1 //=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the template classes ExplodedNode and ExplodedGraph, 11 // which represent a path-sensitive, intra-procedural "exploded graph." 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 16 #include "clang/AST/ParentMap.h" 17 #include "clang/AST/Stmt.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include <vector> 25 26 using namespace clang; 27 using namespace ento; 28 29 //===----------------------------------------------------------------------===// 30 // Node auditing. 31 //===----------------------------------------------------------------------===// 32 33 // An out of line virtual method to provide a home for the class vtable. 34 ExplodedNode::Auditor::~Auditor() {} 35 36 #ifndef NDEBUG 37 static ExplodedNode::Auditor* NodeAuditor = nullptr; 38 #endif 39 40 void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) { 41 #ifndef NDEBUG 42 NodeAuditor = A; 43 #endif 44 } 45 46 //===----------------------------------------------------------------------===// 47 // Cleanup. 48 //===----------------------------------------------------------------------===// 49 50 ExplodedGraph::ExplodedGraph() 51 : NumNodes(0), ReclaimNodeInterval(0) {} 52 53 ExplodedGraph::~ExplodedGraph() {} 54 55 //===----------------------------------------------------------------------===// 56 // Node reclamation. 57 //===----------------------------------------------------------------------===// 58 59 bool ExplodedGraph::isInterestingLValueExpr(const Expr *Ex) { 60 if (!Ex->isLValue()) 61 return false; 62 return isa<DeclRefExpr>(Ex) || 63 isa<MemberExpr>(Ex) || 64 isa<ObjCIvarRefExpr>(Ex); 65 } 66 67 bool ExplodedGraph::shouldCollect(const ExplodedNode *node) { 68 // First, we only consider nodes for reclamation of the following 69 // conditions apply: 70 // 71 // (1) 1 predecessor (that has one successor) 72 // (2) 1 successor (that has one predecessor) 73 // 74 // If a node has no successor it is on the "frontier", while a node 75 // with no predecessor is a root. 76 // 77 // After these prerequisites, we discard all "filler" nodes that 78 // are used only for intermediate processing, and are not essential 79 // for analyzer history: 80 // 81 // (a) PreStmtPurgeDeadSymbols 82 // 83 // We then discard all other nodes where *all* of the following conditions 84 // apply: 85 // 86 // (3) The ProgramPoint is for a PostStmt, but not a PostStore. 87 // (4) There is no 'tag' for the ProgramPoint. 88 // (5) The 'store' is the same as the predecessor. 89 // (6) The 'GDM' is the same as the predecessor. 90 // (7) The LocationContext is the same as the predecessor. 91 // (8) Expressions that are *not* lvalue expressions. 92 // (9) The PostStmt isn't for a non-consumed Stmt or Expr. 93 // (10) The successor is neither a CallExpr StmtPoint nor a CallEnter or 94 // PreImplicitCall (so that we would be able to find it when retrying a 95 // call with no inlining). 96 // FIXME: It may be safe to reclaim PreCall and PostCall nodes as well. 97 98 // Conditions 1 and 2. 99 if (node->pred_size() != 1 || node->succ_size() != 1) 100 return false; 101 102 const ExplodedNode *pred = *(node->pred_begin()); 103 if (pred->succ_size() != 1) 104 return false; 105 106 const ExplodedNode *succ = *(node->succ_begin()); 107 if (succ->pred_size() != 1) 108 return false; 109 110 // Now reclaim any nodes that are (by definition) not essential to 111 // analysis history and are not consulted by any client code. 112 ProgramPoint progPoint = node->getLocation(); 113 if (progPoint.getAs<PreStmtPurgeDeadSymbols>()) 114 return !progPoint.getTag(); 115 116 // Condition 3. 117 if (!progPoint.getAs<PostStmt>() || progPoint.getAs<PostStore>()) 118 return false; 119 120 // Condition 4. 121 if (progPoint.getTag()) 122 return false; 123 124 // Conditions 5, 6, and 7. 125 ProgramStateRef state = node->getState(); 126 ProgramStateRef pred_state = pred->getState(); 127 if (state->store != pred_state->store || state->GDM != pred_state->GDM || 128 progPoint.getLocationContext() != pred->getLocationContext()) 129 return false; 130 131 // All further checks require expressions. As per #3, we know that we have 132 // a PostStmt. 133 const Expr *Ex = dyn_cast<Expr>(progPoint.castAs<PostStmt>().getStmt()); 134 if (!Ex) 135 return false; 136 137 // Condition 8. 138 // Do not collect nodes for "interesting" lvalue expressions since they are 139 // used extensively for generating path diagnostics. 140 if (isInterestingLValueExpr(Ex)) 141 return false; 142 143 // Condition 9. 144 // Do not collect nodes for non-consumed Stmt or Expr to ensure precise 145 // diagnostic generation; specifically, so that we could anchor arrows 146 // pointing to the beginning of statements (as written in code). 