/external/ceres-solver/internal/ceres/ |
linear_operator.h | 48 virtual void RightMultiply(const double* x, double* y) const = 0;
|
cgnr_linear_operator.h | 87 virtual void RightMultiply(const double* x, double* y) const { 91 A_.RightMultiply(x, z_.get()); 105 RightMultiply(x, y);
|
low_rank_inverse_hessian.h | 87 virtual void RightMultiply(const double* x, double* y) const; 89 RightMultiply(x, y);
|
preconditioner.cc | 63 void SparseMatrixPreconditionerWrapper::RightMultiply(const double* x, 65 matrix_->RightMultiply(x, y);
|
sparse_matrix.h | 70 virtual void RightMultiply(const double* x, double* y) const = 0;
|
implicit_schur_complement.h | 86 // RightMultiply (and the LeftMultiply) methods are not thread safe as 116 virtual void RightMultiply(const double* x, double* y) const; 121 RightMultiply(x, y); 157 // Temporary storage vectors used to implement RightMultiply.
|
block_jacobi_preconditioner.h | 61 virtual void RightMultiply(const double* x, double* y) const;
|
preconditioner.h | 123 // LeftMultiply and num_cols are just calls to RightMultiply and 125 // RightMultiply can be called. 126 virtual void RightMultiply(const double* x, double* y) const = 0; 128 return RightMultiply(x, y); 166 virtual void RightMultiply(const double* x, double* y) const;
|
schur_jacobi_preconditioner.h | 74 // preconditioner.RightMultiply(x, y); 89 virtual void RightMultiply(const double* x, double* y) const;
|
dense_sparse_matrix_test.cc | 62 a->RightMultiply(x.data(), y_a.data()); 63 b->RightMultiply(x.data(), y_b.data()); 91 TEST_F(DenseSparseMatrixTest, RightMultiply) { 103 tsm->RightMultiply(a.data(), b1.data()); 104 dsm->RightMultiply(a.data(), b2.data());
|
block_sparse_matrix.h | 71 virtual void RightMultiply(const double* x, double* y) const;
|
conjugate_gradients_solver.cc | 101 A->RightMultiply(x, tmp.data()); 122 per_solve_options.preconditioner->RightMultiply(r.data(), z.data()); 150 A->RightMultiply(p.data(), q.data()); 177 A->RightMultiply(x, tmp.data());
|
dense_sparse_matrix.h | 61 virtual void RightMultiply(const double* x, double* y) const;
|
implicit_schur_complement.cc | 107 void ImplicitSchurComplement::RightMultiply(const double* x, double* y) const { 118 block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), 166 // Similar to RightMultiply, use the block structure of the matrix A 187 block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y); 210 block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y2.data());
|
visibility_based_preconditioner.h | 124 // preconditioner.RightMultiply(x, y); 140 virtual void RightMultiply(const double* x, double* y) const; 191 // RightMultiply is a const method for LinearOperators. It is 201 // Temporary vector used by RightMultiply. 216 virtual void RightMultiply(const double* x, double* y) const {}
|
block_jacobi_preconditioner.cc | 122 void BlockJacobiPreconditioner::RightMultiply(const double* x, 135 RightMultiply(x, y);
|
block_sparse_matrix_test.cc | 77 A_->RightMultiply(x.data(), y_a.data()); 78 B_->RightMultiply(x.data(), y_b.data());
|
compressed_row_sparse_matrix.h | 82 virtual void RightMultiply(const double* x, double* y) const;
|
triplet_sparse_matrix.h | 58 virtual void RightMultiply(const double* x, double* y) const;
|
low_rank_inverse_hessian.cc | 119 void LowRankInverseHessian::RightMultiply(const double* x_ptr,
|
schur_jacobi_preconditioner.cc | 105 void SchurJacobiPreconditioner::RightMultiply(const double* x,
|
partitioned_matrix_view_test.cc | 97 A_->RightMultiply(x2.data(), y2.data()); 117 A_->RightMultiply(x2.data(), y2.data());
|
dogleg_strategy.cc | 189 jacobian->RightMultiply(scaled_gradient.data(), Jg.data()); 707 jacobian->RightMultiply(tmp.data(), Jb.row(0).data()); 709 jacobian->RightMultiply(tmp.data(), Jb.row(1).data());
|
compressed_row_sparse_matrix_test.cc | 62 a->RightMultiply(x.data(), y_a.data()); 63 b->RightMultiply(x.data(), y_b.data()); 99 TEST_F(CompressedRowSparseMatrixTest, RightMultiply) { 263 matrix->RightMultiply(x.data(), y.data());
|
dense_sparse_matrix.cc | 87 void DenseSparseMatrix::RightMultiply(const double* x, double* y) const {
|