Home | History | Annotate | Download | only in src
      1 /*
      2 ** 2001 September 15
      3 **
      4 ** The author disclaims copyright to this source code.  In place of
      5 ** a legal notice, here is a blessing:
      6 **
      7 **    May you do good and not evil.
      8 **    May you find forgiveness for yourself and forgive others.
      9 **    May you share freely, never taking more than you give.
     10 **
     11 *************************************************************************
     12 ** This file contains SQLite's grammar for SQL.  Process this file
     13 ** using the lemon parser generator to generate C code that runs
     14 ** the parser.  Lemon will also generate a header file containing
     15 ** numeric codes for all of the tokens.
     16 */
     17 
     18 // All token codes are small integers with #defines that begin with "TK_"
     19 %token_prefix TK_
     20 
     21 // The type of the data attached to each token is Token.  This is also the
     22 // default type for non-terminals.
     23 //
     24 %token_type {Token}
     25 %default_type {Token}
     26 
     27 // The generated parser function takes a 4th argument as follows:
     28 %extra_argument {Parse *pParse}
     29 
     30 // This code runs whenever there is a syntax error
     31 //
     32 %syntax_error {
     33   UNUSED_PARAMETER(yymajor);  /* Silence some compiler warnings */
     34   assert( TOKEN.z[0] );  /* The tokenizer always gives us a token */
     35   sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
     36   pParse->parseError = 1;
     37 }
     38 %stack_overflow {
     39   UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */
     40   sqlite3ErrorMsg(pParse, "parser stack overflow");
     41   pParse->parseError = 1;
     42 }
     43 
     44 // The name of the generated procedure that implements the parser
     45 // is as follows:
     46 %name sqlite3Parser
     47 
     48 // The following text is included near the beginning of the C source
     49 // code file that implements the parser.
     50 //
     51 %include {
     52 #include "sqliteInt.h"
     53 
     54 /*
     55 ** Disable all error recovery processing in the parser push-down
     56 ** automaton.
     57 */
     58 #define YYNOERRORRECOVERY 1
     59 
     60 /*
     61 ** Make yytestcase() the same as testcase()
     62 */
     63 #define yytestcase(X) testcase(X)
     64 
     65 /*
     66 ** An instance of this structure holds information about the
     67 ** LIMIT clause of a SELECT statement.
     68 */
     69 struct LimitVal {
     70   Expr *pLimit;    /* The LIMIT expression.  NULL if there is no limit */
     71   Expr *pOffset;   /* The OFFSET expression.  NULL if there is none */
     72 };
     73 
     74 /*
     75 ** An instance of this structure is used to store the LIKE,
     76 ** GLOB, NOT LIKE, and NOT GLOB operators.
     77 */
     78 struct LikeOp {
     79   Token eOperator;  /* "like" or "glob" or "regexp" */
     80   int not;         /* True if the NOT keyword is present */
     81 };
     82 
     83 /*
     84 ** An instance of the following structure describes the event of a
     85 ** TRIGGER.  "a" is the event type, one of TK_UPDATE, TK_INSERT,
     86 ** TK_DELETE, or TK_INSTEAD.  If the event is of the form
     87 **
     88 **      UPDATE ON (a,b,c)
     89 **
     90 ** Then the "b" IdList records the list "a,b,c".
     91 */
     92 struct TrigEvent { int a; IdList * b; };
     93 
     94 /*
     95 ** An instance of this structure holds the ATTACH key and the key type.
     96 */
     97 struct AttachKey { int type;  Token key; };
     98 
     99 } // end %include
    100 
    101 // Input is a single SQL command
    102 input ::= cmdlist.
    103 cmdlist ::= cmdlist ecmd.
    104 cmdlist ::= ecmd.
    105 ecmd ::= SEMI.
    106 ecmd ::= explain cmdx SEMI.
    107 explain ::= .           { sqlite3BeginParse(pParse, 0); }
    108 %ifndef SQLITE_OMIT_EXPLAIN
    109 explain ::= EXPLAIN.              { sqlite3BeginParse(pParse, 1); }
    110 explain ::= EXPLAIN QUERY PLAN.   { sqlite3BeginParse(pParse, 2); }
    111 %endif  SQLITE_OMIT_EXPLAIN
    112 cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }
    113 
    114 ///////////////////// Begin and end transactions. ////////////////////////////
    115 //
    116 
    117 cmd ::= BEGIN transtype(Y) trans_opt.  {sqlite3BeginTransaction(pParse, Y);}
    118 trans_opt ::= .
    119 trans_opt ::= TRANSACTION.
    120 trans_opt ::= TRANSACTION nm.
    121 %type transtype {int}
    122 transtype(A) ::= .             {A = TK_DEFERRED;}
    123 transtype(A) ::= DEFERRED(X).  {A = @X;}
    124 transtype(A) ::= IMMEDIATE(X). {A = @X;}
    125 transtype(A) ::= EXCLUSIVE(X). {A = @X;}
    126 cmd ::= COMMIT trans_opt.      {sqlite3CommitTransaction(pParse);}
    127 cmd ::= END trans_opt.         {sqlite3CommitTransaction(pParse);}
    128 cmd ::= ROLLBACK trans_opt.    {sqlite3RollbackTransaction(pParse);}
    129 
    130 savepoint_opt ::= SAVEPOINT.
    131 savepoint_opt ::= .
    132 cmd ::= SAVEPOINT nm(X). {
    133   sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
    134 }
    135 cmd ::= RELEASE savepoint_opt nm(X). {
    136   sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X);
    137 }
    138 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). {
    139   sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X);
    140 }
    141 
    142 ///////////////////// The CREATE TABLE statement ////////////////////////////
    143 //
    144 cmd ::= create_table create_table_args.
    145 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). {
    146    sqlite3StartTable(pParse,&Y,&Z,T,0,0,E);
    147 }
    148 createkw(A) ::= CREATE(X).  {
    149   pParse->db->lookaside.bEnabled = 0;
    150   A = X;
    151 }
    152 %type ifnotexists {int}
    153 ifnotexists(A) ::= .              {A = 0;}
    154 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;}
    155 %type temp {int}
    156 %ifndef SQLITE_OMIT_TEMPDB
    157 temp(A) ::= TEMP.  {A = 1;}
    158 %endif  SQLITE_OMIT_TEMPDB
    159 temp(A) ::= .      {A = 0;}
    160 create_table_args ::= LP columnlist conslist_opt(X) RP(Y). {
    161   sqlite3EndTable(pParse,&X,&Y,0);
    162 }
    163 create_table_args ::= AS select(S). {
    164   sqlite3EndTable(pParse,0,0,S);
    165   sqlite3SelectDelete(pParse->db, S);
    166 }
    167 columnlist ::= columnlist COMMA column.
    168 columnlist ::= column.
    169 
    170 // A "column" is a complete description of a single column in a
    171 // CREATE TABLE statement.  This includes the column name, its
    172 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES,
    173 // NOT NULL and so forth.
    174 //
    175 column(A) ::= columnid(X) type carglist. {
    176   A.z = X.z;
    177   A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n;
    178 }
    179 columnid(A) ::= nm(X). {
    180   sqlite3AddColumn(pParse,&X);
    181   A = X;
    182 }
    183 
    184 
    185 // An IDENTIFIER can be a generic identifier, or one of several
    186 // keywords.  Any non-standard keyword can also be an identifier.
