Home | History | Annotate | Download | only in lib
      1 /*
      2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
      3  *
      4  *   This program is free software; you can redistribute it and/or
      5  *   modify it under the terms of the GNU General Public License
      6  *   as published by the Free Software Foundation, version 2.
      7  *
      8  *   This program is distributed in the hope that it will be useful, but
      9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
     10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
     11  *   NON INFRINGEMENT.  See the GNU General Public License for
     12  *   more details.
     13  */
     14 
     15 #include <arch/chip.h>
     16 
     17 
     18 /*
     19  * This file shares the implementation of the userspace memcpy and
     20  * the kernel's memcpy, copy_to_user and copy_from_user.
     21  */
     22 
     23 #include <linux/linkage.h>
     24 
     25 #define IS_MEMCPY	  0
     26 #define IS_COPY_FROM_USER  1
     27 #define IS_COPY_FROM_USER_ZEROING  2
     28 #define IS_COPY_TO_USER   -1
     29 
     30 	.section .text.memcpy_common, "ax"
     31 	.align 64
     32 
     33 /* Use this to preface each bundle that can cause an exception so
     34  * the kernel can clean up properly. The special cleanup code should
     35  * not use these, since it knows what it is doing.
     36  */
     37 #define EX \
     38 	.pushsection __ex_table, "a"; \
     39 	.align 4; \
     40 	.word 9f, memcpy_common_fixup; \
     41 	.popsection; \
     42 	9
     43 
     44 
     45 /* __copy_from_user_inatomic takes the kernel target address in r0,
     46  * the user source in r1, and the bytes to copy in r2.
     47  * It returns the number of uncopiable bytes (hopefully zero) in r0.
     48  */
     49 ENTRY(__copy_from_user_inatomic)
     50 .type __copy_from_user_inatomic, @function
     51 	FEEDBACK_ENTER_EXPLICIT(__copy_from_user_inatomic, \
     52 	  .text.memcpy_common, \
     53 	  .Lend_memcpy_common - __copy_from_user_inatomic)
     54 	{ movei r29, IS_COPY_FROM_USER; j memcpy_common }
     55 	.size __copy_from_user_inatomic, . - __copy_from_user_inatomic
     56 
     57 /* __copy_from_user_zeroing is like __copy_from_user_inatomic, but
     58  * any uncopiable bytes are zeroed in the target.
     59  */
     60 ENTRY(__copy_from_user_zeroing)
     61 .type __copy_from_user_zeroing, @function
     62 	FEEDBACK_REENTER(__copy_from_user_inatomic)
     63 	{ movei r29, IS_COPY_FROM_USER_ZEROING; j memcpy_common }
     64 	.size __copy_from_user_zeroing, . - __copy_from_user_zeroing
     65 
     66 /* __copy_to_user_inatomic takes the user target address in r0,
     67  * the kernel source in r1, and the bytes to copy in r2.
     68  * It returns the number of uncopiable bytes (hopefully zero) in r0.
