1 /* 2 * Copyright 2011 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef SkTArray_DEFINED 9 #define SkTArray_DEFINED 10 11 #include <new> 12 #include "SkTypes.h" 13 #include "SkTemplates.h" 14 15 template <typename T, bool MEM_COPY = false> class SkTArray; 16 17 namespace SkTArrayExt { 18 19 template<typename T> 20 inline void copy(SkTArray<T, true>* self, int dst, int src) { 21 memcpy(&self->fItemArray[dst], &self->fItemArray[src], sizeof(T)); 22 } 23 template<typename T> 24 inline void copy(SkTArray<T, true>* self, const T* array) { 25 memcpy(self->fMemArray, array, self->fCount * sizeof(T)); 26 } 27 template<typename T> 28 inline void copyAndDelete(SkTArray<T, true>* self, char* newMemArray) { 29 memcpy(newMemArray, self->fMemArray, self->fCount * sizeof(T)); 30 } 31 32 template<typename T> 33 inline void copy(SkTArray<T, false>* self, int dst, int src) { 34 SkNEW_PLACEMENT_ARGS(&self->fItemArray[dst], T, (self->fItemArray[src])); 35 } 36 template<typename T> 37 inline void copy(SkTArray<T, false>* self, const T* array) { 38 for (int i = 0; i < self->fCount; ++i) { 39 SkNEW_PLACEMENT_ARGS(self->fItemArray + i, T, (array[i])); 40 } 41 } 42 template<typename T> 43 inline void copyAndDelete(SkTArray<T, false>* self, char* newMemArray) { 44 for (int i = 0; i < self->fCount; ++i) { 45 SkNEW_PLACEMENT_ARGS(newMemArray + sizeof(T) * i, T, (self->fItemArray[i])); 46 self->fItemArray[i].~T(); 47 } 48 } 49 50 } 51 52 template <typename T, bool MEM_COPY> void* operator new(size_t, SkTArray<T, MEM_COPY>*, int); 53 54 /** When MEM_COPY is true T will be bit copied when moved. 55 When MEM_COPY is false, T will be copy constructed / destructed. 56 In all cases T will be default-initialized on allocation, 57 and its destructor will be called from this object's destructor. 58 */ 59 template <typename T, bool MEM_COPY> class SkTArray { 60 public: 61 /** 62 * Creates an empty array with no initial storage 63 */ 64 SkTArray() { 65 fCount = 0; 66 fReserveCount = gMIN_ALLOC_COUNT; 67 fAllocCount = 0; 68 fMemArray = NULL; 69 fPreAllocMemArray = NULL; 70 } 71 72 /** 73 * Creates an empty array that will preallocate space for reserveCount 74 * elements. 75 */ 76 explicit SkTArray(int reserveCount) { 77 this->init(NULL, 0, NULL, reserveCount); 78 } 79 80 /** 81 * Copies one array to another. The new array will be heap allocated. 82 */ 83 explicit SkTArray(const SkTArray& array) { 84 this->init(array.fItemArray, array.fCount, NULL, 0); 85 } 86 87 /** 88 * Creates a SkTArray by copying contents of a standard C array. The new 89 * array will be heap allocated. Be careful not to use this constructor 90 * when you really want the (void*, int) version. 91 */ 92 SkTArray(const T* array, int count) { 93 this->init(array, count, NULL, 0); 94 } 95 96 /** 97 * assign copy of array to this 98 */ 99 SkTArray& operator =(const SkTArray& array) { 100 for (int i = 0; i < fCount; ++i) { 101 fItemArray[i].~T(); 102 } 103 fCount = 0; 104 this->checkRealloc((int)array.count()); 105 fCount = array.count(); 106 SkTArrayExt::copy(this, static_cast<const T*>(array.fMemArray)); 107 return *this; 108 } 109 110 virtual ~SkTArray() { 111 for (int i = 0; i < fCount; ++i) { 112 fItemArray[i].~T(); 113 } 114 if (fMemArray != fPreAllocMemArray) { 115 sk_free(fMemArray); 116 } 117 } 118 119 /** 120 * Resets to count() == 0 121 */ 122 void reset() { this->pop_back_n(fCount); } 123 124 /** 125 * Resets to count() = n newly constructed T objects. 126 */ 127 void reset(int n) { 128 SkASSERT(n >= 0); 129 for (int i = 0; i < fCount; ++i) { 130 fItemArray[i].~T(); 131 } 132 // set fCount to 0 before calling checkRealloc so that no copy cons. are called. 