Home | History | Annotate | Download | only in glshared
      1 /*-------------------------------------------------------------------------
      2  * drawElements Quality Program OpenGL (ES) Module
      3  * -----------------------------------------------
      4  *
      5  * Copyright 2014 The Android Open Source Project
      6  *
      7  * Licensed under the Apache License, Version 2.0 (the "License");
      8  * you may not use this file except in compliance with the License.
      9  * You may obtain a copy of the License at
     10  *
     11  *      http://www.apache.org/licenses/LICENSE-2.0
     12  *
     13  * Unless required by applicable law or agreed to in writing, software
     14  * distributed under the License is distributed on an "AS IS" BASIS,
     15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16  * See the License for the specific language governing permissions and
     17  * limitations under the License.
     18  *
     19  *//*!
     20  * \file
     21  * \brief rasterization test utils.
     22  *//*--------------------------------------------------------------------*/
     23 
     24 #include "glsRasterizationTestUtil.hpp"
     25 #include "tcuVector.hpp"
     26 #include "tcuSurface.hpp"
     27 #include "tcuTestLog.hpp"
     28 #include "tcuTextureUtil.hpp"
     29 #include "tcuVectorUtil.hpp"
     30 #include "tcuFloat.hpp"
     31 #include "deMath.h"
     32 
     33 #include "rrRasterizer.hpp"
     34 
     35 #include <limits>
     36 
     37 namespace deqp
     38 {
     39 namespace gls
     40 {
     41 namespace RasterizationTestUtil
     42 {
     43 namespace
     44 {
     45 
     46 bool lineLineIntersect (const tcu::Vector<deInt64, 2>& line0Beg, const tcu::Vector<deInt64, 2>& line0End, const tcu::Vector<deInt64, 2>& line1Beg, const tcu::Vector<deInt64, 2>& line1End)
     47 {
     48 	typedef tcu::Vector<deInt64, 2> I64Vec2;
     49 
     50 	// Lines do not intersect if the other line's endpoints are on the same side
     51 	// otherwise, the do intersect
     52 
     53 	// Test line 0
     54 	{
     55 		const I64Vec2 line			= line0End - line0Beg;
     56 		const I64Vec2 v0			= line1Beg - line0Beg;
     57 		const I64Vec2 v1			= line1End - line0Beg;
     58 		const deInt64 crossProduct0	= (line.x() * v0.y() - line.y() * v0.x());
     59 		const deInt64 crossProduct1	= (line.x() * v1.y() - line.y() * v1.x());
     60 
     61 		// check signs
     62 		if ((crossProduct0 < 0 && crossProduct1 < 0) ||
     63 			(crossProduct0 > 0 && crossProduct1 > 0))
     64 			return false;
     65 	}
     66 
     67 	// Test line 1
     68 	{
     69 		const I64Vec2 line			= line1End - line1Beg;
     70 		const I64Vec2 v0			= line0Beg - line1Beg;
     71 		const I64Vec2 v1			= line0End - line1Beg;
     72 		const deInt64 crossProduct0	= (line.x() * v0.y() - line.y() * v0.x());
     73 		const deInt64 crossProduct1	= (line.x() * v1.y() - line.y() * v1.x());
     74 
     75 		// check signs
     76 		if ((crossProduct0 < 0 && crossProduct1 < 0) ||
     77 			(crossProduct0 > 0 && crossProduct1 > 0))
     78 			return false;
     79 	}
     80 
     81 	return true;
     82 }
     83 
     84 bool isTriangleClockwise (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::Vec4& p2)
     85 {
     86 	const tcu::Vec2	u				(p1.x() / p1.w() - p0.x() / p0.w(), p1.y() / p1.w() - p0.y() / p0.w());
     87 	const tcu::Vec2	v				(p2.x() / p2.w() - p0.x() / p0.w(), p2.y() / p2.w() - p0.y() / p0.w());
     88 	const float		crossProduct	= (u.x() * v.y() - u.y() * v.x());
     89 
     90 	return crossProduct > 0.0f;
     91 }
     92 
     93 bool compareColors (const tcu::RGBA& colorA, const tcu::RGBA& colorB, int redBits, int greenBits, int blueBits)
     94 {
     95 	const int thresholdRed		= 1 << (8 - redBits);
     96 	const int thresholdGreen	= 1 << (8 - greenBits);
     97 	const int thresholdBlue		= 1 << (8 - blueBits);
     98 
     99 	return	deAbs32(colorA.getRed()   - colorB.getRed())   <= thresholdRed   &&
    100 			deAbs32(colorA.getGreen() - colorB.getGreen()) <= thresholdGreen &&
    101 			deAbs32(colorA.getBlue()  - colorB.getBlue())  <= thresholdBlue;
    102 }
    103 
    104 bool pixelNearLineSegment (const tcu::IVec2& pixel, const tcu::Vec2& p0, const tcu::Vec2& p1)
    105 {
    106 	const tcu::Vec2 pixelCenterPosition = tcu::Vec2(pixel.x() + 0.5f, pixel.y() + 0.5f);
    107 
    108 	// "Near" = Distance from the line to the pixel is less than 2 * pixel_max_radius. (pixel_max_radius = sqrt(2) / 2)
    109 	const float maxPixelDistance		= 1.414f;
    110 	const float maxPixelDistanceSquared	= 2.0f;
    111 
    112 	// Near the line
    113 	{
    114 		const tcu::Vec2	line			= p1                  - p0;
    115 		const tcu::Vec2	v				= pixelCenterPosition - p0;
    116 		const float		crossProduct	= (line.x() * v.y() - line.y() * v.x());
    117 
    118 		// distance to line: (line x v) / |line|
    119 		//     |(line x v) / |line|| > maxPixelDistance
    120 		// ==> (line x v)^2 / |line|^2 > maxPixelDistance^2
    121 		// ==> (line x v)^2 > maxPixelDistance^2 * |line|^2
    122 
    123 		if (crossProduct * crossProduct > maxPixelDistanceSquared * tcu::lengthSquared(line))
    124 			return false;
    125 	}
    126 
    127 	// Between the endpoints
    128 	{
    129 		// distance from line endpoint 1 to pixel is less than line length + maxPixelDistance
    130 		const float maxDistance = tcu::length(p1 - p0) + maxPixelDistance;
    131 
    132 		if (tcu::length(pixelCenterPosition - p0) > maxDistance)
    133 			return false;
    134 		if (tcu::length(pixelCenterPosition - p1) > maxDistance)
    135 			return false;
    136 	}
    137 
    138 	return true;
    139 }
    140 
    141 bool pixelOnlyOnASharedEdge (const tcu::IVec2& pixel, const TriangleSceneSpec::SceneTriangle& triangle, const tcu::IVec2& viewportSize)
    142 {
    143 	if (triangle.sharedEdge[0] || triangle.sharedEdge[1] || triangle.sharedEdge[2])
    144 	{
    145 		const tcu::Vec2 triangleNormalizedDeviceSpace[3] =
    146 		{
    147 			tcu::Vec2(triangle.positions[0].x() / triangle.positions[0].w(), triangle.positions[0].y() / triangle.positions[0].w()),
    148 			tcu::Vec2(triangle.positions[1].x() / triangle.positions[1].w(), triangle.positions[1].y() / triangle.positions[1].w()),
    149 			tcu::Vec2(triangle.positions[2].x() / triangle.positions[2].w(), triangle.positions[2].y() / triangle.positions[2].w()),
    150 		};
    151 		const tcu::Vec2 triangleScreenSpace[3] =
    152 		{
    153 			(triangleNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
    154 			(triangleNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
    155 			(triangleNormalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
    156 		};
    157 
    158 		const bool pixelOnEdge0 = pixelNearLineSegment(pixel, triangleScreenSpace[0], triangleScreenSpace[1]);
    159 		const bool pixelOnEdge1 = pixelNearLineSegment(pixel, triangleScreenSpace[1], triangleScreenSpace[2]);
    160 		const bool pixelOnEdge2 = pixelNearLineSegment(pixel, triangleScreenSpace[2], triangleScreenSpace[0]);
    161 
    162 		// If the pixel is on a multiple edges return false
    163 
    164 		if (pixelOnEdge0 && !pixelOnEdge1 && !pixelOnEdge2)
    165 			return triangle.sharedEdge[0];
    166 		if (!pixelOnEdge0 && pixelOnEdge1 && !pixelOnEdge2)
    167 			return triangle.sharedEdge[1];
    168 		if (!pixelOnEdge0 && !pixelOnEdge1 && pixelOnEdge2)
    169 			return triangle.sharedEdge[2];
    170 	}
    171 
    172 	return false;
    173 }
    174 
    175 float triangleArea (const tcu::Vec2& s0, const tcu::Vec2& s1, const tcu::Vec2& s2)
    176 {
    177 	const tcu::Vec2	u				(s1.x() - s0.x(), s1.y() - s0.y());
    178 	const tcu::Vec2	v				(s2.x() - s0.x(), s2.y() - s0.y());
    179 	const float		crossProduct	= (u.x() * v.y() - u.y() * v.x());
    180 
    181 	return crossProduct / 2.0f;
    182 }
    183 
    184 tcu::IVec4 getTriangleAABB (const TriangleSceneSpec::SceneTriangle& triangle, const tcu::IVec2& viewportSize)
    185 {
    186 	const tcu::Vec2 normalizedDeviceSpace[3] =
    187 	{
    188 		tcu::Vec2(triangle.positions[0].x() / triangle.positions[0].w(), triangle.positions[0].y() / triangle.positions[0].w()),
    189 		tcu::Vec2(triangle.positions[1].x() / triangle.positions[1].w(), triangle.positions[1].y() / triangle.positions[1].w()),
    190 		tcu::Vec2(triangle.positions[2].x() / triangle.positions[2].w(), triangle.positions[2].y() / triangle.positions[2].w()),
    191 	};
    192 	const tcu::Vec2 screenSpace[3] =
    193 	{
    194 		(normalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
    195 		(normalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
    196 		(normalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
    197 	};
    198 
    199 	tcu::IVec4 aabb;
    200 
    201 	aabb.x() = (int)deFloatFloor(de::min(de::min(screenSpace[0].x(), screenSpace[1].x()), screenSpace[2].x()));
    202 	aabb.y() = (int)deFloatFloor(de::min(de::min(screenSpace[0].y(), screenSpace[1].y()), screenSpace[2].y()));
    203 	aabb.z() = (int)deFloatCeil (de::max(de::max(screenSpace[0].x(), screenSpace[1].x()), screenSpace[2].x()));
    204 	aabb.w() = (int)deFloatCeil (de::max(de::max(screenSpace[0].y(), screenSpace[1].y()), screenSpace[2].y()));
    205 
    206 	return aabb;
    207 }
    208 
    209 float getExponentEpsilonFromULP (int valueExponent, deUint32 ulp)
    210 {
    211 	DE_ASSERT(ulp < (1u<<10));
    212 
    213 	// assume mediump precision, using ulp as ulps in a 10 bit mantissa
    214 	return tcu::Float32::construct(+1, valueExponent, (1u<<23) + (ulp << (23 - 10))).asFloat() - tcu::Float32::construct(+1, valueExponent, (1u<<23)).asFloat();
    215 }
    216 
    217 float getValueEpsilonFromULP (float value, deUint32 ulp)
    218 {
    219 	DE_ASSERT(value != std::numeric_limits<float>::infinity() && value != -std::numeric_limits<float>::infinity());
    220 
    221 	const int exponent = tcu::Float32(value).exponent();
    222 	return getExponentEpsilonFromULP(exponent, ulp);
    223 }
    224 
    225 float getMaxValueWithinError (float value, deUint32 ulp)
    226 {
    227 	if (value == std::numeric_limits<float>::infinity() || value == -std::numeric_limits<float>::infinity())
    228 		return value;
    229 
    230 	return value + getValueEpsilonFromULP(value, ulp);
    231 }
    232 
    233 float getMinValueWithinError (float value, deUint32 ulp)
    234 {
    235 	if (value == std::numeric_limits<float>::infinity() || value == -std::numeric_limits<float>::infinity())
    236 		return value;
    237 
    238 	return value - getValueEpsilonFromULP(value, ulp);
    239 }
    240 
    241 float getMinFlushToZero (float value)
    242 {
    243 	// flush to zero if that decreases the value
    244 	// assume mediump precision
    245 	if (value > 0.0f && value < tcu::Float32::construct(+1, -14, 1u<<23).asFloat())
    246 		return 0.0f;
    247 	return value;
    248 }
    249 
    250 float getMaxFlushToZero (float value)
    251 {
    252 	// flush to zero if that increases the value
    253 	// assume mediump precision
    254 	if (value < 0.0f && value > tcu::Float32::construct(-1, -14, 1u<<23).asFloat())
    255 		return 0.0f;
    256 	return value;
    257 }
    258 
    259 tcu::IVec3 convertRGB8ToNativeFormat (const tcu::RGBA& color, const RasterizationArguments& args)
    260 {
    261 	tcu::IVec3 pixelNativeColor;
    262 
    263 	for (int channelNdx = 0; channelNdx < 3; ++channelNdx)
    264 	{
    265 		const int channelBitCount	= (channelNdx == 0) ? (args.redBits) : (channelNdx == 1) ? (args.greenBits) : (args.blueBits);
    266 		const int channelPixelValue	= (channelNdx == 0) ? (color.getRed()) : (channelNdx == 1) ? (color.getGreen()) : (color.getBlue());
    267 
    268 		if (channelBitCount <= 8)
    269 			pixelNativeColor[channelNdx] = channelPixelValue >> (8 - channelBitCount);
    270 		else if (channelBitCount == 8)
    271 			pixelNativeColor[channelNdx] = channelPixelValue;
    272 		else
    273 		{
    274 			// just in case someone comes up with 8+ bits framebuffers pixel formats. But as
    275 			// we can only read in rgba8, we have to guess the trailing bits. Guessing 0.
