1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // The generated parser function takes a 4th argument as follows: 28 %extra_argument {Parse *pParse} 29 30 // This code runs whenever there is a syntax error 31 // 32 %syntax_error { 33 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 34 assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ 35 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 36 pParse->parseError = 1; 37 } 38 %stack_overflow { 39 UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */ 40 sqlite3ErrorMsg(pParse, "parser stack overflow"); 41 pParse->parseError = 1; 42 } 43 44 // The name of the generated procedure that implements the parser 45 // is as follows: 46 %name sqlite3Parser 47 48 // The following text is included near the beginning of the C source 49 // code file that implements the parser. 50 // 51 %include { 52 #include "sqliteInt.h" 53 54 /* 55 ** Disable all error recovery processing in the parser push-down 56 ** automaton. 57 */ 58 #define YYNOERRORRECOVERY 1 59 60 /* 61 ** Make yytestcase() the same as testcase() 62 */ 63 #define yytestcase(X) testcase(X) 64 65 /* 66 ** An instance of this structure holds information about the 67 ** LIMIT clause of a SELECT statement. 68 */ 69 struct LimitVal { 70 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ 71 Expr *pOffset; /* The OFFSET expression. NULL if there is none */ 72 }; 73 74 /* 75 ** An instance of this structure is used to store the LIKE, 76 ** GLOB, NOT LIKE, and NOT GLOB operators. 77 */ 78 struct LikeOp { 79 Token eOperator; /* "like" or "glob" or "regexp" */ 80 int not; /* True if the NOT keyword is present */ 81 }; 82 83 /* 84 ** An instance of the following structure describes the event of a 85 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 86 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 87 ** 88 ** UPDATE ON (a,b,c) 89 ** 90 ** Then the "b" IdList records the list "a,b,c". 91 */ 92 struct TrigEvent { int a; IdList * b; }; 93 94 /* 95 ** An instance of this structure holds the ATTACH key and the key type. 96 */ 97 struct AttachKey { int type; Token key; }; 98 99 } // end %include 100 101 // Input is a single SQL command 102 input ::= cmdlist. 103 cmdlist ::= cmdlist ecmd. 104 cmdlist ::= ecmd. 105 ecmd ::= SEMI. 106 ecmd ::= explain cmdx SEMI. 107 explain ::= . { sqlite3BeginParse(pParse, 0); } 108 %ifndef SQLITE_OMIT_EXPLAIN 109 explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); } 110 explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); } 111 %endif SQLITE_OMIT_EXPLAIN 112 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 113 114 ///////////////////// Begin and end transactions. //////////////////////////// 115 // 116 117 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 118 trans_opt ::= . 119 trans_opt ::= TRANSACTION. 120 trans_opt ::= TRANSACTION nm. 121 %type transtype {int} 122 transtype(A) ::= . {A = TK_DEFERRED;} 123 transtype(A) ::= DEFERRED(X). {A = @X;} 124 transtype(A) ::= IMMEDIATE(X). {A = @X;} 125 transtype(A) ::= EXCLUSIVE(X). {A = @X;} 126 cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} 127 cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} 128 cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} 129 130 savepoint_opt ::= SAVEPOINT. 131 savepoint_opt ::= . 132 cmd ::= SAVEPOINT nm(X). { 133 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 134 } 135 cmd ::= RELEASE savepoint_opt nm(X). { 136 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 137 } 138 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 139 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 140 } 141 142 ///////////////////// The CREATE TABLE statement //////////////////////////// 143 // 144 cmd ::= create_table create_table_args. 145 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 146 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 147 } 148 createkw(A) ::= CREATE(X). { 149 pParse->db->lookaside.bEnabled = 0; 150 A = X; 151 } 152 %type ifnotexists {int} 153 ifnotexists(A) ::= . {A = 0;} 154 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 155 %type temp {int} 156 %ifndef SQLITE_OMIT_TEMPDB 157 temp(A) ::= TEMP. {A = 1;} 158 %endif SQLITE_OMIT_TEMPDB 159 temp(A) ::= . {A = 0;} 160 create_table_args ::= LP columnlist conslist_opt(X) RP(Y). { 161 sqlite3EndTable(pParse,&X,&Y,0); 162 } 163 create_table_args ::= AS select(S). { 164 sqlite3EndTable(pParse,0,0,S); 165 sqlite3SelectDelete(pParse->db, S); 166 } 167 columnlist ::= columnlist COMMA column. 168 columnlist ::= column. 169 170 // A "column" is a complete description of a single column in a 171 // CREATE TABLE statement. This includes the column name, its 172 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES, 173 // NOT NULL and so forth. 174 // 175 column(A) ::= columnid(X) type carglist. { 176 A.z = X.z; 177 A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n; 178 } 179 columnid(A) ::= nm(X). { 180 sqlite3AddColumn(pParse,&X); 181 A = X; 182 } 183 184 185 // An IDENTIFIER can be a generic identifier, or one of several 186 // keywords. Any non-standard keyword can also be an identifier. 187 // 188 %type id {Token} 189 id(A) ::= ID(X). {A = X;} 190 id(A) ::= INDEXED(X). {A = X;} 191 192 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 193 // fallback to ID if they will not parse as their original value. 194 // This obviates the need for the "id" nonterminal. 195 // 196 %fallback ID 197 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 198 CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR 199 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 200 QUERY KEY OF OFFSET PRAGMA RAISE RELEASE REPLACE RESTRICT ROW ROLLBACK 201 SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL 202 %ifdef SQLITE_OMIT_COMPOUND_SELECT 203 EXCEPT INTERSECT UNION 204 %endif SQLITE_OMIT_COMPOUND_SELECT 205 REINDEX RENAME CTIME_KW IF 206 . 207 %wildcard ANY. 208 209 // Define operator precedence early so that this is the first occurance 210 // of the operator tokens in the grammer. Keeping the operators together 211 // causes them to be assigned integer values that are close together, 212 // which keeps parser tables smaller. 