1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 // Platform-specific code for Win32. 6 7 // Secure API functions are not available using MinGW with msvcrt.dll 8 // on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to 9 // disable definition of secure API functions in standard headers that 10 // would conflict with our own implementation. 11 #ifdef __MINGW32__ 12 #include <_mingw.h> 13 #ifdef MINGW_HAS_SECURE_API 14 #undef MINGW_HAS_SECURE_API 15 #endif // MINGW_HAS_SECURE_API 16 #endif // __MINGW32__ 17 18 #ifdef _MSC_VER 19 #include <limits> 20 #endif 21 22 #include "src/base/win32-headers.h" 23 24 #include "src/base/bits.h" 25 #include "src/base/lazy-instance.h" 26 #include "src/base/macros.h" 27 #include "src/base/platform/platform.h" 28 #include "src/base/platform/time.h" 29 #include "src/base/utils/random-number-generator.h" 30 31 #ifdef _MSC_VER 32 33 // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually 34 // defined in strings.h. 35 int strncasecmp(const char* s1, const char* s2, int n) { 36 return _strnicmp(s1, s2, n); 37 } 38 39 #endif // _MSC_VER 40 41 42 // Extra functions for MinGW. Most of these are the _s functions which are in 43 // the Microsoft Visual Studio C++ CRT. 44 #ifdef __MINGW32__ 45 46 47 #ifndef __MINGW64_VERSION_MAJOR 48 49 #define _TRUNCATE 0 50 #define STRUNCATE 80 51 52 inline void MemoryBarrier() { 53 int barrier = 0; 54 __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier)); 55 } 56 57 #endif // __MINGW64_VERSION_MAJOR 58 59 60 int localtime_s(tm* out_tm, const time_t* time) { 61 tm* posix_local_time_struct = localtime(time); 62 if (posix_local_time_struct == NULL) return 1; 63 *out_tm = *posix_local_time_struct; 64 return 0; 65 } 66 67 68 int fopen_s(FILE** pFile, const char* filename, const char* mode) { 69 *pFile = fopen(filename, mode); 70 return *pFile != NULL ? 0 : 1; 71 } 72 73 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count, 74 const char* format, va_list argptr) { 75 DCHECK(count == _TRUNCATE); 76 return _vsnprintf(buffer, sizeOfBuffer, format, argptr); 77 } 78 79 80 int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) { 81 CHECK(source != NULL); 82 CHECK(dest != NULL); 83 CHECK_GT(dest_size, 0); 84 85 if (count == _TRUNCATE) { 86 while (dest_size > 0 && *source != 0) { 87 *(dest++) = *(source++); 88 --dest_size; 89 } 90 if (dest_size == 0) { 91 *(dest - 1) = 0; 92 return STRUNCATE; 93 } 94 } else { 95 while (dest_size > 0 && count > 0 && *source != 0) { 96 *(dest++) = *(source++); 97 --dest_size; 98 --count; 99 } 100 } 101 CHECK_GT(dest_size, 0); 102 *dest = 0; 103 return 0; 104 } 105 106 #endif // __MINGW32__ 107 108 namespace v8 { 109 namespace base { 110 111 namespace { 112 113 bool g_hard_abort = false; 114 115 } // namespace 116 117 class TimezoneCache { 118 public: 119 TimezoneCache() : initialized_(false) { } 120 121 void Clear() { 122 initialized_ = false; 123 } 124 125 // Initialize timezone information. The timezone information is obtained from 126 // windows. If we cannot get the timezone information we fall back to CET. 127 void InitializeIfNeeded() { 128 // Just return if timezone information has already been initialized. 129 if (initialized_) return; 130 131 // Initialize POSIX time zone data. 132 _tzset(); 133 // Obtain timezone information from operating system. 134 memset(&tzinfo_, 0, sizeof(tzinfo_)); 135 if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) { 136 // If we cannot get timezone information we fall back to CET. 137 tzinfo_.Bias = -60; 138 tzinfo_.StandardDate.wMonth = 10; 139 tzinfo_.StandardDate.wDay = 5; 140 tzinfo_.StandardDate.wHour = 3; 141 tzinfo_.StandardBias = 0; 142 tzinfo_.DaylightDate.wMonth = 3; 143 tzinfo_.DaylightDate.wDay = 5; 144 tzinfo_.DaylightDate.wHour = 2; 145 tzinfo_.DaylightBias = -60; 146 } 147 148 // Make standard and DST timezone names. 149 WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1, 150 std_tz_name_, kTzNameSize, NULL, NULL); 151 std_tz_name_[kTzNameSize - 1] = '\0'; 152 WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1, 153 dst_tz_name_, kTzNameSize, NULL, NULL); 154 dst_tz_name_[kTzNameSize - 1] = '\0'; 155 156 // If OS returned empty string or resource id (like "@tzres.dll,-211") 157 // simply guess the name from the UTC bias of the timezone. 158 // To properly resolve the resource identifier requires a library load, 159 // which is not possible in a sandbox. 160 if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') { 161 OS::SNPrintF(std_tz_name_, kTzNameSize - 1, 162 "%s Standard Time", 163 GuessTimezoneNameFromBias(tzinfo_.Bias)); 164 } 165 if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') { 166 OS::SNPrintF(dst_tz_name_, kTzNameSize - 1, 167 "%s Daylight Time", 168 GuessTimezoneNameFromBias(tzinfo_.Bias)); 169 } 170 // Timezone information initialized. 171 initialized_ = true; 172 } 173 174 // Guess the name of the timezone from the bias. 175 // The guess is very biased towards the northern hemisphere. 