    187 //
    188 %type id {Token}
    189 id(A) ::= ID(X).         {A = X;}
    190 id(A) ::= INDEXED(X).    {A = X;}
    191 
    192 // The following directive causes tokens ABORT, AFTER, ASC, etc. to
    193 // fallback to ID if they will not parse as their original value.
    194 // This obviates the need for the "id" nonterminal.
    195 //
    196 %fallback ID
    197   ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
    198   CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR
    199   IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
    200   QUERY KEY OF OFFSET PRAGMA RAISE RELEASE REPLACE RESTRICT ROW ROLLBACK
    201   SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL
    202 %ifdef SQLITE_OMIT_COMPOUND_SELECT
    203   EXCEPT INTERSECT UNION
    204 %endif SQLITE_OMIT_COMPOUND_SELECT
    205   REINDEX RENAME CTIME_KW IF
    206   .
    207 %wildcard ANY.
    208 
    209 // Define operator precedence early so that this is the first occurance
    210 // of the operator tokens in the grammer.  Keeping the operators together
    211 // causes them to be assigned integer values that are close together,
    212 // which keeps parser tables smaller.
    213 //
    214 // The token values assigned to these symbols is determined by the order
    215 // in which lemon first sees them.  It must be the case that ISNULL/NOTNULL,
    216 // NE/EQ, GT/LE, and GE/LT are separated by only a single value.  See
    217 // the sqlite3ExprIfFalse() routine for additional information on this
    218 // constraint.
    219 //
    220 %left OR.
    221 %left AND.
    222 %right NOT.
    223 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
    224 %left GT LE LT GE.
    225 %right ESCAPE.
    226 %left BITAND BITOR LSHIFT RSHIFT.
    227 %left PLUS MINUS.
    228 %left STAR SLASH REM.
    229 %left CONCAT.
    230 %left COLLATE.
    231 %right BITNOT.
    232 
    233 // And "ids" is an identifer-or-string.
    234 //
    235 %type ids {Token}
    236 ids(A) ::= ID|STRING(X).   {A = X;}
    237 
    238 // The name of a column or table can be any of the following:
    239 //
    240 %type nm {Token}
    241 nm(A) ::= id(X).         {A = X;}
    242 nm(A) ::= STRING(X).     {A = X;}
    243 nm(A) ::= JOIN_KW(X).    {A = X;}
    244 
    245 // A typetoken is really one or more tokens that form a type name such
    246 // as can be found after the column name in a CREATE TABLE statement.
    247 // Multiple tokens are concatenated to form the value of the typetoken.
    248 //
    249 %type typetoken {Token}
    250 type ::= .
    251 type ::= typetoken(X).                   {sqlite3AddColumnType(pParse,&X);}
    252 typetoken(A) ::= typename(X).   {A = X;}
    253 typetoken(A) ::= typename(X) LP signed RP(Y). {
    254   A.z = X.z;
    255   A.n = (int)(&Y.z[Y.n] - X.z);
    256 }
    257 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). {
    258   A.z = X.z;
    259   A.n = (int)(&Y.z[Y.n] - X.z);
    260 }
    261 %type typename {Token}
    262 typename(A) ::= ids(X).             {A = X;}
    263 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);}
    264 signed ::= plus_num.
    265 signed ::= minus_num.
    266 
    267 // "carglist" is a list of additional constraints that come after the
    268 // column name and column type in a CREATE TABLE statement.
    269 //
    270 carglist ::= carglist carg.
    271 carglist ::= .
    272 carg ::= CONSTRAINT nm ccons.
    273 carg ::= ccons.
    274 ccons ::= DEFAULT term(X).            {sqlite3AddDefaultValue(pParse,&X);}
    275 ccons ::= DEFAULT LP expr(X) RP.      {sqlite3AddDefaultValue(pParse,&X);}
    276 ccons ::= DEFAULT PLUS term(X).       {sqlite3AddDefaultValue(pParse,&X);}
    277 ccons ::= DEFAULT MINUS(A) term(X).      {
    278   ExprSpan v;
    279   v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0);
    280   v.zStart = A.z;
    281   v.zEnd = X.zEnd;
    282   sqlite3AddDefaultValue(pParse,&v);
    283 }
    284 ccons ::= DEFAULT id(X).              {
    285   ExprSpan v;
    286   spanExpr(&v, pParse, TK_STRING, &X);
    287   sqlite3AddDefaultValue(pParse,&v);
    288 }
    289 
    290 // In addition to the type name, we also care about the primary key and
    291 // UNIQUE constraints.
    292 //
    293 ccons ::= NULL onconf.
    294 ccons ::= NOT NULL onconf(R).    {sqlite3AddNotNull(pParse, R);}
    295 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
    296                                  {sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
    297 ccons ::= UNIQUE onconf(R).      {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);}
    298 ccons ::= CHECK LP expr(X) RP.   {sqlite3AddCheckConstraint(pParse,X.pExpr);}
    299 ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R).
    300                                  {sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
    301 ccons ::= defer_subclause(D).    {sqlite3DeferForeignKey(pParse,D);}
    302 ccons ::= COLLATE ids(C).        {sqlite3AddCollateType(pParse, &C);}
    303 
    304 // The optional AUTOINCREMENT keyword
    305 %type autoinc {int}
    306 autoinc(X) ::= .          {X = 0;}
    307 autoinc(X) ::= AUTOINCR.  {X = 1;}
    308 
    309 // The next group of rules parses the arguments to a REFERENCES clause
    310 // that determine if the referential integrity checking is deferred or
    311 // or immediate and which determine what action to take if a ref-integ
    312 // check fails.
    313 //
    314 %type refargs {int}
    315 refargs(A) ::= .                  { A = OE_None*0x0101; /* EV: R-19803-45884 */}
    316 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; }
    317 %type refarg {struct {int value; int mask;}}
    318 refarg(A) ::= MATCH nm.              { A.value = 0;     A.mask = 0x000000; }
    319 refarg(A) ::= ON INSERT refact.      { A.value = 0;     A.mask = 0x000000; }
    320 refarg(A) ::= ON DELETE refact(X).   { A.value = X;     A.mask = 0x0000ff; }
    321 refarg(A) ::= ON UPDATE refact(X).   { A.value = X<<8;  A.mask = 0x00ff00; }
    322 %type refact {int}
    323 refact(A) ::= SET NULL.              { A = OE_SetNull;  /* EV: R-33326-45252 */}
    324 refact(A) ::= SET DEFAULT.           { A = OE_SetDflt;  /* EV: R-33326-45252 */}
    325 refact(A) ::= CASCADE.               { A = OE_Cascade;  /* EV: R-33326-45252 */}
    326 refact(A) ::= RESTRICT.              { A = OE_Restrict; /* EV: R-33326-45252 */}
    327 refact(A) ::= NO ACTION.             { A = OE_None;     /* EV: R-33326-45252 */}
    328 %type defer_subclause {int}
    329 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt.     {A = 0;}
    330 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X).      {A = X;}
    331 %type init_deferred_pred_opt {int}
    332 init_deferred_pred_opt(A) ::= .                       {A = 0;}
    333 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED.     {A = 1;}
    334 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE.    {A = 0;}
    335 
    336 // For the time being, the only constraint we care about is the primary
    337 // key and UNIQUE.  Both create indices.