213 // 214 // The token values assigned to these symbols is determined by the order 215 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 216 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 217 // the sqlite3ExprIfFalse() routine for additional information on this 218 // constraint. 219 // 220 %left OR. 221 %left AND. 222 %right NOT. 223 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 224 %left GT LE LT GE. 225 %right ESCAPE. 226 %left BITAND BITOR LSHIFT RSHIFT. 227 %left PLUS MINUS. 228 %left STAR SLASH REM. 229 %left CONCAT. 230 %left COLLATE. 231 %right BITNOT. 232 233 // And "ids" is an identifer-or-string. 234 // 235 %type ids {Token} 236 ids(A) ::= ID|STRING(X). {A = X;} 237 238 // The name of a column or table can be any of the following: 239 // 240 %type nm {Token} 241 nm(A) ::= id(X). {A = X;} 242 nm(A) ::= STRING(X). {A = X;} 243 nm(A) ::= JOIN_KW(X). {A = X;} 244 245 // A typetoken is really one or more tokens that form a type name such 246 // as can be found after the column name in a CREATE TABLE statement. 247 // Multiple tokens are concatenated to form the value of the typetoken. 248 // 249 %type typetoken {Token} 250 type ::= . 251 type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);} 252 typetoken(A) ::= typename(X). {A = X;} 253 typetoken(A) ::= typename(X) LP signed RP(Y). { 254 A.z = X.z; 255 A.n = (int)(&Y.z[Y.n] - X.z); 256 } 257 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). { 258 A.z = X.z; 259 A.n = (int)(&Y.z[Y.n] - X.z); 260 } 261 %type typename {Token} 262 typename(A) ::= ids(X). {A = X;} 263 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);} 264 signed ::= plus_num. 265 signed ::= minus_num. 266 267 // "carglist" is a list of additional constraints that come after the 268 // column name and column type in a CREATE TABLE statement. 269 // 270 carglist ::= carglist carg. 271 carglist ::= . 272 carg ::= CONSTRAINT nm ccons. 273 carg ::= ccons. 274 ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);} 275 ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);} 276 ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);} 277 ccons ::= DEFAULT MINUS(A) term(X). { 278 ExprSpan v; 279 v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0); 280 v.zStart = A.z; 281 v.zEnd = X.zEnd; 282 sqlite3AddDefaultValue(pParse,&v); 283 } 284 ccons ::= DEFAULT id(X). { 285 ExprSpan v; 286 spanExpr(&v, pParse, TK_STRING, &X); 287 sqlite3AddDefaultValue(pParse,&v); 288 } 289 290 // In addition to the type name, we also care about the primary key and 291 // UNIQUE constraints. 292 // 293 ccons ::= NULL onconf. 294 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 295 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 296 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 297 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);} 298 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);} 299 ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R). 300 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 301 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 302 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 303 304 // The optional AUTOINCREMENT keyword 305 %type autoinc {int} 306 autoinc(X) ::= . {X = 0;} 307 autoinc(X) ::= AUTOINCR. {X = 1;} 308 309 // The next group of rules parses the arguments to a REFERENCES clause 310 // that determine if the referential integrity checking is deferred or 311 // or immediate and which determine what action to take if a ref-integ 312 // check fails. 313 // 314 %type refargs {int} 315 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 316 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; } 317 %type refarg {struct {int value; int mask;}} 318 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 319 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 320 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 321 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 322 %type refact {int} 323 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 324 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 325 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 326 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 327 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 328 %type defer_subclause {int} 329 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 330 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 331 %type init_deferred_pred_opt {int} 332 init_deferred_pred_opt(A) ::= . {A = 0;} 333 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 334 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 335 336 // For the time being, the only constraint we care about is the primary 337 // key and UNIQUE. Both create indices. 338 // 339 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 340 conslist_opt(A) ::= COMMA(X) conslist. {A = X;} 341 conslist ::= conslist COMMA tcons. 342 conslist ::= conslist tcons. 343 conslist ::= tcons. 344 tcons ::= CONSTRAINT nm. 345 tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R). 346 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 347 tcons ::= UNIQUE LP idxlist(X) RP onconf(R). 348 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);} 349 tcons ::= CHECK LP expr(E) RP onconf. 350 {sqlite3AddCheckConstraint(pParse,E.pExpr);} 351 tcons ::= FOREIGN KEY LP idxlist(FA) RP 352 REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). { 353 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 354 sqlite3DeferForeignKey(pParse, D); 355 } 356 %type defer_subclause_opt {int} 357 defer_subclause_opt(A) ::= . {A = 0;} 358 defer_subclause_opt(A) ::= defer_subclause(X). {A = X;} 359 360 // The following is a non-standard extension that allows us to declare the 361 // default behavior when there is a constraint conflict. 