176 const char* GuessTimezoneNameFromBias(int bias) { 177 static const int kHour = 60; 178 switch (-bias) { 179 case -9*kHour: return "Alaska"; 180 case -8*kHour: return "Pacific"; 181 case -7*kHour: return "Mountain"; 182 case -6*kHour: return "Central"; 183 case -5*kHour: return "Eastern"; 184 case -4*kHour: return "Atlantic"; 185 case 0*kHour: return "GMT"; 186 case +1*kHour: return "Central Europe"; 187 case +2*kHour: return "Eastern Europe"; 188 case +3*kHour: return "Russia"; 189 case +5*kHour + 30: return "India"; 190 case +8*kHour: return "China"; 191 case +9*kHour: return "Japan"; 192 case +12*kHour: return "New Zealand"; 193 default: return "Local"; 194 } 195 } 196 197 198 private: 199 static const int kTzNameSize = 128; 200 bool initialized_; 201 char std_tz_name_[kTzNameSize]; 202 char dst_tz_name_[kTzNameSize]; 203 TIME_ZONE_INFORMATION tzinfo_; 204 friend class Win32Time; 205 }; 206 207 208 // ---------------------------------------------------------------------------- 209 // The Time class represents time on win32. A timestamp is represented as 210 // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript 211 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC, 212 // January 1, 1970. 213 214 class Win32Time { 215 public: 216 // Constructors. 217 Win32Time(); 218 explicit Win32Time(double jstime); 219 Win32Time(int year, int mon, int day, int hour, int min, int sec); 220 221 // Convert timestamp to JavaScript representation. 222 double ToJSTime(); 223 224 // Set timestamp to current time. 225 void SetToCurrentTime(); 226 227 // Returns the local timezone offset in milliseconds east of UTC. This is 228 // the number of milliseconds you must add to UTC to get local time, i.e. 229 // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This 230 // routine also takes into account whether daylight saving is effect 231 // at the time. 232 int64_t LocalOffset(TimezoneCache* cache); 233 234 // Returns the daylight savings time offset for the time in milliseconds. 235 int64_t DaylightSavingsOffset(TimezoneCache* cache); 236 237 // Returns a string identifying the current timezone for the 238 // timestamp taking into account daylight saving. 239 char* LocalTimezone(TimezoneCache* cache); 240 241 private: 242 // Constants for time conversion. 243 static const int64_t kTimeEpoc = 116444736000000000LL; 244 static const int64_t kTimeScaler = 10000; 245 static const int64_t kMsPerMinute = 60000; 246 247 // Constants for timezone information. 248 static const bool kShortTzNames = false; 249 250 // Return whether or not daylight savings time is in effect at this time. 251 bool InDST(TimezoneCache* cache); 252 253 // Accessor for FILETIME representation. 254 FILETIME& ft() { return time_.ft_; } 255 256 // Accessor for integer representation. 257 int64_t& t() { return time_.t_; } 258 259 // Although win32 uses 64-bit integers for representing timestamps, 260 // these are packed into a FILETIME structure. The FILETIME structure 261 // is just a struct representing a 64-bit integer. The TimeStamp union 262 // allows access to both a FILETIME and an integer representation of 263 // the timestamp. 264 union TimeStamp { 265 FILETIME ft_; 266 int64_t t_; 267 }; 268 269 TimeStamp time_; 270 }; 271 272 273 // Initialize timestamp to start of epoc. 274 Win32Time::Win32Time() { 275 t() = 0; 276 } 277 278 279 // Initialize timestamp from a JavaScript timestamp. 280 Win32Time::Win32Time(double jstime) { 281 t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc; 282 } 283 284 285 // Initialize timestamp from date/time components. 286 Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) { 287 SYSTEMTIME st; 288 st.wYear = year; 289 st.wMonth = mon; 290 st.wDay = day; 291 st.wHour = hour; 292 st.wMinute = min; 293 st.wSecond = sec; 294 st.wMilliseconds = 0; 295 SystemTimeToFileTime(&st, &ft()); 296 } 297 298 299 // Convert timestamp to JavaScript timestamp. 300 double Win32Time::ToJSTime() { 301 return static_cast<double>((t() - kTimeEpoc) / kTimeScaler); 302 } 303 304 305 // Set timestamp to current time. 306 void Win32Time::SetToCurrentTime() { 307 // The default GetSystemTimeAsFileTime has a ~15.5ms resolution. 308 // Because we're fast, we like fast timers which have at least a 309 // 1ms resolution. 310 // 311 // timeGetTime() provides 1ms granularity when combined with 312 // timeBeginPeriod(). If the host application for v8 wants fast 313 // timers, it can use timeBeginPeriod to increase the resolution. 314 // 315 // Using timeGetTime() has a drawback because it is a 32bit value 316 // and hence rolls-over every ~49days. 317 // 318 // To use the clock, we use GetSystemTimeAsFileTime as our base; 319 // and then use timeGetTime to extrapolate current time from the 320 // start time. To deal with rollovers, we resync the clock 321 // any time when more than kMaxClockElapsedTime has passed or 322 // whenever timeGetTime creates a rollover. 323 324 static bool initialized = false; 325 static TimeStamp init_time; 326 static DWORD init_ticks; 327 static const int64_t kHundredNanosecondsPerSecond = 10000000; 328 static const int64_t kMaxClockElapsedTime = 329 60*kHundredNanosecondsPerSecond; // 1 minute 330 331 // If we are uninitialized, we need to resync the clock. 332 bool needs_resync = !initialized; 333 334 // Get the current time. 335 TimeStamp time_now; 336 GetSystemTimeAsFileTime(&time_now.ft_); 337 DWORD ticks_now = timeGetTime(); 338 339 // Check if we need to resync due to clock rollover. 340 needs_resync |= ticks_now < init_ticks; 341 342 // Check if we need to resync due to elapsed time. 343 needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime; 344 345 // Check if we need to resync due to backwards time change. 346 needs_resync |= time_now.t_ < init_time.t_; 347 348 // Resync the clock if necessary. 