    276 			pixelNativeColor[channelNdx] = channelPixelValue << (channelBitCount - 8);
    277 		}
    278 	}
    279 
    280 	return pixelNativeColor;
    281 }
    282 
    283 /*--------------------------------------------------------------------*//*!
    284  * Returns the maximum value of x / y, where x c [minDividend, maxDividend]
    285  * and y c [minDivisor, maxDivisor]
    286  *//*--------------------------------------------------------------------*/
    287 float maximalRangeDivision (float minDividend, float maxDividend, float minDivisor, float maxDivisor)
    288 {
    289 	DE_ASSERT(minDividend <= maxDividend);
    290 	DE_ASSERT(minDivisor <= maxDivisor);
    291 
    292 	// special cases
    293 	if (minDividend == 0.0f && maxDividend == 0.0f)
    294 		return 0.0f;
    295 	if (minDivisor <= 0.0f && maxDivisor >= 0.0f)
    296 		return std::numeric_limits<float>::infinity();
    297 
    298 	return de::max(de::max(minDividend / minDivisor, minDividend / maxDivisor), de::max(maxDividend / minDivisor, maxDividend / maxDivisor));
    299 }
    300 
    301 /*--------------------------------------------------------------------*//*!
    302  * Returns the minimum value of x / y, where x c [minDividend, maxDividend]
    303  * and y c [minDivisor, maxDivisor]
    304  *//*--------------------------------------------------------------------*/
    305 float minimalRangeDivision (float minDividend, float maxDividend, float minDivisor, float maxDivisor)
    306 {
    307 	DE_ASSERT(minDividend <= maxDividend);
    308 	DE_ASSERT(minDivisor <= maxDivisor);
    309 
    310 	// special cases
    311 	if (minDividend == 0.0f && maxDividend == 0.0f)
    312 		return 0.0f;
    313 	if (minDivisor <= 0.0f && maxDivisor >= 0.0f)
    314 		return -std::numeric_limits<float>::infinity();
    315 
    316 	return de::min(de::min(minDividend / minDivisor, minDividend / maxDivisor), de::min(maxDividend / minDivisor, maxDividend / maxDivisor));
    317 }
    318 
    319 struct InterpolationRange
    320 {
    321 	tcu::Vec3 max;
    322 	tcu::Vec3 min;
    323 };
    324 
    325 struct LineInterpolationRange
    326 {
    327 	tcu::Vec2 max;
    328 	tcu::Vec2 min;
    329 };
    330 
    331 InterpolationRange calcTriangleInterpolationWeights (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::Vec4& p2, const tcu::Vec2& ndpixel)
    332 {
    333 	const int roundError		= 1;
    334 	const int barycentricError	= 3;
    335 	const int divError			= 8;
    336 
    337 	const tcu::Vec2 nd0 = p0.swizzle(0, 1) / p0.w();
    338 	const tcu::Vec2 nd1 = p1.swizzle(0, 1) / p1.w();
    339 	const tcu::Vec2 nd2 = p2.swizzle(0, 1) / p2.w();
    340 
    341 	const float ka = triangleArea(ndpixel, nd1, nd2);
    342 	const float kb = triangleArea(ndpixel, nd2, nd0);
    343 	const float kc = triangleArea(ndpixel, nd0, nd1);
    344 
    345 	const float kaMax = getMaxFlushToZero(getMaxValueWithinError(ka, barycentricError));
    346 	const float kbMax = getMaxFlushToZero(getMaxValueWithinError(kb, barycentricError));
    347 	const float kcMax = getMaxFlushToZero(getMaxValueWithinError(kc, barycentricError));
    348 	const float kaMin = getMinFlushToZero(getMinValueWithinError(ka, barycentricError));
    349 	const float kbMin = getMinFlushToZero(getMinValueWithinError(kb, barycentricError));
    350 	const float kcMin = getMinFlushToZero(getMinValueWithinError(kc, barycentricError));
    351 	DE_ASSERT(kaMin <= kaMax);
    352 	DE_ASSERT(kbMin <= kbMax);
    353 	DE_ASSERT(kcMin <= kcMax);
    354 
    355 	// calculate weights: vec3(ka / p0.w, kb / p1.w, kc / p2.w) / (ka / p0.w + kb / p1.w + kc / p2.w)
    356 	const float maxPreDivisionValues[3] =
    357 	{
    358 		getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(kaMax / p0.w()), divError)),
    359 		getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(kbMax / p1.w()), divError)),
    360 		getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(kcMax / p2.w()), divError)),
    361 	};
    362 	const float minPreDivisionValues[3] =
    363 	{
    364 		getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(kaMin / p0.w()), divError)),
    365 		getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(kbMin / p1.w()), divError)),
    366 		getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(kcMin / p2.w()), divError)),
    367 	};
    368 	DE_ASSERT(minPreDivisionValues[0] <= maxPreDivisionValues[0]);
    369 	DE_ASSERT(minPreDivisionValues[1] <= maxPreDivisionValues[1]);
    370 	DE_ASSERT(minPreDivisionValues[2] <= maxPreDivisionValues[2]);
    371 
    372 	const float maxDivisor = getMaxFlushToZero(getMaxValueWithinError(maxPreDivisionValues[0] + maxPreDivisionValues[1] + maxPreDivisionValues[2], 2*roundError));
    373 	const float minDivisor = getMinFlushToZero(getMinValueWithinError(minPreDivisionValues[0] + minPreDivisionValues[1] + minPreDivisionValues[2], 2*roundError));
    374 	DE_ASSERT(minDivisor <= maxDivisor);
    375 
    376 	InterpolationRange returnValue;
    377 
    378 	returnValue.max.x() = getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(maximalRangeDivision(minPreDivisionValues[0], maxPreDivisionValues[0], minDivisor, maxDivisor)), divError));
    379 	returnValue.max.y() = getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(maximalRangeDivision(minPreDivisionValues[1], maxPreDivisionValues[1], minDivisor, maxDivisor)), divError));
    380 	returnValue.max.z() = getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(maximalRangeDivision(minPreDivisionValues[2], maxPreDivisionValues[2], minDivisor, maxDivisor)), divError));
    381 	returnValue.min.x() = getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(minimalRangeDivision(minPreDivisionValues[0], maxPreDivisionValues[0], minDivisor, maxDivisor)), divError));
    382 	returnValue.min.y() = getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(minimalRangeDivision(minPreDivisionValues[1], maxPreDivisionValues[1], minDivisor, maxDivisor)), divError));
    383 	returnValue.min.z() = getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(minimalRangeDivision(minPreDivisionValues[2], maxPreDivisionValues[2], minDivisor, maxDivisor)), divError));
    384 
    385 	DE_ASSERT(returnValue.min.x() <= returnValue.max.x());
    386 	DE_ASSERT(returnValue.min.y() <= returnValue.max.y());
    387 	DE_ASSERT(returnValue.min.z() <= returnValue.max.z());
    388 
    389 	return returnValue;
    390 }
    391 
    392 LineInterpolationRange calcSingleSampleLineInterpolationWeights (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::Vec2& ndpoint)
    393 {
    394 	const int divError = 3;
    395 
    396 	const tcu::Vec2 nd0 = p0.swizzle(0, 1) / p0.w();
    397 	const tcu::Vec2 nd1 = p1.swizzle(0, 1) / p1.w();
    398 
    399 	// project p to the line along the minor direction
    400 
    401 	const bool		xMajor		= (de::abs(nd0.x() - nd1.x()) >= de::abs(nd0.y() - nd1.y()));
    402 	const tcu::Vec2	minorDir	= (xMajor) ? (tcu::Vec2(0.0f, 1.0f)) : (tcu::Vec2(1.0f, 0.0f));
    403 	const tcu::Vec2	lineDir		(nd1 - nd0);
    404 	const tcu::Vec2	d			(ndpoint - nd0);
    405 
    406 	// calculate factors: vec2((1-t) / p0.w, t / p1.w) / ((1-t) / p0.w + t / p1.w)
    407 
    408 	const float		tFactorMax				= getMaxValueWithinError(-(1.0f / (minorDir.x()*lineDir.y() - lineDir.x()*minorDir.y())), divError);
    409 	const float		tFactorMin				= getMinValueWithinError(-(1.0f / (minorDir.x()*lineDir.y() - lineDir.x()*minorDir.y())), divError);
    410 	DE_ASSERT(tFactorMin <= tFactorMax);
    411 
    412 	const float		tResult1				= tFactorMax * (minorDir.y()*d.x() - minorDir.x()*d.y());
    413 	const float		tResult2				= tFactorMin * (minorDir.y()*d.x() - minorDir.x()*d.y());
    414 	const float		tMax					= de::max(tResult1, tResult2);
    415 	const float		tMin					= de::min(tResult1, tResult2);
    416 	DE_ASSERT(tMin <= tMax);
    417 
    418 	const float		perspectiveTMax			= getMaxValueWithinError(maximalRangeDivision(tMin, tMax, p1.w(), p1.w()), divError);
    419 	const float		perspectiveTMin			= getMinValueWithinError(minimalRangeDivision(tMin, tMax, p1.w(), p1.w()), divError);
    420 	DE_ASSERT(perspectiveTMin <= perspectiveTMax);
    421 
    422 	const float		perspectiveInvTMax		= getMaxValueWithinError(maximalRangeDivision((1.0f - tMax), (1.0f - tMin), p0.w(), p0.w()), divError);
    423 	const float		perspectiveInvTMin		= getMinValueWithinError(minimalRangeDivision((1.0f - tMax), (1.0f - tMin), p0.w(), p0.w()), divError);
    424 	DE_ASSERT(perspectiveInvTMin <= perspectiveInvTMax);
    425 
    426 	const float		perspectiveDivisorMax	= perspectiveTMax + perspectiveInvTMax;
    427 	const float		perspectiveDivisorMin	= perspectiveTMin + perspectiveInvTMin;
    428 	DE_ASSERT(perspectiveDivisorMin <= perspectiveDivisorMax);
    429 
    430 	LineInterpolationRange returnValue;
    431 	returnValue.max.x() = getMaxValueWithinError(maximalRangeDivision(perspectiveInvTMin,	perspectiveInvTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
    432 	returnValue.max.y() = getMaxValueWithinError(maximalRangeDivision(perspectiveTMin,		perspectiveTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
    433 	returnValue.min.x() = getMinValueWithinError(minimalRangeDivision(perspectiveInvTMin,	perspectiveInvTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
    434 	returnValue.min.y() = getMinValueWithinError(minimalRangeDivision(perspectiveTMin,		perspectiveTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
    435 
    436 	DE_ASSERT(returnValue.min.x() <= returnValue.max.x());
    437 	DE_ASSERT(returnValue.min.y() <= returnValue.max.y());
    438 
    439 	return returnValue;
    440 }
    441 
    442 LineInterpolationRange calcMultiSampleLineInterpolationWeights (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::Vec2& ndpoint)
    443 {
    444 	const int divError = 3;
    445 
    446 	// calc weights: vec2((1-t) / p0.w, t / p1.w) / ((1-t) / p0.w + t / p1.w)
    447 
    448 	// highp vertex shader
    449 	const tcu::Vec2 nd0 = p0.swizzle(0, 1) / p0.w();
    450 	const tcu::Vec2 nd1 = p1.swizzle(0, 1) / p1.w();
    451 
    452 	// Allow 1 ULP
    453 	const float		dividend	= tcu::dot(ndpoint - nd0, nd1 - nd0);
    454 	const float		dividendMax	= getMaxValueWithinError(dividend, 1);
    455 	const float		dividendMin	= getMaxValueWithinError(dividend, 1);
    456 	DE_ASSERT(dividendMin <= dividendMax);
    457 
    458 	// Assuming lengthSquared will not be implemented as sqrt(x)^2, allow 1 ULP
    459 	const float		divisor		= tcu::lengthSquared(nd1 - nd0);
    460 	const float		divisorMax	= getMaxValueWithinError(divisor, 1);
    461 	const float		divisorMin	= getMaxValueWithinError(divisor, 1);
