1 /* 2 * Copyright 2010 Tilera Corporation. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation, version 2. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 11 * NON INFRINGEMENT. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <arch/chip.h> 16 17 18 /* 19 * This file shares the implementation of the userspace memcpy and 20 * the kernel's memcpy, copy_to_user and copy_from_user. 21 */ 22 23 #include <linux/linkage.h> 24 25 #define IS_MEMCPY 0 26 #define IS_COPY_FROM_USER 1 27 #define IS_COPY_FROM_USER_ZEROING 2 28 #define IS_COPY_TO_USER -1 29 30 .section .text.memcpy_common, "ax" 31 .align 64 32 33 /* Use this to preface each bundle that can cause an exception so 34 * the kernel can clean up properly. The special cleanup code should 35 * not use these, since it knows what it is doing. 36 */ 37 #define EX \ 38 .pushsection __ex_table, "a"; \ 39 .align 4; \ 40 .word 9f, memcpy_common_fixup; \ 41 .popsection; \ 42 9 43 44 45 /* __copy_from_user_inatomic takes the kernel target address in r0, 46 * the user source in r1, and the bytes to copy in r2. 47 * It returns the number of uncopiable bytes (hopefully zero) in r0. 48 */ 49 ENTRY(__copy_from_user_inatomic) 50 .type __copy_from_user_inatomic, @function 51 FEEDBACK_ENTER_EXPLICIT(__copy_from_user_inatomic, \ 52 .text.memcpy_common, \ 53 .Lend_memcpy_common - __copy_from_user_inatomic) 54 { movei r29, IS_COPY_FROM_USER; j memcpy_common } 55 .size __copy_from_user_inatomic, . - __copy_from_user_inatomic 56 57 /* __copy_from_user_zeroing is like __copy_from_user_inatomic, but 58 * any uncopiable bytes are zeroed in the target. 59 */ 60 ENTRY(__copy_from_user_zeroing) 61 .type __copy_from_user_zeroing, @function 62 FEEDBACK_REENTER(__copy_from_user_inatomic) 63 { movei r29, IS_COPY_FROM_USER_ZEROING; j memcpy_common } 64 .size __copy_from_user_zeroing, . - __copy_from_user_zeroing 65 66 /* __copy_to_user_inatomic takes the user target address in r0, 67 * the kernel source in r1, and the bytes to copy in r2. 68 * It returns the number of uncopiable bytes (hopefully zero) in r0. 69 */ 70 ENTRY(__copy_to_user_inatomic) 71 .type __copy_to_user_inatomic, @function 72 FEEDBACK_REENTER(__copy_from_user_inatomic) 73 { movei r29, IS_COPY_TO_USER; j memcpy_common } 74 .size __copy_to_user_inatomic, . - __copy_to_user_inatomic 75 76 ENTRY(memcpy) 77 .type memcpy, @function 78 FEEDBACK_REENTER(__copy_from_user_inatomic) 79 { movei r29, IS_MEMCPY } 80 .size memcpy, . - memcpy 81 /* Fall through */ 82 83 .type memcpy_common, @function 84 memcpy_common: 85 /* On entry, r29 holds one of the IS_* macro values from above. */ 86 87 88 /* r0 is the dest, r1 is the source, r2 is the size. */ 89 90 /* Save aside original dest so we can return it at the end. */ 91 { sw sp, lr; move r23, r0; or r4, r0, r1 } 92 93 /* Check for an empty size. */ 94 { bz r2, .Ldone; andi r4, r4, 3 } 95 96 /* Save aside original values in case of a fault. */ 97 { move r24, r1; move r25, r2 } 98 move r27, lr 99 100 /* Check for an unaligned source or dest. */ 101 { bnz r4, .Lcopy_unaligned_maybe_many; addli r4, r2, -256 } 102 103 .Lcheck_aligned_copy_size: 104 /* If we are copying < 256 bytes, branch to simple case. */ 105 { blzt r4, .Lcopy_8_check; slti_u r8, r2, 8 } 106 107 /* Copying >= 256 bytes, so jump to complex prefetching loop. */ 108 { andi r6, r1, 63; j .Lcopy_many } 109 110 /* 111 * 112 * Aligned 4 byte at a time copy loop 113 * 114 */ 115 116 .Lcopy_8_loop: 117 /* Copy two words at a time to hide load latency. */ 118 EX: { lw r3, r1; addi r1, r1, 4; slti_u r8, r2, 16 } 119 EX: { lw r4, r1; addi r1, r1, 4 } 120 EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 } 121 EX: { sw r0, r4; addi r0, r0, 4; addi r2, r2, -4 } 122 .Lcopy_8_check: 123 { bzt r8, .Lcopy_8_loop; slti_u r4, r2, 4 } 124 125 /* Copy odd leftover word, if any. */ 126 { bnzt r4, .Lcheck_odd_stragglers } 127 EX: { lw r3, r1; addi r1, r1, 4 } 128 EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 } 129 130 .Lcheck_odd_stragglers: 131 { bnz r2, .Lcopy_unaligned_few } 132 133 .Ldone: 134 /* For memcpy return original dest address, else zero. */ 135 { mz r0, r29, r23; jrp lr } 136 137 138 /* 139 * 140 * Prefetching multiple cache line copy handler (for large transfers). 141 * 142 */ 143 144 /* Copy words until r1 is cache-line-aligned. */ 145 .Lalign_loop: 146 EX: { lw r3, r1; addi r1, r1, 4 } 147 { andi r6, r1, 63 } 148 EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 } 149 .Lcopy_many: 150 { bnzt r6, .Lalign_loop; addi r9, r0, 63 } 151 152 { addi r3, r1, 60; andi r9, r9, -64 } 153 154 /* No need to prefetch dst, we'll just do the wh64 155 * right before we copy a line. 156 */ 157 EX: { lw r5, r3; addi r3, r3, 64; movei r4, 1 } 158 /* Intentionally stall for a few cycles to leave L2 cache alone. */ 159 { bnzt zero, .; move r27, lr } 160 EX: { lw r6, r3; addi r3, r3, 64 } 161 /* Intentionally stall for a few cycles to leave L2 cache alone. */ 162 { bnzt zero, . } 163 EX: { lw r7, r3; addi r3, r3, 64 } 164 /* Intentionally stall for a few cycles to leave L2 cache alone. */ 165 { bz zero, .Lbig_loop2 } 166 167 /* On entry to this loop: 168 * - r0 points to the start of dst line 0 169 * - r1 points to start of src line 0 170 * - r2 >= (256 - 60), only the first time the loop trips. 171 * - r3 contains r1 + 128 + 60 [pointer to end of source line 2] 172 * This is our prefetch address. When we get near the end 173 * rather than prefetching off the end this is changed to point 174 * to some "safe" recently loaded address. 175 * - r5 contains *(r1 + 60) [i.e. last word of source line 0] 176 * - r6 contains *(r1 + 64 + 60) [i.e. last word of source line 1] 177 * - r9 contains ((r0 + 63) & -64) 178 * [start of next dst cache line.] 179 */ 180 181 .Lbig_loop: 182 { jal .Lcopy_line2; add r15, r1, r2 } 183 184 .Lbig_loop2: 185 /* Copy line 0, first stalling until r5 is ready. */ 186 EX: { move r12, r5; lw r16, r1 } 187 { bz r4, .Lcopy_8_check; slti_u r8, r2, 8 } 188 /* Prefetch several lines ahead. */ 189 EX: { lw r5, r3; addi r3, r3, 64 } 190 { jal .Lcopy_line } 191 192 /* Copy line 1, first stalling until r6 is ready. */ 193 EX: { move r12, r6; lw r16, r1 } 194 { bz r4, .Lcopy_8_check; slti_u r8, r2, 8 } 195 /* Prefetch several lines ahead. */ 196 EX: { lw r6, r3; addi r3, r3, 64 } 197 { jal .Lcopy_line } 198 199 /* Copy line 2, first stalling until r7 is ready. */ 200 EX: { move r12, r7; lw r16, r1 } 201 { bz r4, .Lcopy_8_check; slti_u r8, r2, 8 } 202 /* Prefetch several lines ahead. */ 203 EX: { lw r7, r3; addi r3, r3, 64 } 204 /* Use up a caches-busy cycle by jumping back to the top of the 205 * loop. Might as well get it out of the way now. 206 */ 207 { j .Lbig_loop } 208 209 210 /* On entry: 211 * - r0 points to the destination line. 212 * - r1 points to the source line. 213 * - r3 is the next prefetch address. 