349 if (needs_resync) { 350 GetSystemTimeAsFileTime(&init_time.ft_); 351 init_ticks = ticks_now = timeGetTime(); 352 initialized = true; 353 } 354 355 // Finally, compute the actual time. Why is this so hard. 356 DWORD elapsed = ticks_now - init_ticks; 357 this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000); 358 } 359 360 361 // Return the local timezone offset in milliseconds east of UTC. This 362 // takes into account whether daylight saving is in effect at the time. 363 // Only times in the 32-bit Unix range may be passed to this function. 364 // Also, adding the time-zone offset to the input must not overflow. 365 // The function EquivalentTime() in date.js guarantees this. 366 int64_t Win32Time::LocalOffset(TimezoneCache* cache) { 367 cache->InitializeIfNeeded(); 368 369 Win32Time rounded_to_second(*this); 370 rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler * 371 1000 * kTimeScaler; 372 // Convert to local time using POSIX localtime function. 373 // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime() 374 // very slow. Other browsers use localtime(). 375 376 // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to 377 // POSIX seconds past 1/1/1970 0:00:00. 378 double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000; 379 if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) { 380 return 0; 381 } 382 // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int. 383 time_t posix_time = static_cast<time_t>(unchecked_posix_time); 384 385 // Convert to local time, as struct with fields for day, hour, year, etc. 386 tm posix_local_time_struct; 387 if (localtime_s(&posix_local_time_struct, &posix_time)) return 0; 388 389 if (posix_local_time_struct.tm_isdst > 0) { 390 return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute; 391 } else if (posix_local_time_struct.tm_isdst == 0) { 392 return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute; 393 } else { 394 return cache->tzinfo_.Bias * -kMsPerMinute; 395 } 396 } 397 398 399 // Return whether or not daylight savings time is in effect at this time. 400 bool Win32Time::InDST(TimezoneCache* cache) { 401 cache->InitializeIfNeeded(); 402 403 // Determine if DST is in effect at the specified time. 404 bool in_dst = false; 405 if (cache->tzinfo_.StandardDate.wMonth != 0 || 406 cache->tzinfo_.DaylightDate.wMonth != 0) { 407 // Get the local timezone offset for the timestamp in milliseconds. 408 int64_t offset = LocalOffset(cache); 409 410 // Compute the offset for DST. The bias parameters in the timezone info 411 // are specified in minutes. These must be converted to milliseconds. 412 int64_t dstofs = 413 -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute; 414 415 // If the local time offset equals the timezone bias plus the daylight 416 // bias then DST is in effect. 417 in_dst = offset == dstofs; 418 } 419 420 return in_dst; 421 } 422 423 424 // Return the daylight savings time offset for this time. 425 int64_t Win32Time::DaylightSavingsOffset(TimezoneCache* cache) { 426 return InDST(cache) ? 60 * kMsPerMinute : 0; 427 } 428 429 430 // Returns a string identifying the current timezone for the 431 // timestamp taking into account daylight saving. 432 char* Win32Time::LocalTimezone(TimezoneCache* cache) { 433 // Return the standard or DST time zone name based on whether daylight 434 // saving is in effect at the given time. 435 return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_; 436 } 437 438 439 // Returns the accumulated user time for thread. 440 int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) { 441 FILETIME dummy; 442 uint64_t usertime; 443 444 // Get the amount of time that the thread has executed in user mode. 445 if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy, 446 reinterpret_cast<FILETIME*>(&usertime))) return -1; 447 448 // Adjust the resolution to micro-seconds. 449 usertime /= 10; 450 451 // Convert to seconds and microseconds 452 *secs = static_cast<uint32_t>(usertime / 1000000); 453 *usecs = static_cast<uint32_t>(usertime % 1000000); 454 return 0; 455 } 456 457 458 // Returns current time as the number of milliseconds since 459 // 00:00:00 UTC, January 1, 1970. 460 double OS::TimeCurrentMillis() { 461 return Time::Now().ToJsTime(); 462 } 463 464 465 TimezoneCache* OS::CreateTimezoneCache() { 466 return new TimezoneCache(); 467 } 468 469 470 void OS::DisposeTimezoneCache(TimezoneCache* cache) { 471 delete cache; 472 } 473 474 475 void OS::ClearTimezoneCache(TimezoneCache* cache) { 476 cache->Clear(); 477 } 478 479 480 // Returns a string identifying the current timezone taking into 481 // account daylight saving. 482 const char* OS::LocalTimezone(double time, TimezoneCache* cache) { 483 return Win32Time(time).LocalTimezone(cache); 484 } 485 486 487 // Returns the local time offset in milliseconds east of UTC without 488 // taking daylight savings time into account. 489 double OS::LocalTimeOffset(TimezoneCache* cache) { 490 // Use current time, rounded to the millisecond. 491 Win32Time t(TimeCurrentMillis()); 492 // Time::LocalOffset inlcudes any daylight savings offset, so subtract it. 493 return static_cast<double>(t.LocalOffset(cache) - 494 t.DaylightSavingsOffset(cache)); 495 } 496 497 498 // Returns the daylight savings offset in milliseconds for the given 499 // time. 500 double OS::DaylightSavingsOffset(double time, TimezoneCache* cache) { 501 int64_t offset = Win32Time(time).DaylightSavingsOffset(cache); 502 return static_cast<double>(offset); 503 } 504 505 506 int OS::GetLastError() { 507 return ::GetLastError(); 508 } 509 510 511 int OS::GetCurrentProcessId() { 512 return static_cast<int>(::GetCurrentProcessId()); 513 } 514 515 516 int OS::GetCurrentThreadId() { 517 return static_cast<int>(::GetCurrentThreadId()); 518 } 519 520 521 // ---------------------------------------------------------------------------- 522 // Win32 console output. 