133 fCount = 0; 134 this->checkRealloc(n); 135 fCount = n; 136 for (int i = 0; i < fCount; ++i) { 137 SkNEW_PLACEMENT(fItemArray + i, T); 138 } 139 } 140 141 /** 142 * Resets to a copy of a C array. 143 */ 144 void reset(const T* array, int count) { 145 for (int i = 0; i < fCount; ++i) { 146 fItemArray[i].~T(); 147 } 148 int delta = count - fCount; 149 this->checkRealloc(delta); 150 fCount = count; 151 SkTArrayExt::copy(this, array); 152 } 153 154 void removeShuffle(int n) { 155 SkASSERT(n < fCount); 156 int newCount = fCount - 1; 157 fCount = newCount; 158 fItemArray[n].~T(); 159 if (n != newCount) { 160 SkTArrayExt::copy(this, n, newCount); 161 fItemArray[newCount].~T(); 162 } 163 } 164 165 /** 166 * Number of elements in the array. 167 */ 168 int count() const { return fCount; } 169 170 /** 171 * Is the array empty. 172 */ 173 bool empty() const { return !fCount; } 174 175 /** 176 * Adds 1 new default-initialized T value and returns it by reference. Note 177 * the reference only remains valid until the next call that adds or removes 178 * elements. 179 */ 180 T& push_back() { 181 T* newT = reinterpret_cast<T*>(this->push_back_raw(1)); 182 SkNEW_PLACEMENT(newT, T); 183 return *newT; 184 } 185 186 /** 187 * Version of above that uses a copy constructor to initialize the new item 188 */ 189 T& push_back(const T& t) { 190 T* newT = reinterpret_cast<T*>(this->push_back_raw(1)); 191 SkNEW_PLACEMENT_ARGS(newT, T, (t)); 192 return *newT; 193 } 194 195 /** 196 * Allocates n more default-initialized T values, and returns the address of 197 * the start of that new range. Note: this address is only valid until the 198 * next API call made on the array that might add or remove elements. 199 */ 200 T* push_back_n(int n) { 201 SkASSERT(n >= 0); 202 T* newTs = reinterpret_cast<T*>(this->push_back_raw(n)); 203 for (int i = 0; i < n; ++i) { 204 SkNEW_PLACEMENT(newTs + i, T); 205 } 206 return newTs; 207 } 208 209 /** 210 * Version of above that uses a copy constructor to initialize all n items 211 * to the same T. 212 */ 213 T* push_back_n(int n, const T& t) { 214 SkASSERT(n >= 0); 215 T* newTs = reinterpret_cast<T*>(this->push_back_raw(n)); 216 for (int i = 0; i < n; ++i) { 217 SkNEW_PLACEMENT_ARGS(newTs[i], T, (t)); 218 } 219 return newTs; 220 } 221 222 /** 223 * Version of above that uses a copy constructor to initialize the n items 224 * to separate T values. 225 */ 226 T* push_back_n(int n, const T t[]) { 227 SkASSERT(n >= 0); 228 this->checkRealloc(n); 229 for (int i = 0; i < n; ++i) { 230 SkNEW_PLACEMENT_ARGS(fItemArray + fCount + i, T, (t[i])); 231 } 232 fCount += n; 233 return fItemArray + fCount - n; 234 } 235 236 /** 237 * Removes the last element. Not safe to call when count() == 0. 238 */ 239 void pop_back() { 240 SkASSERT(fCount > 0); 241 --fCount; 242 fItemArray[fCount].~T(); 243 this->checkRealloc(0); 244 } 245 246 /** 247 * Removes the last n elements. Not safe to call when count() < n. 248 */ 249 void pop_back_n(int n) { 250 SkASSERT(n >= 0); 251 SkASSERT(fCount >= n); 252 fCount -= n; 253 for (int i = 0; i < n; ++i) { 254 fItemArray[fCount + i].~T(); 255 } 256 this->checkRealloc(0); 257 } 258 259 /** 260 * Pushes or pops from the back to resize. Pushes will be default 261 * initialized. 262 */ 263 void resize_back(int newCount) { 264 SkASSERT(newCount >= 0); 265 266 if (newCount > fCount) { 267 this->push_back_n(newCount - fCount); 268 } else if (newCount < fCount) { 269 this->pop_back_n(fCount - newCount); 270 } 271 } 272 273 T* begin() { 274 return fItemArray; 275 } 276 const T* begin() const { 277 return fItemArray; 278 } 279 T* end() { 280 return fItemArray ? fItemArray + fCount : NULL; 281 } 282 const T* end() const { 283 return fItemArray ? fItemArray + fCount : NULL;; 284 } 285 286 /** 287 * Get the i^th element. 