     69  */
     70 ENTRY(__copy_to_user_inatomic)
     71 .type __copy_to_user_inatomic, @function
     72 	FEEDBACK_REENTER(__copy_from_user_inatomic)
     73 	{ movei r29, IS_COPY_TO_USER; j memcpy_common }
     74 	.size __copy_to_user_inatomic, . - __copy_to_user_inatomic
     75 
     76 ENTRY(memcpy)
     77 .type memcpy, @function
     78 	FEEDBACK_REENTER(__copy_from_user_inatomic)
     79 	{ movei r29, IS_MEMCPY }
     80 	.size memcpy, . - memcpy
     81 	/* Fall through */
     82 
     83 	.type memcpy_common, @function
     84 memcpy_common:
     85 	/* On entry, r29 holds one of the IS_* macro values from above. */
     86 
     87 
     88 	/* r0 is the dest, r1 is the source, r2 is the size. */
     89 
     90 	/* Save aside original dest so we can return it at the end. */
     91 	{ sw sp, lr; move r23, r0; or r4, r0, r1 }
     92 
     93 	/* Check for an empty size. */
     94 	{ bz r2, .Ldone; andi r4, r4, 3 }
     95 
     96 	/* Save aside original values in case of a fault. */
     97 	{ move r24, r1; move r25, r2 }
     98 	move r27, lr
     99 
    100 	/* Check for an unaligned source or dest. */
    101 	{ bnz r4, .Lcopy_unaligned_maybe_many; addli r4, r2, -256 }
    102 
    103 .Lcheck_aligned_copy_size:
    104 	/* If we are copying < 256 bytes, branch to simple case. */
    105 	{ blzt r4, .Lcopy_8_check; slti_u r8, r2, 8 }
    106 
    107 	/* Copying >= 256 bytes, so jump to complex prefetching loop. */
    108 	{ andi r6, r1, 63; j .Lcopy_many }
    109 
    110 /*
    111  *
    112  * Aligned 4 byte at a time copy loop
    113  *
    114  */
    115 
    116 .Lcopy_8_loop:
    117 	/* Copy two words at a time to hide load latency. */
    118 EX:	{ lw r3, r1; addi r1, r1, 4; slti_u r8, r2, 16 }
    119 EX:	{ lw r4, r1; addi r1, r1, 4 }
    120 EX:	{ sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
    121 EX:	{ sw r0, r4; addi r0, r0, 4; addi r2, r2, -4 }
    122 .Lcopy_8_check:
    123 	{ bzt r8, .Lcopy_8_loop; slti_u r4, r2, 4 }
    124 
    125 	/* Copy odd leftover word, if any. */
    126 	{ bnzt r4, .Lcheck_odd_stragglers }
    127 EX:	{ lw r3, r1; addi r1, r1, 4 }
    128 EX:	{ sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
    129 
    130 .Lcheck_odd_stragglers:
    131 	{ bnz r2, .Lcopy_unaligned_few }
    132 
    133 .Ldone:
    134 	/* For memcpy return original dest address, else zero. */
    135 	{ mz r0, r29, r23; jrp lr }
    136 
    137 
    138 /*
    139  *
    140  * Prefetching multiple cache line copy handler (for large transfers).
    141  *
    142  */
    143 
    144 	/* Copy words until r1 is cache-line-aligned. */
    145 .Lalign_loop:
    146 EX:	{ lw r3, r1; addi r1, r1, 4 }
    147 	{ andi r6, r1, 63 }
    148 EX:	{ sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
    149 .Lcopy_many:
    150 	{ bnzt r6, .Lalign_loop; addi r9, r0, 63 }
    151 
    152 	{ addi r3, r1, 60; andi r9, r9, -64 }
    153 
    154 	/* No need to prefetch dst, we'll just do the wh64
    155 	 * right before we copy a line.
    156 	 */
    157 EX:	{ lw r5, r3; addi r3, r3, 64; movei r4, 1 }
    158 	/* Intentionally stall for a few cycles to leave L2 cache alone. */
    159 	{ bnzt zero, .; move r27, lr }
    160 EX:	{ lw r6, r3; addi r3, r3, 64 }
    161 	/* Intentionally stall for a few cycles to leave L2 cache alone. */
    162 	{ bnzt zero, . }
    163 EX:	{ lw r7, r3; addi r3, r3, 64 }
    164 	/* Intentionally stall for a few cycles to leave L2 cache alone. */
    165 	{ bz zero, .Lbig_loop2 }
    166 
    167 	/* On entry to this loop:
    168 	 * - r0 points to the start of dst line 0
    169 	 * - r1 points to start of src line 0
    170 	 * - r2 >= (256 - 60), only the first time the loop trips.
    171 	 * - r3 contains r1 + 128 + 60    [pointer to end of source line 2]
    172 	 *   This is our prefetch address. When we get near the end
    173 	 *   rather than prefetching off the end this is changed to point
    174 	 *   to some "safe" recently loaded address.
    175 	 * - r5 contains *(r1 + 60)       [i.e. last word of source line 0]
    176 	 * - r6 contains *(r1 + 64 + 60)  [i.e. last word of source line 1]
    177 	 * - r9 contains ((r0 + 63) & -64)
    178 	 *     [start of next dst cache line.]