    338 //
    339 conslist_opt(A) ::= .                   {A.n = 0; A.z = 0;}
    340 conslist_opt(A) ::= COMMA(X) conslist.  {A = X;}
    341 conslist ::= conslist COMMA tcons.
    342 conslist ::= conslist tcons.
    343 conslist ::= tcons.
    344 tcons ::= CONSTRAINT nm.
    345 tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R).
    346                                  {sqlite3AddPrimaryKey(pParse,X,R,I,0);}
    347 tcons ::= UNIQUE LP idxlist(X) RP onconf(R).
    348                                  {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);}
    349 tcons ::= CHECK LP expr(E) RP onconf.
    350                                  {sqlite3AddCheckConstraint(pParse,E.pExpr);}
    351 tcons ::= FOREIGN KEY LP idxlist(FA) RP
    352           REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). {
    353     sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
    354     sqlite3DeferForeignKey(pParse, D);
    355 }
    356 %type defer_subclause_opt {int}
    357 defer_subclause_opt(A) ::= .                    {A = 0;}
    358 defer_subclause_opt(A) ::= defer_subclause(X).  {A = X;}
    359 
    360 // The following is a non-standard extension that allows us to declare the
    361 // default behavior when there is a constraint conflict.
    362 //
    363 %type onconf {int}
    364 %type orconf {u8}
    365 %type resolvetype {int}
    366 onconf(A) ::= .                              {A = OE_Default;}
    367 onconf(A) ::= ON CONFLICT resolvetype(X).    {A = X;}
    368 orconf(A) ::= .                              {A = OE_Default;}
    369 orconf(A) ::= OR resolvetype(X).             {A = (u8)X;}
    370 resolvetype(A) ::= raisetype(X).             {A = X;}
    371 resolvetype(A) ::= IGNORE.                   {A = OE_Ignore;}
    372 resolvetype(A) ::= REPLACE.                  {A = OE_Replace;}
    373 
    374 ////////////////////////// The DROP TABLE /////////////////////////////////////
    375 //
    376 cmd ::= DROP TABLE ifexists(E) fullname(X). {
    377   sqlite3DropTable(pParse, X, 0, E);
    378 }
    379 %type ifexists {int}
    380 ifexists(A) ::= IF EXISTS.   {A = 1;}
    381 ifexists(A) ::= .            {A = 0;}
    382 
    383 ///////////////////// The CREATE VIEW statement /////////////////////////////
    384 //
    385 %ifndef SQLITE_OMIT_VIEW
    386 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). {
    387   sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E);
    388 }
    389 cmd ::= DROP VIEW ifexists(E) fullname(X). {
    390   sqlite3DropTable(pParse, X, 1, E);
    391 }
    392 %endif  SQLITE_OMIT_VIEW
    393 
    394 //////////////////////// The SELECT statement /////////////////////////////////
    395 //
    396 cmd ::= select(X).  {
    397   SelectDest dest = {SRT_Output, 0, 0, 0, 0};
    398   sqlite3Select(pParse, X, &dest);
    399   sqlite3SelectDelete(pParse->db, X);
    400 }
    401 
    402 %type select {Select*}
    403 %destructor select {sqlite3SelectDelete(pParse->db, $$);}
    404 %type oneselect {Select*}
    405 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}
    406 
    407 select(A) ::= oneselect(X).                      {A = X;}
    408 %ifndef SQLITE_OMIT_COMPOUND_SELECT
    409 select(A) ::= select(X) multiselect_op(Y) oneselect(Z).  {
    410   if( Z ){
    411     Z->op = (u8)Y;
    412     Z->pPrior = X;
    413   }else{
    414     sqlite3SelectDelete(pParse->db, X);
    415   }
    416   A = Z;
    417 }
    418 %type multiselect_op {int}
    419 multiselect_op(A) ::= UNION(OP).             {A = @OP;}
    420 multiselect_op(A) ::= UNION ALL.             {A = TK_ALL;}
    421 multiselect_op(A) ::= EXCEPT|INTERSECT(OP).  {A = @OP;}
    422 %endif SQLITE_OMIT_COMPOUND_SELECT
    423 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
    424                  groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
    425   A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
    426 }
    427 
    428 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is
    429 // present and false (0) if it is not.
    430 //
    431 %type distinct {int}
    432 distinct(A) ::= DISTINCT.   {A = 1;}
    433 distinct(A) ::= ALL.        {A = 0;}
    434 distinct(A) ::= .           {A = 0;}
    435 
    436 // selcollist is a list of expressions that are to become the return
    437 // values of the SELECT statement.  The "*" in statements like
    438 // "SELECT * FROM ..." is encoded as a special expression with an
    439 // opcode of TK_ALL.
    440 //
    441 %type selcollist {ExprList*}
    442 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
    443 %type sclp {ExprList*}
    444 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
    445 sclp(A) ::= selcollist(X) COMMA.             {A = X;}
    446 sclp(A) ::= .                                {A = 0;}
    447 selcollist(A) ::= sclp(P) expr(X) as(Y).     {
    448    A = sqlite3ExprListAppend(pParse, P, X.pExpr);
    449    if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
    450    sqlite3ExprListSetSpan(pParse,A,&X);
    451 }
    452 selcollist(A) ::= sclp(P) STAR. {
    453   Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0);
    454   A = sqlite3ExprListAppend(pParse, P, p);
    455 }
    456 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). {
    457   Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y);
    458   Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
    459   Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
    460   A = sqlite3ExprListAppend(pParse,P, pDot);
    461 }
    462 
    463 // An option "AS <id>" phrase that can follow one of the expressions that
    464 // define the result set, or one of the tables in the FROM clause.
    465 //
    466 %type as {Token}
    467 as(X) ::= AS nm(Y).    {X = Y;}
    468 as(X) ::= ids(Y).      {X = Y;}
    469 as(X) ::= .            {X.n = 0;}
    470 
    471 
    472 %type seltablist {SrcList*}
    473 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
    474 %type stl_prefix {SrcList*}
    475 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}
    476 %type from {SrcList*}
    477 %destructor from {sqlite3SrcListDelete(pParse->db, $$);}
    478 
    479 // A complete FROM clause.
    480 //
    481 from(A) ::= .                {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));}
    482 from(A) ::= FROM seltablist(X). {
    483   A = X;
    484   sqlite3SrcListShiftJoinType(A);
    485 }
    486 
    487 // "seltablist" is a "Select Table List" - the content of the FROM clause
    488 // in a SELECT statement.  "stl_prefix" is a prefix of this list.
    489 //
    490 stl_prefix(A) ::= seltablist(X) joinop(Y).    {
    491    A = X;
    492    if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y;
    493 }
    494 stl_prefix(A) ::= .                           {A = 0;}
    495 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) on_opt(N) using_opt(U). {
    496   A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U);
    497   sqlite3SrcListIndexedBy(pParse, A, &I);
    498 }
    499 %ifndef SQLITE_OMIT_SUBQUERY
    500   seltablist(A) ::= stl_prefix(X) LP select(S) RP
    501                     as(Z) on_opt(N) using_opt(U). {
    502     A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U);
    503   }
    504   seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP
    505                     as(Z) on_opt(N) using_opt(U). {
    506     if( X==0 && Z.n==0 && N==0 && U==0 ){
    507       A = F;
    508     }else{
    509       Select *pSubquery;
    510       sqlite3SrcListShiftJoinType(F);
    511       pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0);
    512       A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U);
    513     }
    514   }
    515 
    516   // A seltablist_paren nonterminal represents anything in a FROM that
    517   // is contained inside parentheses.  This can be either a subquery or
    518   // a grouping of table and subqueries.