362 // 363 %type onconf {int} 364 %type orconf {u8} 365 %type resolvetype {int} 366 onconf(A) ::= . {A = OE_Default;} 367 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 368 orconf(A) ::= . {A = OE_Default;} 369 orconf(A) ::= OR resolvetype(X). {A = (u8)X;} 370 resolvetype(A) ::= raisetype(X). {A = X;} 371 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 372 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 373 374 ////////////////////////// The DROP TABLE ///////////////////////////////////// 375 // 376 cmd ::= DROP TABLE ifexists(E) fullname(X). { 377 sqlite3DropTable(pParse, X, 0, E); 378 } 379 %type ifexists {int} 380 ifexists(A) ::= IF EXISTS. {A = 1;} 381 ifexists(A) ::= . {A = 0;} 382 383 ///////////////////// The CREATE VIEW statement ///////////////////////////// 384 // 385 %ifndef SQLITE_OMIT_VIEW 386 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). { 387 sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E); 388 } 389 cmd ::= DROP VIEW ifexists(E) fullname(X). { 390 sqlite3DropTable(pParse, X, 1, E); 391 } 392 %endif SQLITE_OMIT_VIEW 393 394 //////////////////////// The SELECT statement ///////////////////////////////// 395 // 396 cmd ::= select(X). { 397 SelectDest dest = {SRT_Output, 0, 0, 0, 0}; 398 sqlite3Select(pParse, X, &dest); 399 sqlite3SelectDelete(pParse->db, X); 400 } 401 402 %type select {Select*} 403 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 404 %type oneselect {Select*} 405 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 406 407 select(A) ::= oneselect(X). {A = X;} 408 %ifndef SQLITE_OMIT_COMPOUND_SELECT 409 select(A) ::= select(X) multiselect_op(Y) oneselect(Z). { 410 if( Z ){ 411 Z->op = (u8)Y; 412 Z->pPrior = X; 413 }else{ 414 sqlite3SelectDelete(pParse->db, X); 415 } 416 A = Z; 417 } 418 %type multiselect_op {int} 419 multiselect_op(A) ::= UNION(OP). {A = @OP;} 420 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 421 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;} 422 %endif SQLITE_OMIT_COMPOUND_SELECT 423 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 424 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { 425 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); 426 } 427 428 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 429 // present and false (0) if it is not. 430 // 431 %type distinct {int} 432 distinct(A) ::= DISTINCT. {A = 1;} 433 distinct(A) ::= ALL. {A = 0;} 434 distinct(A) ::= . {A = 0;} 435 436 // selcollist is a list of expressions that are to become the return 437 // values of the SELECT statement. The "*" in statements like 438 // "SELECT * FROM ..." is encoded as a special expression with an 439 // opcode of TK_ALL. 440 // 441 %type selcollist {ExprList*} 442 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 443 %type sclp {ExprList*} 444 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 445 sclp(A) ::= selcollist(X) COMMA. {A = X;} 446 sclp(A) ::= . {A = 0;} 447 selcollist(A) ::= sclp(P) expr(X) as(Y). { 448 A = sqlite3ExprListAppend(pParse, P, X.pExpr); 449 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 450 sqlite3ExprListSetSpan(pParse,A,&X); 451 } 452 selcollist(A) ::= sclp(P) STAR. { 453 Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0); 454 A = sqlite3ExprListAppend(pParse, P, p); 455 } 456 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). { 457 Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y); 458 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 459 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 460 A = sqlite3ExprListAppend(pParse,P, pDot); 461 } 462 463 // An option "AS <id>" phrase that can follow one of the expressions that 464 // define the result set, or one of the tables in the FROM clause. 465 // 466 %type as {Token} 467 as(X) ::= AS nm(Y). {X = Y;} 468 as(X) ::= ids(Y). {X = Y;} 469 as(X) ::= . {X.n = 0;} 470 471 472 %type seltablist {SrcList*} 473 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 474 %type stl_prefix {SrcList*} 475 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 476 %type from {SrcList*} 477 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 478 479 // A complete FROM clause. 480 // 481 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 482 from(A) ::= FROM seltablist(X). { 483 A = X; 484 sqlite3SrcListShiftJoinType(A); 485 } 486 487 // "seltablist" is a "Select Table List" - the content of the FROM clause 488 // in a SELECT statement. "stl_prefix" is a prefix of this list. 489 // 490 stl_prefix(A) ::= seltablist(X) joinop(Y). { 491 A = X; 492 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y; 493 } 494 stl_prefix(A) ::= . {A = 0;} 495 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) on_opt(N) using_opt(U). { 496 A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); 497 sqlite3SrcListIndexedBy(pParse, A, &I); 498 } 499 %ifndef SQLITE_OMIT_SUBQUERY 500 seltablist(A) ::= stl_prefix(X) LP select(S) RP 501 as(Z) on_opt(N) using_opt(U). { 502 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U); 503 } 504 seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP 505 as(Z) on_opt(N) using_opt(U). { 506 if( X==0 && Z.n==0 && N==0 && U==0 ){ 507 A = F; 508 }else{ 509 Select *pSubquery; 510 sqlite3SrcListShiftJoinType(F); 511 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); 512 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U); 513 } 514 } 515 516 // A seltablist_paren nonterminal represents anything in a FROM that 517 // is contained inside parentheses. This can be either a subquery or 518 // a grouping of table and subqueries. 519 // 520 // %type seltablist_paren {Select*} 521 // %destructor seltablist_paren {sqlite3SelectDelete(pParse->db, $$);} 522 // seltablist_paren(A) ::= select(S). {A = S;} 523 // seltablist_paren(A) ::= seltablist(F). { 524 // sqlite3SrcListShiftJoinType(F); 525 // A = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); 526 // } 527 %endif SQLITE_OMIT_SUBQUERY 528 529 %type dbnm {Token} 530 dbnm(A) ::= . {A.z=0; A.n=0;} 531 dbnm(A) ::= DOT nm(X). {A = X;} 532 533 %type fullname {SrcList*} 534 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 535 fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);} 536 537 %type joinop {int} 538 %type joinop2 {int} 539 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 540 joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); } 541 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); } 542 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 543 { X = sqlite3JoinType(pParse,&A,&B,&C); } 544 545 %type on_opt {Expr*} 546 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 547 on_opt(N) ::= ON expr(E). {N = E.pExpr;} 548 on_opt(N) ::= . {N = 0;} 549 550 // Note that this block abuses the Token type just a little. If there is 551 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 552 // there is an INDEXED BY clause, then the token is populated as per normal, 553 // with z pointing to the token data and n containing the number of bytes 554 // in the token. 