523 // 524 // If a Win32 application is linked as a console application it has a normal 525 // standard output and standard error. In this case normal printf works fine 526 // for output. However, if the application is linked as a GUI application, 527 // the process doesn't have a console, and therefore (debugging) output is lost. 528 // This is the case if we are embedded in a windows program (like a browser). 529 // In order to be able to get debug output in this case the the debugging 530 // facility using OutputDebugString. This output goes to the active debugger 531 // for the process (if any). Else the output can be monitored using DBMON.EXE. 532 533 enum OutputMode { 534 UNKNOWN, // Output method has not yet been determined. 535 CONSOLE, // Output is written to stdout. 536 ODS // Output is written to debug facility. 537 }; 538 539 static OutputMode output_mode = UNKNOWN; // Current output mode. 540 541 542 // Determine if the process has a console for output. 543 static bool HasConsole() { 544 // Only check the first time. Eventual race conditions are not a problem, 545 // because all threads will eventually determine the same mode. 546 if (output_mode == UNKNOWN) { 547 // We cannot just check that the standard output is attached to a console 548 // because this would fail if output is redirected to a file. Therefore we 549 // say that a process does not have an output console if either the 550 // standard output handle is invalid or its file type is unknown. 551 if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE && 552 GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN) 553 output_mode = CONSOLE; 554 else 555 output_mode = ODS; 556 } 557 return output_mode == CONSOLE; 558 } 559 560 561 static void VPrintHelper(FILE* stream, const char* format, va_list args) { 562 if ((stream == stdout || stream == stderr) && !HasConsole()) { 563 // It is important to use safe print here in order to avoid 564 // overflowing the buffer. We might truncate the output, but this 565 // does not crash. 566 char buffer[4096]; 567 OS::VSNPrintF(buffer, sizeof(buffer), format, args); 568 OutputDebugStringA(buffer); 569 } else { 570 vfprintf(stream, format, args); 571 } 572 } 573 574 575 FILE* OS::FOpen(const char* path, const char* mode) { 576 FILE* result; 577 if (fopen_s(&result, path, mode) == 0) { 578 return result; 579 } else { 580 return NULL; 581 } 582 } 583 584 585 bool OS::Remove(const char* path) { 586 return (DeleteFileA(path) != 0); 587 } 588 589 590 FILE* OS::OpenTemporaryFile() { 591 // tmpfile_s tries to use the root dir, don't use it. 592 char tempPathBuffer[MAX_PATH]; 593 DWORD path_result = 0; 594 path_result = GetTempPathA(MAX_PATH, tempPathBuffer); 595 if (path_result > MAX_PATH || path_result == 0) return NULL; 596 UINT name_result = 0; 597 char tempNameBuffer[MAX_PATH]; 598 name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer); 599 if (name_result == 0) return NULL; 600 FILE* result = FOpen(tempNameBuffer, "w+"); // Same mode as tmpfile uses. 601 if (result != NULL) { 602 Remove(tempNameBuffer); // Delete on close. 603 } 604 return result; 605 } 606 607 608 // Open log file in binary mode to avoid /n -> /r/n conversion. 609 const char* const OS::LogFileOpenMode = "wb"; 610 611 612 // Print (debug) message to console. 613 void OS::Print(const char* format, ...) { 614 va_list args; 615 va_start(args, format); 616 VPrint(format, args); 617 va_end(args); 618 } 619 620 621 void OS::VPrint(const char* format, va_list args) { 622 VPrintHelper(stdout, format, args); 623 } 624 625 626 void OS::FPrint(FILE* out, const char* format, ...) { 627 va_list args; 628 va_start(args, format); 629 VFPrint(out, format, args); 630 va_end(args); 631 } 632 633 634 void OS::VFPrint(FILE* out, const char* format, va_list args) { 635 VPrintHelper(out, format, args); 636 } 637 638 639 // Print error message to console. 640 void OS::PrintError(const char* format, ...) { 641 va_list args; 642 va_start(args, format); 643 VPrintError(format, args); 644 va_end(args); 645 } 646 647 648 void OS::VPrintError(const char* format, va_list args) { 649 VPrintHelper(stderr, format, args); 650 } 651 652 653 int OS::SNPrintF(char* str, int length, const char* format, ...) { 654 va_list args; 655 va_start(args, format); 656 int result = VSNPrintF(str, length, format, args); 657 va_end(args); 658 return result; 659 } 660 661 662 int OS::VSNPrintF(char* str, int length, const char* format, va_list args) { 663 int n = _vsnprintf_s(str, length, _TRUNCATE, format, args); 664 // Make sure to zero-terminate the string if the output was 665 // truncated or if there was an error. 666 if (n < 0 || n >= length) { 667 if (length > 0) 668 str[length - 1] = '\0'; 669 return -1; 670 } else { 671 return n; 672 } 673 } 674 675 676 char* OS::StrChr(char* str, int c) { 677 return const_cast<char*>(strchr(str, c)); 678 } 679 680 681 void OS::StrNCpy(char* dest, int length, const char* src, size_t n) { 682 // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small. 