214 * - r9 holds the last address used for wh64. 215 * - r12 = WORD_15 216 * - r16 = WORD_0. 217 * - r17 == r1 + 16. 218 * - r27 holds saved lr to restore. 219 * 220 * On exit: 221 * - r0 is incremented by 64. 222 * - r1 is incremented by 64, unless that would point to a word 223 * beyond the end of the source array, in which case it is redirected 224 * to point to an arbitrary word already in the cache. 225 * - r2 is decremented by 64. 226 * - r3 is unchanged, unless it points to a word beyond the 227 * end of the source array, in which case it is redirected 228 * to point to an arbitrary word already in the cache. 229 * Redirecting is OK since if we are that close to the end 230 * of the array we will not come back to this subroutine 231 * and use the contents of the prefetched address. 232 * - r4 is nonzero iff r2 >= 64. 233 * - r9 is incremented by 64, unless it points beyond the 234 * end of the last full destination cache line, in which 235 * case it is redirected to a "safe address" that can be 236 * clobbered (sp - 64) 237 * - lr contains the value in r27. 238 */ 239 240 /* r26 unused */ 241 242 .Lcopy_line: 243 /* TODO: when r3 goes past the end, we would like to redirect it 244 * to prefetch the last partial cache line (if any) just once, for the 245 * benefit of the final cleanup loop. But we don't want to 246 * prefetch that line more than once, or subsequent prefetches 247 * will go into the RTF. But then .Lbig_loop should unconditionally 248 * branch to top of loop to execute final prefetch, and its 249 * nop should become a conditional branch. 250 */ 251 252 /* We need two non-memory cycles here to cover the resources 253 * used by the loads initiated by the caller. 254 */ 255 { add r15, r1, r2 } 256 .Lcopy_line2: 257 { slt_u r13, r3, r15; addi r17, r1, 16 } 258 259 /* NOTE: this will stall for one cycle as L1 is busy. */ 260 261 /* Fill second L1D line. */ 262 EX: { lw r17, r17; addi r1, r1, 48; mvz r3, r13, r1 } /* r17 = WORD_4 */ 263 264 /* Prepare destination line for writing. */ 265 EX: { wh64 r9; addi r9, r9, 64 } 266 /* Load seven words that are L1D hits to cover wh64 L2 usage. */ 267 268 /* Load the three remaining words from the last L1D line, which 269 * we know has already filled the L1D. 270 */ 271 EX: { lw r4, r1; addi r1, r1, 4; addi r20, r1, 16 } /* r4 = WORD_12 */ 272 EX: { lw r8, r1; addi r1, r1, 4; slt_u r13, r20, r15 }/* r8 = WORD_13 */ 273 EX: { lw r11, r1; addi r1, r1, -52; mvz r20, r13, r1 } /* r11 = WORD_14 */ 274 275 /* Load the three remaining words from the first L1D line, first 276 * stalling until it has filled by "looking at" r16. 277 */ 278 EX: { lw r13, r1; addi r1, r1, 4; move zero, r16 } /* r13 = WORD_1 */ 279 EX: { lw r14, r1; addi r1, r1, 4 } /* r14 = WORD_2 */ 280 EX: { lw r15, r1; addi r1, r1, 8; addi r10, r0, 60 } /* r15 = WORD_3 */ 281 282 /* Load second word from the second L1D line, first 283 * stalling until it has filled by "looking at" r17. 