555 // 556 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 557 // normally illegal. The sqlite3SrcListIndexedBy() function 558 // recognizes and interprets this as a special case. 559 // 560 %type indexed_opt {Token} 561 indexed_opt(A) ::= . {A.z=0; A.n=0;} 562 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 563 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 564 565 %type using_opt {IdList*} 566 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 567 using_opt(U) ::= USING LP inscollist(L) RP. {U = L;} 568 using_opt(U) ::= . {U = 0;} 569 570 571 %type orderby_opt {ExprList*} 572 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 573 %type sortlist {ExprList*} 574 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 575 %type sortitem {Expr*} 576 %destructor sortitem {sqlite3ExprDelete(pParse->db, $$);} 577 578 orderby_opt(A) ::= . {A = 0;} 579 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 580 sortlist(A) ::= sortlist(X) COMMA sortitem(Y) sortorder(Z). { 581 A = sqlite3ExprListAppend(pParse,X,Y); 582 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 583 } 584 sortlist(A) ::= sortitem(Y) sortorder(Z). { 585 A = sqlite3ExprListAppend(pParse,0,Y); 586 if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z; 587 } 588 sortitem(A) ::= expr(X). {A = X.pExpr;} 589 590 %type sortorder {int} 591 592 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 593 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 594 sortorder(A) ::= . {A = SQLITE_SO_ASC;} 595 596 %type groupby_opt {ExprList*} 597 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 598 groupby_opt(A) ::= . {A = 0;} 599 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 600 601 %type having_opt {Expr*} 602 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 603 having_opt(A) ::= . {A = 0;} 604 having_opt(A) ::= HAVING expr(X). {A = X.pExpr;} 605 606 %type limit_opt {struct LimitVal} 607 608 // The destructor for limit_opt will never fire in the current grammar. 609 // The limit_opt non-terminal only occurs at the end of a single production 610 // rule for SELECT statements. As soon as the rule that create the 611 // limit_opt non-terminal reduces, the SELECT statement rule will also 612 // reduce. So there is never a limit_opt non-terminal on the stack 613 // except as a transient. So there is never anything to destroy. 614 // 615 //%destructor limit_opt { 616 // sqlite3ExprDelete(pParse->db, $$.pLimit); 617 // sqlite3ExprDelete(pParse->db, $$.pOffset); 618 //} 619 limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} 620 limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;} 621 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 622 {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;} 623 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 624 {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;} 625 626 /////////////////////////// The DELETE statement ///////////////////////////// 627 // 628 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 629 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W) 630 orderby_opt(O) limit_opt(L). { 631 sqlite3SrcListIndexedBy(pParse, X, &I); 632 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE"); 633 sqlite3DeleteFrom(pParse,X,W); 634 } 635 %endif 636 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 637 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { 638 sqlite3SrcListIndexedBy(pParse, X, &I); 639 sqlite3DeleteFrom(pParse,X,W); 640 } 641 %endif 642 643 %type where_opt {Expr*} 644 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 645 646 where_opt(A) ::= . {A = 0;} 647 where_opt(A) ::= WHERE expr(X). {A = X.pExpr;} 648 649 ////////////////////////// The UPDATE command //////////////////////////////// 650 // 651 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 652 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W) orderby_opt(O) limit_opt(L). { 653 sqlite3SrcListIndexedBy(pParse, X, &I); 654 sqlite3ExprListCheckLength(pParse,Y,"set list"); 655 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE"); 656 sqlite3Update(pParse,X,Y,W,R); 657 } 658 %endif 659 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 660 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W). { 661 sqlite3SrcListIndexedBy(pParse, X, &I); 662 sqlite3ExprListCheckLength(pParse,Y,"set list"); 663 sqlite3Update(pParse,X,Y,W,R); 664 } 665 %endif 666 667 %type setlist {ExprList*} 668 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 669 670 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). { 671 A = sqlite3ExprListAppend(pParse, Z, Y.pExpr); 672 sqlite3ExprListSetName(pParse, A, &X, 1); 673 } 674 setlist(A) ::= nm(X) EQ expr(Y). { 675 A = sqlite3ExprListAppend(pParse, 0, Y.pExpr); 676 sqlite3ExprListSetName(pParse, A, &X, 1); 677 } 678 679 ////////////////////////// The INSERT command ///////////////////////////////// 680 // 681 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) 682 VALUES LP itemlist(Y) RP. 683 {sqlite3Insert(pParse, X, Y, 0, F, R);} 684 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S). 685 {sqlite3Insert(pParse, X, 0, S, F, R);} 686 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES. 687 {sqlite3Insert(pParse, X, 0, 0, F, R);} 688 689 %type insert_cmd {u8} 690 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 691 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 692 693 694 %type itemlist {ExprList*} 695 %destructor itemlist {sqlite3ExprListDelete(pParse->db, $$);} 696 697 itemlist(A) ::= itemlist(X) COMMA expr(Y). 