683 size_t buffer_size = static_cast<size_t>(length); 684 if (n + 1 > buffer_size) // count for trailing '\0' 685 n = _TRUNCATE; 686 int result = strncpy_s(dest, length, src, n); 687 USE(result); 688 DCHECK(result == 0 || (n == _TRUNCATE && result == STRUNCATE)); 689 } 690 691 692 #undef _TRUNCATE 693 #undef STRUNCATE 694 695 696 // Get the system's page size used by VirtualAlloc() or the next power 697 // of two. The reason for always returning a power of two is that the 698 // rounding up in OS::Allocate expects that. 699 static size_t GetPageSize() { 700 static size_t page_size = 0; 701 if (page_size == 0) { 702 SYSTEM_INFO info; 703 GetSystemInfo(&info); 704 page_size = base::bits::RoundUpToPowerOfTwo32(info.dwPageSize); 705 } 706 return page_size; 707 } 708 709 710 // The allocation alignment is the guaranteed alignment for 711 // VirtualAlloc'ed blocks of memory. 712 size_t OS::AllocateAlignment() { 713 static size_t allocate_alignment = 0; 714 if (allocate_alignment == 0) { 715 SYSTEM_INFO info; 716 GetSystemInfo(&info); 717 allocate_alignment = info.dwAllocationGranularity; 718 } 719 return allocate_alignment; 720 } 721 722 723 static LazyInstance<RandomNumberGenerator>::type 724 platform_random_number_generator = LAZY_INSTANCE_INITIALIZER; 725 726 727 void OS::Initialize(int64_t random_seed, bool hard_abort, 728 const char* const gc_fake_mmap) { 729 if (random_seed) { 730 platform_random_number_generator.Pointer()->SetSeed(random_seed); 731 } 732 g_hard_abort = hard_abort; 733 } 734 735 736 void* OS::GetRandomMmapAddr() { 737 // The address range used to randomize RWX allocations in OS::Allocate 738 // Try not to map pages into the default range that windows loads DLLs 739 // Use a multiple of 64k to prevent committing unused memory. 740 // Note: This does not guarantee RWX regions will be within the 741 // range kAllocationRandomAddressMin to kAllocationRandomAddressMax 742 #ifdef V8_HOST_ARCH_64_BIT 743 static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000; 744 static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000; 745 #else 746 static const intptr_t kAllocationRandomAddressMin = 0x04000000; 747 static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000; 748 #endif 749 uintptr_t address = 750 (platform_random_number_generator.Pointer()->NextInt() << kPageSizeBits) | 751 kAllocationRandomAddressMin; 752 address &= kAllocationRandomAddressMax; 753 return reinterpret_cast<void *>(address); 754 } 755 756 757 static void* RandomizedVirtualAlloc(size_t size, int action, int protection) { 758 LPVOID base = NULL; 759 760 if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) { 761 // For exectutable pages try and randomize the allocation address 762 for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) { 763 base = VirtualAlloc(OS::GetRandomMmapAddr(), size, action, protection); 764 } 765 } 766 767 // After three attempts give up and let the OS find an address to use. 768 if (base == NULL) base = VirtualAlloc(NULL, size, action, protection); 769 770 return base; 771 } 772 773 774 void* OS::Allocate(const size_t requested, 775 size_t* allocated, 776 bool is_executable) { 777 // VirtualAlloc rounds allocated size to page size automatically. 778 size_t msize = RoundUp(requested, static_cast<int>(GetPageSize())); 779 780 // Windows XP SP2 allows Data Excution Prevention (DEP). 781 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; 782 783 LPVOID mbase = RandomizedVirtualAlloc(msize, 784 MEM_COMMIT | MEM_RESERVE, 785 prot); 786 787 if (mbase == NULL) return NULL; 788 789 DCHECK((reinterpret_cast<uintptr_t>(mbase) % OS::AllocateAlignment()) == 0); 790 791 *allocated = msize; 792 return mbase; 793 } 794 795 796 void OS::Free(void* address, const size_t size) { 797 // TODO(1240712): VirtualFree has a return value which is ignored here. 798 VirtualFree(address, 0, MEM_RELEASE); 799 USE(size); 800 } 801 802 803 intptr_t OS::CommitPageSize() { 804 return 4096; 805 } 806 807 808 void OS::ProtectCode(void* address, const size_t size) { 809 DWORD old_protect; 810 VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect); 811 } 812 813 814 void OS::Guard(void* address, const size_t size) { 815 DWORD oldprotect; 816 VirtualProtect(address, size, PAGE_NOACCESS, &oldprotect); 817 } 818 819 820 void OS::Sleep(int milliseconds) { 821 ::Sleep(milliseconds); 822 } 823 824 825 void OS::Abort() { 826 if (g_hard_abort) { 827 V8_IMMEDIATE_CRASH(); 828 } 829 // Make the MSVCRT do a silent abort. 830 raise(SIGABRT); 831 } 832 833 834 void OS::DebugBreak() { 835 #ifdef _MSC_VER 836 // To avoid Visual Studio runtime support the following code can be used 837 // instead 838 // __asm { int 3 } 839 __debugbreak(); 840 #else 841 ::DebugBreak(); 842 #endif 843 } 844 845 846 class Win32MemoryMappedFile : public OS::MemoryMappedFile { 847 public: 848 Win32MemoryMappedFile(HANDLE file, 849 HANDLE file_mapping, 850 void* memory, 851 int size) 852 : file_(file), 853 file_mapping_(file_mapping), 854 memory_(memory), 855 size_(size) { } 856 virtual ~Win32MemoryMappedFile(); 857 virtual void* memory() { return memory_; } 858 virtual int size() { return size_; } 859 private: 860 HANDLE file_; 861 HANDLE file_mapping_; 862 void* memory_; 863 int size_; 864 }; 865 866 867 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) { 868 // Open a physical file 869 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE, 870 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL); 871 if (file == INVALID_HANDLE_VALUE) return NULL; 872 873 int size = static_cast<int>(GetFileSize(file, NULL)); 874 875 // Create a file mapping for the physical file 876 HANDLE file_mapping = CreateFileMapping(file, NULL, 877 PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL); 878 if (file_mapping == NULL) return NULL; 879 880 // Map a view of the file into memory 881 