Home | History | Annotate | Download | only in src
      1 // Copyright 2014 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 /*
      6  * Copyright (C) 2012 The Android Open Source Project
      7  * All rights reserved.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  *  * Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  *  * Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in
     16  *    the documentation and/or other materials provided with the
     17  *    distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     20  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     22  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     23  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     25  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
     26  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     27  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     28  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     29  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 #include "linker_phdr.h"
     34 
     35 #include <errno.h>
     36 #include <fcntl.h>
     37 #include <sys/mman.h>
     38 #include <unistd.h>
     39 
     40 #define PAGE_START(x) ((x) & PAGE_MASK)
     41 #define PAGE_OFFSET(x) ((x) & ~PAGE_MASK)
     42 #define PAGE_END(x) PAGE_START((x) + (PAGE_SIZE - 1))
     43 
     44 // Missing exec_elf.h definitions.
     45 #ifndef PT_GNU_RELRO
     46 #define PT_GNU_RELRO 0x6474e552
     47 #endif
     48 
     49 /**
     50   TECHNICAL NOTE ON ELF LOADING.
     51 
     52   An ELF file's program header table contains one or more PT_LOAD
     53   segments, which corresponds to portions of the file that need to
     54   be mapped into the process' address space.
     55 
     56   Each loadable segment has the following important properties:
     57 
     58     p_offset  -> segment file offset
     59     p_filesz  -> segment file size
     60     p_memsz   -> segment memory size (always >= p_filesz)
     61     p_vaddr   -> segment's virtual address
     62     p_flags   -> segment flags (e.g. readable, writable, executable)
     63 
     64   We will ignore the p_paddr and p_align fields of ELF::Phdr for now.
     65 
     66   The loadable segments can be seen as a list of [p_vaddr ... p_vaddr+p_memsz)
     67   ranges of virtual addresses. A few rules apply:
     68 
     69   - the virtual address ranges should not overlap.
     70 
     71   - if a segment's p_filesz is smaller than its p_memsz, the extra bytes
     72     between them should always be initialized to 0.
     73 
     74   - ranges do not necessarily start or end at page boundaries. Two distinct
     75     segments can have their start and end on the same page. In this case, the
     76     page inherits the mapping flags of the latter segment.
     77 
     78   Finally, the real load addrs of each segment is not p_vaddr. Instead the
     79   loader decides where to load the first segment, then will load all others
     80   relative to the first one to respect the initial range layout.
     81 
     82   For example, consider the following list:
     83 
     84     [ offset:0,      filesz:0x4000, memsz:0x4000, vaddr:0x30000 ],
     85     [ offset:0x4000, filesz:0x2000, memsz:0x8000, vaddr:0x40000 ],
     86 
     87   This corresponds to two segments that cover these virtual address ranges:
     88 
     89        0x30000...0x34000
     90        0x40000...0x48000
     91 
     92   If the loader decides to load the first segment at address 0xa0000000
     93   then the segments' load address ranges will be:
     94 
     95        0xa0030000...0xa0034000
     96        0xa0040000...0xa0048000
     97 
     98   In other words, all segments must be loaded at an address that has the same
     99   constant offset from their p_vaddr value. This offset is computed as the
    100   difference between the first segment's load address, and its p_vaddr value.
    101 
    102   However, in practice, segments do _not_ start at page boundaries. Since we
    103   can only memory-map at page boundaries, this means that the bias is
    104   computed as:
    105 
    106        load_bias = phdr0_load_address - PAGE_START(phdr0->p_vaddr)
    107 
    108   (NOTE: The value must be used as a 32-bit unsigned integer, to deal with
    109           possible wrap around UINT32_MAX for possible large p_vaddr values).
    110 
    111   And that the phdr0_load_address must start at a page boundary, with
    112   the segment's real content starting at:
    113 
    114        phdr0_load_address + PAGE_OFFSET(phdr0->p_vaddr)
    115 
    116   Note that ELF requires the following condition to make the mmap()-ing work:
    117 
    118       PAGE_OFFSET(phdr0->p_vaddr) == PAGE_OFFSET(phdr0->p_offset)
    119 
    120   The load_bias must be added to any p_vaddr value read from the ELF file to
    121   determine the corresponding memory address.