    519   //
    520 //  %type seltablist_paren {Select*}
    521 //  %destructor seltablist_paren {sqlite3SelectDelete(pParse->db, $$);}
    522 //  seltablist_paren(A) ::= select(S).      {A = S;}
    523 //  seltablist_paren(A) ::= seltablist(F).  {
    524 //     sqlite3SrcListShiftJoinType(F);
    525 //     A = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0);
    526 //  }
    527 %endif  SQLITE_OMIT_SUBQUERY
    528 
    529 %type dbnm {Token}
    530 dbnm(A) ::= .          {A.z=0; A.n=0;}
    531 dbnm(A) ::= DOT nm(X). {A = X;}
    532 
    533 %type fullname {SrcList*}
    534 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
    535 fullname(A) ::= nm(X) dbnm(Y).  {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);}
    536 
    537 %type joinop {int}
    538 %type joinop2 {int}
    539 joinop(X) ::= COMMA|JOIN.              { X = JT_INNER; }
    540 joinop(X) ::= JOIN_KW(A) JOIN.         { X = sqlite3JoinType(pParse,&A,0,0); }
    541 joinop(X) ::= JOIN_KW(A) nm(B) JOIN.   { X = sqlite3JoinType(pParse,&A,&B,0); }
    542 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
    543                                        { X = sqlite3JoinType(pParse,&A,&B,&C); }
    544 
    545 %type on_opt {Expr*}
    546 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
    547 on_opt(N) ::= ON expr(E).   {N = E.pExpr;}
    548 on_opt(N) ::= .             {N = 0;}
    549 
    550 // Note that this block abuses the Token type just a little. If there is
    551 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
    552 // there is an INDEXED BY clause, then the token is populated as per normal,
    553 // with z pointing to the token data and n containing the number of bytes
    554 // in the token.
    555 //
    556 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is
    557 // normally illegal. The sqlite3SrcListIndexedBy() function
    558 // recognizes and interprets this as a special case.
    559 //
    560 %type indexed_opt {Token}
    561 indexed_opt(A) ::= .                 {A.z=0; A.n=0;}
    562 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;}
    563 indexed_opt(A) ::= NOT INDEXED.      {A.z=0; A.n=1;}
    564 
    565 %type using_opt {IdList*}
    566 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);}
    567 using_opt(U) ::= USING LP inscollist(L) RP.  {U = L;}
    568 using_opt(U) ::= .                        {U = 0;}
    569 
    570 
    571 %type orderby_opt {ExprList*}
    572 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);}
    573 %type sortlist {ExprList*}
    574 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}
    575 %type sortitem {Expr*}
    576 %destructor sortitem {sqlite3ExprDelete(pParse->db, $$);}
    577 
    578 orderby_opt(A) ::= .                          {A = 0;}
    579 orderby_opt(A) ::= ORDER BY sortlist(X).      {A = X;}
    580 sortlist(A) ::= sortlist(X) COMMA sortitem(Y) sortorder(Z). {
    581   A = sqlite3ExprListAppend(pParse,X,Y);
    582   if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
    583 }
    584 sortlist(A) ::= sortitem(Y) sortorder(Z). {
    585   A = sqlite3ExprListAppend(pParse,0,Y);
    586   if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z;
    587 }
    588 sortitem(A) ::= expr(X).   {A = X.pExpr;}
    589 
    590 %type sortorder {int}
    591 
    592 sortorder(A) ::= ASC.           {A = SQLITE_SO_ASC;}
    593 sortorder(A) ::= DESC.          {A = SQLITE_SO_DESC;}
    594 sortorder(A) ::= .              {A = SQLITE_SO_ASC;}
    595 
    596 %type groupby_opt {ExprList*}
    597 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
    598 groupby_opt(A) ::= .                      {A = 0;}
    599 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}
    600 
    601 %type having_opt {Expr*}
    602 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
    603 having_opt(A) ::= .                {A = 0;}
    604 having_opt(A) ::= HAVING expr(X).  {A = X.pExpr;}
    605 
    606 %type limit_opt {struct LimitVal}
    607 
    608 // The destructor for limit_opt will never fire in the current grammar.
    609 // The limit_opt non-terminal only occurs at the end of a single production
    610 // rule for SELECT statements.  As soon as the rule that create the
    611 // limit_opt non-terminal reduces, the SELECT statement rule will also
    612 // reduce.  So there is never a limit_opt non-terminal on the stack
    613 // except as a transient.  So there is never anything to destroy.
    614 //
    615 //%destructor limit_opt {
    616 //  sqlite3ExprDelete(pParse->db, $$.pLimit);
    617 //  sqlite3ExprDelete(pParse->db, $$.pOffset);
    618 //}
    619 limit_opt(A) ::= .                    {A.pLimit = 0; A.pOffset = 0;}
    620 limit_opt(A) ::= LIMIT expr(X).       {A.pLimit = X.pExpr; A.pOffset = 0;}
    621 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y).
    622                                       {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;}
    623 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y).
    624                                       {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;}
    625 
    626 /////////////////////////// The DELETE statement /////////////////////////////
    627 //
    628 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
    629 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W)
    630         orderby_opt(O) limit_opt(L). {
    631   sqlite3SrcListIndexedBy(pParse, X, &I);
    632   W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE");
    633   sqlite3DeleteFrom(pParse,X,W);
    634 }
    635 %endif
    636 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
    637 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W). {
    638   sqlite3SrcListIndexedBy(pParse, X, &I);
    639   sqlite3DeleteFrom(pParse,X,W);
    640 }
    641 %endif
    642 
    643 %type where_opt {Expr*}
    644 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}
    645 
    646 where_opt(A) ::= .                    {A = 0;}
    647 where_opt(A) ::= WHERE expr(X).       {A = X.pExpr;}
    648 
    649 ////////////////////////// The UPDATE command ////////////////////////////////
    650 //
    651 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
    652 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W) orderby_opt(O) limit_opt(L).  {
    653   sqlite3SrcListIndexedBy(pParse, X, &I);
    654   sqlite3ExprListCheckLength(pParse,Y,"set list");
    655   W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE");
    656   sqlite3Update(pParse,X,Y,W,R);
    657 }
    658 %endif
    659 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
    660 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W).  {
    661   sqlite3SrcListIndexedBy(pParse, X, &I);
    662   sqlite3ExprListCheckLength(pParse,Y,"set list");
    663   sqlite3Update(pParse,X,Y,W,R);
    664 }
    665 %endif
    666 
    667 %type setlist {ExprList*}
    668 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}
    669 
    670 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). {
    671   A = sqlite3ExprListAppend(pParse, Z, Y.pExpr);
    672   sqlite3ExprListSetName(pParse, A, &X, 1);
    673 }
    674 setlist(A) ::= nm(X) EQ expr(Y). {
    675   A = sqlite3ExprListAppend(pParse, 0, Y.pExpr);
    676   sqlite3ExprListSetName(pParse, A, &X, 1);
    677 }
    678 
    679 ////////////////////////// The INSERT command /////////////////////////////////
    680 //
    681 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F)
    682         VALUES LP itemlist(Y) RP.
    683             {sqlite3Insert(pParse, X, Y, 0, F, R);}
    684 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S).