288 */ 289 T& operator[] (int i) { 290 SkASSERT(i < fCount); 291 SkASSERT(i >= 0); 292 return fItemArray[i]; 293 } 294 295 const T& operator[] (int i) const { 296 SkASSERT(i < fCount); 297 SkASSERT(i >= 0); 298 return fItemArray[i]; 299 } 300 301 /** 302 * equivalent to operator[](0) 303 */ 304 T& front() { SkASSERT(fCount > 0); return fItemArray[0];} 305 306 const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];} 307 308 /** 309 * equivalent to operator[](count() - 1) 310 */ 311 T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];} 312 313 const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];} 314 315 /** 316 * equivalent to operator[](count()-1-i) 317 */ 318 T& fromBack(int i) { 319 SkASSERT(i >= 0); 320 SkASSERT(i < fCount); 321 return fItemArray[fCount - i - 1]; 322 } 323 324 const T& fromBack(int i) const { 325 SkASSERT(i >= 0); 326 SkASSERT(i < fCount); 327 return fItemArray[fCount - i - 1]; 328 } 329 330 bool operator==(const SkTArray<T, MEM_COPY>& right) const { 331 int leftCount = this->count(); 332 if (leftCount != right.count()) { 333 return false; 334 } 335 for (int index = 0; index < leftCount; ++index) { 336 if (fItemArray[index] != right.fItemArray[index]) { 337 return false; 338 } 339 } 340 return true; 341 } 342 343 bool operator!=(const SkTArray<T, MEM_COPY>& right) const { 344 return !(*this == right); 345 } 346 347 protected: 348 /** 349 * Creates an empty array that will use the passed storage block until it 350 * is insufficiently large to hold the entire array. 351 */ 352 template <int N> 353 SkTArray(SkAlignedSTStorage<N,T>* storage) { 354 this->init(NULL, 0, storage->get(), N); 355 } 356 357 /** 358 * Copy another array, using preallocated storage if preAllocCount >= 359 * array.count(). Otherwise storage will only be used when array shrinks 360 * to fit. 361 */ 362 template <int N> 363 SkTArray(const SkTArray& array, SkAlignedSTStorage<N,T>* storage) { 364 this->init(array.fItemArray, array.fCount, storage->get(), N); 365 } 366 367 /** 368 * Copy a C array, using preallocated storage if preAllocCount >= 369 * count. Otherwise storage will only be used when array shrinks 370 * to fit. 371 */ 372 template <int N> 373 SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) { 374 this->init(array, count, storage->get(), N); 375 } 376 377 void init(const T* array, int count, 378 void* preAllocStorage, int preAllocOrReserveCount) { 379 SkASSERT(count >= 0); 380 SkASSERT(preAllocOrReserveCount >= 0); 381 fCount = count; 382 fReserveCount = (preAllocOrReserveCount > 0) ? 383 preAllocOrReserveCount : 384 gMIN_ALLOC_COUNT; 385 fPreAllocMemArray = preAllocStorage; 386 if (fReserveCount >= fCount && 387 preAllocStorage) { 388 fAllocCount = fReserveCount; 389 fMemArray = preAllocStorage; 390 } else { 391 fAllocCount = SkMax32(fCount, fReserveCount); 392 fMemArray = sk_malloc_throw(fAllocCount * sizeof(T)); 393 } 394 395 SkTArrayExt::copy(this, array); 396 } 397 398 private: 399 400 static const int gMIN_ALLOC_COUNT = 8; 401 402 // Helper function that makes space for n objects, adjusts the count, but does not initialize 403 // the new objects. 404 void* push_back_raw(int n) { 405 this->checkRealloc(n); 406 void* ptr = fItemArray + fCount; 407 fCount += n; 408 return ptr; 409 } 410 411 inline void checkRealloc(int delta) { 412 SkASSERT(fCount >= 0); 413 SkASSERT(fAllocCount >= 0); 414 415 SkASSERT(-delta <= fCount); 416 417 int newCount = fCount + delta; 418 int newAllocCount = fAllocCount; 419 420 if (newCount > fAllocCount || newCount < (fAllocCount / 3)) { 421 // whether we're growing or shrinking, we leave at least 50% extra space for future 422 // growth (clamped to the reserve count). 