    462 	DE_ASSERT(divisorMin <= divisorMax);
    463 
    464 	// Allow 3 ULP precision for division
    465 	const float		tMax		= getMaxValueWithinError(maximalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
    466 	const float		tMin		= getMinValueWithinError(minimalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
    467 	DE_ASSERT(tMin <= tMax);
    468 
    469 	const float		perspectiveTMax			= getMaxValueWithinError(maximalRangeDivision(tMin, tMax, p1.w(), p1.w()), divError);
    470 	const float		perspectiveTMin			= getMinValueWithinError(minimalRangeDivision(tMin, tMax, p1.w(), p1.w()), divError);
    471 	DE_ASSERT(perspectiveTMin <= perspectiveTMax);
    472 
    473 	const float		perspectiveInvTMax		= getMaxValueWithinError(maximalRangeDivision((1.0f - tMax), (1.0f - tMin), p0.w(), p0.w()), divError);
    474 	const float		perspectiveInvTMin		= getMinValueWithinError(minimalRangeDivision((1.0f - tMax), (1.0f - tMin), p0.w(), p0.w()), divError);
    475 	DE_ASSERT(perspectiveInvTMin <= perspectiveInvTMax);
    476 
    477 	const float		perspectiveDivisorMax	= perspectiveTMax + perspectiveInvTMax;
    478 	const float		perspectiveDivisorMin	= perspectiveTMin + perspectiveInvTMin;
    479 	DE_ASSERT(perspectiveDivisorMin <= perspectiveDivisorMax);
    480 
    481 	LineInterpolationRange returnValue;
    482 	returnValue.max.x() = getMaxValueWithinError(maximalRangeDivision(perspectiveInvTMin,	perspectiveInvTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
    483 	returnValue.max.y() = getMaxValueWithinError(maximalRangeDivision(perspectiveTMin,		perspectiveTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
    484 	returnValue.min.x() = getMinValueWithinError(minimalRangeDivision(perspectiveInvTMin,	perspectiveInvTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
    485 	returnValue.min.y() = getMinValueWithinError(minimalRangeDivision(perspectiveTMin,		perspectiveTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
    486 
    487 	DE_ASSERT(returnValue.min.x() <= returnValue.max.x());
    488 	DE_ASSERT(returnValue.min.y() <= returnValue.max.y());
    489 
    490 	return returnValue;
    491 }
    492 
    493 LineInterpolationRange calcSingleSampleLineInterpolationRange (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::IVec2& pixel, const tcu::IVec2& viewportSize, int subpixelBits)
    494 {
    495 	// allow interpolation weights anywhere in the central subpixels
    496 	const float testSquareSize = (2.0f / (1UL << subpixelBits));
    497 	const float testSquarePos  = (0.5f - testSquareSize / 2);
    498 	const tcu::Vec2 corners[4] =
    499 	{
    500 		tcu::Vec2((pixel.x() + testSquarePos + 0.0f)           / viewportSize.x() * 2.0f - 1.0f, (pixel.y() + testSquarePos + 0.0f          ) / viewportSize.y() * 2.0f - 1.0f),
    501 		tcu::Vec2((pixel.x() + testSquarePos + 0.0f)           / viewportSize.x() * 2.0f - 1.0f, (pixel.y() + testSquarePos + testSquareSize) / viewportSize.y() * 2.0f - 1.0f),
    502 		tcu::Vec2((pixel.x() + testSquarePos + testSquareSize) / viewportSize.x() * 2.0f - 1.0f, (pixel.y() + testSquarePos + testSquareSize) / viewportSize.y() * 2.0f - 1.0f),
    503 		tcu::Vec2((pixel.x() + testSquarePos + testSquareSize) / viewportSize.x() * 2.0f - 1.0f, (pixel.y() + testSquarePos + 0.0f          ) / viewportSize.y() * 2.0f - 1.0f),
    504 	};
    505 
    506 	// calculate interpolation as a line
    507 	const LineInterpolationRange weights[4] =
    508 	{
    509 		calcSingleSampleLineInterpolationWeights(p0, p1, corners[0]),
    510 		calcSingleSampleLineInterpolationWeights(p0, p1, corners[1]),
    511 		calcSingleSampleLineInterpolationWeights(p0, p1, corners[2]),
    512 		calcSingleSampleLineInterpolationWeights(p0, p1, corners[3]),
    513 	};
    514 
    515 	const tcu::Vec2 minWeights = tcu::min(tcu::min(weights[0].min, weights[1].min), tcu::min(weights[2].min, weights[3].min));
    516 	const tcu::Vec2 maxWeights = tcu::max(tcu::max(weights[0].max, weights[1].max), tcu::max(weights[2].max, weights[3].max));
    517 
    518 	// convert to three-component form. For all triangles, the vertex 0 is always emitted by the line starting point, and vertex 2 by the ending point
    519 	LineInterpolationRange result;
    520 	result.min = minWeights;
    521 	result.max = maxWeights;
    522 	return result;
    523 }
    524 
    525 struct TriangleInterpolator
    526 {
    527 	const TriangleSceneSpec& scene;
    528 
    529 	TriangleInterpolator (const TriangleSceneSpec& scene_)
    530 		: scene(scene_)
    531 	{
    532 	}
    533 
    534 	InterpolationRange interpolate (int primitiveNdx, const tcu::IVec2 pixel, const tcu::IVec2 viewportSize, bool multisample, int subpixelBits) const
    535 	{
    536 		// allow anywhere in the pixel area in multisample
    537 		// allow only in the center subpixels (4 subpixels) in singlesample
    538 		const float testSquareSize = (multisample) ? (1.0f) : (2.0f / (1UL << subpixelBits));
    539 		const float testSquarePos  = (multisample) ? (0.0f) : (0.5f - testSquareSize / 2);
    540 		const tcu::Vec2 corners[4] =
    541 		{
    542 			tcu::Vec2((pixel.x() + testSquarePos + 0.0f)           / viewportSize.x() * 2.0f - 1.0f, (pixel.y() + testSquarePos + 0.0f          ) / viewportSize.y() * 2.0f - 1.0f),
    543 			tcu::Vec2((pixel.x() + testSquarePos + 0.0f)           / viewportSize.x() * 2.0f - 1.0f, (pixel.y() + testSquarePos + testSquareSize) / viewportSize.y() * 2.0f - 1.0f),
    544 			tcu::Vec2((pixel.x() + testSquarePos + testSquareSize) / viewportSize.x() * 2.0f - 1.0f, (pixel.y() + testSquarePos + testSquareSize) / viewportSize.y() * 2.0f - 1.0f),
    545 			tcu::Vec2((pixel.x() + testSquarePos + testSquareSize) / viewportSize.x() * 2.0f - 1.0f, (pixel.y() + testSquarePos + 0.0f          ) / viewportSize.y() * 2.0f - 1.0f),
    546 		};
    547 		const InterpolationRange weights[4] =
    548 		{
    549 			calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[0]),
    550 			calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[1]),
    551 			calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[2]),
    552 			calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[3]),
    553 		};
    554 
    555 		InterpolationRange result;
    556 		result.min = tcu::min(tcu::min(weights[0].min, weights[1].min), tcu::min(weights[2].min, weights[3].min));
    557 		result.max = tcu::max(tcu::max(weights[0].max, weights[1].max), tcu::max(weights[2].max, weights[3].max));
    558 		return result;
    559 	}
    560 };
    561 
    562 /*--------------------------------------------------------------------*//*!
    563  * Used only by verifyMultisampleLineGroupInterpolation to calculate
    564  * correct line interpolations for the triangulated lines.
    565  *//*--------------------------------------------------------------------*/
    566 struct MultisampleLineInterpolator
    567 {
    568 	const LineSceneSpec& scene;
    569 
    570 	MultisampleLineInterpolator (const LineSceneSpec& scene_)
    571 		: scene(scene_)
    572 	{
    573 	}
    574 
    575 	InterpolationRange interpolate (int primitiveNdx, const tcu::IVec2 pixel, const tcu::IVec2 viewportSize, bool multisample, int subpixelBits) const
    576 	{
    577 		DE_ASSERT(multisample);
    578 		DE_UNREF(multisample);
    579 		DE_UNREF(subpixelBits);
    580 
    581 		// in triangulation, one line emits two triangles
    582 		const int		lineNdx		= primitiveNdx / 2;
    583 
    584 		// allow interpolation weights anywhere in the pixel
    585 		const tcu::Vec2 corners[4] =
    586 		{
    587 			tcu::Vec2((pixel.x() + 0.0f) / viewportSize.x() * 2.0f - 1.0f, (pixel.y() + 0.0f) / viewportSize.y() * 2.0f - 1.0f),
    588 			tcu::Vec2((pixel.x() + 0.0f) / viewportSize.x() * 2.0f - 1.0f, (pixel.y() + 1.0f) / viewportSize.y() * 2.0f - 1.0f),
    589 			tcu::Vec2((pixel.x() + 1.0f) / viewportSize.x() * 2.0f - 1.0f, (pixel.y() + 1.0f) / viewportSize.y() * 2.0f - 1.0f),
    590 			tcu::Vec2((pixel.x() + 1.0f) / viewportSize.x() * 2.0f - 1.0f, (pixel.y() + 0.0f) / viewportSize.y() * 2.0f - 1.0f),
    591 		};
    592 
    593 		// calculate interpolation as a line
    594 		const LineInterpolationRange weights[4] =
    595 		{
    596 			calcMultiSampleLineInterpolationWeights(scene.lines[lineNdx].positions[0], scene.lines[lineNdx].positions[1], corners[0]),
    597 			calcMultiSampleLineInterpolationWeights(scene.lines[lineNdx].positions[0], scene.lines[lineNdx].positions[1], corners[1]),
    598 			calcMultiSampleLineInterpolationWeights(scene.lines[lineNdx].positions[0], scene.lines[lineNdx].positions[1], corners[2]),
    599 			calcMultiSampleLineInterpolationWeights(scene.lines[lineNdx].positions[0], scene.lines[lineNdx].positions[1], corners[3]),
    600 		};
    601 
    602 		const tcu::Vec2 minWeights = tcu::min(tcu::min(weights[0].min, weights[1].min), tcu::min(weights[2].min, weights[3].min));
    603 		const tcu::Vec2 maxWeights = tcu::max(tcu::max(weights[0].max, weights[1].max), tcu::max(weights[2].max, weights[3].max));
    604 
    605 		// convert to three-component form. For all triangles, the vertex 0 is always emitted by the line starting point, and vertex 2 by the ending point
    606 		InterpolationRange result;
    607 		result.min = tcu::Vec3(minWeights.x(), 0.0f, minWeights.y());
    608 		result.max = tcu::Vec3(maxWeights.x(), 0.0f, maxWeights.y());
    609 		return result;
    610 	}
    611 };
    612 
    613 template <typename Interpolator>
    614 bool verifyTriangleGroupInterpolationWithInterpolator (const tcu::Surface& surface, const TriangleSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log, const Interpolator& interpolator)
    615 {
    616 	const tcu::RGBA		invalidPixelColor	= tcu::RGBA(255, 0, 0, 255);
    617 	const bool			multisampled		= (args.numSamples != 0);
    618 	const tcu::IVec2	viewportSize		= tcu::IVec2(surface.getWidth(), surface.getHeight());
    619 	const int			errorFloodThreshold	= 4;
    620 	int					errorCount			= 0;
    621 	int					invalidPixels		= 0;
    622 	int					subPixelBits		= args.subpixelBits;
    623 	tcu::Surface		errorMask			(surface.getWidth(), surface.getHeight());
    624 
    625 	tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
    626 
    627 	// log format
    628 
    629 	log << tcu::TestLog::Message << "Verifying rasterization result. Native format is RGB" << args.redBits << args.greenBits << args.blueBits << tcu::TestLog::EndMessage;
    630 	if (args.redBits > 8 || args.greenBits > 8 || args.blueBits > 8)
    631 		log << tcu::TestLog::Message << "Warning! More than 8 bits in a color channel, this may produce false negatives." << tcu::TestLog::EndMessage;
    632 
    633 	// subpixel bits in in a valid range?