    179 	 */
    180 
    181 .Lbig_loop:
    182 	{ jal .Lcopy_line2; add r15, r1, r2 }
    183 
    184 .Lbig_loop2:
    185 	/* Copy line 0, first stalling until r5 is ready. */
    186 EX:	{ move r12, r5; lw r16, r1 }
    187 	{ bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
    188 	/* Prefetch several lines ahead. */
    189 EX:	{ lw r5, r3; addi r3, r3, 64 }
    190 	{ jal .Lcopy_line }
    191 
    192 	/* Copy line 1, first stalling until r6 is ready. */
    193 EX:	{ move r12, r6; lw r16, r1 }
    194 	{ bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
    195 	/* Prefetch several lines ahead. */
    196 EX:	{ lw r6, r3; addi r3, r3, 64 }
    197 	{ jal .Lcopy_line }
    198 
    199 	/* Copy line 2, first stalling until r7 is ready. */
    200 EX:	{ move r12, r7; lw r16, r1 }
    201 	{ bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
    202 	/* Prefetch several lines ahead. */
    203 EX:	{ lw r7, r3; addi r3, r3, 64 }
    204 	/* Use up a caches-busy cycle by jumping back to the top of the
    205 	 * loop. Might as well get it out of the way now.
    206 	 */
    207 	{ j .Lbig_loop }
    208 
    209 
    210 	/* On entry:
    211 	 * - r0 points to the destination line.
    212 	 * - r1 points to the source line.
    213 	 * - r3 is the next prefetch address.
    214 	 * - r9 holds the last address used for wh64.
    215 	 * - r12 = WORD_15
    216 	 * - r16 = WORD_0.
    217 	 * - r17 == r1 + 16.
    218 	 * - r27 holds saved lr to restore.
    219 	 *
    220 	 * On exit:
    221 	 * - r0 is incremented by 64.
    222 	 * - r1 is incremented by 64, unless that would point to a word
    223 	 *   beyond the end of the source array, in which case it is redirected
    224 	 *   to point to an arbitrary word already in the cache.
    225 	 * - r2 is decremented by 64.
    226 	 * - r3 is unchanged, unless it points to a word beyond the
    227 	 *   end of the source array, in which case it is redirected
    228 	 *   to point to an arbitrary word already in the cache.
    229 	 *   Redirecting is OK since if we are that close to the end
    230 	 *   of the array we will not come back to this subroutine
    231 	 *   and use the contents of the prefetched address.
    232 	 * - r4 is nonzero iff r2 >= 64.
    233 	 * - r9 is incremented by 64, unless it points beyond the
    234 	 *   end of the last full destination cache line, in which
    235 	 *   case it is redirected to a "safe address" that can be
    236 	 *   clobbered (sp - 64)
    237 	 * - lr contains the value in r27.
    238 	 */
    239 
    240 /* r26 unused */
    241 
    242 .Lcopy_line:
    243 	/* TODO: when r3 goes past the end, we would like to redirect it
    244 	 * to prefetch the last partial cache line (if any) just once, for the
    245 	 * benefit of the final cleanup loop. But we don't want to
    246 	 * prefetch that line more than once, or subsequent prefetches
    247 	 * will go into the RTF. But then .Lbig_loop should unconditionally
    248 	 * branch to top of loop to execute final prefetch, and its
    249 	 * nop should become a conditional branch.
    250 	 */
    251 
    252 	/* We need two non-memory cycles here to cover the resources
    253 	 * used by the loads initiated by the caller.
    254 	 */
    255 	{ add r15, r1, r2 }
    256 .Lcopy_line2:
    257 	{ slt_u r13, r3, r15; addi r17, r1, 16 }
    258 
    259 	/* NOTE: this will stall for one cycle as L1 is busy. */
    260 
    261 	/* Fill second L1D line. */
    262 EX:	{ lw r17, r17; addi r1, r1, 48; mvz r3, r13, r1 } /* r17 = WORD_4 */
    263 
    264 	/* Prepare destination line for writing. */
    265 EX:	{ wh64 r9; addi r9, r9, 64 }
    266 	/* Load seven words that are L1D hits to cover wh64 L2 usage. */
    267 
    268 	/* Load the three remaining words from the last L1D line, which
    269 	 * we know has already filled the L1D.