423 newAllocCount = SkMax32(newCount + ((newCount + 1) >> 1), fReserveCount); 424 } 425 if (newAllocCount != fAllocCount) { 426 427 fAllocCount = newAllocCount; 428 char* newMemArray; 429 430 if (fAllocCount == fReserveCount && fPreAllocMemArray) { 431 newMemArray = (char*) fPreAllocMemArray; 432 } else { 433 newMemArray = (char*) sk_malloc_throw(fAllocCount*sizeof(T)); 434 } 435 436 SkTArrayExt::copyAndDelete<T>(this, newMemArray); 437 438 if (fMemArray != fPreAllocMemArray) { 439 sk_free(fMemArray); 440 } 441 fMemArray = newMemArray; 442 } 443 } 444 445 friend void* operator new<T>(size_t, SkTArray*, int); 446 447 template<typename X> friend void SkTArrayExt::copy(SkTArray<X, true>* that, int dst, int src); 448 template<typename X> friend void SkTArrayExt::copy(SkTArray<X, true>* that, const X*); 449 template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, true>* that, char*); 450 451 template<typename X> friend void SkTArrayExt::copy(SkTArray<X, false>* that, int dst, int src); 452 template<typename X> friend void SkTArrayExt::copy(SkTArray<X, false>* that, const X*); 453 template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, false>* that, char*); 454 455 int fReserveCount; 456 int fCount; 457 int fAllocCount; 458 void* fPreAllocMemArray; 459 union { 460 T* fItemArray; 461 void* fMemArray; 462 }; 463 }; 464 465 // Use the below macro (SkNEW_APPEND_TO_TARRAY) rather than calling this directly 466 template <typename T, bool MEM_COPY> 467 void* operator new(size_t, SkTArray<T, MEM_COPY>* array, int atIndex) { 468 // Currently, we only support adding to the end of the array. When the array class itself 469 // supports random insertion then this should be updated. 470 // SkASSERT(atIndex >= 0 && atIndex <= array->count()); 471 SkASSERT(atIndex == array->count()); 472 return array->push_back_raw(1); 473 } 474 475 // Skia doesn't use C++ exceptions but it may be compiled with them enabled. Having an op delete 476 // to match the op new silences warnings about missing op delete when a constructor throws an 477 // exception. 478 template <typename T, bool MEM_COPY> 479 void operator delete(void*, SkTArray<T, MEM_COPY>* array, int atIndex) { 480 SK_CRASH(); 481 } 482 483 // Constructs a new object as the last element of an SkTArray. 484 #define SkNEW_APPEND_TO_TARRAY(array_ptr, type_name, args) \ 485 (new ((array_ptr), (array_ptr)->count()) type_name args) 486 487 488 /** 489 * Subclass of SkTArray that contains a preallocated memory block for the array. 490 */ 491 template <int N, typename T, bool MEM_COPY = false> 492 class SkSTArray : public SkTArray<T, MEM_COPY> { 493 private: 494 typedef SkTArray<T, MEM_COPY> INHERITED; 495 496 public: 497 SkSTArray() : INHERITED(&fStorage) { 498 } 499 500 SkSTArray(const SkSTArray& array) 501 : INHERITED(array, &fStorage) { 502 } 503 504 explicit SkSTArray(const INHERITED& array) 505 : INHERITED(array, &fStorage) { 506 } 507 508 explicit SkSTArray(int reserveCount) 509 : INHERITED(reserveCount) { 510 } 511 512 SkSTArray(const T* array, int count) 513 : INHERITED(array, count, &fStorage) { 514 } 515 516 SkSTArray& operator= (const SkSTArray& array) { 517 return *this = *(const INHERITED*)&array; 518 } 519 520 SkSTArray& operator= (const INHERITED& array) { 521 INHERITED::operator=(array); 522 return *this; 523 } 524 525 private: 526 SkAlignedSTStorage<N,T> fStorage; 527 }; 528 529 #endif 530