147 ParentMap &PM = progPoint.getLocationContext()->getParentMap(); 148 if (!PM.isConsumedExpr(Ex)) 149 return false; 150 151 // Condition 10. 152 const ProgramPoint SuccLoc = succ->getLocation(); 153 if (Optional<StmtPoint> SP = SuccLoc.getAs<StmtPoint>()) 154 if (CallEvent::isCallStmt(SP->getStmt())) 155 return false; 156 157 // Condition 10, continuation. 158 if (SuccLoc.getAs<CallEnter>() || SuccLoc.getAs<PreImplicitCall>()) 159 return false; 160 161 return true; 162 } 163 164 void ExplodedGraph::collectNode(ExplodedNode *node) { 165 // Removing a node means: 166 // (a) changing the predecessors successor to the successor of this node 167 // (b) changing the successors predecessor to the predecessor of this node 168 // (c) Putting 'node' onto freeNodes. 169 assert(node->pred_size() == 1 || node->succ_size() == 1); 170 ExplodedNode *pred = *(node->pred_begin()); 171 ExplodedNode *succ = *(node->succ_begin()); 172 pred->replaceSuccessor(succ); 173 succ->replacePredecessor(pred); 174 FreeNodes.push_back(node); 175 Nodes.RemoveNode(node); 176 --NumNodes; 177 node->~ExplodedNode(); 178 } 179 180 void ExplodedGraph::reclaimRecentlyAllocatedNodes() { 181 if (ChangedNodes.empty()) 182 return; 183 184 // Only periodically reclaim nodes so that we can build up a set of 185 // nodes that meet the reclamation criteria. Freshly created nodes 186 // by definition have no successor, and thus cannot be reclaimed (see below). 187 assert(ReclaimCounter > 0); 188 if (--ReclaimCounter != 0) 189 return; 190 ReclaimCounter = ReclaimNodeInterval; 191 192 for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end(); 193 it != et; ++it) { 194 ExplodedNode *node = *it; 195 if (shouldCollect(node)) 196 collectNode(node); 197 } 198 ChangedNodes.clear(); 199 } 200 201 //===----------------------------------------------------------------------===// 202 // ExplodedNode. 203 //===----------------------------------------------------------------------===// 204 205 // An NodeGroup's storage type is actually very much like a TinyPtrVector: 206 // it can be either a pointer to a single ExplodedNode, or a pointer to a 207 // BumpVector allocated with the ExplodedGraph's allocator. This allows the 208 // common case of single-node NodeGroups to be implemented with no extra memory. 209 // 210 // Consequently, each of the NodeGroup methods have up to four cases to handle: 211 // 1. The flag is set and this group does not actually contain any nodes. 212 // 2. The group is empty, in which case the storage value is null. 213 // 3. The group contains a single node. 214 // 4. The group contains more than one node. 215 typedef BumpVector<ExplodedNode *> ExplodedNodeVector; 216 typedef llvm::PointerUnion<ExplodedNode *, ExplodedNodeVector *> GroupStorage; 217 218 void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) { 219 assert (!V->isSink()); 220 Preds.addNode(V, G); 221 V->Succs.addNode(this, G); 222 #ifndef NDEBUG 223 if (NodeAuditor) NodeAuditor->AddEdge(V, this); 224 #endif 225 } 226 227 void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) { 228 assert(!getFlag()); 229 230 GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P); 231 assert(Storage.is<ExplodedNode *>()); 232 Storage = node; 233 assert(Storage.is<ExplodedNode *>()); 234 } 235 236 void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) { 237 assert(!getFlag()); 238 239 GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P); 240 if (Storage.isNull()) { 241 Storage = N; 242 assert(Storage.is<ExplodedNode *>()); 243 return; 244 } 245 246 ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>(); 247 248 if (!V) { 249 // Switch from single-node to multi-node representation. 250 ExplodedNode *Old = Storage.get<ExplodedNode *>(); 251 252 BumpVectorContext &Ctx = G.getNodeAllocator(); 253 V = G.getAllocator().Allocate<ExplodedNodeVector>(); 254 new (V) ExplodedNodeVector(Ctx, 4); 255 V->push_back(Old, Ctx); 256 257 Storage = V; 258 assert(!getFlag()); 259 assert(Storage.is<ExplodedNodeVector *>()); 260 } 261 262 V->push_back(N, G.getNodeAllocator()); 263 } 264 265 unsigned ExplodedNode::NodeGroup::size() const { 266 if (getFlag()) 267 return 0; 268 269 const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P); 270 if (Storage.isNull()) 271 return 0; 272 if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>()) 273 return V->size(); 274 return 1; 275 } 276 277 ExplodedNode * const *ExplodedNode::NodeGroup::begin() const { 278 if (getFlag()) 279 return nullptr; 280 281 const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P); 282 if (Storage.isNull()) 283 return nullptr; 284 if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>()) 285 return V->begin(); 286 return