    634 
    635 	if (subPixelBits < 0)
    636 	{
    637 		log << tcu::TestLog::Message << "Invalid subpixel count (" << subPixelBits << "), assuming 0" << tcu::TestLog::EndMessage;
    638 		subPixelBits = 0;
    639 	}
    640 	else if (subPixelBits > 16)
    641 	{
    642 		// At high subpixel bit counts we might overflow. Checking at lower bit count is ok, but is less strict
    643 		log << tcu::TestLog::Message << "Subpixel count is greater than 16 (" << subPixelBits << "). Checking results using less strict 16 bit requirements. This may produce false positives." << tcu::TestLog::EndMessage;
    644 		subPixelBits = 16;
    645 	}
    646 
    647 	// check pixels
    648 
    649 	for (int y = 0; y < surface.getHeight(); ++y)
    650 	for (int x = 0; x < surface.getWidth();  ++x)
    651 	{
    652 		const tcu::RGBA		color				= surface.getPixel(x, y);
    653 		bool				stackBottomFound	= false;
    654 		int					stackSize			= 0;
    655 		tcu::Vec4			colorStackMin;
    656 		tcu::Vec4			colorStackMax;
    657 
    658 		// Iterate triangle coverage front to back, find the stack of pontentially contributing fragments
    659 		for (int triNdx = (int)scene.triangles.size() - 1; triNdx >= 0; --triNdx)
    660 		{
    661 			const CoverageType coverage = calculateTriangleCoverage(scene.triangles[triNdx].positions[0],
    662 																	scene.triangles[triNdx].positions[1],
    663 																	scene.triangles[triNdx].positions[2],
    664 																	tcu::IVec2(x, y),
    665 																	viewportSize,
    666 																	subPixelBits,
    667 																	multisampled);
    668 
    669 			if (coverage == COVERAGE_FULL || coverage == COVERAGE_PARTIAL)
    670 			{
    671 				// potentially contributes to the result fragment's value
    672 				const InterpolationRange weights = interpolator.interpolate(triNdx, tcu::IVec2(x, y), viewportSize, multisampled, subPixelBits);
    673 
    674 				const tcu::Vec4 fragmentColorMax =	de::clamp(weights.max.x(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[0] +
    675 													de::clamp(weights.max.y(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[1] +
    676 													de::clamp(weights.max.z(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[2];
    677 				const tcu::Vec4 fragmentColorMin =	de::clamp(weights.min.x(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[0] +
    678 													de::clamp(weights.min.y(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[1] +
    679 													de::clamp(weights.min.z(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[2];
    680 
    681 				if (stackSize++ == 0)
    682 				{
    683 					// first triangle, set the values properly
    684 					colorStackMin = fragmentColorMin;
    685 					colorStackMax = fragmentColorMax;
    686 				}
    687 				else
    688 				{
    689 					// contributing triangle
    690 					colorStackMin = tcu::min(colorStackMin, fragmentColorMin);
    691 					colorStackMax = tcu::max(colorStackMax, fragmentColorMax);
    692 				}
    693 
    694 				if (coverage == COVERAGE_FULL)
    695 				{
    696 					// loop terminates, this is the bottommost fragment
    697 					stackBottomFound = true;
    698 					break;
    699 				}
    700 			}
    701 		}
    702 
    703 		// Partial coverage == background may be visible
    704 		if (stackSize != 0 && !stackBottomFound)
    705 		{
    706 			stackSize++;
    707 			colorStackMin = tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f);
    708 		}
    709 
    710 		// Is the result image color in the valid range.
    711 		if (stackSize == 0)
    712 		{
    713 			// No coverage, allow only background (black, value=0)
    714 			const tcu::IVec3	pixelNativeColor	= convertRGB8ToNativeFormat(color, args);
    715 			const int			threshold			= 1;
    716 
    717 			if (pixelNativeColor.x() > threshold ||
    718 				pixelNativeColor.y() > threshold ||
    719 				pixelNativeColor.z() > threshold)
    720 			{
    721 				++errorCount;
    722 
    723 				// don't fill the logs with too much data
    724 				if (errorCount < errorFloodThreshold)
    725 				{
    726 					log << tcu::TestLog::Message
    727 						<< "Found an invalid pixel at (" << x << "," << y << ")\n"
    728 						<< "\tPixel color:\t\t" << color << "\n"
    729 						<< "\tExpected background color.\n"
    730 						<< tcu::TestLog::EndMessage;
    731 				}
    732 
    733 				++invalidPixels;
    734 				errorMask.setPixel(x, y, invalidPixelColor);
    735 			}
    736 		}
    737 		else
    738 		{
    739 			DE_ASSERT(stackSize);
    740 
    741 			// Each additional step in the stack may cause conversion error of 1 bit due to undefined rounding direction
    742 			const int			thresholdRed	= stackSize - 1;
    743 			const int			thresholdGreen	= stackSize - 1;
    744 			const int			thresholdBlue	= stackSize - 1;
    745 
    746 			const tcu::Vec3		valueRangeMin	= tcu::Vec3(colorStackMin.xyz());
    747 			const tcu::Vec3		valueRangeMax	= tcu::Vec3(colorStackMax.xyz());
    748 
    749 			const tcu::IVec3	formatLimit		((1 << args.redBits) - 1, (1 << args.greenBits) - 1, (1 << args.blueBits) - 1);
    750 			const tcu::Vec3		colorMinF		(de::clamp(valueRangeMin.x() * formatLimit.x(), 0.0f, (float)formatLimit.x()),
    751 												 de::clamp(valueRangeMin.y() * formatLimit.y(), 0.0f, (float)formatLimit.y()),
    752 												 de::clamp(valueRangeMin.z() * formatLimit.z(), 0.0f, (float)formatLimit.z()));
    753 			const tcu::Vec3		colorMaxF		(de::clamp(valueRangeMax.x() * formatLimit.x(), 0.0f, (float)formatLimit.x()),
    754 												 de::clamp(valueRangeMax.y() * formatLimit.y(), 0.0f, (float)formatLimit.y()),
    755 												 de::clamp(valueRangeMax.z() * formatLimit.z(), 0.0f, (float)formatLimit.z()));
    756 			const tcu::IVec3	colorMin		((int)deFloatFloor(colorMinF.x()),
    757 												 (int)deFloatFloor(colorMinF.y()),
    758 												 (int)deFloatFloor(colorMinF.z()));
    759 			const tcu::IVec3	colorMax		((int)deFloatCeil (colorMaxF.x()),
    760 												 (int)deFloatCeil (colorMaxF.y()),
    761 												 (int)deFloatCeil (colorMaxF.z()));
    762 
    763 			// Convert pixel color from rgba8 to the real pixel format. Usually rgba8 or 565
    764 			const tcu::IVec3 pixelNativeColor = convertRGB8ToNativeFormat(color, args);
    765 
    766 			// Validity check
    767 			if (pixelNativeColor.x() < colorMin.x() - thresholdRed   ||
    768 				pixelNativeColor.y() < colorMin.y() - thresholdGreen ||
    769 				pixelNativeColor.z() < colorMin.z() - thresholdBlue  ||
    770 				pixelNativeColor.x() > colorMax.x() + thresholdRed   ||
    771 				pixelNativeColor.y() > colorMax.y() + thresholdGreen ||
    772 				pixelNativeColor.z() > colorMax.z() + thresholdBlue)
    773 			{
    774 				++errorCount;
    775 
    776 				// don't fill the logs with too much data
    777 				if (errorCount <= errorFloodThreshold)
    778 				{
    779 					log << tcu::TestLog::Message
    780 						<< "Found an invalid pixel at (" << x << "," << y << ")\n"
    781 						<< "\tPixel color:\t\t" << color << "\n"
    782 						<< "\tNative color:\t\t" << pixelNativeColor << "\n"
    783 						<< "\tAllowed error:\t\t" << tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue) << "\n"
    784 						<< "\tReference native color min: " << tcu::clamp(colorMin - tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue), tcu::IVec3(0,0,0), formatLimit) << "\n"
    785 						<< "\tReference native color max: " << tcu::clamp(colorMax + tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue), tcu::IVec3(0,0,0), formatLimit) << "\n"
    786 						<< "\tReference native float min: " << tcu::clamp(colorMinF - tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue).cast<float>(), tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
    787 						<< "\tReference native float max: " << tcu::clamp(colorMaxF + tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue).cast<float>(), tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
    788 						<< "\tFmin:\t" << tcu::clamp(valueRangeMin, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
    789 						<< "\tFmax:\t" << tcu::clamp(valueRangeMax, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
    790 						<< tcu::TestLog::EndMessage;
    791 				}
    792 
    793 				++invalidPixels;
    794 				errorMask.setPixel(x, y, invalidPixelColor);
    795 			}
    796 		}
    797 	}
    798 
    799 	// don't just hide failures
    800 	if (errorCount > errorFloodThreshold)
    801 		log << tcu::TestLog::Message << "Omitted " << (errorCount-errorFloodThreshold) << " pixel error description(s)." << tcu::TestLog::EndMessage;
    802 
    803 	// report result
    804 	if (invalidPixels)
    805 	{
    806 		log << tcu::TestLog::Message << invalidPixels << " invalid pixel(s) found." << tcu::TestLog::EndMessage;
    807 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
    808 			<< tcu::TestLog::Image("Result", "Result",			surface)
    809 			<< tcu::TestLog::Image("ErrorMask", "ErrorMask",	errorMask)
    810 			<< tcu::TestLog::EndImageSet;
    811 
    812 		return false;
    813 	}
    814 	else
    815 	{
    816 		log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
    817 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
    818 			<< tcu::TestLog::Image("Result", "Result", surface)
    819 			<< tcu::TestLog::EndImageSet;
    820 
    821 		return true;
    822 	}
    823 }
    824 
    825 bool verifyMultisampleLineGroupRasterization (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
    826 {
    827 	// Multisampled line == 2 triangles
    828 
    829 	const tcu::Vec2		viewportSize	= tcu::Vec2((float)surface.getWidth(), (float)surface.getHeight());
    830 	const float			halfLineWidth	= scene.lineWidth * 0.5f;
    831 	TriangleSceneSpec	triangleScene;
    832 
    833 	triangleScene.triangles.resize(2 * scene.lines.size());
    834 	for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
    835 	{
    836 		// Transform to screen space, add pixel offsets, convert back to normalized device space, and test as triangles
    837 		const tcu::Vec2 lineNormalizedDeviceSpace[2] =
    838 		{
    839 			tcu::Vec2(scene.lines[lineNdx].positions[0].x() / scene.lines[lineNdx].positions[0].w(), scene.lines[lineNdx].positions[0].y() / scene.lines[lineNdx].positions[0].w()),
    840 			tcu::Vec2(scene.lines[lineNdx].positions[1].x() / scene.lines[lineNdx].positions[1].w(), scene.lines[lineNdx].positions[1].y() / scene.lines[lineNdx].positions[1].w()),
    841 		};
    842 		const tcu::Vec2 lineScreenSpace[2] =
    843 		{
    844 			(lineNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
    845 			(lineNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
    846 		};
    847 
    848 		const tcu::Vec2 lineDir			= tcu::normalize(lineScreenSpace[1] - lineScreenSpace[0]);
    849 		const tcu::Vec2 lineNormalDir	= tcu::Vec2(lineDir.y(), -lineDir.x());
    850 
    851 		const tcu::Vec2 lineQuadScreenSpace[4] =
    852 		{
    853 			lineScreenSpace[0] + lineNormalDir * halfLineWidth,
    854 			lineScreenSpace[0] - lineNormalDir * halfLineWidth,
    855 			lineScreenSpace[1] - lineNormalDir * halfLineWidth,
    856 			lineScreenSpace[1] + lineNormalDir * halfLineWidth,
    857 		};
    858 		const tcu::Vec2 lineQuadNormalizedDeviceSpace[4] =
    859 		{
