Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief
     12 /// This file declares a class to represent arbitrary precision floating point
     13 /// values and provide a variety of arithmetic operations on them.
     14 ///
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_ADT_APFLOAT_H
     18 #define LLVM_ADT_APFLOAT_H
     19 
     20 #include "llvm/ADT/APInt.h"
     21 
     22 namespace llvm {
     23 
     24 struct fltSemantics;
     25 class APSInt;
     26 class StringRef;
     27 
     28 /// Enum that represents what fraction of the LSB truncated bits of an fp number
     29 /// represent.
     30 ///
     31 /// This essentially combines the roles of guard and sticky bits.
     32 enum lostFraction { // Example of truncated bits:
     33   lfExactlyZero,    // 000000
     34   lfLessThanHalf,   // 0xxxxx  x's not all zero
     35   lfExactlyHalf,    // 100000
     36   lfMoreThanHalf    // 1xxxxx  x's not all zero
     37 };
     38 
     39 /// \brief A self-contained host- and target-independent arbitrary-precision
     40 /// floating-point software implementation.
     41 ///
     42 /// APFloat uses bignum integer arithmetic as provided by static functions in
     43 /// the APInt class.  The library will work with bignum integers whose parts are
     44 /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
     45 ///
     46 /// Written for clarity rather than speed, in particular with a view to use in
     47 /// the front-end of a cross compiler so that target arithmetic can be correctly
     48 /// performed on the host.  Performance should nonetheless be reasonable,
     49 /// particularly for its intended use.  It may be useful as a base
     50 /// implementation for a run-time library during development of a faster
     51 /// target-specific one.
     52 ///
     53 /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
     54 /// implemented operations.  Currently implemented operations are add, subtract,
     55 /// multiply, divide, fused-multiply-add, conversion-to-float,
     56 /// conversion-to-integer and conversion-from-integer.  New rounding modes
     57 /// (e.g. away from zero) can be added with three or four lines of code.
     58 ///
     59 /// Four formats are built-in: IEEE single precision, double precision,
     60 /// quadruple precision, and x87 80-bit extended double (when operating with
     61 /// full extended precision).  Adding a new format that obeys IEEE semantics
     62 /// only requires adding two lines of code: a declaration and definition of the
     63 /// format.
     64 ///
     65 /// All operations return the status of that operation as an exception bit-mask,
     66 /// so multiple operations can be done consecutively with their results or-ed
     67 /// together.  The returned status can be useful for compiler diagnostics; e.g.,
     68 /// inexact, underflow and overflow can be easily diagnosed on constant folding,
     69 /// and compiler optimizers can determine what exceptions would be raised by
     70 /// folding operations and optimize, or perhaps not optimize, accordingly.
     71 ///
     72 /// At present, underflow tininess is detected after rounding; it should be
     73 /// straight forward to add support for the before-rounding case too.
     74 ///
     75 /// The library reads hexadecimal floating point numbers as per C99, and
     76 /// correctly rounds if necessary according to the specified rounding mode.
     77 /// Syntax is required to have been validated by the caller.  It also converts
     78 /// floating point numbers to hexadecimal text as per the C99 %a and %A
     79 /// conversions.  The output precision (or alternatively the natural minimal
     80 /// precision) can be specified; if the requested precision is less than the
     81 /// natural precision the output is correctly rounded for the specified rounding
     82 /// mode.
     83 ///
     84 /// It also reads decimal floating point numbers and correctly rounds according
     85 /// to the specified rounding mode.
     86 ///
     87 /// Conversion to decimal text is not currently implemented.
     88 ///
     89 /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
     90 /// signed exponent, and the significand as an array of integer parts.  After
     91 /// normalization of a number of precision P the exponent is within the range of
     92 /// the format, and if the number is not denormal the P-th bit of the
     93 /// significand is set as an explicit integer bit.  For denormals the most
     94 /// significant bit is shifted right so that the exponent is maintained at the
     95 /// format's minimum, so that the smallest denormal has just the least
     96 /// significant bit of the significand set.  The sign of zeroes and infinities
     97 /// is significant; the exponent and significand of such numbers is not stored,
     98 /// but has a known implicit (deterministic) value: 0 for the significands, 0
     99 /// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
    100 /// significand are deterministic, although not really meaningful, and preserved
    101 /// in non-conversion operations.  The exponent is implicitly all 1 bits.
