/external/ceres-solver/internal/ceres/ |
covariance_impl.cc | 411 CRSMatrix jacobian; local 412 problem_->Evaluate(evaluate_options_, NULL, NULL, NULL, &jacobian); 415 // Construct a compressed column form of the Jacobian. 416 const int num_rows = jacobian.num_rows; 417 const int num_cols = jacobian.num_cols; 418 const int num_nonzeros = jacobian.values.size(); 425 transpose_rows[jacobian.cols[idx] + 1] += 1; 433 for (int idx = jacobian.rows[r]; idx < jacobian.rows[r + 1]; ++idx) { 434 const int c = jacobian.cols[idx] 574 CRSMatrix jacobian; local 663 CRSMatrix jacobian; local [all...] |
compressed_row_jacobian_writer.cc | 44 const Program* program, CompressedRowSparseMatrix* jacobian) { 47 vector<int>& col_blocks = *(jacobian->mutable_col_blocks()); 55 vector<int>& row_blocks = *(jacobian->mutable_row_blocks()); 88 // Count the number of jacobian nonzeros. 102 // Allocate storage for the jacobian with some extra space at the end. 103 // Allocate more space than needed to store the jacobian so that when the LM 106 CompressedRowSparseMatrix* jacobian = local 114 int* rows = jacobian->mutable_rows(); 115 int* cols = jacobian->mutable_cols(); 150 // parameter vector. This code mirrors that in Write(), where jacobian 182 CompressedRowSparseMatrix* jacobian = local [all...] |
program_evaluator.h | 32 // and stores the result into a jacobian. The particular type of jacobian is 36 // pointers to the jacobian blocks where the cost function evaluates to. 38 // jacobian blocks in the passed sparse matrix. 55 // SparseMatrix* jacobian, 60 // // Create a jacobian that this writer can write. Same as 69 // // larger sparse jacobian. 73 // SparseMatrix* jacobian); 104 void operator()(SparseMatrix* jacobian, int num_parameters) {} 139 SparseMatrix* jacobian) { [all...] |
compressed_row_jacobian_writer.h | 31 // A jacobian writer that directly writes to compressed row sparse matrices. 59 // This function is static so that it is available to other jacobian 61 // (Jacobian writers do not fall under any type hierarchy; they only 65 CompressedRowSparseMatrix* jacobian); 67 // It is necessary to determine the order of the jacobian blocks 71 // before block 2 in the column layout of the jacobian. Thus, 73 // jacobian blocks by their position in the state vector. 75 // This function is static so that it is available to other jacobian 77 // (Jacobian writers do not fall under any type hierarchy; they only 89 // jacobians temporarily then copy them over to the larger jacobian [all...] |
normal_prior_test.cc | 70 double * jacobian = new double[num_rows * num_cols]; local 74 prior.Evaluate(&x, residuals.data(), &jacobian); 82 MatrixRef J(jacobian, num_rows, num_cols); 87 delete []jacobian;
|
covariance_test.cc | 129 const double* jacobian) 130 : jacobian_(jacobian, jacobian + num_residuals * parameter_block_size) { 214 virtual bool ComputeJacobian(const double* x, double* jacobian) const { 215 jacobian[0] = x[0]; 216 jacobian[1] = x[1]; 239 double jacobian[] = { 1.0, 0.0, 0.0, 1.0}; local 240 problem_.AddResidualBlock(new UnaryCostFunction(2, 2, jacobian), NULL, x); 244 double jacobian[] = { 2.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 2.0 }; local 245 problem_.AddResidualBlock(new UnaryCostFunction(3, 3, jacobian), NULL, y) 249 double jacobian = 5.0; local 629 double jacobian[] = { 1.0, 0.0, 0.0, 1.0}; local 634 double jacobian[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; local 639 double jacobian = 5.0; local [all...] |
residual_block_utils_test.cc | 62 double jacobian; local 63 double* jacobians[] = { &jacobian };
|
parameter_block_test.cc | 71 // Ensure the local parameterization jacobian result is correctly computed. 102 double* jacobian) const { 103 jacobian[0] = *x * 2; 134 // Stops computing the jacobian after the first time. 149 virtual bool ComputeJacobian(const double* x, double* jacobian) const { 151 jacobian[0] = 0;
|
trust_region_strategy.h | 49 // the jacobian matrix and residual vector. 134 SparseMatrix* jacobian,
|
dogleg_strategy_test.cc | 77 Matrix jacobian = sqrtD * basis; local 78 jacobian_.reset(new DenseSparseMatrix(jacobian)); 82 residual_ = -jacobian * minimum; 105 Matrix jacobian = Ddiag.asDiagonal(); local 106 jacobian_.reset(new DenseSparseMatrix(jacobian)); 110 residual_ = -jacobian * minimum;
|
block_jacobian_writer.cc | 47 // per-parameter jacobian goes where in the overall program jacobian. 63 // are there. This will determine where the F blocks start in the jacobian 64 // matrix. Also compute the number of jacobian blocks. 135 // Create evaluate prepareres that point directly into the final jacobian. This 206 BlockSparseMatrix* jacobian = new BlockSparseMatrix(bs); local 207 CHECK_NOTNULL(jacobian); 208 return jacobian;
|