    860 			lineQuadScreenSpace[0] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    861 			lineQuadScreenSpace[1] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    862 			lineQuadScreenSpace[2] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    863 			lineQuadScreenSpace[3] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    864 		};
    865 
    866 		triangleScene.triangles[lineNdx*2 + 0].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);	triangleScene.triangles[lineNdx*2 + 0].sharedEdge[0] = false;
    867 		triangleScene.triangles[lineNdx*2 + 0].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x(), lineQuadNormalizedDeviceSpace[1].y(), 0.0f, 1.0f);	triangleScene.triangles[lineNdx*2 + 0].sharedEdge[1] = false;
    868 		triangleScene.triangles[lineNdx*2 + 0].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);	triangleScene.triangles[lineNdx*2 + 0].sharedEdge[2] = true;
    869 
    870 		triangleScene.triangles[lineNdx*2 + 1].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);	triangleScene.triangles[lineNdx*2 + 1].sharedEdge[0] = true;
    871 		triangleScene.triangles[lineNdx*2 + 1].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);	triangleScene.triangles[lineNdx*2 + 1].sharedEdge[1] = false;
    872 		triangleScene.triangles[lineNdx*2 + 1].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x(), lineQuadNormalizedDeviceSpace[3].y(), 0.0f, 1.0f);	triangleScene.triangles[lineNdx*2 + 1].sharedEdge[2] = false;
    873 	}
    874 
    875 	return verifyTriangleGroupRasterization(surface, triangleScene, args, log);
    876 }
    877 
    878 bool verifyMultisampleLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
    879 {
    880 	// Multisampled line == 2 triangles
    881 
    882 	const tcu::Vec2		viewportSize	= tcu::Vec2((float)surface.getWidth(), (float)surface.getHeight());
    883 	const float			halfLineWidth	= scene.lineWidth * 0.5f;
    884 	TriangleSceneSpec	triangleScene;
    885 
    886 	triangleScene.triangles.resize(2 * scene.lines.size());
    887 	for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
    888 	{
    889 		// Transform to screen space, add pixel offsets, convert back to normalized device space, and test as triangles
    890 		const tcu::Vec2 lineNormalizedDeviceSpace[2] =
    891 		{
    892 			tcu::Vec2(scene.lines[lineNdx].positions[0].x() / scene.lines[lineNdx].positions[0].w(), scene.lines[lineNdx].positions[0].y() / scene.lines[lineNdx].positions[0].w()),
    893 			tcu::Vec2(scene.lines[lineNdx].positions[1].x() / scene.lines[lineNdx].positions[1].w(), scene.lines[lineNdx].positions[1].y() / scene.lines[lineNdx].positions[1].w()),
    894 		};
    895 		const tcu::Vec2 lineScreenSpace[2] =
    896 		{
    897 			(lineNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
    898 			(lineNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
    899 		};
    900 
    901 		const tcu::Vec2 lineDir			= tcu::normalize(lineScreenSpace[1] - lineScreenSpace[0]);
    902 		const tcu::Vec2 lineNormalDir	= tcu::Vec2(lineDir.y(), -lineDir.x());
    903 
    904 		const tcu::Vec2 lineQuadScreenSpace[4] =
    905 		{
    906 			lineScreenSpace[0] + lineNormalDir * halfLineWidth,
    907 			lineScreenSpace[0] - lineNormalDir * halfLineWidth,
    908 			lineScreenSpace[1] - lineNormalDir * halfLineWidth,
    909 			lineScreenSpace[1] + lineNormalDir * halfLineWidth,
    910 		};
    911 		const tcu::Vec2 lineQuadNormalizedDeviceSpace[4] =
    912 		{
    913 			lineQuadScreenSpace[0] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    914 			lineQuadScreenSpace[1] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    915 			lineQuadScreenSpace[2] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    916 			lineQuadScreenSpace[3] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    917 		};
    918 
    919 		triangleScene.triangles[lineNdx*2 + 0].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);
    920 		triangleScene.triangles[lineNdx*2 + 0].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x(), lineQuadNormalizedDeviceSpace[1].y(), 0.0f, 1.0f);
    921 		triangleScene.triangles[lineNdx*2 + 0].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);
    922 
    923 		triangleScene.triangles[lineNdx*2 + 0].sharedEdge[0] = false;
    924 		triangleScene.triangles[lineNdx*2 + 0].sharedEdge[1] = false;
    925 		triangleScene.triangles[lineNdx*2 + 0].sharedEdge[2] = true;
    926 
    927 		triangleScene.triangles[lineNdx*2 + 0].colors[0] = scene.lines[lineNdx].colors[0];
    928 		triangleScene.triangles[lineNdx*2 + 0].colors[1] = scene.lines[lineNdx].colors[0];
    929 		triangleScene.triangles[lineNdx*2 + 0].colors[2] = scene.lines[lineNdx].colors[1];
    930 
    931 		triangleScene.triangles[lineNdx*2 + 1].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);
    932 		triangleScene.triangles[lineNdx*2 + 1].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);
    933 		triangleScene.triangles[lineNdx*2 + 1].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x(), lineQuadNormalizedDeviceSpace[3].y(), 0.0f, 1.0f);
    934 
    935 		triangleScene.triangles[lineNdx*2 + 1].sharedEdge[0] = true;
    936 		triangleScene.triangles[lineNdx*2 + 1].sharedEdge[1] = false;
    937 		triangleScene.triangles[lineNdx*2 + 1].sharedEdge[2] = false;
    938 
    939 		triangleScene.triangles[lineNdx*2 + 1].colors[0] = scene.lines[lineNdx].colors[0];
    940 		triangleScene.triangles[lineNdx*2 + 1].colors[1] = scene.lines[lineNdx].colors[1];
    941 		triangleScene.triangles[lineNdx*2 + 1].colors[2] = scene.lines[lineNdx].colors[1];
    942 	}
    943 
    944 	return verifyTriangleGroupInterpolationWithInterpolator(surface, triangleScene, args, log, MultisampleLineInterpolator(scene));
    945 }
    946 
    947 bool verifyMultisamplePointGroupRasterization (const tcu::Surface& surface, const PointSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
    948 {
    949 	// Multisampled point == 2 triangles
    950 
    951 	const tcu::Vec2		viewportSize	= tcu::Vec2((float)surface.getWidth(), (float)surface.getHeight());
    952 	TriangleSceneSpec	triangleScene;
    953 
    954 	triangleScene.triangles.resize(2 * scene.points.size());
    955 	for (int pointNdx = 0; pointNdx < (int)scene.points.size(); ++pointNdx)
    956 	{
    957 		// Transform to screen space, add pixel offsets, convert back to normalized device space, and test as triangles
    958 		const tcu::Vec2	pointNormalizedDeviceSpace			= tcu::Vec2(scene.points[pointNdx].position.x() / scene.points[pointNdx].position.w(), scene.points[pointNdx].position.y() / scene.points[pointNdx].position.w());
    959 		const tcu::Vec2	pointScreenSpace					= (pointNormalizedDeviceSpace + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize;
    960 		const float		offset								= scene.points[pointNdx].pointSize * 0.5f;
    961 		const tcu::Vec2	lineQuadNormalizedDeviceSpace[4]	=
    962 		{
    963 			(pointScreenSpace + tcu::Vec2(-offset, -offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    964 			(pointScreenSpace + tcu::Vec2(-offset,  offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    965 			(pointScreenSpace + tcu::Vec2( offset,  offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    966 			(pointScreenSpace + tcu::Vec2( offset, -offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    967 		};
    968 
    969 		triangleScene.triangles[pointNdx*2 + 0].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);	triangleScene.triangles[pointNdx*2 + 0].sharedEdge[0] = false;
    970 		triangleScene.triangles[pointNdx*2 + 0].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x(), lineQuadNormalizedDeviceSpace[1].y(), 0.0f, 1.0f);	triangleScene.triangles[pointNdx*2 + 0].sharedEdge[1] = false;
    971 		triangleScene.triangles[pointNdx*2 + 0].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);	triangleScene.triangles[pointNdx*2 + 0].sharedEdge[2] = true;
    972 
    973 		triangleScene.triangles[pointNdx*2 + 1].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);	triangleScene.triangles[pointNdx*2 + 1].sharedEdge[0] = true;
    974 		triangleScene.triangles[pointNdx*2 + 1].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);	triangleScene.triangles[pointNdx*2 + 1].sharedEdge[1] = false;
    975 		triangleScene.triangles[pointNdx*2 + 1].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x(), lineQuadNormalizedDeviceSpace[3].y(), 0.0f, 1.0f);	triangleScene.triangles[pointNdx*2 + 1].sharedEdge[2] = false;
    976 	}
    977 
    978 	return verifyTriangleGroupRasterization(surface, triangleScene, args, log);
    979 }
    980 
    981 bool verifySinglesampleLineGroupRasterization (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
    982 {
    983 	DE_ASSERT(deFloatFrac(scene.lineWidth) != 0.5f); // rounding direction is not defined, disallow undefined cases
    984 	DE_ASSERT(scene.lines.size() < 255); // indices are stored as unsigned 8-bit ints
    985 
    986 	bool				allOK				= true;
    987 	bool				overdrawInReference	= false;
    988 	int					referenceFragments	= 0;
    989 	int					resultFragments		= 0;
    990 	int					lineWidth			= deFloorFloatToInt32(scene.lineWidth + 0.5f);
    991 	bool				imageShown			= false;
    992 	std::vector<bool>	lineIsXMajor		(scene.lines.size());
    993 
    994 	// Reference renderer produces correct fragments using the diamond-rule. Make 2D int array, each cell contains the highest index (first index = 1) of the overlapping lines or 0 if no line intersects the pixel
    995 	tcu::TextureLevel referenceLineMap(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
    996 	tcu::clear(referenceLineMap.getAccess(), tcu::IVec4(0, 0, 0, 0));
    997 
    998 	for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
    999 	{
   1000 		rr::SingleSampleLineRasterizer rasterizer(tcu::IVec4(0, 0, surface.getWidth(), surface.getHeight()));
   1001 
   1002 		const tcu::Vec2 lineNormalizedDeviceSpace[2] =
   1003 		{
   1004 			tcu::Vec2(scene.lines[lineNdx].positions[0].x() / scene.lines[lineNdx].positions[0].w(), scene.lines[lineNdx].positions[0].y() / scene.lines[lineNdx].positions[0].w()),
   1005 			tcu::Vec2(scene.lines[lineNdx].positions[1].x() / scene.lines[lineNdx].positions[1].w(), scene.lines[lineNdx].positions[1].y() / scene.lines[lineNdx].positions[1].w()),
   1006 		};
   1007 		const tcu::Vec4 lineScreenSpace[2] =
   1008 		{
   1009 			tcu::Vec4((lineNormalizedDeviceSpace[0].x() + 1.0f) * 0.5f * (float)surface.getWidth(), (lineNormalizedDeviceSpace[0].y() + 1.0f) * 0.5f * (float)surface.getHeight(), 0.0f, 1.0f),
   1010 			tcu::Vec4((lineNormalizedDeviceSpace[1].x() + 1.0f) * 0.5f * (float)surface.getWidth(), (lineNormalizedDeviceSpace[1].y() + 1.0f) * 0.5f * (float)surface.getHeight(), 0.0f, 1.0f),
   1011 		};
   1012 
   1013 		rasterizer.init(lineScreenSpace[0], lineScreenSpace[1], scene.lineWidth);
   1014 
   1015 		// calculate majority of later use
   1016 		lineIsXMajor[lineNdx] = de::abs(lineScreenSpace[1].x() - lineScreenSpace[0].x()) >= de::abs(lineScreenSpace[1].y() - lineScreenSpace[0].y());
   1017 
   1018 		for (;;)
   1019 		{
   1020 			const int			maxPackets			= 32;
   1021 			int					numRasterized		= 0;
   1022 			rr::FragmentPacket	packets[maxPackets];
   1023 
   1024 			rasterizer.rasterize(packets, DE_NULL, maxPackets, numRasterized);
   1025 
   1026 			for (int packetNdx = 0; packetNdx < numRasterized; ++packetNdx)
   1027 			{
   1028 				for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
   1029 				{
   1030 					if ((deUint32)packets[packetNdx].coverage & (1 << fragNdx))
   1031 					{
   1032 						const tcu::IVec2 fragPos = packets[packetNdx].position + tcu::IVec2(fragNdx%2, fragNdx/2);