    122 
    123  **/
    124 
    125 #define MAYBE_MAP_FLAG(x, from, to) (((x) & (from)) ? (to) : 0)
    126 #define PFLAGS_TO_PROT(x)                 \
    127   (MAYBE_MAP_FLAG((x), PF_X, PROT_EXEC) | \
    128    MAYBE_MAP_FLAG((x), PF_R, PROT_READ) | \
    129    MAYBE_MAP_FLAG((x), PF_W, PROT_WRITE))
    130 
    131 /* Returns the size of the extent of all the possibly non-contiguous
    132  * loadable segments in an ELF program header table. This corresponds
    133  * to the page-aligned size in bytes that needs to be reserved in the
    134  * process' address space. If there are no loadable segments, 0 is
    135  * returned.
    136  *
    137  * If out_min_vaddr or out_max_vaddr are non-NULL, they will be
    138  * set to the minimum and maximum addresses of pages to be reserved,
    139  * or 0 if there is nothing to load.
    140  */
    141 size_t phdr_table_get_load_size(const ELF::Phdr* phdr_table,
    142                                 size_t phdr_count,
    143                                 ELF::Addr* out_min_vaddr,
    144                                 ELF::Addr* out_max_vaddr) {
    145   ELF::Addr min_vaddr = ~static_cast<ELF::Addr>(0);
    146   ELF::Addr max_vaddr = 0x00000000U;
    147 
    148   bool found_pt_load = false;
    149   for (size_t i = 0; i < phdr_count; ++i) {
    150     const ELF::Phdr* phdr = &phdr_table[i];
    151 
    152     if (phdr->p_type != PT_LOAD) {
    153       continue;
    154     }
    155     found_pt_load = true;
    156 
    157     if (phdr->p_vaddr < min_vaddr) {
    158       min_vaddr = phdr->p_vaddr;
    159     }
    160 
    161     if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) {
    162       max_vaddr = phdr->p_vaddr + phdr->p_memsz;
    163     }
    164   }
    165   if (!found_pt_load) {
    166     min_vaddr = 0x00000000U;
    167   }
    168 
    169   min_vaddr = PAGE_START(min_vaddr);
    170   max_vaddr = PAGE_END(max_vaddr);
    171 
    172   if (out_min_vaddr != NULL) {
    173     *out_min_vaddr = min_vaddr;
    174   }
    175   if (out_max_vaddr != NULL) {
    176     *out_max_vaddr = max_vaddr;
    177   }
    178   return max_vaddr - min_vaddr;
    179 }
    180 
    181 /* Used internally. Used to set the protection bits of all loaded segments
    182  * with optional extra flags (i.e. really PROT_WRITE). Used by
    183  * phdr_table_protect_segments and phdr_table_unprotect_segments.
    184  */
    185 static int _phdr_table_set_load_prot(const ELF::Phdr* phdr_table,
    186                                      int phdr_count,
    187                                      ELF::Addr load_bias,
    188                                      int extra_prot_flags) {
    189   const ELF::Phdr* phdr = phdr_table;
    190   const ELF::Phdr* phdr_limit = phdr + phdr_count;
    191 
    192   for (; phdr < phdr_limit; phdr++) {
    193     if (phdr->p_type != PT_LOAD || (phdr->p_flags & PF_W) != 0)
    194       continue;
    195 
    196     ELF::Addr seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
    197     ELF::Addr seg_page_end =
    198         PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
    199 
    200     int ret = mprotect((void*)seg_page_start,
    201                        seg_page_end - seg_page_start,
    202                        PFLAGS_TO_PROT(phdr->p_flags) | extra_prot_flags);
    203     if (ret < 0) {
    204       return -1;
    205     }
    206   }
    207   return 0;
    208 }
    209 
    210 /* Restore the original protection modes for all loadable segments.