    685             {sqlite3Insert(pParse, X, 0, S, F, R);}
    686 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES.
    687             {sqlite3Insert(pParse, X, 0, 0, F, R);}
    688 
    689 %type insert_cmd {u8}
    690 insert_cmd(A) ::= INSERT orconf(R).   {A = R;}
    691 insert_cmd(A) ::= REPLACE.            {A = OE_Replace;}
    692 
    693 
    694 %type itemlist {ExprList*}
    695 %destructor itemlist {sqlite3ExprListDelete(pParse->db, $$);}
    696 
    697 itemlist(A) ::= itemlist(X) COMMA expr(Y).
    698     {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);}
    699 itemlist(A) ::= expr(X).
    700     {A = sqlite3ExprListAppend(pParse,0,X.pExpr);}
    701 
    702 %type inscollist_opt {IdList*}
    703 %destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);}
    704 %type inscollist {IdList*}
    705 %destructor inscollist {sqlite3IdListDelete(pParse->db, $$);}
    706 
    707 inscollist_opt(A) ::= .                       {A = 0;}
    708 inscollist_opt(A) ::= LP inscollist(X) RP.    {A = X;}
    709 inscollist(A) ::= inscollist(X) COMMA nm(Y).
    710     {A = sqlite3IdListAppend(pParse->db,X,&Y);}
    711 inscollist(A) ::= nm(Y).
    712     {A = sqlite3IdListAppend(pParse->db,0,&Y);}
    713 
    714 /////////////////////////// Expression Processing /////////////////////////////
    715 //
    716 
    717 %type expr {ExprSpan}
    718 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);}
    719 %type term {ExprSpan}
    720 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);}
    721 
    722 %include {
    723   /* This is a utility routine used to set the ExprSpan.zStart and
    724   ** ExprSpan.zEnd values of pOut so that the span covers the complete
    725   ** range of text beginning with pStart and going to the end of pEnd.
    726   */
    727   static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){
    728     pOut->zStart = pStart->z;
    729     pOut->zEnd = &pEnd->z[pEnd->n];
    730   }
    731 
    732   /* Construct a new Expr object from a single identifier.  Use the
    733   ** new Expr to populate pOut.  Set the span of pOut to be the identifier
    734   ** that created the expression.
    735   */
    736   static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){
    737     pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue);
    738     pOut->zStart = pValue->z;
    739     pOut->zEnd = &pValue->z[pValue->n];
    740   }
    741 }
    742 
    743 expr(A) ::= term(X).             {A = X;}
    744 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);}
    745 term(A) ::= NULL(X).             {spanExpr(&A, pParse, @X, &X);}
    746 expr(A) ::= id(X).               {spanExpr(&A, pParse, TK_ID, &X);}
    747 expr(A) ::= JOIN_KW(X).          {spanExpr(&A, pParse, TK_ID, &X);}
    748 expr(A) ::= nm(X) DOT nm(Y). {
    749   Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
    750   Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
    751   A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
    752   spanSet(&A,&X,&Y);
    753 }
    754 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
    755   Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
    756   Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
    757   Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z);
    758   Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
    759   A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
    760   spanSet(&A,&X,&Z);
    761 }
    762 term(A) ::= INTEGER|FLOAT|BLOB(X).  {spanExpr(&A, pParse, @X, &X);}
    763 term(A) ::= STRING(X).              {spanExpr(&A, pParse, @X, &X);}
    764 expr(A) ::= REGISTER(X).     {
    765   /* When doing a nested parse, one can include terms in an expression
    766   ** that look like this:   #1 #2 ...  These terms refer to registers
    767   ** in the virtual machine.  #N is the N-th register. */
    768   if( pParse->nested==0 ){
    769     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X);
    770     A.pExpr = 0;
    771   }else{
    772     A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X);
    773     if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable);
    774   }
    775   spanSet(&A, &X, &X);
    776 }
    777 expr(A) ::= VARIABLE(X).     {
    778   spanExpr(&A, pParse, TK_VARIABLE, &X);
    779   sqlite3ExprAssignVarNumber(pParse, A.pExpr);
    780   spanSet(&A, &X, &X);
    781 }
    782 expr(A) ::= expr(E) COLLATE ids(C). {
    783   A.pExpr = sqlite3ExprSetCollByToken(pParse, E.pExpr, &C);
    784   A.zStart = E.zStart;
    785   A.zEnd = &C.z[C.n];
    786 }
    787 %ifndef SQLITE_OMIT_CAST
    788 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). {
    789   A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T);
    790   spanSet(&A,&X,&Y);
    791 }
    792 %endif  SQLITE_OMIT_CAST
    793 expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). {
    794   if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
    795     sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X);
    796   }
    797   A.pExpr = sqlite3ExprFunction(pParse, Y, &X);
    798   spanSet(&A,&X,&E);
    799   if( D && A.pExpr ){
    800     A.pExpr->flags |= EP_Distinct;
    801   }
    802 }
    803 expr(A) ::= ID(X) LP STAR RP(E). {
    804   A.pExpr = sqlite3ExprFunction(pParse, 0, &X);
    805   spanSet(&A,&X,&E);
    806 }
    807 term(A) ::= CTIME_KW(OP). {
    808   /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are
    809   ** treated as functions that return constants */
    810   A.pExpr = sqlite3ExprFunction(pParse, 0,&OP);
    811   if( A.pExpr ){
    812     A.pExpr->op = TK_CONST_FUNC;
    813   }
    814   spanSet(&A, &OP, &OP);
    815 }
    816 
    817 %include {
    818   /* This routine constructs a binary expression node out of two ExprSpan
    819   ** objects and uses the result to populate a new ExprSpan object.
    820   */
    821   static void spanBinaryExpr(
    822     ExprSpan *pOut,     /* Write the result here */
    823     Parse *pParse,      /* The parsing context.  Errors accumulate here */
    824     int op,             /* The binary operation */
    825     ExprSpan *pLeft,    /* The left operand */
    826     ExprSpan *pRight    /* The right operand */
    827   ){
    828     pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0);
    829     pOut->zStart = pLeft->zStart;
    830     pOut->zEnd = pRight->zEnd;
    831   }
    832 }
    833 
    834 expr(A) ::= expr(X) AND(OP) expr(Y).    {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
    835 expr(A) ::= expr(X) OR(OP) expr(Y).     {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
    836 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y).
    837                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
    838 expr(A) ::= expr(X) EQ|NE(OP) expr(Y).  {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
    839 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
    840                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
    841 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y).
    842                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
    843 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y).