   1033 
   1034 						// Check for overdraw
   1035 						if (!overdrawInReference)
   1036 							overdrawInReference = referenceLineMap.getAccess().getPixelInt(fragPos.x(), fragPos.y()).x() != 0;
   1037 
   1038 						// Output pixel
   1039 						referenceLineMap.getAccess().setPixel(tcu::IVec4(lineNdx + 1, 0, 0, 0), fragPos.x(), fragPos.y());
   1040 					}
   1041 				}
   1042 			}
   1043 
   1044 			if (numRasterized != maxPackets)
   1045 				break;
   1046 		}
   1047 	}
   1048 
   1049 	// Requirement 1: The coordinates of a fragment produced by the algorithm may not deviate by more than one unit
   1050 	{
   1051 		tcu::Surface	errorMask			(surface.getWidth(), surface.getHeight());
   1052 		bool			missingFragments	= false;
   1053 
   1054 		tcu::clear(errorMask.getAccess(), tcu::IVec4(0, 255, 0, 255));
   1055 
   1056 		log << tcu::TestLog::Message << "Searching for deviating fragments." << tcu::TestLog::EndMessage;
   1057 
   1058 		for (int y = 0; y < referenceLineMap.getHeight(); ++y)
   1059 		for (int x = 0; x < referenceLineMap.getWidth(); ++x)
   1060 		{
   1061 			const bool reference	= referenceLineMap.getAccess().getPixelInt(x, y).x() != 0;
   1062 			const bool result		= compareColors(surface.getPixel(x, y), tcu::RGBA::white, args.redBits, args.greenBits, args.blueBits);
   1063 
   1064 			if (reference)
   1065 				++referenceFragments;
   1066 			if (result)
   1067 				++resultFragments;
   1068 
   1069 			if (reference == result)
   1070 				continue;
   1071 
   1072 			// Reference fragment here, matching result fragment must be nearby
   1073 			if (reference && !result)
   1074 			{
   1075 				bool foundFragment = false;
   1076 
   1077 				if (x == 0 || y == 0 || x == referenceLineMap.getWidth() - 1 || y == referenceLineMap.getHeight() -1)
   1078 				{
   1079 					// image boundary, missing fragment could be over the image edge
   1080 					foundFragment = true;
   1081 				}
   1082 
   1083 				// find nearby fragment
   1084 				for (int dy = -1; dy < 2 && !foundFragment; ++dy)
   1085 				for (int dx = -1; dx < 2 && !foundFragment; ++dx)
   1086 				{
   1087 					if (compareColors(surface.getPixel(x+dx, y+dy), tcu::RGBA::white, args.redBits, args.greenBits, args.blueBits))
   1088 						foundFragment = true;
   1089 				}
   1090 
   1091 				if (!foundFragment)
   1092 				{
   1093 					missingFragments = true;
   1094 					errorMask.setPixel(x, y, tcu::RGBA::red);
   1095 				}
   1096 			}
   1097 		}
   1098 
   1099 		if (missingFragments)
   1100 		{
   1101 			log << tcu::TestLog::Message << "Invalid deviation(s) found." << tcu::TestLog::EndMessage;
   1102 			log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
   1103 				<< tcu::TestLog::Image("Result", "Result",			surface)
   1104 				<< tcu::TestLog::Image("ErrorMask", "ErrorMask",	errorMask)
   1105 				<< tcu::TestLog::EndImageSet;
   1106 
   1107 			imageShown = true;
   1108 			allOK = false;
   1109 		}
   1110 		else
   1111 		{
   1112 			log << tcu::TestLog::Message << "No invalid deviations found." << tcu::TestLog::EndMessage;
   1113 		}
   1114 	}
   1115 
   1116 	// Requirement 2: The total number of fragments produced by the algorithm may differ from
   1117 	//                that produced by the diamond-exit rule by no more than one.
   1118 	{
   1119 		// Check is not valid if the primitives intersect or otherwise share same fragments
   1120 		if (!overdrawInReference)
   1121 		{
   1122 			int allowedDeviation = (int)scene.lines.size() * lineWidth; // one pixel per primitive in the major direction
   1123 
   1124 			log << tcu::TestLog::Message << "Verifying fragment counts:\n"
   1125 				<< "\tDiamond-exit rule: " << referenceFragments << " fragments.\n"
   1126 				<< "\tResult image: " << resultFragments << " fragments.\n"
   1127 				<< "\tAllowing deviation of " << allowedDeviation << " fragments.\n"
   1128 				<< tcu::TestLog::EndMessage;
   1129 
   1130 			if (deAbs32(referenceFragments - resultFragments) > allowedDeviation)
   1131 			{
   1132 				tcu::Surface reference(surface.getWidth(), surface.getHeight());
   1133 
   1134 				// show a helpful reference image
   1135 				tcu::clear(reference.getAccess(), tcu::IVec4(0, 0, 0, 255));
   1136 				for (int y = 0; y < surface.getHeight(); ++y)
   1137 				for (int x = 0; x < surface.getWidth(); ++x)
   1138 					if (referenceLineMap.getAccess().getPixelInt(x, y).x())
   1139 						reference.setPixel(x, y, tcu::RGBA::white);
   1140 
   1141 				log << tcu::TestLog::Message << "Invalid fragment count in result image." << tcu::TestLog::EndMessage;
   1142 				log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
   1143 					<< tcu::TestLog::Image("Reference", "Reference",	reference)
   1144 					<< tcu::TestLog::Image("Result", "Result",			surface)
   1145 					<< tcu::TestLog::EndImageSet;
   1146 
   1147 				allOK = false;
   1148 				imageShown = true;
   1149 			}
   1150 			else
   1151 			{
   1152 				log << tcu::TestLog::Message << "Fragment count is valid." << tcu::TestLog::EndMessage;
   1153 			}
   1154 		}
   1155 		else
   1156 		{
   1157 			log << tcu::TestLog::Message << "Overdraw in scene. Fragment count cannot be verified. Skipping fragment count checks." << tcu::TestLog::EndMessage;
   1158 		}
   1159 	}
   1160 
   1161 	// Requirement 3: Line width must be constant
   1162 	{
   1163 		bool invalidWidthFound = false;
   1164 
   1165 		log << tcu::TestLog::Message << "Verifying line widths of the x-major lines." << tcu::TestLog::EndMessage;
   1166 		for (int y = 1; y < referenceLineMap.getHeight() - 1; ++y)
   1167 		{
   1168 			bool	fullyVisibleLine		= false;
   1169 			bool	previousPixelUndefined	= false;
   1170 			int		currentLine				= 0;
   1171 			int		currentWidth			= 1;
   1172 
   1173 			for (int x = 1; x < referenceLineMap.getWidth() - 1; ++x)
   1174 			{
   1175 				const bool	result	= compareColors(surface.getPixel(x, y), tcu::RGBA::white, args.redBits, args.greenBits, args.blueBits);
   1176 				int			lineID	= 0;
   1177 
   1178 				// Which line does this fragment belong to?
   1179 
   1180 				if (result)
   1181 				{
   1182 					bool multipleNearbyLines = false;
   1183 
   1184 					for (int dy = -1; dy < 2; ++dy)
   1185 					for (int dx = -1; dx < 2; ++dx)
   1186 					{
   1187 						const int nearbyID = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
   1188 						if (nearbyID)
   1189 						{
   1190 							if (lineID && lineID != nearbyID)
   1191 								multipleNearbyLines = true;
   1192 							lineID = nearbyID;
   1193 						}
   1194 					}
   1195 
   1196 					if (multipleNearbyLines)
   1197 					{
   1198 						// Another line is too close, don't try to calculate width here
   1199 						previousPixelUndefined = true;
   1200 						continue;
   1201 					}
   1202 				}
   1203 
   1204 				// Only line with id of lineID is nearby
   1205 
   1206 				if (previousPixelUndefined)
   1207 				{
   1208 					// The line might have been overdrawn or not
   1209 					currentLine = lineID;
   1210 					currentWidth = 1;
   1211 					fullyVisibleLine = false;
   1212 					previousPixelUndefined = false;
   1213 				}
   1214 				else if (lineID == currentLine)
   1215 				{
   1216 					// Current line continues
   1217 					++currentWidth;
   1218 				}
   1219 				else if (lineID > currentLine)
   1220 				{
   1221 					// Another line was drawn over or the line ends
   1222 					currentLine = lineID;
   1223 					currentWidth = 1;
   1224 					fullyVisibleLine = true;
   1225 				}
   1226 				else
   1227 				{
   1228 					// The line ends
   1229 					if (fullyVisibleLine && !lineIsXMajor[currentLine-1])
   1230 					{
   1231 						// check width
   1232 						if (currentWidth != lineWidth)
   1233 						{
   1234 							log << tcu::TestLog::Message << "\tInvalid line width at (" << x - currentWidth << ", " << y << ") - (" << x - 1 << ", " << y << "). Detected width of " << currentWidth << ", expected " << lineWidth << tcu::TestLog::EndMessage;
   1235 							invalidWidthFound = true;
   1236 						}
   1237 					}
   1238 
   1239 					currentLine = lineID;
   1240 					currentWidth = 1;
   1241 					fullyVisibleLine = false;
   1242 				}
   1243 			}
   1244 		}
   1245 
   1246 		log << tcu::TestLog::Message << "Verifying line widths of the y-major lines." << tcu::TestLog::EndMessage;
   1247 		for (int x = 1; x < referenceLineMap.getWidth() - 1; ++x)
   1248 		{
   1249 			bool	fullyVisibleLine		= false;
   1250 			bool	previousPixelUndefined	= false;
   1251 			int		currentLine				= 0;
   1252 			int		currentWidth			= 1;
   1253 
   1254 			for (int y = 1; y < referenceLineMap.getHeight() - 1; ++y)
   1255 			{
   1256 				const bool	result	= compareColors(surface.getPixel(x, y), tcu::RGBA::white, args.redBits, args.greenBits, args.blueBits);
   1257 				int			lineID	= 0;
   1258 
   1259 				// Which line does this fragment belong to?
   1260 
   1261 				if (result)
   1262 				{
   1263 					bool multipleNearbyLines = false;
   1264 
   1265 					for (int dy = -1; dy < 2; ++dy)
   1266 					for (int dx = -1; dx < 2; ++dx)
   1267 					{
   1268 						const int nearbyID = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
   1269 						if (nearbyID)
   1270 						{
   1271 							if (lineID && lineID != nearbyID)
   1272 								multipleNearbyLines = true;
   1273 							lineID = nearbyID;
   1274 						}
   1275 					}
   1276 
   1277 					if (multipleNearbyLines)
   1278 					{
   1279 						// Another line is too close, don't try to calculate width here
   1280 						previousPixelUndefined = true;
   1281 						continue;
   1282 					}
   1283 				}
   1284 
   1285 				// Only line with id of lineID is nearby
   1286 
   1287 				if (previousPixelUndefined)
   1288 				{
   1289 					// The line might have been overdrawn or not
   1290 					currentLine = lineID;
   1291 					currentWidth = 1;
   1292 					fullyVisibleLine = false;
   1293 					previousPixelUndefined = false;
   1294 				}
   1295 				else if (lineID == currentLine)
   1296 				{
   1297 					// Current line continues
   1298 					++currentWidth;
   1299 				}
   1300 				else if (lineID > currentLine)
   1301 				{
   1302 					// Another line was drawn over or the line ends
   1303 					currentLine = lineID;
   1304 					currentWidth = 1;
   1305 					fullyVisibleLine = true;
   1306 				}
   1307 				else
   1308 				{
   1309 					// The line ends
   1310 					if (fullyVisibleLine && lineIsXMajor[currentLine-1])
   1311 					{
   1312 						// check width
   1313 						if (currentWidth != lineWidth)
   1314 						{
   1315 							log << tcu::TestLog::Message << "\tInvalid line width at (" << x << ", " << y - currentWidth << ") - (" << x  << ", " << y - 1 << "). Detected width of " << currentWidth << ", expected " << lineWidth << tcu::TestLog::EndMessage;
   1316 							invalidWidthFound = true;
   1317 						}
   1318 					}
   1319 
   1320 					currentLine = lineID;
   1321 					currentWidth = 1;
   1322 					fullyVisibleLine = false;
   1323 				}
   1324 			}
   1325 		}
   1326 
   1327 		if (invalidWidthFound)
   1328 		{
   1329 			log << tcu::TestLog::Message << "Invalid line width found, image is not valid." << tcu::TestLog::EndMessage;
   1330 			allOK = false;
   1331 		}
   1332 		else
   1333 		{
   1334 			log << tcu::TestLog::Message << "Line widths are valid." << tcu::TestLog::EndMessage;
   1335 		}
   1336 	}
   1337 
   1338 	//\todo [2013-10-24 jarkko].