284 */ 285 EX: { lw r19, r1; addi r1, r1, 4; move zero, r17 } /* r19 = WORD_5 */ 286 287 /* Store last word to the destination line, potentially dirtying it 288 * for the first time, which keeps the L2 busy for two cycles. 289 */ 290 EX: { sw r10, r12 } /* store(WORD_15) */ 291 292 /* Use two L1D hits to cover the sw L2 access above. */ 293 EX: { lw r10, r1; addi r1, r1, 4 } /* r10 = WORD_6 */ 294 EX: { lw r12, r1; addi r1, r1, 4 } /* r12 = WORD_7 */ 295 296 /* Fill third L1D line. */ 297 EX: { lw r18, r1; addi r1, r1, 4 } /* r18 = WORD_8 */ 298 299 /* Store first L1D line. */ 300 EX: { sw r0, r16; addi r0, r0, 4; add r16, r0, r2 } /* store(WORD_0) */ 301 EX: { sw r0, r13; addi r0, r0, 4; andi r16, r16, -64 } /* store(WORD_1) */ 302 EX: { sw r0, r14; addi r0, r0, 4; slt_u r16, r9, r16 } /* store(WORD_2) */ 303 EX: { sw r0, r15; addi r0, r0, 4; addi r13, sp, -64 } /* store(WORD_3) */ 304 /* Store second L1D line. */ 305 EX: { sw r0, r17; addi r0, r0, 4; mvz r9, r16, r13 }/* store(WORD_4) */ 306 EX: { sw r0, r19; addi r0, r0, 4 } /* store(WORD_5) */ 307 EX: { sw r0, r10; addi r0, r0, 4 } /* store(WORD_6) */ 308 EX: { sw r0, r12; addi r0, r0, 4 } /* store(WORD_7) */ 309 310 EX: { lw r13, r1; addi r1, r1, 4; move zero, r18 } /* r13 = WORD_9 */ 311 EX: { lw r14, r1; addi r1, r1, 4 } /* r14 = WORD_10 */ 312 EX: { lw r15, r1; move r1, r20 } /* r15 = WORD_11 */ 313 314 /* Store third L1D line. */ 315 EX: { sw r0, r18; addi r0, r0, 4 } /* store(WORD_8) */ 316 EX: { sw r0, r13; addi r0, r0, 4 } /* store(WORD_9) */ 317 EX: { sw r0, r14; addi r0, r0, 4 } /* store(WORD_10) */ 318 EX: { sw r0, r15; addi r0, r0, 4 } /* store(WORD_11) */ 319 320 /* Store rest of fourth L1D line. */ 321 EX: { sw r0, r4; addi r0, r0, 4 } /* store(WORD_12) */ 322 { 323 EX: sw r0, r8 /* store(WORD_13) */ 324 addi r0, r0, 4 325 /* Will r2 be > 64 after we subtract 64 below? */ 326 shri r4, r2, 7 327 } 328 { 329 EX: sw r0, r11 /* store(WORD_14) */ 330 addi r0, r0, 8 331 /* Record 64 bytes successfully copied. */ 332 addi r2, r2, -64 333 } 334 335 { jrp lr; move lr, r27 } 336 337 /* Convey to the backtrace library that the stack frame is size 338 * zero, and the real return address is on the stack rather than 339 * in 'lr'. 340 */ 341 { info 8 } 342 343 .align 64 344 .Lcopy_unaligned_maybe_many: 345 /* Skip the setup overhead if we aren't copying many bytes. */ 346 { slti_u r8, r2, 20; sub r4, zero, r0 } 347 { bnzt r8, .Lcopy_unaligned_few; andi r4, r4, 3 } 348 { bz r4, .Ldest_is_word_aligned; add r18, r1, r2 } 349 350 /* 351 * 352 * unaligned 4 byte at a time copy handler. 353 * 354 */ 355 356 /* Copy single bytes until r0 == 0 mod 4, so we can store words. */ 357 .Lalign_dest_loop: 358 EX: { lb_u r3, r1; addi r1, r1, 1; addi r4, r4, -1 } 359 EX: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 } 360 { bnzt r4, .Lalign_dest_loop; andi r3, r1, 3 } 361 362 /* If source and dest are now *both* aligned, do an aligned copy. */ 363 { bz r3, .Lcheck_aligned_copy_size; addli r4, r2, -256 } 364 365 .Ldest_is_word_aligned: 366 367 EX: { andi r8, r0, 63; lwadd_na r6, r1, 4} 368 { slti_u r9, r2, 64; bz r8, .Ldest_is_L2_line_aligned } 369 370 /* This copies unaligned words until either there are fewer 371 * than 4 bytes left to copy, or until the destination pointer 372 * is cache-aligned, whichever comes first. 