    211  * You should only call this after phdr_table_unprotect_segments and
    212  * applying all relocations.
    213  *
    214  * Input:
    215  *   phdr_table  -> program header table
    216  *   phdr_count  -> number of entries in tables
    217  *   load_bias   -> load bias
    218  * Return:
    219  *   0 on error, -1 on failure (error code in errno).
    220  */
    221 int phdr_table_protect_segments(const ELF::Phdr* phdr_table,
    222                                 int phdr_count,
    223                                 ELF::Addr load_bias) {
    224   return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, 0);
    225 }
    226 
    227 /* Change the protection of all loaded segments in memory to writable.
    228  * This is useful before performing relocations. Once completed, you
    229  * will have to call phdr_table_protect_segments to restore the original
    230  * protection flags on all segments.
    231  *
    232  * Note that some writable segments can also have their content turned
    233  * to read-only by calling phdr_table_protect_gnu_relro. This is no
    234  * performed here.
    235  *
    236  * Input:
    237  *   phdr_table  -> program header table
    238  *   phdr_count  -> number of entries in tables
    239  *   load_bias   -> load bias
    240  * Return:
    241  *   0 on error, -1 on failure (error code in errno).
    242  */
    243 int phdr_table_unprotect_segments(const ELF::Phdr* phdr_table,
    244                                   int phdr_count,
    245                                   ELF::Addr load_bias) {
    246   return _phdr_table_set_load_prot(
    247       phdr_table, phdr_count, load_bias, PROT_WRITE);
    248 }
    249 
    250 /* Return the extend of the GNU RELRO segment in a program header.
    251  * On success, return 0 and sets |*relro_start| and |*relro_end|
    252  * to the page-aligned extents of the RELRO section.
    253  * On failure, return -1.
    254  *
    255  * NOTE: This assumes there is a single PT_GNU_RELRO segment in the
    256  * program header, i.e. it will return the extents of the first entry.
    257  */
    258 int phdr_table_get_relro_info(const ELF::Phdr* phdr_table,
    259                               int phdr_count,
    260                               ELF::Addr load_bias,
    261                               ELF::Addr* relro_start,
    262                               ELF::Addr* relro_size) {
    263   const ELF::Phdr* phdr;
    264   const ELF::Phdr* phdr_limit = phdr_table + phdr_count;
    265 
    266   for (phdr = phdr_table; phdr < phdr_limit; ++phdr) {
    267     if (phdr->p_type != PT_GNU_RELRO)
    268       continue;
    269 
    270     /* Tricky: what happens when the relro segment does not start
    271      * or end at page boundaries?. We're going to be over-protective
    272      * here and put every page touched by the segment as read-only.
    273      *
    274      * This seems to match Ian Lance Taylor's description of the
    275      * feature at http://www.airs.com/blog/archives/189.
    276      *
    277      * Extract:
    278      *    Note that the current dynamic linker code will only work
    279      *    correctly if the PT_GNU_RELRO segment starts on a page
    280      *    boundary. This is because the dynamic linker rounds the
    281      *    p_vaddr field down to the previous page boundary. If
    282      *    there is anything on the page which should not be read-only,
    283      *    the program is likely to fail at runtime. So in effect the
    284      *    linker must only emit a PT_GNU_RELRO segment if it ensures
    285      *    that it starts on a page boundary.
    286      */
    287     *relro_start = PAGE_START(phdr->p_vaddr) + load_bias;
    288     *relro_size =
    289         PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias - *relro_start;
    290     return 0;
    291   }
    292 
    293   return -1;
    294 }
    295 
    296 /* Apply GNU relro protection if specified by the program header. This will
    297  * turn some of the pages of a writable PT_LOAD segment to read-only, as
    298  * specified by one or more PT_GNU_RELRO segments. This must be always
    299  * performed after relocations.
    300  *
    301  * The areas typically covered are .got and .data.rel.ro, these are
    302  * read-only from the program's POV, but contain absolute addresses
    303  * that need to be relocated before use.