trust_region_minimizer.cc | 109 // of the Jacobian. 110 void TrustRegionMinimizer::EstimateScale(const SparseMatrix& jacobian, 112 jacobian.SquaredColumnNorm(scale); 113 for (int i = 0; i < jacobian.num_cols(); ++i) { 132 SparseMatrix* jacobian = CHECK_NOTNULL(options_.jacobian); local 196 // Do initial cost and Jacobian evaluation. 202 jacobian)) { 203 summary->message = "Residual and Jacobian evaluation failed."; 236 EstimateScale(*jacobian, scale.data()) [all...] |
trust_region_minimizer_test.cc | 53 // indicate which of the four variables/columns of the jacobian are 90 SparseMatrix* jacobian) { 124 if (jacobian != NULL) { 126 dense_jacobian = down_cast<DenseSparseMatrix*>(jacobian); 227 scoped_ptr<SparseMatrix> jacobian(powell_evaluator.CreateJacobian()); 234 minimizer_options.jacobian = jacobian.get();
|
minimizer.h | 113 jacobian = NULL; 168 // Jacobian matrix. The Options struct does not own this pointer. 176 // Object holding the Jacobian matrix. It is assumed that the 180 SparseMatrix* jacobian; member in struct:ceres::internal::Minimizer::Options
|
coordinate_descent_minimizer.cc | 217 scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); 218 CHECK_NOTNULL(jacobian.get()); 228 minimizer_options.jacobian = jacobian.get();
|
residual_block_test.cc | 64 MatrixRef jacobian(jacobians[k], 67 jacobian.setConstant(k); 119 // Verify cost, residual, and jacobian evaluation. 147 // Verify cost, residual, and partial jacobian evaluation. 154 jacobian_ptrs[1] = NULL; // Don't compute the jacobian for y. 179 // evaluator into the "local" jacobian. In the tests, the "subset 181 // from these jacobians. Put values in the jacobian that make this 189 MatrixRef jacobian(jacobians[k], 193 jacobian.col(j).setConstant(j); 258 // Verify cost, residual, and jacobian evaluation [all...] |
problem_impl.h | 141 CRSMatrix* jacobian); 182 CRSMatrix* jacobian);
|
problem.cc | 202 CRSMatrix* jacobian) { 207 jacobian);
|
problem_impl.cc | 603 CRSMatrix* jacobian) { 607 jacobian == NULL) { 649 // columns of the jacobian, we need to make sure that they are 683 // use a SparseRowCompressedMatrix for the jacobian. This is because 684 // the Evaluator decides the storage for the Jacobian based on the 717 if (jacobian != NULL) { 758 if (jacobian != NULL) { 759 tmp_jacobian->ToCRSMatrix(jacobian); [all...] |
problem_test.cc | 1097 CRSMatrix jacobian; local [all...] |
/external/eigen/unsupported/Eigen/src/AutoDiff/ |
AutoDiffVector.h | 73 : m_values(other.values()), m_jacobian(other.jacobian()) 77 : m_values(other.values()), m_jacobian(other.jacobian()) 84 m_jacobian = other.jacobian(); 91 m_jacobian = other.jacobian(); 98 inline const JacobianType& jacobian() const { return m_jacobian; } function in class:Eigen::AutoDiffVector 99 inline JacobianType& jacobian() { return m_jacobian; } function in class:Eigen::AutoDiffVector 111 m_jacobian + other.jacobian()); 119 m_jacobian += other.jacobian(); 133 m_jacobian - other.jacobian()); 141 m_jacobian -= other.jacobian(); [all...] |
/external/ceres-solver/include/ceres/internal/ |
numeric_diff.h | 95 double *jacobian) { 114 Map<JacobianMatrix> parameter_jacobian(jacobian, 148 // Compute this column of the jacobian in 3 steps: 196 double *jacobian) {
|
/external/ceres-solver/include/ceres/ |
problem.h | 289 // ordering, rendering the jacobian or residuals returned from the solver 290 // uninterpretable. If you depend on the evaluated jacobian, do not use 300 // ordering, rendering the jacobian or residuals returned from the solver 301 // uninterpretable. If you depend on the evaluated jacobian, do not use 391 // jacobian matrix. If parameter_blocks is empty, then it is 406 // jacobian are ordered. If residual_blocks is empty, then it is 450 // the gradient vector (and the number of columns in the jacobian) 454 // columns in the jacobian). 459 CRSMatrix* jacobian);
|
/external/opencv/cv/src/ |
cvcalibration.cpp | 487 cvRodrigues2( const CvMat* src, CvMat* dst, CvMat* jacobian ) 516 if( jacobian ) 518 if( !CV_IS_MAT(jacobian) ) 519 CV_ERROR( CV_StsBadArg, "Jacobian is not a valid matrix" ); 521 if( !CV_ARE_DEPTHS_EQ(src, jacobian) || CV_MAT_CN(jacobian->type) != 1 ) 522 CV_ERROR( CV_StsUnmatchedFormats, "Jacobian must have 32fC1 or 64fC1 datatype" ); 524 if( (jacobian->rows != 9 || jacobian->cols != 3) && 525 (jacobian->rows != 3 || jacobian->cols != 9) [all...] |
/external/eigen/unsupported/Eigen/src/LevenbergMarquardt/ |
LevenbergMarquardt.h | 177 /** \returns a reference to the diagonal of the jacobian */ 186 /** \returns the number of jacobian evaluation */ 202 /** \returns a reference to the matrix where the current Jacobian matrix is stored 204 JacobianType& jacobian() {return m_fjac; } function in class:Eigen::LevenbergMarquardt 206 /** \returns a reference to the triangular matrix R from the QR of the jacobian matrix. 207 * \sa jacobian() 231 JacobianType m_rfactor; // The triangular matrix R from the QR of the jacobian matrix m_fjac 283 //FIXME Sparse Case : Allocate space for the jacobian
|