373 * 374 * On entry: 375 * - r0 is the next store address. 376 * - r1 points 4 bytes past the load address corresponding to r0. 377 * - r2 >= 4 378 * - r6 is the next aligned word loaded. 379 */ 380 .Lcopy_unaligned_src_words: 381 EX: { lwadd_na r7, r1, 4; slti_u r8, r2, 4 + 4 } 382 /* stall */ 383 { dword_align r6, r7, r1; slti_u r9, r2, 64 + 4 } 384 EX: { swadd r0, r6, 4; addi r2, r2, -4 } 385 { bnz r8, .Lcleanup_unaligned_words; andi r8, r0, 63 } 386 { bnzt r8, .Lcopy_unaligned_src_words; move r6, r7 } 387 388 /* On entry: 389 * - r0 is the next store address. 390 * - r1 points 4 bytes past the load address corresponding to r0. 391 * - r2 >= 4 (# of bytes left to store). 392 * - r6 is the next aligned src word value. 393 * - r9 = (r2 < 64U). 394 * - r18 points one byte past the end of source memory. 395 */ 396 .Ldest_is_L2_line_aligned: 397 398 { 399 /* Not a full cache line remains. */ 400 bnz r9, .Lcleanup_unaligned_words 401 move r7, r6 402 } 403 404 /* r2 >= 64 */ 405 406 /* Kick off two prefetches, but don't go past the end. */ 407 { addi r3, r1, 63 - 4; addi r8, r1, 64 + 63 - 4 } 408 { prefetch r3; move r3, r8; slt_u r8, r8, r18 } 409 { mvz r3, r8, r1; addi r8, r3, 64 } 410 { prefetch r3; move r3, r8; slt_u r8, r8, r18 } 411 { mvz r3, r8, r1; movei r17, 0 } 412 413 .Lcopy_unaligned_line: 414 /* Prefetch another line. */ 415 { prefetch r3; addi r15, r1, 60; addi r3, r3, 64 } 416 /* Fire off a load of the last word we are about to copy. */ 417 EX: { lw_na r15, r15; slt_u r8, r3, r18 } 418 419 EX: { mvz r3, r8, r1; wh64 r0 } 420 421 /* This loop runs twice. 422 * 423 * On entry: 424 * - r17 is even before the first iteration, and odd before 425 * the second. It is incremented inside the loop. Encountering 426 * an even value at the end of the loop makes it stop. 427 */ 428 .Lcopy_half_an_unaligned_line: 429 EX: { 430 /* Stall until the last byte is ready. In the steady state this 431 * guarantees all words to load below will be in the L2 cache, which 432 * avoids shunting the loads to the RTF. 433 */ 434 move zero, r15 435 lwadd_na r7, r1, 16 436 } 437 EX: { lwadd_na r11, r1, 12 } 438 EX: { lwadd_na r14, r1, -24 } 439 EX: { lwadd_na r8, r1, 4 } 440 EX: { lwadd_na r9, r1, 4 } 441 EX: { 442 lwadd_na r10, r1, 8 443 /* r16 = (r2 < 64), after we subtract 32 from r2 below. */ 444 slti_u r16, r2, 64 + 32 445 } 446 EX: { lwadd_na r12, r1, 4; addi r17, r17, 1 } 447 EX: { lwadd_na r13, r1, 8; dword_align r6, r7, r1 } 448 EX: { swadd r0, r6, 4; dword_align r7, r8, r1 } 449 EX: { swadd r0, r7, 4; dword_align r8, r9, r1 } 450 EX: { swadd r0, r8, 4; dword_align r9, r10, r1 } 451 EX: { swadd r0, r9, 4; dword_align r10, r11, r1 } 452 EX: { swadd r0, r10, 4; dword_align r11, r12, r1 } 453 EX: { swadd r0, r11, 4; dword_align r12, r13, r1 } 454 EX: { swadd r0, r12, 4; dword_align r13, r14, r1 } 455 EX: { swadd r0, r13, 4; addi r2, r2, -32 } 456 { move r6, r14; bbst r17, .Lcopy_half_an_unaligned_line } 457 458 { bzt r16, .Lcopy_unaligned_line; move r7, r6 } 459 460 /* On entry: 461 * - r0 is the next store address. 462 * - r1 points 4 bytes past the load address corresponding to r0. 