    304  *
    305  * Input:
    306  *   phdr_table  -> program header table
    307  *   phdr_count  -> number of entries in tables
    308  *   load_bias   -> load bias
    309  * Return:
    310  *   0 on error, -1 on failure (error code in errno).
    311  */
    312 int phdr_table_protect_gnu_relro(const ELF::Phdr* phdr_table,
    313                                  int phdr_count,
    314                                  ELF::Addr load_bias) {
    315   ELF::Addr relro_start, relro_size;
    316 
    317   if (phdr_table_get_relro_info(
    318           phdr_table, phdr_count, load_bias, &relro_start, &relro_size) < 0) {
    319     return -1;
    320   }
    321 
    322   return mprotect((void*)relro_start, relro_size, PROT_READ);
    323 }
    324 
    325 #ifdef __arm__
    326 
    327 #ifndef PT_ARM_EXIDX
    328 #define PT_ARM_EXIDX 0x70000001 /* .ARM.exidx segment */
    329 #endif
    330 
    331 /* Return the address and size of the .ARM.exidx section in memory,
    332  * if present.
    333  *
    334  * Input:
    335  *   phdr_table  -> program header table
    336  *   phdr_count  -> number of entries in tables
    337  *   load_bias   -> load bias
    338  * Output:
    339  *   arm_exidx       -> address of table in memory (NULL on failure).
    340  *   arm_exidx_count -> number of items in table (0 on failure).
    341  * Return:
    342  *   0 on error, -1 on failure (_no_ error code in errno)
    343  */
    344 int phdr_table_get_arm_exidx(const ELF::Phdr* phdr_table,
    345                              int phdr_count,
    346                              ELF::Addr load_bias,
    347                              ELF::Addr** arm_exidx,
    348                              unsigned* arm_exidx_count) {
    349   const ELF::Phdr* phdr = phdr_table;
    350   const ELF::Phdr* phdr_limit = phdr + phdr_count;
    351 
    352   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
    353     if (phdr->p_type != PT_ARM_EXIDX)
    354       continue;
    355 
    356     *arm_exidx = (ELF::Addr*)(load_bias + phdr->p_vaddr);
    357     *arm_exidx_count = (unsigned)(phdr->p_memsz / 8);
    358     return 0;
    359   }
    360   *arm_exidx = NULL;
    361   *arm_exidx_count = 0;
    362   return -1;
    363 }
    364 #endif  // __arm__
    365 
    366 /* Return the address and size of the ELF file's .dynamic section in memory,
    367  * or NULL if missing.
    368  *
    369  * Input:
    370  *   phdr_table  -> program header table
    371  *   phdr_count  -> number of entries in tables
    372  *   load_bias   -> load bias
    373  * Output:
    374  *   dynamic       -> address of table in memory (NULL on failure).
    375  *   dynamic_count -> number of items in table (0 on failure).
    376  *   dynamic_flags -> protection flags for section (unset on failure)
    377  * Return:
    378  *   void
    379  */
    380 void phdr_table_get_dynamic_section(const ELF::Phdr* phdr_table,
    381                                     int phdr_count,
    382                                     ELF::Addr load_bias,
    383                                     const ELF::Dyn** dynamic,
    384                                     size_t* dynamic_count,
    385                                     ELF::Word* dynamic_flags) {
    386   const ELF::Phdr* phdr = phdr_table;
    387   const ELF::Phdr* phdr_limit = phdr + phdr_count;
    388 
    389   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
    390     if (phdr->p_type != PT_DYNAMIC) {
    391       continue;
    392     }
    393 
    394     *dynamic = reinterpret_cast<const ELF::Dyn*>(load_bias + phdr->p_vaddr);
    395     if (dynamic_count) {
    396       *dynamic_count = (unsigned)(phdr->p_memsz / sizeof(ELF::Dyn));
    397     }
    398     if (dynamic_flags) {
    399       *dynamic_flags = phdr->p_flags;
    400     }
    401     return;
    402   }
    403   *dynamic = NULL;
    404   if (dynamic_count) {
    405     *dynamic_count = 0;
    406   }
    407 }
    408