698 {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} 699 itemlist(A) ::= expr(X). 700 {A = sqlite3ExprListAppend(pParse,0,X.pExpr);} 701 702 %type inscollist_opt {IdList*} 703 %destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);} 704 %type inscollist {IdList*} 705 %destructor inscollist {sqlite3IdListDelete(pParse->db, $$);} 706 707 inscollist_opt(A) ::= . {A = 0;} 708 inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;} 709 inscollist(A) ::= inscollist(X) COMMA nm(Y). 710 {A = sqlite3IdListAppend(pParse->db,X,&Y);} 711 inscollist(A) ::= nm(Y). 712 {A = sqlite3IdListAppend(pParse->db,0,&Y);} 713 714 /////////////////////////// Expression Processing ///////////////////////////// 715 // 716 717 %type expr {ExprSpan} 718 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);} 719 %type term {ExprSpan} 720 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);} 721 722 %include { 723 /* This is a utility routine used to set the ExprSpan.zStart and 724 ** ExprSpan.zEnd values of pOut so that the span covers the complete 725 ** range of text beginning with pStart and going to the end of pEnd. 726 */ 727 static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ 728 pOut->zStart = pStart->z; 729 pOut->zEnd = &pEnd->z[pEnd->n]; 730 } 731 732 /* Construct a new Expr object from a single identifier. Use the 733 ** new Expr to populate pOut. Set the span of pOut to be the identifier 734 ** that created the expression. 735 */ 736 static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){ 737 pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue); 738 pOut->zStart = pValue->z; 739 pOut->zEnd = &pValue->z[pValue->n]; 740 } 741 } 742 743 expr(A) ::= term(X). {A = X;} 744 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);} 745 term(A) ::= NULL(X). {spanExpr(&A, pParse, @X, &X);} 746 expr(A) ::= id(X). {spanExpr(&A, pParse, TK_ID, &X);} 747 expr(A) ::= JOIN_KW(X). {spanExpr(&A, pParse, TK_ID, &X);} 748 expr(A) ::= nm(X) DOT nm(Y). { 749 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 750 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 751 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); 752 spanSet(&A,&X,&Y); 753 } 754 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 755 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 756 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 757 Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z); 758 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); 759 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); 760 spanSet(&A,&X,&Z); 761 } 762 term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A, pParse, @X, &X);} 763 term(A) ::= STRING(X). {spanExpr(&A, pParse, @X, &X);} 764 expr(A) ::= REGISTER(X). { 765 /* When doing a nested parse, one can include terms in an expression 766 ** that look like this: #1 #2 ... These terms refer to registers 767 ** in the virtual machine. #N is the N-th register. */ 768 if( pParse->nested==0 ){ 769 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X); 770 A.pExpr = 0; 771 }else{ 772 A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X); 773 if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable); 774 } 775 spanSet(&A, &X, &X); 776 } 777 expr(A) ::= VARIABLE(X). { 778 spanExpr(&A, pParse, TK_VARIABLE, &X); 779 sqlite3ExprAssignVarNumber(pParse, A.pExpr); 780 spanSet(&A, &X, &X); 781 } 782 expr(A) ::= expr(E) COLLATE ids(C). { 783 A.pExpr = sqlite3ExprSetCollByToken(pParse, E.pExpr, &C); 784 A.zStart = E.zStart; 785 A.zEnd = &C.z[C.n]; 786 } 787 %ifndef SQLITE_OMIT_CAST 788 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { 789 A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); 790 spanSet(&A,&X,&Y); 791 } 792 %endif SQLITE_OMIT_CAST 793 expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). { 794 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 795 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); 796 } 797 A.pExpr = sqlite3ExprFunction(pParse, Y, &X); 798 spanSet(&A,&X,&E); 799 if( D && A.pExpr ){ 800 A.pExpr->flags |= EP_Distinct; 801 } 802 } 803 expr(A) ::= ID(X) LP STAR RP(E). { 804 A.pExpr = sqlite3ExprFunction(pParse, 0, &X); 805 spanSet(&A,&X,&E); 806 } 807 term(A) ::= CTIME_KW(OP). { 808 /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are 809 ** treated as functions that return constants */ 810 A.pExpr = sqlite3ExprFunction(pParse, 0,&OP); 811 if( A.pExpr ){ 812 A.pExpr->op = TK_CONST_FUNC; 813 } 814 spanSet(&A, &OP, &OP); 815 } 816 817 %include { 818 /* This routine constructs a binary expression node out of two ExprSpan 819 ** objects and uses the result to populate a new ExprSpan object. 820 */ 821 static void spanBinaryExpr( 822 ExprSpan *pOut, /* Write the result here */ 823 Parse *pParse, /* The parsing context. Errors accumulate here */ 824 int op, /* The binary operation */ 825 ExprSpan *pLeft, /* The left operand */ 826 ExprSpan *pRight /* The right operand */ 827 ){ 828 pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0); 829 pOut->zStart = pLeft->zStart; 830 pOut->zEnd = pRight->zEnd; 831 } 832 } 833 834 expr(A) ::= expr(X) AND(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 835 expr(A) ::= expr(X) OR(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 836 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y). 837 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 838 expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 839 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 840 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 841 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y). 842 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 843 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y). 