    270 	 */
    271 EX:	{ lw r4, r1;  addi r1, r1, 4;   addi r20, r1, 16 }   /* r4 = WORD_12 */
    272 EX:	{ lw r8, r1;  addi r1, r1, 4;   slt_u r13, r20, r15 }/* r8 = WORD_13 */
    273 EX:	{ lw r11, r1; addi r1, r1, -52; mvz r20, r13, r1 }  /* r11 = WORD_14 */
    274 
    275 	/* Load the three remaining words from the first L1D line, first
    276 	 * stalling until it has filled by "looking at" r16.
    277 	 */
    278 EX:	{ lw r13, r1; addi r1, r1, 4; move zero, r16 }   /* r13 = WORD_1 */
    279 EX:	{ lw r14, r1; addi r1, r1, 4 }                   /* r14 = WORD_2 */
    280 EX:	{ lw r15, r1; addi r1, r1, 8; addi r10, r0, 60 } /* r15 = WORD_3 */
    281 
    282 	/* Load second word from the second L1D line, first
    283 	 * stalling until it has filled by "looking at" r17.
    284 	 */
    285 EX:	{ lw r19, r1; addi r1, r1, 4; move zero, r17 }  /* r19 = WORD_5 */
    286 
    287 	/* Store last word to the destination line, potentially dirtying it
    288 	 * for the first time, which keeps the L2 busy for two cycles.
    289 	 */
    290 EX:	{ sw r10, r12 }                                 /* store(WORD_15) */
    291 
    292 	/* Use two L1D hits to cover the sw L2 access above. */
    293 EX:	{ lw r10, r1; addi r1, r1, 4 }                  /* r10 = WORD_6 */
    294 EX:	{ lw r12, r1; addi r1, r1, 4 }                  /* r12 = WORD_7 */
    295 
    296 	/* Fill third L1D line. */
    297 EX:	{ lw r18, r1; addi r1, r1, 4 }                  /* r18 = WORD_8 */
    298 
    299 	/* Store first L1D line. */
    300 EX:	{ sw r0, r16; addi r0, r0, 4; add r16, r0, r2 } /* store(WORD_0) */
    301 EX:	{ sw r0, r13; addi r0, r0, 4; andi r16, r16, -64 } /* store(WORD_1) */
    302 EX:	{ sw r0, r14; addi r0, r0, 4; slt_u r16, r9, r16 } /* store(WORD_2) */
    303 EX:	{ sw r0, r15; addi r0, r0, 4; addi r13, sp, -64 } /* store(WORD_3) */
    304 	/* Store second L1D line. */
    305 EX:	{ sw r0, r17; addi r0, r0, 4; mvz r9, r16, r13 }/* store(WORD_4) */
    306 EX:	{ sw r0, r19; addi r0, r0, 4 }                  /* store(WORD_5) */
    307 EX:	{ sw r0, r10; addi r0, r0, 4 }                  /* store(WORD_6) */
    308 EX:	{ sw r0, r12; addi r0, r0, 4 }                  /* store(WORD_7) */
    309 
    310 EX:	{ lw r13, r1; addi r1, r1, 4; move zero, r18 }  /* r13 = WORD_9 */
    311 EX:	{ lw r14, r1; addi r1, r1, 4 }                  /* r14 = WORD_10 */
    312 EX:	{ lw r15, r1; move r1, r20   }                  /* r15 = WORD_11 */
    313 
    314 	/* Store third L1D line. */
    315 EX:	{ sw r0, r18; addi r0, r0, 4 }                  /* store(WORD_8) */
    316 EX:	{ sw r0, r13; addi r0, r0, 4 }                  /* store(WORD_9) */
    317 EX:	{ sw r0, r14; addi r0, r0, 4 }                  /* store(WORD_10) */
    318 EX:	{ sw r0, r15; addi r0, r0, 4 }                  /* store(WORD_11) */
    319 
    320 	/* Store rest of fourth L1D line. */
    321 EX:	{ sw r0, r4;  addi r0, r0, 4 }                  /* store(WORD_12) */
    322 	{
    323 EX:	sw r0, r8                                       /* store(WORD_13) */
    324 	addi r0, r0, 4
    325 	/* Will r2 be > 64 after we subtract 64 below? */
    326 	shri r4, r2, 7
    327 	}
    328 	{
    329 EX:	sw r0, r11                                      /* store(WORD_14) */
    330 	addi r0, r0, 8
    331 	/* Record 64 bytes successfully copied. */
    332 	addi r2, r2, -64
    333 	}
    334 
    335 	{ jrp lr; move lr, r27 }
    336 
    337 	/* Convey to the backtrace library that the stack frame is size
    338 	 * zero, and the real return address is on the stack rather than
    339 	 * in 'lr'.