    102 ///
    103 /// APFloat does not provide any exception handling beyond default exception
    104 /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
    105 /// by encoding Signaling NaNs with the first bit of its trailing significand as
    106 /// 0.
    107 ///
    108 /// TODO
    109 /// ====
    110 ///
    111 /// Some features that may or may not be worth adding:
    112 ///
    113 /// Binary to decimal conversion (hard).
    114 ///
    115 /// Optional ability to detect underflow tininess before rounding.
    116 ///
    117 /// New formats: x87 in single and double precision mode (IEEE apart from
    118 /// extended exponent range) (hard).
    119 ///
    120 /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
    121 ///
    122 class APFloat {
    123 public:
    124 
    125   /// A signed type to represent a floating point numbers unbiased exponent.
    126   typedef signed short ExponentType;
    127 
    128   /// \name Floating Point Semantics.
    129   /// @{
    130 
    131   static const fltSemantics IEEEhalf;
    132   static const fltSemantics IEEEsingle;
    133   static const fltSemantics IEEEdouble;
    134   static const fltSemantics IEEEquad;
    135   static const fltSemantics PPCDoubleDouble;
    136   static const fltSemantics x87DoubleExtended;
    137 
    138   /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
    139   /// anything real.
    140   static const fltSemantics Bogus;
    141 
    142   /// @}
    143 
    144   static unsigned int semanticsPrecision(const fltSemantics &);
    145 
    146   /// IEEE-754R 5.11: Floating Point Comparison Relations.
    147   enum cmpResult {
    148     cmpLessThan,
    149     cmpEqual,
    150     cmpGreaterThan,
    151     cmpUnordered
    152   };
    153 
    154   /// IEEE-754R 4.3: Rounding-direction attributes.
    155   enum roundingMode {
    156     rmNearestTiesToEven,
    157     rmTowardPositive,
    158     rmTowardNegative,
    159     rmTowardZero,
    160     rmNearestTiesToAway
    161   };
    162 
    163   /// IEEE-754R 7: Default exception handling.
    164   ///
    165   /// opUnderflow or opOverflow are always returned or-ed with opInexact.
    166   enum opStatus {
    167     opOK = 0x00,
    168     opInvalidOp = 0x01,
    169     opDivByZero = 0x02,
    170     opOverflow = 0x04,
    171     opUnderflow = 0x08,
    172     opInexact = 0x10
    173   };
    174 
    175   /// Category of internally-represented number.
    176   enum fltCategory {
    177     fcInfinity,
    178     fcNaN,
    179     fcNormal,
    180     fcZero
    181   };
    182 
    183   /// Convenience enum used to construct an uninitialized APFloat.
    184   enum uninitializedTag {
    185     uninitialized
    186   };
    187 
    188   /// \name Constructors
    189   /// @{
    190 
    191   APFloat(const fltSemantics &); // Default construct to 0.0
    192   APFloat(const fltSemantics &, StringRef);
    193   APFloat(const fltSemantics &, integerPart);
    194   APFloat(const fltSemantics &, uninitializedTag);
    195   APFloat(const fltSemantics &, const APInt &);
    196   explicit APFloat(double d);
    197   explicit APFloat(float f);
    198   APFloat(const APFloat &);
    199   APFloat(APFloat &&);
    200   ~APFloat();
    201 
    202   /// @}
    203 
    204   /// \brief Returns whether this instance allocated memory.
    205   bool needsCleanup() const { return partCount() > 1; }
    206 
    207   /// \name Convenience "constructors"
    208   /// @{
    209 
    210   /// Factory for Positive and Negative Zero.
    211   ///
    212   /// \param Negative True iff the number should be negative.
    213   static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
    214     APFloat Val(Sem, uninitialized);
    215     Val.makeZero(Negative);
    216     return Val;
    217   }
    218 
    219   /// Factory for Positive and Negative Infinity.
    220   ///
    221   /// \param Negative True iff the number should be negative.
    222   static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
    223     APFloat Val(Sem, uninitialized);
    224     Val.makeInf(Negative);
    225     return Val;
    226   }
    227 
    228   /// Factory for QNaN values.
    229   ///
    230   /// \param Negative - True iff the NaN generated should be negative.
    231   /// \param type - The unspecified fill bits for creating the NaN, 0 by
    232   /// default.  The value is truncated as necessary.
    233   static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
    234                         unsigned type = 0) {
    235     if (type) {
    236       APInt fill(64, type);
    237       return getQNaN(Sem, Negative, &fill);
    238     } else {
    239       return getQNaN(Sem, Negative, nullptr);
    240     }
    241   }
    242 
    243   /// Factory for QNaN values.