844 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 845 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 846 %type likeop {struct LikeOp} 847 likeop(A) ::= LIKE_KW(X). {A.eOperator = X; A.not = 0;} 848 likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.not = 1;} 849 likeop(A) ::= MATCH(X). {A.eOperator = X; A.not = 0;} 850 likeop(A) ::= NOT MATCH(X). {A.eOperator = X; A.not = 1;} 851 expr(A) ::= expr(X) likeop(OP) expr(Y). [LIKE_KW] { 852 ExprList *pList; 853 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 854 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); 855 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 856 if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 857 A.zStart = X.zStart; 858 A.zEnd = Y.zEnd; 859 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 860 } 861 expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 862 ExprList *pList; 863 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 864 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); 865 pList = sqlite3ExprListAppend(pParse,pList, E.pExpr); 866 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 867 if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 868 A.zStart = X.zStart; 869 A.zEnd = E.zEnd; 870 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 871 } 872 873 %include { 874 /* Construct an expression node for a unary postfix operator 875 */ 876 static void spanUnaryPostfix( 877 ExprSpan *pOut, /* Write the new expression node here */ 878 Parse *pParse, /* Parsing context to record errors */ 879 int op, /* The operator */ 880 ExprSpan *pOperand, /* The operand */ 881 Token *pPostOp /* The operand token for setting the span */ 882 ){ 883 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 884 pOut->zStart = pOperand->zStart; 885 pOut->zEnd = &pPostOp->z[pPostOp->n]; 886 } 887 } 888 889 expr(A) ::= expr(X) ISNULL|NOTNULL(E). {spanUnaryPostfix(&A,pParse,@E,&X,&E);} 890 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);} 891 892 %include { 893 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 894 ** unary TK_ISNULL or TK_NOTNULL expression. */ 895 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 896 sqlite3 *db = pParse->db; 897 if( db->mallocFailed==0 && pY->op==TK_NULL ){ 898 pA->op = (u8)op; 899 sqlite3ExprDelete(db, pA->pRight); 900 pA->pRight = 0; 901 } 902 } 903 } 904 905 // expr1 IS expr2 906 // expr1 IS NOT expr2 907 // 908 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 909 // is any other expression, code as TK_IS or TK_ISNOT. 910 // 911 expr(A) ::= expr(X) IS expr(Y). { 912 spanBinaryExpr(&A,pParse,TK_IS,&X,&Y); 913 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL); 914 } 915 expr(A) ::= expr(X) IS NOT expr(Y). { 916 spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y); 917 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL); 918 } 919 920 %include { 921 /* Construct an expression node for a unary prefix operator 922 */ 923 static void spanUnaryPrefix( 924 ExprSpan *pOut, /* Write the new expression node here */ 925 Parse *pParse, /* Parsing context to record errors */ 926 int op, /* The operator */ 927 ExprSpan *pOperand, /* The operand */ 928 Token *pPreOp /* The operand token for setting the span */ 929 ){ 930 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 931 pOut->zStart = pPreOp->z; 932 pOut->zEnd = pOperand->zEnd; 933 } 934 } 935 936 937 938 expr(A) ::= NOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 939 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 940 expr(A) ::= MINUS(B) expr(X). [BITNOT] 941 {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);} 942 expr(A) ::= PLUS(B) expr(X). [BITNOT] 943 {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);} 944 945 %type between_op {int} 946 between_op(A) ::= BETWEEN. {A = 0;} 947 between_op(A) ::= NOT BETWEEN. {A = 1;} 948 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 949 ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr); 950 pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr); 951 A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0); 952 if( A.pExpr ){ 953 A.pExpr->x.pList = pList; 954 }else{ 955 sqlite3ExprListDelete(pParse->db, pList); 956 } 957 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 958 A.zStart = W.zStart; 959 A.zEnd = Y.zEnd; 960 } 961 %ifndef SQLITE_OMIT_SUBQUERY 962 %type in_op {int} 963 in_op(A) ::= IN. {A = 0;} 964 in_op(A) ::= NOT IN. {A = 1;} 965 expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] { 966 if( Y==0 ){ 967 /* Expressions of the form 968 ** 969 ** expr1 IN () 970 ** expr1 NOT IN () 971 ** 972 ** simplify to constants 0 (false) and 1 (true), respectively, 973 ** regardless of the value of expr1. 974 */ 975 A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]); 976 sqlite3ExprDelete(pParse->db, X.pExpr); 977 }else{ 978 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 979 if( A.pExpr ){ 980 A.pExpr->x.pList = Y; 981 sqlite3ExprSetHeight(pParse, A.pExpr); 982 }else{ 983 sqlite3ExprListDelete(pParse->db, Y); 984 } 985 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 986 } 987 A.zStart = X.zStart; 988 A.zEnd = &E.z[E.n]; 989 } 990 expr(A) ::= LP(B) select(X) RP(E). { 991 A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); 992 if( A.pExpr ){ 993 A.pExpr->x.pSelect = X; 994 ExprSetProperty(A.pExpr, EP_xIsSelect); 995 sqlite3ExprSetHeight(pParse, A.pExpr); 996 }else{ 997 sqlite3SelectDelete(pParse->db, X); 998 } 999 A.zStart = B.z; 1000 A.zEnd = &E.z[E.n]; 1001 } 1002 expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] { 1003 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1004 if( A.pExpr ){ 1005 A.pExpr->x.pSelect = Y; 1006 ExprSetProperty(A.pExpr, EP_xIsSelect); 1007 sqlite3ExprSetHeight(pParse, A.pExpr); 1008 }else{ 1009 sqlite3SelectDelete(pParse->db, Y); 1010 } 1011 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1012 A.zStart = X.zStart; 1013 A.zEnd = &E.z[E.n]; 1014 } 1015 expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] { 1016 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 1017 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1018 if( A.pExpr ){ 1019 A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); 1020 ExprSetProperty(A.pExpr, EP_xIsSelect); 1021 sqlite3ExprSetHeight(pParse, A.pExpr); 1022 }else{ 1023 sqlite3SrcListDelete(pParse->db, pSrc); 1024 } 1025 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1026 