    340 	 */
    341 	{ info 8 }
    342 
    343 	.align 64
    344 .Lcopy_unaligned_maybe_many:
    345 	/* Skip the setup overhead if we aren't copying many bytes. */
    346 	{ slti_u r8, r2, 20; sub r4, zero, r0 }
    347 	{ bnzt r8, .Lcopy_unaligned_few; andi r4, r4, 3 }
    348 	{ bz r4, .Ldest_is_word_aligned; add r18, r1, r2 }
    349 
    350 /*
    351  *
    352  * unaligned 4 byte at a time copy handler.
    353  *
    354  */
    355 
    356 	/* Copy single bytes until r0 == 0 mod 4, so we can store words. */
    357 .Lalign_dest_loop:
    358 EX:	{ lb_u r3, r1; addi r1, r1, 1; addi r4, r4, -1 }
    359 EX:	{ sb r0, r3;   addi r0, r0, 1; addi r2, r2, -1 }
    360 	{ bnzt r4, .Lalign_dest_loop; andi r3, r1, 3 }
    361 
    362 	/* If source and dest are now *both* aligned, do an aligned copy. */
    363 	{ bz r3, .Lcheck_aligned_copy_size; addli r4, r2, -256 }
    364 
    365 .Ldest_is_word_aligned:
    366 
    367 EX:	{ andi r8, r0, 63; lwadd_na r6, r1, 4}
    368 	{ slti_u r9, r2, 64; bz r8, .Ldest_is_L2_line_aligned }
    369 
    370 	/* This copies unaligned words until either there are fewer
    371 	 * than 4 bytes left to copy, or until the destination pointer
    372 	 * is cache-aligned, whichever comes first.
    373 	 *
    374 	 * On entry:
    375 	 * - r0 is the next store address.
    376 	 * - r1 points 4 bytes past the load address corresponding to r0.
    377 	 * - r2 >= 4
    378 	 * - r6 is the next aligned word loaded.
    379 	 */
    380 .Lcopy_unaligned_src_words:
    381 EX:	{ lwadd_na r7, r1, 4; slti_u r8, r2, 4 + 4 }
    382 	/* stall */
    383 	{ dword_align r6, r7, r1; slti_u r9, r2, 64 + 4 }
    384 EX:	{ swadd r0, r6, 4; addi r2, r2, -4 }
    385 	{ bnz r8, .Lcleanup_unaligned_words; andi r8, r0, 63 }
    386 	{ bnzt r8, .Lcopy_unaligned_src_words; move r6, r7 }
    387 
    388 	/* On entry:
    389 	 * - r0 is the next store address.
    390 	 * - r1 points 4 bytes past the load address corresponding to r0.
    391 	 * - r2 >= 4 (# of bytes left to store).
    392 	 * - r6 is the next aligned src word value.
    393 	 * - r9 = (r2 < 64U).
    394 	 * - r18 points one byte past the end of source memory.