    244   static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
    245                          const APInt *payload = nullptr) {
    246     return makeNaN(Sem, false, Negative, payload);
    247   }
    248 
    249   /// Factory for SNaN values.
    250   static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
    251                          const APInt *payload = nullptr) {
    252     return makeNaN(Sem, true, Negative, payload);
    253   }
    254 
    255   /// Returns the largest finite number in the given semantics.
    256   ///
    257   /// \param Negative - True iff the number should be negative
    258   static APFloat getLargest(const fltSemantics &Sem, bool Negative = false);
    259 
    260   /// Returns the smallest (by magnitude) finite number in the given semantics.
    261   /// Might be denormalized, which implies a relative loss of precision.
    262   ///
    263   /// \param Negative - True iff the number should be negative
    264   static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false);
    265 
    266   /// Returns the smallest (by magnitude) normalized finite number in the given
    267   /// semantics.
    268   ///
    269   /// \param Negative - True iff the number should be negative
    270   static APFloat getSmallestNormalized(const fltSemantics &Sem,
    271                                        bool Negative = false);
    272 
    273   /// Returns a float which is bitcasted from an all one value int.
    274   ///
    275   /// \param BitWidth - Select float type
    276   /// \param isIEEE   - If 128 bit number, select between PPC and IEEE
    277   static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
    278 
    279   /// @}
    280 
    281   /// Used to insert APFloat objects, or objects that contain APFloat objects,
    282   /// into FoldingSets.
    283   void Profile(FoldingSetNodeID &NID) const;
    284 
    285   /// \brief Used by the Bitcode serializer to emit APInts to Bitcode.
    286   void Emit(Serializer &S) const;
    287 
    288   /// \brief Used by the Bitcode deserializer to deserialize APInts.
    289   static APFloat ReadVal(Deserializer &D);
    290 
    291   /// \name Arithmetic
    292   /// @{
    293 
    294   opStatus add(const APFloat &, roundingMode);
    295   opStatus subtract(const APFloat &, roundingMode);
    296   opStatus multiply(const APFloat &, roundingMode);
    297   opStatus divide(const APFloat &, roundingMode);
    298   /// IEEE remainder.
    299   opStatus remainder(const APFloat &);
    300   /// C fmod, or llvm frem.
    301   opStatus mod(const APFloat &, roundingMode);
    302   opStatus fusedMultiplyAdd(const APFloat &, const APFloat &, roundingMode);
    303   opStatus roundToIntegral(roundingMode);
    304   /// IEEE-754R 5.3.1: nextUp/nextDown.
    305   opStatus next(bool nextDown);
    306 
    307   /// @}
    308 
    309   /// \name Sign operations.
    310   /// @{
    311 
    312   void changeSign();
    313   void clearSign();
    314   void copySign(const APFloat &);
    315 
    316   /// @}
    317 
    318   /// \name Conversions
    319   /// @{
    320 
    321   opStatus convert(const fltSemantics &, roundingMode, bool *);
    322   opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode,
    323                             bool *) const;
    324   opStatus convertToInteger(APSInt &, roundingMode, bool *) const;
    325   opStatus convertFromAPInt(const APInt &, bool, roundingMode);
    326   opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
    327                                           bool, roundingMode);
    328   opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
    329                                           bool, roundingMode);
    330   opStatus convertFromString(StringRef, roundingMode);
    331   APInt bitcastToAPInt() const;
    332   double convertToDouble() const;
    333   float convertToFloat() const;
    334 
    335   /// @}
    336 
    337   /// The definition of equality is not straightforward for floating point, so
    338   /// we won't use operator==.  Use one of the following, or write whatever it
    339   /// is you really mean.
    340   bool operator==(const APFloat &) const LLVM_DELETED_FUNCTION;
    341 
    342   /// IEEE comparison with another floating point number (NaNs compare
    343   /// unordered, 0==-0).
    344   cmpResult compare(const APFloat &) const;
    345 
    346   /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
    347   bool bitwiseIsEqual(const APFloat &) const;
    348 
    349   /// Write out a hexadecimal representation of the floating point value to DST,
    350   /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
    351   /// Return the number of characters written, excluding the terminating NUL.
    352   unsigned int convertToHexString(char *dst, unsigned int hexDigits,
    353                                   bool upperCase, roundingMode) const;
    354 
    355   /// \name IEEE-754R 5.7.2 General operations.