Storage.getAddrOfPtr1(); 287 } 288 289 ExplodedNode * const *ExplodedNode::NodeGroup::end() const { 290 if (getFlag()) 291 return nullptr; 292 293 const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P); 294 if (Storage.isNull()) 295 return nullptr; 296 if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>()) 297 return V->end(); 298 return Storage.getAddrOfPtr1() + 1; 299 } 300 301 ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L, 302 ProgramStateRef State, 303 bool IsSink, 304 bool* IsNew) { 305 // Profile 'State' to determine if we already have an existing node. 306 llvm::FoldingSetNodeID profile; 307 void *InsertPos = nullptr; 308 309 NodeTy::Profile(profile, L, State, IsSink); 310 NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos); 311 312 if (!V) { 313 if (!FreeNodes.empty()) { 314 V = FreeNodes.back(); 315 FreeNodes.pop_back(); 316 } 317 else { 318 // Allocate a new node. 319 V = (NodeTy*) getAllocator().Allocate<NodeTy>(); 320 } 321 322 new (V) NodeTy(L, State, IsSink); 323 324 if (ReclaimNodeInterval) 325 ChangedNodes.push_back(V); 326 327 // Insert the node into the node set and return it. 328 Nodes.InsertNode(V, InsertPos); 329 ++NumNodes; 330 331 if (IsNew) *IsNew = true; 332 } 333 else 334 if (IsNew) *IsNew = false; 335 336 return V; 337 } 338 339 ExplodedGraph * 340 ExplodedGraph::trim(ArrayRef<const NodeTy *> Sinks, 341 InterExplodedGraphMap *ForwardMap, 342 InterExplodedGraphMap *InverseMap) const{ 343 344 if (Nodes.empty()) 345 return nullptr; 346 347 typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty; 348 Pass1Ty Pass1; 349 350 typedef InterExplodedGraphMap Pass2Ty; 351 InterExplodedGraphMap Pass2Scratch; 352 Pass2Ty &Pass2 = ForwardMap ? *ForwardMap : Pass2Scratch; 353 354 SmallVector<const ExplodedNode*, 10> WL1, WL2; 355 356 // ===- Pass 1 (reverse DFS) -=== 357 for (ArrayRef<const NodeTy *>::iterator I = Sinks.begin(), E = Sinks.end(); 358 I != E; ++I) { 359 if (*I) 360 WL1.push_back(*I); 361 } 362 363 // Process the first worklist until it is empty. 364 while (!WL1.empty()) { 365 const ExplodedNode *N = WL1.pop_back_val(); 366 367 // Have we already visited this node? If so, continue to the next one. 368 if (Pass1.count(N)) 369 continue; 370 371 // Otherwise, mark this node as visited. 372 Pass1.insert(N); 373 374 // If this is a root enqueue it to the second worklist. 375 if (N->Preds.empty()) { 376 WL2.push_back(N); 377 continue; 378 } 379 380 // Visit our predecessors and enqueue them. 381 for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end(); 382 I != E; ++I) 383 WL1.push_back(*I); 384 } 385 386 // We didn't hit a root? Return with a null pointer for the new graph. 387 if (WL2.empty()) 388 return nullptr; 389 390 // Create an empty graph. 391 ExplodedGraph* G = MakeEmptyGraph(); 392 393 // ===- Pass 2 (forward DFS to construct the new graph) -=== 394 while (!WL2.empty()) { 395 const ExplodedNode *N = WL2.pop_back_val(); 396 397 // Skip this node if we have already processed it. 398 if (Pass2.find(N) != Pass2.end()) 399 continue; 400 401 // Create the corresponding node in the new graph and record the mapping 402 // from the old node to the new node. 403 ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 404 nullptr); 405 Pass2[N] = NewN; 406 407 // Also record the reverse mapping from the new node to the old node. 408 if (InverseMap) (*InverseMap)[NewN] = N; 409 410 // If this node is a root, designate it as such in the graph. 411 if (N->Preds.empty()) 412 G->addRoot(NewN); 413 414 // In the case that some of the intended predecessors of NewN have already 415 // been created, we should hook them up as predecessors. 416 417 // Walk through the predecessors of 'N' and hook up their corresponding 418 // nodes in the new graph (if any) to the freshly created node. 419 for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end(); 420 I != E; ++I) { 421 Pass2Ty::iterator PI = Pass2.find(*I); 422 if (PI == Pass2.end()) 423 continue; 424 425 NewN->addPredecessor(const_cast<ExplodedNode *>(PI->second), *G); 426 } 427 428 // In the case that some of the intended successors of NewN have already 429 // been created, we should hook them up as successors. Otherwise, enqueue 430 // the new nodes from the original graph that should have nodes created 431 // in the new graph. 432 for (ExplodedNode::succ_iterator I = N->Succs.begin(), E = N->Succs.end(); 433 I != E; ++I) { 434 Pass2Ty::iterator PI = Pass2.find(*I); 435 if (PI != Pass2.end()) { 436 const_cast<ExplodedNode *>(PI->second)->addPredecessor(NewN, *G); 437 continue; 438 } 439 440 // Enqueue nodes to the worklist that were marked during pass 1. 441 if (Pass1.count(*I)) 442 WL2.push_back(*I); 443 } 444 } 445 446 return G; 447 } 448 449