/external/ceres-solver/internal/ceres/ |
linear_least_squares_problems.cc | 196 int nnz = 0; local 200 rows[nnz] = 0; 201 cols[nnz] = 0; 202 values[nnz++] = 1; 204 rows[nnz] = 0; 205 cols[nnz] = 2; 206 values[nnz++] = 2; 211 rows[nnz] = 1; 212 cols[nnz] = 0; 213 values[nnz++] = 3 304 int nnz = 0; local 438 int nnz = 0; local [all...] |
triplet_sparse_matrix_test.cc | 300 int nnz = 0; local 303 m.mutable_rows()[nnz] = i; 304 m.mutable_cols()[nnz] = j; 305 m.mutable_values()[nnz++] = i+j; 308 m.set_num_nonzeros(nnz);
|
suitesparse.cc | 61 triplet.nnz = A->num_nonzeros(); 70 return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_); 81 triplet.nnz = A->num_nonzeros(); 92 return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_);
|
compressed_row_sparse_matrix.cc | 451 int nnz = 0; local 454 (*program)[product[0].index] = nnz; 461 crsm_cols[++nnz] = current.col; 467 (*program)[current.index] = nnz;
|
/external/eigen/Eigen/src/OrderingMethods/ |
Ordering.h | 131 Index nnz = mat.nonZeros(); local 133 Index Alen = internal::colamd_recommended(nnz, m, n); 141 for(Index i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
|
Eigen_Colamd.h | 196 the COLAMD_RECOMMENDED (nnz, n_row, n_col) macro. It returns -1 if any 197 argument is negative. 2*nnz space is required for the row and column 201 and nnz/5 more space is recommended for run time efficiency. 258 * \param nnz nonzeros in A 264 inline Index colamd_recommended ( Index nnz, Index n_row, Index n_col) 266 if ((nnz) < 0 || (n_row) < 0 || (n_col) < 0) 269 return (2 * (nnz) + colamd_c (n_col) + colamd_r (n_row) + (n_col) + ((nnz) / 5)); 334 Index nnz ; /* nonzeros in A */ local 392 nnz = p [n_col] [all...] |
/external/eigen/Eigen/src/SparseCore/ |
SparseBlock.h | 135 Index nnz = tmp.nonZeros(); local 145 if(nnz>free_size) 148 typename SparseMatrixType::Storage newdata(m_matrix.data().allocatedSize() - block_size + nnz); 153 std::memcpy(&newdata.value(start), &tmp.data().value(0), nnz*sizeof(Scalar)); 154 std::memcpy(&newdata.index(start), &tmp.data().index(0), nnz*sizeof(Index)); 156 std::memcpy(&newdata.value(start+nnz), &matrix.data().value(end), tail_size*sizeof(Scalar)); 157 std::memcpy(&newdata.index(start+nnz), &matrix.data().index(end), tail_size*sizeof(Index)); 159 newdata.resize(m_matrix.outerIndexPtr()[m_matrix.outerSize()] - block_size + nnz); 166 matrix.data().resize(start + nnz + tail_size); 168 std::memmove(&matrix.data().value(start+nnz), &matrix.data().value(end), tail_size*sizeof(Scalar)) [all...] |
ConservativeSparseSparseProduct.h | 37 // Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs) 47 Index nnz = 0; local 60 indices[nnz] = i; 61 ++nnz; 69 for(Index k=0; k<nnz; ++k) 82 // FIXME reserve nnz non zeros 83 // FIXME implement fast sort algorithms for very small nnz 88 //if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t [all...] |