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size); 882 return new Win32MemoryMappedFile(file, file_mapping, memory, size); 883 } 884 885 886 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, 887 void* initial) { 888 // Open a physical file 889 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE, 890 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL); 891 if (file == NULL) return NULL; 892 // Create a file mapping for the physical file 893 HANDLE file_mapping = CreateFileMapping(file, NULL, 894 PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL); 895 if (file_mapping == NULL) return NULL; 896 // Map a view of the file into memory 897 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size); 898 if (memory) memmove(memory, initial, size); 899 return new Win32MemoryMappedFile(file, file_mapping, memory, size); 900 } 901 902 903 Win32MemoryMappedFile::~Win32MemoryMappedFile() { 904 if (memory_ != NULL) 905 UnmapViewOfFile(memory_); 906 CloseHandle(file_mapping_); 907 CloseHandle(file_); 908 } 909 910 911 // The following code loads functions defined in DbhHelp.h and TlHelp32.h 912 // dynamically. This is to avoid being depending on dbghelp.dll and 913 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to 914 // kernel32.dll at some point so loading functions defines in TlHelp32.h 915 // dynamically might not be necessary any more - for some versions of Windows?). 916 917 // Function pointers to functions dynamically loaded from dbghelp.dll. 918 #define DBGHELP_FUNCTION_LIST(V) \ 919 V(SymInitialize) \ 920 V(SymGetOptions) \ 921 V(SymSetOptions) \ 922 V(SymGetSearchPath) \ 923 V(SymLoadModule64) \ 924 V(StackWalk64) \ 925 V(SymGetSymFromAddr64) \ 926 V(SymGetLineFromAddr64) \ 927 V(SymFunctionTableAccess64) \ 928 V(SymGetModuleBase64) 929 930 // Function pointers to functions dynamically loaded from dbghelp.dll. 931 #define TLHELP32_FUNCTION_LIST(V) \ 932 V(CreateToolhelp32Snapshot) \ 933 V(Module32FirstW) \ 934 V(Module32NextW) 935 936 // Define the decoration to use for the type and variable name used for 937 // dynamically loaded DLL function.. 938 #define DLL_FUNC_TYPE(name) _##name##_ 939 #define DLL_FUNC_VAR(name) _##name 940 941 // Define the type for each dynamically loaded DLL function. The function 942 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros 943 // from the Windows include files are redefined here to have the function 944 // definitions to be as close to the ones in the original .h files as possible. 945 #ifndef IN 946 #define IN 947 #endif 948 #ifndef VOID 949 #define VOID void 950 #endif 951 952 // DbgHelp isn't supported on MinGW yet 953 #ifndef __MINGW32__ 954 // DbgHelp.h functions. 955 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess, 956 IN PSTR UserSearchPath, 957 IN BOOL fInvadeProcess); 958 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID); 959 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions); 960 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))( 961 IN HANDLE hProcess, 962 OUT PSTR SearchPath, 963 IN DWORD SearchPathLength); 964 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))( 965 IN HANDLE hProcess, 966 IN HANDLE hFile, 967 IN PSTR ImageName, 968 IN PSTR ModuleName, 969 IN DWORD64 BaseOfDll, 970 IN DWORD SizeOfDll); 971 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))( 972 DWORD MachineType, 973 HANDLE hProcess, 974 HANDLE hThread, 975 LPSTACKFRAME64 StackFrame, 976 PVOID ContextRecord, 977 PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine, 978 PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine, 979 PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine, 980 PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress); 981 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))( 982 IN HANDLE hProcess, 983 IN DWORD64 qwAddr, 984 OUT PDWORD64 pdwDisplacement, 985 OUT PIMAGEHLP_SYMBOL64 Symbol); 986 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))( 987 IN HANDLE hProcess, 988 IN DWORD64 qwAddr, 989 OUT PDWORD pdwDisplacement, 990 OUT PIMAGEHLP_LINE64 Line64); 991 // DbgHelp.h typedefs. Implementation found in dbghelp.dll. 992 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))( 993 HANDLE hProcess, 994 DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64 995 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))( 996 HANDLE hProcess, 997 DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64 998 999 // TlHelp32.h functions. 1000 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))( 1001 DWORD dwFlags, 1002 DWORD th32ProcessID); 1003 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot, 1004 LPMODULEENTRY32W lpme); 1005 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot, 1006 LPMODULEENTRY32W lpme); 1007 1008 #undef IN 1009 #undef VOID 1010 1011 // Declare a variable for each dynamically loaded DLL function. 1012 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL; 1013 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION) 1014 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION) 1015 #undef DEF_DLL_FUNCTION 1016 1017 // Load the functions. This function has a lot of "ugly" macros in order to 1018 // keep down code duplication. 1019 1020 static bool LoadDbgHelpAndTlHelp32() { 1021 static bool dbghelp_loaded = false; 1022 1023 if (dbghelp_loaded) return true; 1024 1025 HMODULE module; 1026 1027 // Load functions from the dbghelp.dll module. 