463 * - r2 >= 0 (# of bytes left to store). 464 * - r7 is the next aligned src word value. 465 */ 466 .Lcleanup_unaligned_words: 467 /* Handle any trailing bytes. */ 468 { bz r2, .Lcopy_unaligned_done; slti_u r8, r2, 4 } 469 { bzt r8, .Lcopy_unaligned_src_words; move r6, r7 } 470 471 /* Move r1 back to the point where it corresponds to r0. */ 472 { addi r1, r1, -4 } 473 474 /* Fall through */ 475 476 /* 477 * 478 * 1 byte at a time copy handler. 479 * 480 */ 481 482 .Lcopy_unaligned_few: 483 EX: { lb_u r3, r1; addi r1, r1, 1 } 484 EX: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 } 485 { bnzt r2, .Lcopy_unaligned_few } 486 487 .Lcopy_unaligned_done: 488 489 /* For memcpy return original dest address, else zero. */ 490 { mz r0, r29, r23; jrp lr } 491 492 .Lend_memcpy_common: 493 .size memcpy_common, .Lend_memcpy_common - memcpy_common 494 495 .section .fixup,"ax" 496 memcpy_common_fixup: 497 .type memcpy_common_fixup, @function 498 499 /* Skip any bytes we already successfully copied. 500 * r2 (num remaining) is correct, but r0 (dst) and r1 (src) 501 * may not be quite right because of unrolling and prefetching. 502 * So we need to recompute their values as the address just 503 * after the last byte we are sure was successfully loaded and 504 * then stored. 505 */ 506 507 /* Determine how many bytes we successfully copied. */ 508 { sub r3, r25, r2 } 509 510 /* Add this to the original r0 and r1 to get their new values. */ 511 { add r0, r23, r3; add r1, r24, r3 } 512 513 { bzt r29, memcpy_fixup_loop } 514 { blzt r29, copy_to_user_fixup_loop } 515 516 copy_from_user_fixup_loop: 517 /* Try copying the rest one byte at a time, expecting a load fault. */ 518 .Lcfu: { lb_u r3, r1; addi r1, r1, 1 } 519 { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 } 520 { bnzt r2, copy_from_user_fixup_loop } 521 522 .Lcopy_from_user_fixup_zero_remainder: 523 { bbs r29, 2f } /* low bit set means IS_COPY_FROM_USER */ 524 /* byte-at-a-time loop faulted, so zero the rest. */ 525 { move r3, r2; bz r2, 2f /* should be impossible, but handle it. */ } 526 1: { sb r0, zero; addi r0, r0, 1; addi r3, r3, -1 } 527 { bnzt r3, 1b } 528 2: move lr, r27 529 { move r0, r2; jrp lr } 530 531 copy_to_user_fixup_loop: 532 /* Try copying the rest one byte at a time, expecting a store fault. */ 533 { lb_u r3, r1; addi r1, r1, 1 } 534 .Lctu: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 } 535 { bnzt r2, copy_to_user_fixup_loop } 536 .Lcopy_to_user_fixup_done: 537 move lr, r27 538 { move r0, r2; jrp lr } 539 540 memcpy_fixup_loop: 541 /* Try copying the rest one byte at a time. We expect a disastrous 542 * fault to happen since we are in fixup code, but let it happen. 543 */ 544 { lb_u r3, r1; addi r1, r1, 1 } 545 { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 } 546 { bnzt r2, memcpy_fixup_loop } 547 /* This should be unreachable, we should have faulted again. 548 * But be paranoid and handle it in case some interrupt changed 549 * the TLB or something. 550 */ 551 move lr, r27 552 { move r0, r23; jrp lr } 553 554 .size memcpy_common_fixup, . - memcpy_common_fixup 555 556 .section __ex_table,"a" 557 .align 4 558 .word .Lcfu, .Lcopy_from_user_fixup_zero_remainder 559 .word .Lctu, .Lcopy_to_user_fixup_done 560