   1339 	//Requirement 4. If two line segments share a common endpoint, and both segments are either
   1340 	//x-major (both left-to-right or both right-to-left) or y-major (both bottom-totop
   1341 	//or both top-to-bottom), then rasterizing both segments may not produce
   1342 	//duplicate fragments, nor may any fragments be omitted so as to interrupt
   1343 	//continuity of the connected segments.
   1344 
   1345 	if (!imageShown)
   1346 	{
   1347 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
   1348 			<< tcu::TestLog::Image("Result", "Result", surface)
   1349 			<< tcu::TestLog::EndImageSet;
   1350 	}
   1351 
   1352 	return allOK;
   1353 }
   1354 
   1355 struct SingleSampleLineCoverageCandidate
   1356 {
   1357 	int			lineNdx;
   1358 	tcu::IVec3	colorMin;
   1359 	tcu::IVec3	colorMax;
   1360 	tcu::Vec3	colorMinF;
   1361 	tcu::Vec3	colorMaxF;
   1362 	tcu::Vec3	valueRangeMin;
   1363 	tcu::Vec3	valueRangeMax;
   1364 };
   1365 
   1366 bool verifySinglesampleLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
   1367 {
   1368 	DE_ASSERT(deFloatFrac(scene.lineWidth) != 0.5f); // rounding direction is not defined, disallow undefined cases
   1369 	DE_ASSERT(scene.lines.size() < 8); // coverage indices are stored as bitmask in a unsigned 8-bit ints
   1370 
   1371 	const tcu::RGBA		invalidPixelColor	= tcu::RGBA(255, 0, 0, 255);
   1372 	const tcu::IVec2	viewportSize		= tcu::IVec2(surface.getWidth(), surface.getHeight());
   1373 	const int			errorFloodThreshold	= 4;
   1374 	int					errorCount			= 0;
   1375 	tcu::Surface		errorMask			(surface.getWidth(), surface.getHeight());
   1376 	int					invalidPixels		= 0;
   1377 
   1378 	// log format
   1379 
   1380 	log << tcu::TestLog::Message << "Verifying rasterization result. Native format is RGB" << args.redBits << args.greenBits << args.blueBits << tcu::TestLog::EndMessage;
   1381 	if (args.redBits > 8 || args.greenBits > 8 || args.blueBits > 8)
   1382 		log << tcu::TestLog::Message << "Warning! More than 8 bits in a color channel, this may produce false negatives." << tcu::TestLog::EndMessage;
   1383 
   1384 	// Reference renderer produces correct fragments using the diamond-exit-rule. Make 2D int array, store line coverage as a 8-bit bitfield
   1385 	// The map is used to find lines with potential coverage to a given pixel
   1386 	tcu::TextureLevel referenceLineMap(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
   1387 	tcu::clear(referenceLineMap.getAccess(), tcu::IVec4(0, 0, 0, 0));
   1388 
   1389 	tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
   1390 
   1391 	for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
   1392 	{
   1393 		rr::SingleSampleLineRasterizer rasterizer(tcu::IVec4(0, 0, surface.getWidth(), surface.getHeight()));
   1394 
   1395 		const tcu::Vec2 lineNormalizedDeviceSpace[2] =
   1396 		{
   1397 			tcu::Vec2(scene.lines[lineNdx].positions[0].x() / scene.lines[lineNdx].positions[0].w(), scene.lines[lineNdx].positions[0].y() / scene.lines[lineNdx].positions[0].w()),
   1398 			tcu::Vec2(scene.lines[lineNdx].positions[1].x() / scene.lines[lineNdx].positions[1].w(), scene.lines[lineNdx].positions[1].y() / scene.lines[lineNdx].positions[1].w()),
   1399 		};
   1400 		const tcu::Vec4 lineScreenSpace[2] =
   1401 		{
   1402 			tcu::Vec4((lineNormalizedDeviceSpace[0].x() + 1.0f) * 0.5f * (float)surface.getWidth(), (lineNormalizedDeviceSpace[0].y() + 1.0f) * 0.5f * (float)surface.getHeight(), 0.0f, 1.0f),
   1403 			tcu::Vec4((lineNormalizedDeviceSpace[1].x() + 1.0f) * 0.5f * (float)surface.getWidth(), (lineNormalizedDeviceSpace[1].y() + 1.0f) * 0.5f * (float)surface.getHeight(), 0.0f, 1.0f),
   1404 		};
   1405 
   1406 		rasterizer.init(lineScreenSpace[0], lineScreenSpace[1], scene.lineWidth);
   1407 
   1408 		// Calculate correct line coverage
   1409 		for (;;)
   1410 		{
   1411 			const int			maxPackets			= 32;
   1412 			int					numRasterized		= 0;
   1413 			rr::FragmentPacket	packets[maxPackets];
   1414 
   1415 			rasterizer.rasterize(packets, DE_NULL, maxPackets, numRasterized);
   1416 
   1417 			for (int packetNdx = 0; packetNdx < numRasterized; ++packetNdx)
   1418 			{
   1419 				for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
   1420 				{
   1421 					if ((deUint32)packets[packetNdx].coverage & (1 << fragNdx))
   1422 					{
   1423 						const tcu::IVec2	fragPos			= packets[packetNdx].position + tcu::IVec2(fragNdx%2, fragNdx/2);
   1424 						const int			previousMask	= referenceLineMap.getAccess().getPixelInt(fragPos.x(), fragPos.y()).x();
   1425 						const int			newMask			= (previousMask) | (1UL << lineNdx);
   1426 
   1427 						referenceLineMap.getAccess().setPixel(tcu::IVec4(newMask, 0, 0, 0), fragPos.x(), fragPos.y());
   1428 					}
   1429 				}
   1430 			}
   1431 
   1432 			if (numRasterized != maxPackets)
   1433 				break;
   1434 		}
   1435 	}
   1436 
   1437 	// Find all possible lines with coverage, check pixel color matches one of them
   1438 
   1439 	for (int y = 1; y < surface.getHeight() - 1; ++y)
   1440 	for (int x = 1; x < surface.getWidth()  - 1; ++x)
   1441 	{
   1442 		const tcu::RGBA		color					= surface.getPixel(x, y);
   1443 		const tcu::IVec3	pixelNativeColor		= convertRGB8ToNativeFormat(color, args);	// Convert pixel color from rgba8 to the real pixel format. Usually rgba8 or 565
   1444 		int					lineCoverageSet			= 0;										// !< lines that may cover this fragment
   1445 		int					lineSurroundingCoverage = 0xFFFF;									// !< lines that will cover this fragment
   1446 		bool				matchFound				= false;
   1447 		const tcu::IVec3	formatLimit				((1 << args.redBits) - 1, (1 << args.greenBits) - 1, (1 << args.blueBits) - 1);
   1448 
   1449 		std::vector<SingleSampleLineCoverageCandidate> candidates;
   1450 
   1451 		// Find lines with possible coverage
   1452 
   1453 		for (int dy = -1; dy < 2; ++dy)
   1454 		for (int dx = -1; dx < 2; ++dx)
   1455 		{
   1456 			const int coverage = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
   1457 
   1458 			lineCoverageSet			|= coverage;
   1459 			lineSurroundingCoverage	&= coverage;
   1460 		}
   1461 
   1462 		// background color is possible?
   1463 		if (lineSurroundingCoverage == 0 && compareColors(color, tcu::RGBA::black, args.redBits, args.greenBits, args.blueBits))
   1464 			continue;
   1465 
   1466 		// Check those lines
   1467 
   1468 		for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
   1469 		{
   1470 			if (((lineCoverageSet >> lineNdx) & 0x01) != 0)
   1471 			{
   1472 				const LineInterpolationRange range = calcSingleSampleLineInterpolationRange(scene.lines[lineNdx].positions[0],
   1473 																							scene.lines[lineNdx].positions[1],
   1474 																							tcu::IVec2(x, y),
   1475 																							viewportSize,
   1476 																							args.subpixelBits);
   1477 
   1478 				const tcu::Vec4		valueMin		= de::clamp(range.min.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] + de::clamp(range.min.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
   1479 				const tcu::Vec4		valueMax		= de::clamp(range.max.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] + de::clamp(range.max.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
   1480 
   1481 				const tcu::Vec3		colorMinF		(de::clamp(valueMin.x() * formatLimit.x(), 0.0f, (float)formatLimit.x()),
   1482 													 de::clamp(valueMin.y() * formatLimit.y(), 0.0f, (float)formatLimit.y()),
   1483 													 de::clamp(valueMin.z() * formatLimit.z(), 0.0f, (float)formatLimit.z()));
   1484 				const tcu::Vec3		colorMaxF		(de::clamp(valueMax.x() * formatLimit.x(), 0.0f, (float)formatLimit.x()),
   1485 													 de::clamp(valueMax.y() * formatLimit.y(), 0.0f, (float)formatLimit.y()),
   1486 													 de::clamp(valueMax.z() * formatLimit.z(), 0.0f, (float)formatLimit.z()));
   1487 				const tcu::IVec3	colorMin		((int)deFloatFloor(colorMinF.x()),
   1488 													 (int)deFloatFloor(colorMinF.y()),
   1489 													 (int)deFloatFloor(colorMinF.z()));
   1490 				const tcu::IVec3	colorMax		((int)deFloatCeil (colorMaxF.x()),
   1491 													 (int)deFloatCeil (colorMaxF.y()),
   1492 													 (int)deFloatCeil (colorMaxF.z()));
   1493 
   1494 				// Verify validity
   1495 				if (pixelNativeColor.x() < colorMin.x() ||
   1496 					pixelNativeColor.y() < colorMin.y() ||
   1497 					pixelNativeColor.z() < colorMin.z() ||
   1498 					pixelNativeColor.x() > colorMax.x() ||
   1499 					pixelNativeColor.y() > colorMax.y() ||
   1500 					pixelNativeColor.z() > colorMax.z())
   1501 				{
   1502 					if (errorCount < errorFloodThreshold)
   1503 					{
   1504 						// Store candidate information for logging
   1505 						SingleSampleLineCoverageCandidate candidate;
   1506 
   1507 						candidate.lineNdx		= lineNdx;
   1508 						candidate.colorMin		= colorMin;
   1509 						candidate.colorMax		= colorMax;
   1510 						candidate.colorMinF		= colorMinF;
   1511 						candidate.colorMaxF		= colorMaxF;
   1512 						candidate.valueRangeMin	= valueMin.swizzle(0, 1, 2);
   1513 						candidate.valueRangeMax	= valueMax.swizzle(0, 1, 2);
   1514 
   1515 						candidates.push_back(candidate);
   1516 					}
   1517 				}
   1518 				else
   1519 				{
   1520 					matchFound = true;
   1521 					break;
   1522 				}
   1523 			}
   1524 		}
   1525 
   1526 		if (matchFound)
   1527 			continue;
   1528 
   1529 		// invalid fragment
   1530 		++invalidPixels;
   1531 		errorMask.setPixel(x, y, invalidPixelColor);
   1532 
   1533 		++errorCount;
   1534 
   1535 		// don't fill the logs with too much data
   1536 		if (errorCount < errorFloodThreshold)
   1537 		{
   1538 			log << tcu::TestLog::Message
   1539 				<< "Found an invalid pixel at (" << x << "," << y << "), " << (int)candidates.size() << " candidate reference value(s) found:\n"
   1540 				<< "\tPixel color:\t\t" << color << "\n"
   1541 				<< "\tNative color:\t\t" << pixelNativeColor << "\n"
   1542 				<< tcu::TestLog::EndMessage;
   1543 
   1544 			for (int candidateNdx = 0; candidateNdx < (int)candidates.size(); ++candidateNdx)
   1545 			{
   1546 				const SingleSampleLineCoverageCandidate& candidate = candidates[candidateNdx];
   1547 
   1548 				log << tcu::TestLog::Message << "\tCandidate (line " << candidate.lineNdx << "):\n"
   1549 					<< "\t\tReference native color min: " << tcu::clamp(candidate.colorMin, tcu::IVec3(0,0,0), formatLimit) << "\n"
   1550 					<< "\t\tReference native color max: " << tcu::clamp(candidate.colorMax, tcu::IVec3(0,0,0), formatLimit) << "\n"
   1551 					<< "\t\tReference native float min: " << tcu::clamp(candidate.colorMinF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
   1552 					<< "\t\tReference native float max: " << tcu::clamp(candidate.colorMaxF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
   1553 					<< "\t\tFmin:\t" << tcu::clamp(candidate.valueRangeMin, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
   1554 					<< "\t\tFmax:\t" << tcu::clamp(candidate.valueRangeMax, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
   1555 					<< tcu::TestLog::EndMessage;
   1556 			}
   1557 		}
   1558 	}
   1559 
   1560 	// don't just hide failures
   1561 	if (errorCount > errorFloodThreshold)
   1562 		log << tcu::TestLog::Message << "Omitted " << (errorCount-errorFloodThreshold) << " pixel error description(s)." << tcu::TestLog::EndMessage;
   1563 
   1564 	// report result
   1565 	if (invalidPixels)
   1566 	{
   1567 		log << tcu::TestLog::Message << invalidPixels << " invalid pixel(s) found." << tcu::TestLog::EndMessage;
   1568 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
   1569 			<< tcu::TestLog::Image("Result", "Result",			surface)
   1570 			<< tcu::TestLog::Image("ErrorMask", "ErrorMask",	errorMask)
   1571 			<< tcu::TestLog::EndImageSet;
   1572 
   1573 		return false;
   1574 	}
   1575 	else
   1576 	{
   1577 		log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
   1578 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
   1579 			<< tcu::TestLog::Image("Result", "Result", surface)
   1580 			<< tcu::TestLog::EndImageSet;
   1581 
   1582 		return true;
   1583 	}
   1584 }
   1585 
   1586 } // anonymous
   1587 
   1588 CoverageType calculateTriangleCoverage (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::Vec4& p2, const tcu::IVec2& pixel, const tcu::IVec2& viewportSize, int subpixelBits, bool multisample)
   1589 {
   1590 	typedef tcu::Vector<deInt64, 2> I64Vec2;
   1591 
   1592 	const deUint64		numSubPixels						= ((deUint64)1) << subpixelBits;
   1593 	const deUint64		pixelHitBoxSize						= (multisample) ? (numSubPixels) : (2+2);	//!< allow 4 central (2x2) for non-multisample pixels. Rounding may move edges 1 subpixel to any direction.