1028 module = LoadLibrary(TEXT("dbghelp.dll")); 1029 if (module == NULL) { 1030 return false; 1031 } 1032 1033 #define LOAD_DLL_FUNC(name) \ 1034 DLL_FUNC_VAR(name) = \ 1035 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name)); 1036 1037 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC) 1038 1039 #undef LOAD_DLL_FUNC 1040 1041 // Load functions from the kernel32.dll module (the TlHelp32.h function used 1042 // to be in tlhelp32.dll but are now moved to kernel32.dll). 1043 module = LoadLibrary(TEXT("kernel32.dll")); 1044 if (module == NULL) { 1045 return false; 1046 } 1047 1048 #define LOAD_DLL_FUNC(name) \ 1049 DLL_FUNC_VAR(name) = \ 1050 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name)); 1051 1052 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC) 1053 1054 #undef LOAD_DLL_FUNC 1055 1056 // Check that all functions where loaded. 1057 bool result = 1058 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) && 1059 1060 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED) 1061 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED) 1062 1063 #undef DLL_FUNC_LOADED 1064 true; 1065 1066 dbghelp_loaded = result; 1067 return result; 1068 // NOTE: The modules are never unloaded and will stay around until the 1069 // application is closed. 1070 } 1071 1072 #undef DBGHELP_FUNCTION_LIST 1073 #undef TLHELP32_FUNCTION_LIST 1074 #undef DLL_FUNC_VAR 1075 #undef DLL_FUNC_TYPE 1076 1077 1078 // Load the symbols for generating stack traces. 1079 static std::vector<OS::SharedLibraryAddress> LoadSymbols( 1080 HANDLE process_handle) { 1081 static std::vector<OS::SharedLibraryAddress> result; 1082 1083 static bool symbols_loaded = false; 1084 1085 if (symbols_loaded) return result; 1086 1087 BOOL ok; 1088 1089 // Initialize the symbol engine. 1090 ok = _SymInitialize(process_handle, // hProcess 1091 NULL, // UserSearchPath 1092 false); // fInvadeProcess 1093 if (!ok) return result; 1094 1095 DWORD options = _SymGetOptions(); 1096 options |= SYMOPT_LOAD_LINES; 1097 options |= SYMOPT_FAIL_CRITICAL_ERRORS; 1098 options = _SymSetOptions(options); 1099 1100 char buf[OS::kStackWalkMaxNameLen] = {0}; 1101 ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen); 1102 if (!ok) { 1103 int err = GetLastError(); 1104 OS::Print("%d\n", err); 1105 return result; 1106 } 1107 1108 HANDLE snapshot = _CreateToolhelp32Snapshot( 1109 TH32CS_SNAPMODULE, // dwFlags 1110 GetCurrentProcessId()); // th32ProcessId 1111 if (snapshot == INVALID_HANDLE_VALUE) return result; 1112 MODULEENTRY32W module_entry; 1113 module_entry.dwSize = sizeof(module_entry); // Set the size of the structure. 1114 BOOL cont = _Module32FirstW(snapshot, &module_entry); 1115 while (cont) { 1116 DWORD64 base; 1117 // NOTE the SymLoadModule64 function has the peculiarity of accepting a 1118 // both unicode and ASCII strings even though the parameter is PSTR. 1119 base = _SymLoadModule64( 1120 process_handle, // hProcess 1121 0, // hFile 1122 reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName 1123 reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName 1124 reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll 1125 module_entry.modBaseSize); // SizeOfDll 1126 if (base == 0) { 1127 int err = GetLastError(); 1128 if (err != ERROR_MOD_NOT_FOUND && 1129 err != ERROR_INVALID_HANDLE) { 1130 result.clear(); 1131 return result; 1132 } 1133 } 1134 int lib_name_length = WideCharToMultiByte( 1135 CP_UTF8, 0, module_entry.szExePath, -1, NULL, 0, NULL, NULL); 1136 std::string lib_name(lib_name_length, 0); 1137 WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0], 1138 lib_name_length, NULL, NULL); 1139 result.push_back(OS::SharedLibraryAddress( 1140 lib_name, reinterpret_cast<unsigned int>(module_entry.modBaseAddr), 1141 reinterpret_cast<unsigned int>(module_entry.modBaseAddr + 1142 module_entry.modBaseSize))); 1143 cont = _Module32NextW(snapshot, &module_entry); 1144 } 1145 CloseHandle(snapshot); 1146 1147 symbols_loaded = true; 1148 return result; 1149 } 1150 1151 1152 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() { 1153 // SharedLibraryEvents are logged when loading symbol information. 1154 // Only the shared libraries loaded at the time of the call to 1155 // GetSharedLibraryAddresses are logged. DLLs loaded after 1156 // initialization are not accounted for. 1157 if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>(); 1158 HANDLE process_handle = GetCurrentProcess(); 1159 return LoadSymbols(process_handle); 1160 } 1161 1162 1163 void OS::SignalCodeMovingGC() { 1164 } 1165 1166 1167 #else // __MINGW32__ 1168 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() { 1169 return std::vector<OS::SharedLibraryAddress>(); 1170 } 1171 1172 1173 void OS::SignalCodeMovingGC() { } 1174 #endif // __MINGW32__ 1175 1176 1177 double OS::nan_value() { 1178 #ifdef _MSC_VER 1179 return std::numeric_limits<double>::quiet_NaN(); 1180 #else // _MSC_VER 1181 return NAN; 1182 #endif // _MSC_VER 1183 } 1184 1185 1186 int OS::ActivationFrameAlignment() { 1187 #ifdef _WIN64 1188 return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned. 1189 #elif defined(__MINGW32__) 1190 // With gcc 4.4 the tree vectorization optimizer can generate code 1191 // that requires 16 byte alignment such as movdqa on x86. 1192 return 16; 1193 #else 1194 return 8; // Floating-point math runs faster with 8-byte alignment. 