    356   /// @{
    357 
    358   /// IEEE-754R isSignMinus: Returns true if and only if the current value is
    359   /// negative.
    360   ///
    361   /// This applies to zeros and NaNs as well.
    362   bool isNegative() const { return sign; }
    363 
    364   /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
    365   ///
    366   /// This implies that the current value of the float is not zero, subnormal,
    367   /// infinite, or NaN following the definition of normality from IEEE-754R.
    368   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
    369 
    370   /// Returns true if and only if the current value is zero, subnormal, or
    371   /// normal.
    372   ///
    373   /// This means that the value is not infinite or NaN.
    374   bool isFinite() const { return !isNaN() && !isInfinity(); }
    375 
    376   /// Returns true if and only if the float is plus or minus zero.
    377   bool isZero() const { return category == fcZero; }
    378 
    379   /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
    380   /// denormal.
    381   bool isDenormal() const;
    382 
    383   /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
    384   bool isInfinity() const { return category == fcInfinity; }
    385 
    386   /// Returns true if and only if the float is a quiet or signaling NaN.
    387   bool isNaN() const { return category == fcNaN; }
    388 
    389   /// Returns true if and only if the float is a signaling NaN.
    390   bool isSignaling() const;
    391 
    392   /// @}
    393 
    394   /// \name Simple Queries
    395   /// @{
    396 
    397   fltCategory getCategory() const { return category; }
    398   const fltSemantics &getSemantics() const { return *semantics; }
    399   bool isNonZero() const { return category != fcZero; }
    400   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
    401   bool isPosZero() const { return isZero() && !isNegative(); }
    402   bool isNegZero() const { return isZero() && isNegative(); }
    403 
    404   /// Returns true if and only if the number has the smallest possible non-zero
    405   /// magnitude in the current semantics.
    406   bool isSmallest() const;
    407 
    408   /// Returns true if and only if the number has the largest possible finite
    409   /// magnitude in the current semantics.
    410   bool isLargest() const;
    411 
    412   /// @}
    413 
    414   APFloat &operator=(const APFloat &);
    415   APFloat &operator=(APFloat &&);
    416 
    417   /// \brief Overload to compute a hash code for an APFloat value.
    418   ///
    419   /// Note that the use of hash codes for floating point values is in general
    420   /// frought with peril. Equality is hard to define for these values. For
    421   /// example, should negative and positive zero hash to different codes? Are
    422   /// they equal or not? This hash value implementation specifically
    423   /// emphasizes producing different codes for different inputs in order to
    424   /// be used in canonicalization and memoization. As such, equality is
    425   /// bitwiseIsEqual, and 0 != -0.
    426   friend hash_code hash_value(const APFloat &Arg);
    427 
    428   /// Converts this value into a decimal string.
    429   ///
    430   /// \param FormatPrecision The maximum number of digits of
    431   ///   precision to output.  If there are fewer digits available,
    432   ///   zero padding will not be used unless the value is
    433   ///   integral and small enough to be expressed in
    434   ///   FormatPrecision digits.  0 means to use the natural
    435   ///   precision of the number.
    436   /// \param FormatMaxPadding The maximum number of zeros to
    437   ///   consider inserting before falling back to scientific
    438   ///   notation.  0 means to always use scientific notation.
    439   ///
    440   /// Number       Precision    MaxPadding      Result
    441   /// ------       ---------    ----------      ------
    442   /// 1.01E+4              5             2       10100
    443   /// 1.01E+4              4             2       1.01E+4
    444   /// 1.01E+4              5             1       1.01E+4
    445   /// 1.01E-2              5             2       0.0101
    446   /// 1.01E-2              4             2       0.0101
    447   /// 1.01E-2              4             1       1.01E-2
    448   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
    449                 unsigned FormatMaxPadding = 3) const;
    450 
    451   /// If this value has an exact multiplicative inverse, store it in inv and
    452   /// return true.
    453   bool getExactInverse(APFloat *inv) const;
    454 
    455 private:
    456 
    457   /// \name Simple Queries
    458   /// @{
    459 
    460   integerPart *significandParts();
    461   const integerPart *significandParts() const;
    462   unsigned int partCount() const;
    463 
    464   /// @}
    465 
    466   /// \name Significand operations.