    395 	 */
    396 .Ldest_is_L2_line_aligned:
    397 
    398 	{
    399 	/* Not a full cache line remains. */
    400 	bnz r9, .Lcleanup_unaligned_words
    401 	move r7, r6
    402 	}
    403 
    404 	/* r2 >= 64 */
    405 
    406 	/* Kick off two prefetches, but don't go past the end. */
    407 	{ addi r3, r1, 63 - 4; addi r8, r1, 64 + 63 - 4 }
    408 	{ prefetch r3; move r3, r8; slt_u r8, r8, r18 }
    409 	{ mvz r3, r8, r1; addi r8, r3, 64 }
    410 	{ prefetch r3; move r3, r8; slt_u r8, r8, r18 }
    411 	{ mvz r3, r8, r1; movei r17, 0 }
    412 
    413 .Lcopy_unaligned_line:
    414 	/* Prefetch another line. */
    415 	{ prefetch r3; addi r15, r1, 60; addi r3, r3, 64 }
    416 	/* Fire off a load of the last word we are about to copy. */
    417 EX:	{ lw_na r15, r15; slt_u r8, r3, r18 }
    418 
    419 EX:	{ mvz r3, r8, r1; wh64 r0 }
    420 
    421 	/* This loop runs twice.
    422 	 *
    423 	 * On entry:
    424 	 * - r17 is even before the first iteration, and odd before
    425 	 *   the second.  It is incremented inside the loop.  Encountering
    426 	 *   an even value at the end of the loop makes it stop.
    427 	 */
    428 .Lcopy_half_an_unaligned_line:
    429 EX:	{
    430 	/* Stall until the last byte is ready. In the steady state this
    431 	 * guarantees all words to load below will be in the L2 cache, which
    432 	 * avoids shunting the loads to the RTF.
    433 	 */
    434 	move zero, r15
    435 	lwadd_na r7, r1, 16
    436 	}
    437 EX:	{ lwadd_na r11, r1, 12 }
    438 EX:	{ lwadd_na r14, r1, -24 }
    439 EX:	{ lwadd_na r8, r1, 4 }
    440 EX:	{ lwadd_na r9, r1, 4 }
    441 EX:	{
    442 	lwadd_na r10, r1, 8
    443 	/* r16 = (r2 < 64), after we subtract 32 from r2 below. */
    444 	slti_u r16, r2, 64 + 32
    445 	}
    446 EX:	{ lwadd_na r12, r1, 4; addi r17, r17, 1 }
    447 EX:	{ lwadd_na r13, r1, 8; dword_align r6, r7, r1 }
    448 EX:	{ swadd r0, r6,  4; dword_align r7,  r8,  r1 }
    449 EX:	{ swadd r0, r7,  4; dword_align r8,  r9,  r1 }
    450 EX:	{ swadd r0, r8,  4; dword_align r9,  r10, r1 }
    451 EX:	{ swadd r0, r9,  4; dword_align r10, r11, r1 }
    452 EX:	{ swadd r0, r10, 4; dword_align r11, r12, r1 }
    453 EX:	{ swadd r0, r11, 4; dword_align r12, r13, r1 }
    454 EX:	{ swadd r0, r12, 4; dword_align r13, r14, r1 }
    455 EX:	{ swadd r0, r13, 4; addi r2, r2, -32 }
    456 	{ move r6, r14; bbst r17, .Lcopy_half_an_unaligned_line }
    457 
    458 	{ bzt r16, .Lcopy_unaligned_line; move r7, r6 }
    459 
    460 	/* On entry:
    461 	 * - r0 is the next store address.
    462 	 * - r1 points 4 bytes past the load address corresponding to r0.
    463 	 * - r2 >= 0 (# of bytes left to store).
    464 	 * - r7 is the next aligned src word value.
    465 	 */
    466 .Lcleanup_unaligned_words:
    467 	/* Handle any trailing bytes. */
    468 	{ bz r2, .Lcopy_unaligned_done; slti_u r8, r2, 4 }
    469 	{ bzt r8, .Lcopy_unaligned_src_words; move r6, r7 }
    470 
    471 	/* Move r1 back to the point where it corresponds to r0. */
    472 	{ addi r1, r1, -4 }
    473 
    474 	/* Fall through */
    475 
    476 /*
    477  *
    478  * 1 byte at a time copy handler.