    844                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
    845 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
    846 %type likeop {struct LikeOp}
    847 likeop(A) ::= LIKE_KW(X).     {A.eOperator = X; A.not = 0;}
    848 likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.not = 1;}
    849 likeop(A) ::= MATCH(X).       {A.eOperator = X; A.not = 0;}
    850 likeop(A) ::= NOT MATCH(X).   {A.eOperator = X; A.not = 1;}
    851 expr(A) ::= expr(X) likeop(OP) expr(Y).  [LIKE_KW]  {
    852   ExprList *pList;
    853   pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
    854   pList = sqlite3ExprListAppend(pParse,pList, X.pExpr);
    855   A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
    856   if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
    857   A.zStart = X.zStart;
    858   A.zEnd = Y.zEnd;
    859   if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
    860 }
    861 expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E).  [LIKE_KW]  {
    862   ExprList *pList;
    863   pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
    864   pList = sqlite3ExprListAppend(pParse,pList, X.pExpr);
    865   pList = sqlite3ExprListAppend(pParse,pList, E.pExpr);
    866   A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
    867   if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
    868   A.zStart = X.zStart;
    869   A.zEnd = E.zEnd;
    870   if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
    871 }
    872 
    873 %include {
    874   /* Construct an expression node for a unary postfix operator
    875   */
    876   static void spanUnaryPostfix(
    877     ExprSpan *pOut,        /* Write the new expression node here */
    878     Parse *pParse,         /* Parsing context to record errors */
    879     int op,                /* The operator */
    880     ExprSpan *pOperand,    /* The operand */
    881     Token *pPostOp         /* The operand token for setting the span */
    882   ){
    883     pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
    884     pOut->zStart = pOperand->zStart;
    885     pOut->zEnd = &pPostOp->z[pPostOp->n];
    886   }
    887 }
    888 
    889 expr(A) ::= expr(X) ISNULL|NOTNULL(E).   {spanUnaryPostfix(&A,pParse,@E,&X,&E);}
    890 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);}
    891 
    892 %include {
    893   /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
    894   ** unary TK_ISNULL or TK_NOTNULL expression. */
    895   static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
    896     sqlite3 *db = pParse->db;
    897     if( db->mallocFailed==0 && pY->op==TK_NULL ){
    898       pA->op = (u8)op;
    899       sqlite3ExprDelete(db, pA->pRight);
    900       pA->pRight = 0;
    901     }
    902   }
    903 }
    904 
    905 //    expr1 IS expr2
    906 //    expr1 IS NOT expr2
    907 //
    908 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL.  If expr2
    909 // is any other expression, code as TK_IS or TK_ISNOT.
    910 //
    911 expr(A) ::= expr(X) IS expr(Y).     {
    912   spanBinaryExpr(&A,pParse,TK_IS,&X,&Y);
    913   binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL);
    914 }
    915 expr(A) ::= expr(X) IS NOT expr(Y). {
    916   spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y);
    917   binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL);
    918 }
    919 
    920 %include {
    921   /* Construct an expression node for a unary prefix operator
    922   */
    923   static void spanUnaryPrefix(
    924     ExprSpan *pOut,        /* Write the new expression node here */
    925     Parse *pParse,         /* Parsing context to record errors */
    926     int op,                /* The operator */
    927     ExprSpan *pOperand,    /* The operand */
    928     Token *pPreOp         /* The operand token for setting the span */
    929   ){
    930     pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
    931     pOut->zStart = pPreOp->z;
    932     pOut->zEnd = pOperand->zEnd;
    933   }
    934 }
    935 
    936 
    937 
    938 expr(A) ::= NOT(B) expr(X).    {spanUnaryPrefix(&A,pParse,@B,&X,&B);}
    939 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);}
    940 expr(A) ::= MINUS(B) expr(X). [BITNOT]
    941                                {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);}
    942 expr(A) ::= PLUS(B) expr(X). [BITNOT]
    943                                {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);}
    944 
    945 %type between_op {int}
    946 between_op(A) ::= BETWEEN.     {A = 0;}
    947 between_op(A) ::= NOT BETWEEN. {A = 1;}
    948 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
    949   ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr);
    950   pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr);
    951   A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0);
    952   if( A.pExpr ){
    953     A.pExpr->x.pList = pList;
    954   }else{
    955     sqlite3ExprListDelete(pParse->db, pList);
    956   }
    957   if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
    958   A.zStart = W.zStart;
    959   A.zEnd = Y.zEnd;
    960 }
    961 %ifndef SQLITE_OMIT_SUBQUERY
    962   %type in_op {int}
    963   in_op(A) ::= IN.      {A = 0;}
    964   in_op(A) ::= NOT IN.  {A = 1;}
    965   expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] {
    966     if( Y==0 ){
    967       /* Expressions of the form
    968       **
    969       **      expr1 IN ()
    970       **      expr1 NOT IN ()
    971       **
    972       ** simplify to constants 0 (false) and 1 (true), respectively,
    973       ** regardless of the value of expr1.
    974       */
    975       A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]);
    976       sqlite3ExprDelete(pParse->db, X.pExpr);
    977     }else{
    978       A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
    979       if( A.pExpr ){
    980         A.pExpr->x.pList = Y;
    981         sqlite3ExprSetHeight(pParse, A.pExpr);
    982       }else{
    983         sqlite3ExprListDelete(pParse->db, Y);
    984       }
    985       if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
    986     }
    987     A.zStart = X.zStart;
    988     A.zEnd = &E.z[E.n];
    989   }
    990   expr(A) ::= LP(B) select(X) RP(E). {
    991     A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
    992     if( A.pExpr ){
    993       A.pExpr->x.pSelect = X;
    994       ExprSetProperty(A.pExpr, EP_xIsSelect);
    995       sqlite3ExprSetHeight(pParse, A.pExpr);
    996     }else{
    997       sqlite3SelectDelete(pParse->db, X);
    998     }
    999     A.zStart = B.z;
   1000     A.zEnd = &E.z[E.n];
   1001   }
   1002   expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E).  [IN] {
   1003     A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
   1004     if( A.pExpr ){
   1005       A.pExpr->x.pSelect = Y;
   1006       ExprSetProperty(A.pExpr, EP_xIsSelect);
   1007       sqlite3ExprSetHeight(pParse, A.pExpr);
   1008     }else{
   1009       sqlite3SelectDelete(pParse->db, Y);
   1010     }
   1011     if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
   1012     A.zStart = X.zStart;
   1013     A.zEnd = &E.z[E.n];
   1014   }
   1015   expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] {
   1016     SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);
   1017     A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
   1018     if( A.pExpr ){
   1019       A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
   1020       ExprSetProperty(A.pExpr, EP_xIsSelect);
   1021       sqlite3ExprSetHeight(pParse, A.pExpr);
   1022     }else{
   1023       sqlite3SrcListDelete(pParse->db, pSrc);
   1024     }
   1025     if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
   1026     A.zStart = X.zStart;
   1027     A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n];
   1028   }
   1029   expr(A) ::= EXISTS(B) LP select(Y) RP(E). {
   1030     Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
   1031     if( p ){
   1032       p->x.pSelect = Y;
   1033       ExprSetProperty(p, EP_xIsSelect);
   1034       sqlite3ExprSetHeight(pParse, p);
   1035     }else{
   1036       sqlite3SelectDelete(pParse->db, Y);
   1037     }
   1038     A.zStart = B.z;
   1039     A.zEnd = &E.z[E.n];
   1040   }
   1041 %endif SQLITE_OMIT_SUBQUERY
   1042 
   1043 /* CASE expressions */
   1044 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
   1045   A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, Z, 0);
   1046   if( A.pExpr ){
   1047     A.pExpr->x.pList = Y;
   1048     sqlite3ExprSetHeight(pParse, A.pExpr);
   1049   }else{
   1050     sqlite3ExprListDelete(pParse->db, Y);
   1051   }
   1052   A.zStart = C.z;
   1053   A.zEnd = &E.z[E.n];
   1054 }
   1055 %type case_exprlist {ExprList*}
   1056 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
   1057 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). {
   1058   A = sqlite3ExprListAppend(pParse,X, Y.pExpr);
   1059   A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
   1060 }
   1061 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
   1062   A = sqlite3ExprListAppend(pParse,0, Y.pExpr);
   1063   A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
   1064 }
   1065 %type case_else {Expr*}
   1066 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
   1067 case_else(A) ::=  ELSE expr(X).         {A = X.pExpr;}
   1068 case_else(A) ::=  .                     {A = 0;}
   1069 %type case_operand {Expr*}
   1070 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
   1071 case_operand(A) ::= expr(X).            {A = X.pExpr;}
   1072 case_operand(A) ::= .                   {A = 0;}
   1073 
   1074 %type exprlist {ExprList*}
   1075 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
   1076 %type nexprlist {ExprList*}
   1077 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}
   1078 
   1079 exprlist(A) ::= nexprlist(X).                {A = X;}
   1080 exprlist(A) ::= .                            {A = 0;}
   1081 nexprlist(A) ::= nexprlist(X) COMMA expr(Y).