    467   /// @{
    468 
    469   integerPart addSignificand(const APFloat &);
    470   integerPart subtractSignificand(const APFloat &, integerPart);
    471   lostFraction addOrSubtractSignificand(const APFloat &, bool subtract);
    472   lostFraction multiplySignificand(const APFloat &, const APFloat *);
    473   lostFraction divideSignificand(const APFloat &);
    474   void incrementSignificand();
    475   void initialize(const fltSemantics *);
    476   void shiftSignificandLeft(unsigned int);
    477   lostFraction shiftSignificandRight(unsigned int);
    478   unsigned int significandLSB() const;
    479   unsigned int significandMSB() const;
    480   void zeroSignificand();
    481   /// Return true if the significand excluding the integral bit is all ones.
    482   bool isSignificandAllOnes() const;
    483   /// Return true if the significand excluding the integral bit is all zeros.
    484   bool isSignificandAllZeros() const;
    485 
    486   /// @}
    487 
    488   /// \name Arithmetic on special values.
    489   /// @{
    490 
    491   opStatus addOrSubtractSpecials(const APFloat &, bool subtract);
    492   opStatus divideSpecials(const APFloat &);
    493   opStatus multiplySpecials(const APFloat &);
    494   opStatus modSpecials(const APFloat &);
    495 
    496   /// @}
    497 
    498   /// \name Special value setters.
    499   /// @{
    500 
    501   void makeLargest(bool Neg = false);
    502   void makeSmallest(bool Neg = false);
    503   void makeNaN(bool SNaN = false, bool Neg = false,
    504                const APInt *fill = nullptr);
    505   static APFloat makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
    506                          const APInt *fill);
    507   void makeInf(bool Neg = false);
    508   void makeZero(bool Neg = false);
    509 
    510   /// @}
    511 
    512   /// \name Miscellany
    513   /// @{
    514 
    515   bool convertFromStringSpecials(StringRef str);
    516   opStatus normalize(roundingMode, lostFraction);
    517   opStatus addOrSubtract(const APFloat &, roundingMode, bool subtract);
    518   cmpResult compareAbsoluteValue(const APFloat &) const;
    519   opStatus handleOverflow(roundingMode);
    520   bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
    521   opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool,
    522                                         roundingMode, bool *) const;
    523   opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
    524                                     roundingMode);
    525   opStatus convertFromHexadecimalString(StringRef, roundingMode);
    526   opStatus convertFromDecimalString(StringRef, roundingMode);
    527   char *convertNormalToHexString(char *, unsigned int, bool,
    528                                  roundingMode) const;
    529   opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
    530                                         roundingMode);
    531 
    532   /// @}
    533 
    534   APInt convertHalfAPFloatToAPInt() const;
    535   APInt convertFloatAPFloatToAPInt() const;
    536   APInt convertDoubleAPFloatToAPInt() const;
    537   APInt convertQuadrupleAPFloatToAPInt() const;
    538   APInt convertF80LongDoubleAPFloatToAPInt() const;
    539   APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
    540   void initFromAPInt(const fltSemantics *Sem, const APInt &api);
    541   void initFromHalfAPInt(const APInt &api);
    542   void initFromFloatAPInt(const APInt &api);
    543   void initFromDoubleAPInt(const APInt &api);
    544   void initFromQuadrupleAPInt(const APInt &api);
    545   void initFromF80LongDoubleAPInt(const APInt &api);
    546   void initFromPPCDoubleDoubleAPInt(const APInt &api);
    547 
    548   void assign(const APFloat &);
    549   void copySignificand(const APFloat &);
    550   void freeSignificand();
    551 
    552   /// The semantics that this value obeys.
    553   const fltSemantics *semantics;
    554 
    555   /// A binary fraction with an explicit integer bit.
    556   ///
    557   /// The significand must be at least one bit wider than the target precision.
    558   union Significand {
    559     integerPart part;
    560     integerPart *parts;
    561   } significand;
    562 
    563   /// The signed unbiased exponent of the value.
    564   ExponentType exponent;
    565 
    566   /// What kind of floating point number this is.
    567   ///
    568   /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
    569   /// Using the extra bit keeps it from failing under VisualStudio.
    570   fltCategory category : 3;
    571 
    572   /// Sign bit of the number.
    573   unsigned int sign : 1;
    574 };
    575 
    576 /// See friend declaration above.
    577 ///
    578 /// This additional declaration is required in order to compile LLVM with IBM
    579 /// xlC compiler.
    580 hash_code hash_value(const APFloat &Arg);
    581 } // namespace llvm
    582 
    583 #endif // LLVM_ADT_APFLOAT_H
    584