A.zStart = X.zStart; 1027 A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n]; 1028 } 1029 expr(A) ::= EXISTS(B) LP select(Y) RP(E). { 1030 Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); 1031 if( p ){ 1032 p->x.pSelect = Y; 1033 ExprSetProperty(p, EP_xIsSelect); 1034 sqlite3ExprSetHeight(pParse, p); 1035 }else{ 1036 sqlite3SelectDelete(pParse->db, Y); 1037 } 1038 A.zStart = B.z; 1039 A.zEnd = &E.z[E.n]; 1040 } 1041 %endif SQLITE_OMIT_SUBQUERY 1042 1043 /* CASE expressions */ 1044 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { 1045 A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, Z, 0); 1046 if( A.pExpr ){ 1047 A.pExpr->x.pList = Y; 1048 sqlite3ExprSetHeight(pParse, A.pExpr); 1049 }else{ 1050 sqlite3ExprListDelete(pParse->db, Y); 1051 } 1052 A.zStart = C.z; 1053 A.zEnd = &E.z[E.n]; 1054 } 1055 %type case_exprlist {ExprList*} 1056 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1057 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). { 1058 A = sqlite3ExprListAppend(pParse,X, Y.pExpr); 1059 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1060 } 1061 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1062 A = sqlite3ExprListAppend(pParse,0, Y.pExpr); 1063 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1064 } 1065 %type case_else {Expr*} 1066 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1067 case_else(A) ::= ELSE expr(X). {A = X.pExpr;} 1068 case_else(A) ::= . {A = 0;} 1069 %type case_operand {Expr*} 1070 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1071 case_operand(A) ::= expr(X). {A = X.pExpr;} 1072 case_operand(A) ::= . {A = 0;} 1073 1074 %type exprlist {ExprList*} 1075 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1076 %type nexprlist {ExprList*} 1077 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1078 1079 exprlist(A) ::= nexprlist(X). {A = X;} 1080 exprlist(A) ::= . {A = 0;} 1081 nexprlist(A) ::= nexprlist(X) COMMA expr(Y). 1082 {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} 1083 nexprlist(A) ::= expr(Y). 1084 {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);} 1085 1086 1087 ///////////////////////////// The CREATE INDEX command /////////////////////// 1088 // 1089 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1090 ON nm(Y) LP idxlist(Z) RP(E). { 1091 sqlite3CreateIndex(pParse, &X, &D, 1092 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 1093 &S, &E, SQLITE_SO_ASC, NE); 1094 } 1095 1096 %type uniqueflag {int} 1097 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1098 uniqueflag(A) ::= . {A = OE_None;} 1099 1100 %type idxlist {ExprList*} 1101 %destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);} 1102 %type idxlist_opt {ExprList*} 1103 %destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1104 1105 idxlist_opt(A) ::= . {A = 0;} 1106 idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;} 1107 idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). { 1108 Expr *p = 0; 1109 if( C.n>0 ){ 1110 p = sqlite3Expr(pParse->db, TK_COLUMN, 0); 1111 sqlite3ExprSetCollByToken(pParse, p, &C); 1112 } 1113 A = sqlite3ExprListAppend(pParse,X, p); 1114 sqlite3ExprListSetName(pParse,A,&Y,1); 1115 sqlite3ExprListCheckLength(pParse, A, "index"); 1116 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 1117 } 1118 idxlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1119 Expr *p = 0; 1120 if( C.n>0 ){ 1121 p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0); 1122 sqlite3ExprSetCollByToken(pParse, p, &C); 1123 } 1124 A = sqlite3ExprListAppend(pParse,0, p); 1125 sqlite3ExprListSetName(pParse, A, &Y, 1); 1126 sqlite3ExprListCheckLength(pParse, A, "index"); 1127 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 1128 } 1129 1130 %type collate {Token} 1131 collate(C) ::= . {C.z = 0; C.n = 0;} 1132 collate(C) ::= COLLATE ids(X). {C = X;} 1133 1134 1135 ///////////////////////////// The DROP INDEX command ///////////////////////// 1136 // 1137 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1138 1139 ///////////////////////////// The VACUUM command ///////////////////////////// 1140 // 1141 %ifndef SQLITE_OMIT_VACUUM 1142 %ifndef SQLITE_OMIT_ATTACH 1143 cmd ::= VACUUM. {sqlite3Vacuum(pParse);} 1144 cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);} 1145 %endif SQLITE_OMIT_ATTACH 1146 %endif SQLITE_OMIT_VACUUM 1147 1148 ///////////////////////////// The PRAGMA command ///////////////////////////// 1149 // 1150 %ifndef SQLITE_OMIT_PRAGMA 1151 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1152 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1153 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1154 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1155 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1156 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1157 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1158 1159 nmnum(A) ::= plus_num(X). {A = X;} 1160 nmnum(A) ::= nm(X). {A = X;} 1161 nmnum(A) ::= ON(X). {A = X;} 1162 nmnum(A) ::= DELETE(X). {A = X;} 1163 nmnum(A) ::= DEFAULT(X). {A = X;} 1164 %endif SQLITE_OMIT_PRAGMA 1165 plus_num(A) ::= plus_opt number(X). {A = X;} 1166 minus_num(A) ::= MINUS number(X). {A = X;} 1167 number(A) ::= INTEGER|FLOAT(X). {A = X;} 1168 plus_opt ::= PLUS. 1169 plus_opt ::= . 1170 1171 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1172 1173 %ifndef SQLITE_OMIT_TRIGGER 1174 1175 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1176 Token all; 1177 all.z = A.z; 1178 all.n = (int)(Z.z - A.z) + Z.n; 1179 sqlite3FinishTrigger(pParse, S, &all); 1180 } 1181 1182 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1183 trigger_time(C) trigger_event(D) 1184 ON fullname(E) foreach_clause when_clause(G). { 1185 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1186 A = (Z.n==0?B:Z); 1187 } 1188 1189 %type trigger_time {int} 1190 trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } 1191 trigger_time(A) ::= AFTER. { A = TK_AFTER; } 1192 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1193 trigger_time(A) ::= . { A = TK_BEFORE; } 1194 1195 %type trigger_event {struct TrigEvent} 1196 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1197 trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;} 1198 trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;} 1199 trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;} 1200 1201 foreach_clause ::= . 