   1082     {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);}
   1083 nexprlist(A) ::= expr(Y).
   1084     {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);}
   1085 
   1086 
   1087 ///////////////////////////// The CREATE INDEX command ///////////////////////
   1088 //
   1089 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
   1090         ON nm(Y) LP idxlist(Z) RP(E). {
   1091   sqlite3CreateIndex(pParse, &X, &D,
   1092                      sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U,
   1093                       &S, &E, SQLITE_SO_ASC, NE);
   1094 }
   1095 
   1096 %type uniqueflag {int}
   1097 uniqueflag(A) ::= UNIQUE.  {A = OE_Abort;}
   1098 uniqueflag(A) ::= .        {A = OE_None;}
   1099 
   1100 %type idxlist {ExprList*}
   1101 %destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);}
   1102 %type idxlist_opt {ExprList*}
   1103 %destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);}
   1104 
   1105 idxlist_opt(A) ::= .                         {A = 0;}
   1106 idxlist_opt(A) ::= LP idxlist(X) RP.         {A = X;}
   1107 idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z).  {
   1108   Expr *p = 0;
   1109   if( C.n>0 ){
   1110     p = sqlite3Expr(pParse->db, TK_COLUMN, 0);
   1111     sqlite3ExprSetCollByToken(pParse, p, &C);
   1112   }
   1113   A = sqlite3ExprListAppend(pParse,X, p);
   1114   sqlite3ExprListSetName(pParse,A,&Y,1);
   1115   sqlite3ExprListCheckLength(pParse, A, "index");
   1116   if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
   1117 }
   1118 idxlist(A) ::= nm(Y) collate(C) sortorder(Z). {
   1119   Expr *p = 0;
   1120   if( C.n>0 ){
   1121     p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
   1122     sqlite3ExprSetCollByToken(pParse, p, &C);
   1123   }
   1124   A = sqlite3ExprListAppend(pParse,0, p);
   1125   sqlite3ExprListSetName(pParse, A, &Y, 1);
   1126   sqlite3ExprListCheckLength(pParse, A, "index");
   1127   if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
   1128 }
   1129 
   1130 %type collate {Token}
   1131 collate(C) ::= .                 {C.z = 0; C.n = 0;}
   1132 collate(C) ::= COLLATE ids(X).   {C = X;}
   1133 
   1134 
   1135 ///////////////////////////// The DROP INDEX command /////////////////////////
   1136 //
   1137 cmd ::= DROP INDEX ifexists(E) fullname(X).   {sqlite3DropIndex(pParse, X, E);}
   1138 
   1139 ///////////////////////////// The VACUUM command /////////////////////////////
   1140 //
   1141 %ifndef SQLITE_OMIT_VACUUM
   1142 %ifndef SQLITE_OMIT_ATTACH
   1143 cmd ::= VACUUM.                {sqlite3Vacuum(pParse);}
   1144 cmd ::= VACUUM nm.             {sqlite3Vacuum(pParse);}
   1145 %endif  SQLITE_OMIT_ATTACH
   1146 %endif  SQLITE_OMIT_VACUUM
   1147 
   1148 ///////////////////////////// The PRAGMA command /////////////////////////////
   1149 //
   1150 %ifndef SQLITE_OMIT_PRAGMA
   1151 cmd ::= PRAGMA nm(X) dbnm(Z).                {sqlite3Pragma(pParse,&X,&Z,0,0);}
   1152 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y).    {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
   1153 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
   1154 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y).
   1155                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
   1156 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP.
   1157                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
   1158 
   1159 nmnum(A) ::= plus_num(X).             {A = X;}
   1160 nmnum(A) ::= nm(X).                   {A = X;}
   1161 nmnum(A) ::= ON(X).                   {A = X;}
   1162 nmnum(A) ::= DELETE(X).               {A = X;}
   1163 nmnum(A) ::= DEFAULT(X).              {A = X;}
   1164 %endif SQLITE_OMIT_PRAGMA
   1165 plus_num(A) ::= plus_opt number(X).   {A = X;}
   1166 minus_num(A) ::= MINUS number(X).     {A = X;}
   1167 number(A) ::= INTEGER|FLOAT(X).       {A = X;}
   1168 plus_opt ::= PLUS.
   1169 plus_opt ::= .
   1170 
   1171 //////////////////////////// The CREATE TRIGGER command /////////////////////
   1172 
   1173 %ifndef SQLITE_OMIT_TRIGGER
   1174 
   1175 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). {
   1176   Token all;
   1177   all.z = A.z;
   1178   all.n = (int)(Z.z - A.z) + Z.n;
   1179   sqlite3FinishTrigger(pParse, S, &all);
   1180 }
   1181 
   1182 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z)
   1183                     trigger_time(C) trigger_event(D)
   1184                     ON fullname(E) foreach_clause when_clause(G). {
   1185   sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR);
   1186   A = (Z.n==0?B:Z);
   1187 }
   1188 
   1189 %type trigger_time {int}
   1190 trigger_time(A) ::= BEFORE.      { A = TK_BEFORE; }
   1191 trigger_time(A) ::= AFTER.       { A = TK_AFTER;  }
   1192 trigger_time(A) ::= INSTEAD OF.  { A = TK_INSTEAD;}
   1193 trigger_time(A) ::= .            { A = TK_BEFORE; }
   1194 
   1195 %type trigger_event {struct TrigEvent}
   1196 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);}
   1197 trigger_event(A) ::= DELETE|INSERT(OP).       {A.a = @OP; A.b = 0;}
   1198 trigger_event(A) ::= UPDATE(OP).              {A.a = @OP; A.b = 0;}
   1199 trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;}
   1200 
   1201 foreach_clause ::= .
   1202 foreach_clause ::= FOR EACH ROW.
   1203 
   1204 %type when_clause {Expr*}
   1205 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
   1206 when_clause(A) ::= .             { A = 0; }
   1207 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; }
   1208 
   1209 %type trigger_cmd_list {TriggerStep*}
   1210 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
   1211 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. {
   1212   assert( Y!=0 );
   1213   Y->pLast->pNext = X;
   1214   Y->pLast = X;
   1215   A = Y;
   1216 }
   1217 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. {
   1218   assert( X!=0 );
   1219   X->pLast = X;
   1220   A = X;
   1221 }
   1222 
   1223 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements
   1224 // within a trigger.  The table to INSERT, UPDATE, or DELETE is always in
   1225 // the same database as the table that the trigger fires on.
