 void set_choice_index(int value) { choice_index_ = value; } 1578 1579 protected: 1580 DispatchTable* table_; 1581 int choice_index_; 1582 bool ignore_case_; 1583 Zone* zone_; 1584 }; 1585 1586 1587 // Assertion propagation moves information about assertions such as 1588 // \b to the affected nodes. For instance, in /.\b./ information must 1589 // be propagated to the first '.' that whatever follows needs to know 1590 // if it matched a word or a non-word, and to the second '.' that it 1591 // has to check if it succeeds a word or non-word. In this case the 1592 // result will be something like: 1593 // 1594 // +-------+ +------------+ 1595 // | . | | . | 1596 // +-------+ ---> +------------+ 1597 // | word? | | check word | 1598 // +-------+ +------------+ 1599 class Analysis: public NodeVisitor { 1600 public: 1601 Analysis(bool ignore_case, bool is_one_byte) 1602 : ignore_case_(ignore_case), 1603 is_one_byte_(is_one_byte), 1604 error_message_(NULL) {} 1605 void EnsureAnalyzed(RegExpNode* node); 1606 1607 #define DECLARE_VISIT(Type) \ 1608 virtual void Visit##Type(Type##Node* that); 1609 FOR_EACH_NODE_TYPE(DECLARE_VISIT) 1610 #undef DECLARE_VISIT 1611 virtual void VisitLoopChoice(LoopChoiceNode* that); 1612 1613 bool has_failed() { return error_message_ != NULL; } 1614 const char* error_message() { 1615 DCHECK(error_message_ != NULL); 1616 return error_message_; 1617 } 1618 void fail(const char* error_message) { 1619 error_message_ = error_message; 1620 } 1621 1622 private: 1623 bool ignore_case_; 1624 bool is_one_byte_; 1625 const char* error_message_; 1626 1627 DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis); 1628 }; 1629 1630 1631 struct RegExpCompileData { 1632 RegExpCompileData() 1633 : tree(NULL), 1634 node(NULL), 1635 simple(true), 1636 contains_anchor(false), 1637 capture_count(0) { } 1638 RegExpTree* tree; 1639 RegExpNode* node; 1640 bool simple; 1641 bool contains_anchor; 1642 Handle<String> error; 1643 int capture_count; 1644 }; 1645 1646 1647 class RegExpEngine: public AllStatic { 1648 public: 1649 struct CompilationResult { 1650 CompilationResult(Isolate* isolate, const char* error_message) 1651 : error_message(error_message), 1652 code(isolate->heap()->the_hole_value()), 1653 num_registers(0) {} 1654 CompilationResult(Object* code, int registers) 1655 : error_message(NULL), 1656 code(code), 1657 num_registers(registers) {} 1658 const char* error_message; 1659 Object* code; 1660 int num_registers; 1661 }; 1662 1663 static CompilationResult Compile(RegExpCompileData* input, bool ignore_case, 1664 bool global, bool multiline, bool sticky, 1665 Handle<String> pattern, 1666 Handle<String> sample_subject, 1667 bool is_one_byte, Zone* zone); 1668 1669 static void DotPrint(const char* label, RegExpNode* node, bool ignore_case); 1670 }; 1671 1672 1673 } } // namespace v8::internal 1674 1675 #endif // V8_JSREGEXP_H_ 1676