    479  *
    480  */
    481 
    482 .Lcopy_unaligned_few:
    483 EX:	{ lb_u r3, r1; addi r1, r1, 1 }
    484 EX:	{ sb r0, r3;   addi r0, r0, 1; addi r2, r2, -1 }
    485 	{ bnzt r2, .Lcopy_unaligned_few }
    486 
    487 .Lcopy_unaligned_done:
    488 
    489 	/* For memcpy return original dest address, else zero. */
    490 	{ mz r0, r29, r23; jrp lr }
    491 
    492 .Lend_memcpy_common:
    493 	.size memcpy_common, .Lend_memcpy_common - memcpy_common
    494 
    495 	.section .fixup,"ax"
    496 memcpy_common_fixup:
    497 	.type memcpy_common_fixup, @function
    498 
    499 	/* Skip any bytes we already successfully copied.
    500 	 * r2 (num remaining) is correct, but r0 (dst) and r1 (src)
    501 	 * may not be quite right because of unrolling and prefetching.
    502 	 * So we need to recompute their values as the address just
    503 	 * after the last byte we are sure was successfully loaded and
    504 	 * then stored.
    505 	 */
    506 
    507 	/* Determine how many bytes we successfully copied. */
    508 	{ sub r3, r25, r2 }
    509 
    510 	/* Add this to the original r0 and r1 to get their new values. */
    511 	{ add r0, r23, r3; add r1, r24, r3 }
    512 
    513 	{ bzt r29, memcpy_fixup_loop }
    514 	{ blzt r29, copy_to_user_fixup_loop }
    515 
    516 copy_from_user_fixup_loop:
    517 	/* Try copying the rest one byte at a time, expecting a load fault. */
    518 .Lcfu:	{ lb_u r3, r1; addi r1, r1, 1 }
    519 	{ sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
    520 	{ bnzt r2, copy_from_user_fixup_loop }
    521 
    522 .Lcopy_from_user_fixup_zero_remainder:
    523 	{ bbs r29, 2f }  /* low bit set means IS_COPY_FROM_USER */
    524 	/* byte-at-a-time loop faulted, so zero the rest. */
    525 	{ move r3, r2; bz r2, 2f /* should be impossible, but handle it. */ }
    526 1:      { sb r0, zero; addi r0, r0, 1; addi r3, r3, -1 }
    527 	{ bnzt r3, 1b }
    528 2:	move lr, r27
    529 	{ move r0, r2; jrp lr }
    530 
    531 copy_to_user_fixup_loop:
    532 	/* Try copying the rest one byte at a time, expecting a store fault. */
    533 	{ lb_u r3, r1; addi r1, r1, 1 }
    534 .Lctu:	{ sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
    535 	{ bnzt r2, copy_to_user_fixup_loop }
    536 .Lcopy_to_user_fixup_done:
    537 	move lr, r27
    538 	{ move r0, r2; jrp lr }
    539 
    540 memcpy_fixup_loop:
    541 	/* Try copying the rest one byte at a time. We expect a disastrous
    542 	 * fault to happen since we are in fixup code, but let it happen.
    543 	 */
    544 	{ lb_u r3, r1; addi r1, r1, 1 }
    545 	{ sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
    546 	{ bnzt r2, memcpy_fixup_loop }
    547 	/* This should be unreachable, we should have faulted again.
    548 	 * But be paranoid and handle it in case some interrupt changed
    549 	 * the TLB or something.
    550 	 */
    551 	move lr, r27
    552 	{ move r0, r23; jrp lr }
    553 
    554 	.size memcpy_common_fixup, . - memcpy_common_fixup
    555 
    556 	.section __ex_table,"a"
    557 	.align 4
    558 	.word .Lcfu, .Lcopy_from_user_fixup_zero_remainder
    559 	.word .Lctu, .Lcopy_to_user_fixup_done
    560