   1226 //
   1227 %type trnm {Token}
   1228 trnm(A) ::= nm(X).   {A = X;}
   1229 trnm(A) ::= nm DOT nm(X). {
   1230   A = X;
   1231   sqlite3ErrorMsg(pParse,
   1232         "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
   1233         "statements within triggers");
   1234 }
   1235 
   1236 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE
   1237 // statements within triggers.  We make a specific error message for this
   1238 // since it is an exception to the default grammar rules.
   1239 //
   1240 tridxby ::= .
   1241 tridxby ::= INDEXED BY nm. {
   1242   sqlite3ErrorMsg(pParse,
   1243         "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
   1244         "within triggers");
   1245 }
   1246 tridxby ::= NOT INDEXED. {
   1247   sqlite3ErrorMsg(pParse,
   1248         "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
   1249         "within triggers");
   1250 }
   1251 
   1252 
   1253 
   1254 %type trigger_cmd {TriggerStep*}
   1255 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);}
   1256 // UPDATE
   1257 trigger_cmd(A) ::=
   1258    UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z).
   1259    { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); }
   1260 
   1261 // INSERT
   1262 trigger_cmd(A) ::=
   1263    insert_cmd(R) INTO trnm(X) inscollist_opt(F) VALUES LP itemlist(Y) RP.
   1264    {A = sqlite3TriggerInsertStep(pParse->db, &X, F, Y, 0, R);}
   1265 
   1266 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S).
   1267                {A = sqlite3TriggerInsertStep(pParse->db, &X, F, 0, S, R);}
   1268 
   1269 // DELETE
   1270 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y).
   1271                {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);}
   1272 
   1273 // SELECT
   1274 trigger_cmd(A) ::= select(X).  {A = sqlite3TriggerSelectStep(pParse->db, X); }
   1275 
   1276 // The special RAISE expression that may occur in trigger programs
   1277 expr(A) ::= RAISE(X) LP IGNORE RP(Y).  {
   1278   A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0);
   1279   if( A.pExpr ){
   1280     A.pExpr->affinity = OE_Ignore;
   1281   }
   1282   A.zStart = X.z;
   1283   A.zEnd = &Y.z[Y.n];
   1284 }
   1285 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y).  {
   1286   A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z);
   1287   if( A.pExpr ) {
   1288     A.pExpr->affinity = (char)T;
   1289   }
   1290   A.zStart = X.z;
   1291   A.zEnd = &Y.z[Y.n];
   1292 }
   1293 %endif  !SQLITE_OMIT_TRIGGER
   1294 
   1295 %type raisetype {int}
   1296 raisetype(A) ::= ROLLBACK.  {A = OE_Rollback;}
   1297 raisetype(A) ::= ABORT.     {A = OE_Abort;}
   1298 raisetype(A) ::= FAIL.      {A = OE_Fail;}
   1299 
   1300 
   1301 ////////////////////////  DROP TRIGGER statement //////////////////////////////
   1302 %ifndef SQLITE_OMIT_TRIGGER
   1303 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). {
   1304   sqlite3DropTrigger(pParse,X,NOERR);
   1305 }
   1306 %endif  !SQLITE_OMIT_TRIGGER
   1307 
   1308 //////////////////////// ATTACH DATABASE file AS name /////////////////////////
   1309 %ifndef SQLITE_OMIT_ATTACH
   1310 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
   1311   sqlite3Attach(pParse, F.pExpr, D.pExpr, K);
   1312 }
   1313 cmd ::= DETACH database_kw_opt expr(D). {
   1314   sqlite3Detach(pParse, D.pExpr);
   1315 }
   1316 
   1317 %type key_opt {Expr*}
   1318 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);}
   1319 key_opt(A) ::= .                     { A = 0; }
   1320 key_opt(A) ::= KEY expr(X).          { A = X.pExpr; }
   1321 
   1322 database_kw_opt ::= DATABASE.
   1323 database_kw_opt ::= .
   1324 %endif SQLITE_OMIT_ATTACH
   1325 
   1326 ////////////////////////// REINDEX collation //////////////////////////////////
   1327 %ifndef SQLITE_OMIT_REINDEX
   1328 cmd ::= REINDEX.                {sqlite3Reindex(pParse, 0, 0);}
   1329 cmd ::= REINDEX nm(X) dbnm(Y).  {sqlite3Reindex(pParse, &X, &Y);}
   1330 %endif  SQLITE_OMIT_REINDEX
   1331 
   1332 /////////////////////////////////// ANALYZE ///////////////////////////////////
   1333 %ifndef SQLITE_OMIT_ANALYZE
   1334 cmd ::= ANALYZE.                {sqlite3Analyze(pParse, 0, 0);}
   1335 cmd ::= ANALYZE nm(X) dbnm(Y).  {sqlite3Analyze(pParse, &X, &Y);}
   1336 %endif
   1337 
   1338 //////////////////////// ALTER TABLE table ... ////////////////////////////////
   1339 %ifndef SQLITE_OMIT_ALTERTABLE
   1340 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). {
   1341   sqlite3AlterRenameTable(pParse,X,&Z);
   1342 }
   1343 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). {
   1344   sqlite3AlterFinishAddColumn(pParse, &Y);
   1345 }
   1346 add_column_fullname ::= fullname(X). {
   1347   pParse->db->lookaside.bEnabled = 0;
   1348   sqlite3AlterBeginAddColumn(pParse, X);
   1349 }
   1350 kwcolumn_opt ::= .
   1351 kwcolumn_opt ::= COLUMNKW.
   1352 %endif  SQLITE_OMIT_ALTERTABLE
   1353 
   1354 //////////////////////// CREATE VIRTUAL TABLE ... /////////////////////////////
   1355 %ifndef SQLITE_OMIT_VIRTUALTABLE
   1356 cmd ::= create_vtab.                       {sqlite3VtabFinishParse(pParse,0);}
   1357 cmd ::= create_vtab LP vtabarglist RP(X).  {sqlite3VtabFinishParse(pParse,&X);}
   1358 create_vtab ::= createkw VIRTUAL TABLE nm(X) dbnm(Y) USING nm(Z). {
   1359     sqlite3VtabBeginParse(pParse, &X, &Y, &Z);
   1360 }
   1361 vtabarglist ::= vtabarg.
   1362 vtabarglist ::= vtabarglist COMMA vtabarg.
   1363 vtabarg ::= .                       {sqlite3VtabArgInit(pParse);}
   1364 vtabarg ::= vtabarg vtabargtoken.
   1365 vtabargtoken ::= ANY(X).            {sqlite3VtabArgExtend(pParse,&X);}
   1366 vtabargtoken ::= lp anylist RP(X).  {sqlite3VtabArgExtend(pParse,&X);}
   1367 lp ::= LP(X).                       {sqlite3VtabArgExtend(pParse,&X);}
   1368 anylist ::= .
   1369 anylist ::= anylist LP anylist RP.
   1370 anylist ::= anylist ANY.
   1371 %endif  SQLITE_OMIT_VIRTUALTABLE
   1372