MappedSparseMatrix.h | 108 inline MappedSparseMatrix(Index rows, Index cols, Index nnz, Index* outerIndexPtr, Index* innerIndexPtr, Scalar* valuePtr) 109 : m_outerSize(IsRowMajor?rows:cols), m_innerSize(IsRowMajor?cols:rows), m_nnz(nnz), m_outerIndex(outerIndexPtr),
|
SparseSelfAdjointView.h | 351 Index nnz = count.sum(); local 354 dest.resizeNonZeros(nnz);
|
/external/eigen/bench/ |
sparse_setter.cpp | 107 std::cout << "nnz = " << coords.size() << "\n"; 302 const int nnz, 312 for (int n = 0; n < nnz; n++){ 316 //cumsum the nnz per row to get Bp[] 322 Bp[n_row] = nnz; 325 for(int n = 0; n < nnz; n++){ 384 I nnz = 0; local 397 Aj[nnz] = j; 398 Ax[nnz] = x; 399 nnz++ [all...] |
/external/eigen/unsupported/Eigen/src/IterativeSolvers/ |
IncompleteCholesky.h | 147 Index nnz = m_L.nonZeros(); local 148 Map<ScalarType> vals(m_L.valuePtr(), nnz); //values 149 Map<IndexType> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices
|
/external/eigen/Eigen/src/SuperLUSupport/ |
SuperLUSupport.h | 114 union {int nnz;int lda;}; member in union:Eigen::SluMatrix::__anon560::__anon561 186 res.storage.nnz = mat.nonZeros(); 245 res.storage.nnz = mat.nonZeros(); 704 m_l.resizeNonZeros(Lstore->nnz); 706 m_u.resizeNonZeros(Ustore->nnz);
|
/external/eigen/Eigen/src/SparseLU/ |
SparseLU.h | 493 Index nnz = m_mat.nonZeros(); local 497 Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
|
/external/chromium_org/third_party/libjingle/source/talk/media/testdata/ |
voice.rtpdump | 16 ??pj?|????rfi??kolkjagi_a_jksj_`g???rmiw????????????{????????tkkn?upg`hy{|xhefuvi`y???~?????u{?????????????{kj??okolluk`^_irnllo???to}????????????????w|??xeelljgg ? ? ?? 9??4???pjsul_\_nzmq????ln?????????????????????????~}n]Z]cc_aqyf[[ao?h\^m?yeo????x~????uo~???~kk?rhhj{wf[]m?pdcl?v??????????????????????????wy??~]^l???nc_ihjo}}ken?????t ? ? ? 9??4?J??pjqy?????nnz???v{u??rn???uf\filjz?ls??}eiq{y?????qu~????{???????y????ot???qllu~xqhnm|{{qoz?~?yv????giy?}}?????ojos~|??????~xpoomt?????|jp??tjn??????wppny???{??xn ? ? ? 9??4???pj???zn????????????oi{??????zns??}?{ypw~??vpnw?yofo??vgkr??xpgj|??qy??????}???????????}???ngs}??vojj~~reflz~?ry????kv????vm|???????????zmr??{fhh}{~rk~??qkf????? ? ? 3? 9??4???pj}x??}rv???uqx??mr{?????zw????????|?~?|z{~wji???onn{??yls}?????|??????qnt?}kjy}yxnw{ytkqw??zyo{???????vl????????ty???????tin????z?????wvsy??y??z?????uhk???rr ? ? G? 9??4?*??pj}?vknlw????zpqzynir???~pqoohkx?{x~??{ot|??????w~x?~}???y???~{???wm?????oot??xon|???????r}??????y|~??mgn|??~??zmv???plu{??|{???{?????????z?}??wlo??ynljkmu|?|?y ? ? [? 9??4???pjxv}|rmxy|?{touwty???xyuu????????????????|?????????x????}~????}pozyy}??usvr}?xv~???????|?????????x{??}kiw???}??}sx????sw??~lvz?????x{ux?~~sx}~w}|?~}xury??~txnux ? ? o? 9??4?j??pj~|{z????ztt???}|?~~~????z||??|???zwr|~???}~}?ysns?????????v???|us????xzxx|?}~????skoq{zz|z{xny????z????|ps|?{vw{????~~????vw||????xttry?????????????????|ysw? ? ? ?? 9??4? [all...] |