1195 #endif 1196 } 1197 1198 1199 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { } 1200 1201 1202 VirtualMemory::VirtualMemory(size_t size) 1203 : address_(ReserveRegion(size)), size_(size) { } 1204 1205 1206 VirtualMemory::VirtualMemory(size_t size, size_t alignment) 1207 : address_(NULL), size_(0) { 1208 DCHECK((alignment % OS::AllocateAlignment()) == 0); 1209 size_t request_size = RoundUp(size + alignment, 1210 static_cast<intptr_t>(OS::AllocateAlignment())); 1211 void* address = ReserveRegion(request_size); 1212 if (address == NULL) return; 1213 uint8_t* base = RoundUp(static_cast<uint8_t*>(address), alignment); 1214 // Try reducing the size by freeing and then reallocating a specific area. 1215 bool result = ReleaseRegion(address, request_size); 1216 USE(result); 1217 DCHECK(result); 1218 address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS); 1219 if (address != NULL) { 1220 request_size = size; 1221 DCHECK(base == static_cast<uint8_t*>(address)); 1222 } else { 1223 // Resizing failed, just go with a bigger area. 1224 address = ReserveRegion(request_size); 1225 if (address == NULL) return; 1226 } 1227 address_ = address; 1228 size_ = request_size; 1229 } 1230 1231 1232 VirtualMemory::~VirtualMemory() { 1233 if (IsReserved()) { 1234 bool result = ReleaseRegion(address(), size()); 1235 DCHECK(result); 1236 USE(result); 1237 } 1238 } 1239 1240 1241 bool VirtualMemory::IsReserved() { 1242 return address_ != NULL; 1243 } 1244 1245 1246 void VirtualMemory::Reset() { 1247 address_ = NULL; 1248 size_ = 0; 1249 } 1250 1251 1252 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { 1253 return CommitRegion(address, size, is_executable); 1254 } 1255 1256 1257 bool VirtualMemory::Uncommit(void* address, size_t size) { 1258 DCHECK(IsReserved()); 1259 return UncommitRegion(address, size); 1260 } 1261 1262 1263 bool VirtualMemory::Guard(void* address) { 1264 if (NULL == VirtualAlloc(address, 1265 OS::CommitPageSize(), 1266 MEM_COMMIT, 1267 PAGE_NOACCESS)) { 1268 return false; 1269 } 1270 return true; 1271 } 1272 1273 1274 void* VirtualMemory::ReserveRegion(size_t size) { 1275 return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS); 1276 } 1277 1278 1279 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) { 1280 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; 1281 if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) { 1282 return false; 1283 } 1284 return true; 1285 } 1286 1287 1288 bool VirtualMemory::UncommitRegion(void* base, size_t size) { 1289 return VirtualFree(base, size, MEM_DECOMMIT) != 0; 1290 } 1291 1292 1293 bool VirtualMemory::ReleaseRegion(void* base, size_t size) { 1294 return VirtualFree(base, 0, MEM_RELEASE) != 0; 1295 } 1296 1297 1298 bool VirtualMemory::HasLazyCommits() { 1299 // TODO(alph): implement for the platform. 1300 return false; 1301 } 1302 1303 1304 // ---------------------------------------------------------------------------- 1305 // Win32 thread support. 1306 1307 // Definition of invalid thread handle and id. 1308 static const HANDLE kNoThread = INVALID_HANDLE_VALUE; 1309 1310 // Entry point for threads. The supplied argument is a pointer to the thread 1311 // object. The entry function dispatches to the run method in the thread 1312 // object. It is important that this function has __stdcall calling 1313 // convention. 1314 static unsigned int __stdcall ThreadEntry(void* arg) { 1315 Thread* thread = reinterpret_cast<Thread*>(arg); 1316 thread->NotifyStartedAndRun(); 1317 return 0; 1318 } 1319 1320 1321 class Thread::PlatformData { 1322 public: 1323 explicit PlatformData(HANDLE thread) : thread_(thread) {} 1324 HANDLE thread_; 1325 unsigned thread_id_; 1326 }; 1327 1328 1329 // Initialize a Win32 thread object. The thread has an invalid thread 1330 // handle until it is started. 1331 1332 Thread::Thread(const Options& options) 1333 : stack_size_(options.stack_size()), 1334 start_semaphore_(NULL) { 1335 data_ = new PlatformData(kNoThread); 1336 set_name(options.name()); 1337 } 1338 1339 1340 void Thread::set_name(const char* name) { 1341 OS::StrNCpy(name_, sizeof(name_), name, strlen(name)); 1342 name_[sizeof(name_) - 1] = '\0'; 1343 } 1344 1345 1346 // Close our own handle for the thread. 1347 Thread::~Thread() { 1348 if (data_->thread_ != kNoThread) CloseHandle(data_->thread_); 1349 delete data_; 1350 } 1351 1352 1353 // Create a new thread. It is important to use _beginthreadex() instead of 1354 // the Win32 function CreateThread(), because the CreateThread() does not 1355 // initialize thread specific structures in the C runtime library. 1356 void Thread::Start() { 1357 data_->thread_ = reinterpret_cast<HANDLE>( 1358 _beginthreadex(NULL, 1359 static_cast<unsigned>(stack_size_), 1360 ThreadEntry, 1361 this, 1362 0, 1363 &data_->thread_id_)); 1364 } 1365 1366 1367 // Wait for thread to terminate. 1368 void Thread::Join() { 1369 if (data_->thread_id_ != GetCurrentThreadId()) { 1370 WaitForSingleObject(data_->thread_, INFINITE); 1371 } 1372 } 1373 1374 1375 Thread::LocalStorageKey Thread::CreateThreadLocalKey() { 1376 DWORD result = TlsAlloc(); 1377 DCHECK(result != TLS_OUT_OF_INDEXES); 1378 return static_cast<LocalStorageKey>(result); 1379 } 1380 1381 1382 void Thread::DeleteThreadLocalKey(LocalStorageKey key) { 1383 BOOL result = TlsFree(static_cast<DWORD>(key)); 1384 USE(result); 1385 DCHECK(result); 1386 } 1387 1388 1389 void* Thread::GetThreadLocal(LocalStorageKey key) { 1390 return TlsGetValue(static_cast<DWORD>(key)); 1391 } 1392 1393 1394 void Thread::SetThreadLocal(LocalStorageKey key, void* value) { 1395 BOOL result = TlsSetValue(static_cast<DWORD>(key), value); 1396 USE(result); 1397 DCHECK(result); 1398 } 1399 1400 1401 1402 void Thread::YieldCPU() { 1403 Sleep(0); 1404 } 1405 1406 } } // namespace v8::base 1407