1202 foreach_clause ::= FOR EACH ROW. 1203 1204 %type when_clause {Expr*} 1205 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1206 when_clause(A) ::= . { A = 0; } 1207 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; } 1208 1209 %type trigger_cmd_list {TriggerStep*} 1210 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1211 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. { 1212 assert( Y!=0 ); 1213 Y->pLast->pNext = X; 1214 Y->pLast = X; 1215 A = Y; 1216 } 1217 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. { 1218 assert( X!=0 ); 1219 X->pLast = X; 1220 A = X; 1221 } 1222 1223 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1224 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1225 // the same database as the table that the trigger fires on. 1226 // 1227 %type trnm {Token} 1228 trnm(A) ::= nm(X). {A = X;} 1229 trnm(A) ::= nm DOT nm(X). { 1230 A = X; 1231 sqlite3ErrorMsg(pParse, 1232 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1233 "statements within triggers"); 1234 } 1235 1236 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1237 // statements within triggers. We make a specific error message for this 1238 // since it is an exception to the default grammar rules. 1239 // 1240 tridxby ::= . 1241 tridxby ::= INDEXED BY nm. { 1242 sqlite3ErrorMsg(pParse, 1243 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1244 "within triggers"); 1245 } 1246 tridxby ::= NOT INDEXED. { 1247 sqlite3ErrorMsg(pParse, 1248 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1249 "within triggers"); 1250 } 1251 1252 1253 1254 %type trigger_cmd {TriggerStep*} 1255 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1256 // UPDATE 1257 trigger_cmd(A) ::= 1258 UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z). 1259 { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); } 1260 1261 // INSERT 1262 trigger_cmd(A) ::= 1263 insert_cmd(R) INTO trnm(X) inscollist_opt(F) VALUES LP itemlist(Y) RP. 1264 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, Y, 0, R);} 1265 1266 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S). 1267 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, 0, S, R);} 1268 1269 // DELETE 1270 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y). 1271 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} 1272 1273 // SELECT 1274 trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); } 1275 1276 // The special RAISE expression that may occur in trigger programs 1277 expr(A) ::= RAISE(X) LP IGNORE RP(Y). { 1278 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); 1279 if( A.pExpr ){ 1280 A.pExpr->affinity = OE_Ignore; 1281 } 1282 A.zStart = X.z; 1283 A.zEnd = &Y.z[Y.n]; 1284 } 1285 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { 1286 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z); 1287 if( A.pExpr ) { 1288 A.pExpr->affinity = (char)T; 1289 } 1290 A.zStart = X.z; 1291 A.zEnd = &Y.z[Y.n]; 1292 } 1293 %endif !SQLITE_OMIT_TRIGGER 1294 1295 %type raisetype {int} 1296 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1297 raisetype(A) ::= ABORT. {A = OE_Abort;} 1298 raisetype(A) ::= FAIL. {A = OE_Fail;} 1299 1300 1301 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1302 %ifndef SQLITE_OMIT_TRIGGER 1303 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1304 sqlite3DropTrigger(pParse,X,NOERR); 1305 } 1306 %endif !SQLITE_OMIT_TRIGGER 1307 1308 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1309 %ifndef SQLITE_OMIT_ATTACH 1310 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1311 sqlite3Attach(pParse, F.pExpr, D.pExpr, K); 1312 } 1313 cmd ::= DETACH database_kw_opt expr(D). { 1314 sqlite3Detach(pParse, D.pExpr); 1315 } 1316 1317 %type key_opt {Expr*} 1318 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1319 key_opt(A) ::= . { A = 0; } 1320 key_opt(A) ::= KEY expr(X). { A = X.pExpr; } 1321 1322 database_kw_opt ::= DATABASE. 1323 database_kw_opt ::= . 1324 %endif SQLITE_OMIT_ATTACH 1325 1326 ////////////////////////// REINDEX collation ////////////////////////////////// 1327 %ifndef SQLITE_OMIT_REINDEX 1328 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1329 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1330 %endif SQLITE_OMIT_REINDEX 1331 1332 /////////////////////////////////// ANALYZE /////////////////////////////////// 1333 %ifndef SQLITE_OMIT_ANALYZE 1334 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1335 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1336 %endif 1337 1338 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1339 %ifndef SQLITE_OMIT_ALTERTABLE 1340 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1341 sqlite3AlterRenameTable(pParse,X,&Z); 1342 } 1343 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). { 1344 sqlite3AlterFinishAddColumn(pParse, &Y); 1345 } 1346 add_column_fullname ::= fullname(X). { 1347 pParse->db->lookaside.bEnabled = 0; 1348 sqlite3AlterBeginAddColumn(pParse, X); 1349 } 1350 kwcolumn_opt ::= . 1351 kwcolumn_opt ::= COLUMNKW. 1352 %endif SQLITE_OMIT_ALTERTABLE 1353 1354 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1355 %ifndef SQLITE_OMIT_VIRTUALTABLE 1356 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1357 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1358 create_vtab ::= createkw VIRTUAL TABLE nm(X) dbnm(Y) USING nm(Z). { 1359 sqlite3VtabBeginParse(pParse, &X, &Y, &Z); 1360 } 1361 vtabarglist ::= vtabarg. 1362 vtabarglist ::= vtabarglist COMMA vtabarg. 1363 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1364 vtabarg ::= vtabarg vtabargtoken. 1365 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1366 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1367 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1368 anylist ::= . 1369 anylist ::= anylist LP anylist RP. 1370 anylist ::= anylist ANY. 1371 %endif SQLITE_OMIT_VIRTUALTABLE 1372