   1594 	const bool			order								= isTriangleClockwise(p0, p1, p2);			//!< clockwise / counter-clockwise
   1595 	const tcu::Vec4&	orderedP0							= p0;										//!< vertices of a clockwise triangle
   1596 	const tcu::Vec4&	orderedP1							= (order) ? (p1) : (p2);
   1597 	const tcu::Vec4&	orderedP2							= (order) ? (p2) : (p1);
   1598 	const tcu::Vec2		triangleNormalizedDeviceSpace[3]	=
   1599 	{
   1600 		tcu::Vec2(orderedP0.x() / orderedP0.w(), orderedP0.y() / orderedP0.w()),
   1601 		tcu::Vec2(orderedP1.x() / orderedP1.w(), orderedP1.y() / orderedP1.w()),
   1602 		tcu::Vec2(orderedP2.x() / orderedP2.w(), orderedP2.y() / orderedP2.w()),
   1603 	};
   1604 	const tcu::Vec2		triangleScreenSpace[3]				=
   1605 	{
   1606 		(triangleNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
   1607 		(triangleNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
   1608 		(triangleNormalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
   1609 	};
   1610 
   1611 	// Broad bounding box - pixel check
   1612 	{
   1613 		const float minX = de::min(de::min(triangleScreenSpace[0].x(), triangleScreenSpace[1].x()), triangleScreenSpace[2].x());
   1614 		const float minY = de::min(de::min(triangleScreenSpace[0].y(), triangleScreenSpace[1].y()), triangleScreenSpace[2].y());
   1615 		const float maxX = de::max(de::max(triangleScreenSpace[0].x(), triangleScreenSpace[1].x()), triangleScreenSpace[2].x());
   1616 		const float maxY = de::max(de::max(triangleScreenSpace[0].y(), triangleScreenSpace[1].y()), triangleScreenSpace[2].y());
   1617 
   1618 		if ((float)pixel.x() > maxX + 1 ||
   1619 			(float)pixel.y() > maxY + 1 ||
   1620 			(float)pixel.x() < minX - 1 ||
   1621 			(float)pixel.y() < minY - 1)
   1622 			return COVERAGE_NONE;
   1623 	}
   1624 
   1625 	// Broad triangle - pixel area intersection
   1626 	{
   1627 		const I64Vec2 pixelCenterPosition = I64Vec2(pixel.x(), pixel.y()) * I64Vec2(numSubPixels, numSubPixels) + I64Vec2(numSubPixels / 2, numSubPixels / 2);
   1628 		const I64Vec2 triangleSubPixelSpaceRound[3] =
   1629 		{
   1630 			I64Vec2(deRoundFloatToInt32(triangleScreenSpace[0].x()*numSubPixels), deRoundFloatToInt32(triangleScreenSpace[0].y()*numSubPixels)),
   1631 			I64Vec2(deRoundFloatToInt32(triangleScreenSpace[1].x()*numSubPixels), deRoundFloatToInt32(triangleScreenSpace[1].y()*numSubPixels)),
   1632 			I64Vec2(deRoundFloatToInt32(triangleScreenSpace[2].x()*numSubPixels), deRoundFloatToInt32(triangleScreenSpace[2].y()*numSubPixels)),
   1633 		};
   1634 
   1635 		// Check (using cross product) if pixel center is
   1636 		// a) too far from any edge
   1637 		// b) fully inside all edges
   1638 		bool insideAllEdges = true;
   1639 		for (int vtxNdx = 0; vtxNdx < 3; ++vtxNdx)
   1640 		{
   1641 			const int		otherVtxNdx				= (vtxNdx + 1) % 3;
   1642 			const deInt64	maxPixelDistanceSquared	= pixelHitBoxSize*pixelHitBoxSize; // Max distance from the pixel center from within the pixel is (sqrt(2) * boxWidth/2). Use 2x value for rounding tolerance
   1643 			const I64Vec2	edge					= triangleSubPixelSpaceRound[otherVtxNdx]	- triangleSubPixelSpaceRound[vtxNdx];
   1644 			const I64Vec2	v						= pixelCenterPosition						- triangleSubPixelSpaceRound[vtxNdx];
   1645 			const deInt64	crossProduct			= (edge.x() * v.y() - edge.y() * v.x());
   1646 
   1647 			// distance from edge: (edge x v) / |edge|
   1648 			//     (edge x v) / |edge| > maxPixelDistance
   1649 			// ==> (edge x v)^2 / edge^2 > maxPixelDistance^2    | edge x v > 0
   1650 			// ==> (edge x v)^2 > maxPixelDistance^2 * edge^2
   1651 			if (crossProduct < 0 && crossProduct*crossProduct > maxPixelDistanceSquared * tcu::lengthSquared(edge))
   1652 				return COVERAGE_NONE;
   1653 			if (crossProduct < 0 || crossProduct*crossProduct < maxPixelDistanceSquared * tcu::lengthSquared(edge))
   1654 				insideAllEdges = false;
   1655 		}
   1656 
   1657 		if (insideAllEdges)
   1658 			return COVERAGE_FULL;
   1659 	}
   1660 
   1661 	// Accurate intersection for edge pixels
   1662 	{
   1663 		//  In multisampling, the sample points can be anywhere in the pixel, and in single sampling only in the center.
   1664 		const I64Vec2 pixelCorners[4] =
   1665 		{
   1666 			I64Vec2((pixel.x()+0) * numSubPixels, (pixel.y()+0) * numSubPixels),
   1667 			I64Vec2((pixel.x()+1) * numSubPixels, (pixel.y()+0) * numSubPixels),
   1668 			I64Vec2((pixel.x()+1) * numSubPixels, (pixel.y()+1) * numSubPixels),
   1669 			I64Vec2((pixel.x()+0) * numSubPixels, (pixel.y()+1) * numSubPixels),
   1670 		};
   1671 		const I64Vec2 pixelCenterCorners[4] =
   1672 		{
   1673 			I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 + 0, pixel.y() * numSubPixels + numSubPixels/2 + 0),
   1674 			I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 + 1, pixel.y() * numSubPixels + numSubPixels/2 + 0),
   1675 			I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 + 1, pixel.y() * numSubPixels + numSubPixels/2 + 1),
   1676 			I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 + 0, pixel.y() * numSubPixels + numSubPixels/2 + 1),
   1677 		};
   1678 
   1679 		// both rounding directions
   1680 		const I64Vec2 triangleSubPixelSpaceFloor[3] =
   1681 		{
   1682 			I64Vec2(deFloorFloatToInt32(triangleScreenSpace[0].x()*numSubPixels), deFloorFloatToInt32(triangleScreenSpace[0].y()*numSubPixels)),
   1683 			I64Vec2(deFloorFloatToInt32(triangleScreenSpace[1].x()*numSubPixels), deFloorFloatToInt32(triangleScreenSpace[1].y()*numSubPixels)),
   1684 			I64Vec2(deFloorFloatToInt32(triangleScreenSpace[2].x()*numSubPixels), deFloorFloatToInt32(triangleScreenSpace[2].y()*numSubPixels)),
   1685 		};
   1686 		const I64Vec2 triangleSubPixelSpaceCeil[3] =
   1687 		{
   1688 			I64Vec2(deCeilFloatToInt32(triangleScreenSpace[0].x()*numSubPixels), deCeilFloatToInt32(triangleScreenSpace[0].y()*numSubPixels)),
   1689 			I64Vec2(deCeilFloatToInt32(triangleScreenSpace[1].x()*numSubPixels), deCeilFloatToInt32(triangleScreenSpace[1].y()*numSubPixels)),
   1690 			I64Vec2(deCeilFloatToInt32(triangleScreenSpace[2].x()*numSubPixels), deCeilFloatToInt32(triangleScreenSpace[2].y()*numSubPixels)),
   1691 		};
   1692 		const I64Vec2* const corners = (multisample) ? (pixelCorners) : (pixelCenterCorners);
   1693 
   1694 		// Test if any edge (with any rounding) intersects the pixel (boundary). If it does => Partial. If not => fully inside or outside
   1695 
   1696 		for (int edgeNdx = 0; edgeNdx < 3; ++edgeNdx)
   1697 		for (int startRounding = 0; startRounding < 4; ++startRounding)
   1698 		for (int endRounding = 0; endRounding < 4; ++endRounding)
   1699 		{
   1700 			const int		nextEdgeNdx	= (edgeNdx+1) % 3;
   1701 			const I64Vec2	startPos	((startRounding&0x01)	? (triangleSubPixelSpaceFloor[edgeNdx].x())		: (triangleSubPixelSpaceCeil[edgeNdx].x()),		(startRounding&0x02)	? (triangleSubPixelSpaceFloor[edgeNdx].y())		: (triangleSubPixelSpaceCeil[edgeNdx].y()));
   1702 			const I64Vec2	endPos		((endRounding&0x01)		? (triangleSubPixelSpaceFloor[nextEdgeNdx].x())	: (triangleSubPixelSpaceCeil[nextEdgeNdx].x()),	(endRounding&0x02)		? (triangleSubPixelSpaceFloor[nextEdgeNdx].y())	: (triangleSubPixelSpaceCeil[nextEdgeNdx].y()));
   1703 			const I64Vec2	edge		= endPos - startPos;
   1704 
   1705 			for (int pixelEdgeNdx = 0; pixelEdgeNdx < 4; ++pixelEdgeNdx)
   1706 			{
   1707 				const int pixelEdgeEnd = (pixelEdgeNdx + 1) % 4;
   1708 
   1709 				if (lineLineIntersect(startPos, endPos, corners[pixelEdgeNdx], corners[pixelEdgeEnd]))
   1710 					return COVERAGE_PARTIAL;
   1711 			}
   1712 		}
   1713 
   1714 		// fully inside or outside
   1715 		for (int edgeNdx = 0; edgeNdx < 3; ++edgeNdx)
   1716 		{
   1717 			const int		nextEdgeNdx		= (edgeNdx+1) % 3;
   1718 			const I64Vec2&	startPos		= triangleSubPixelSpaceFloor[edgeNdx];
   1719 			const I64Vec2&	endPos			= triangleSubPixelSpaceFloor[nextEdgeNdx];
   1720 			const I64Vec2	edge			= endPos - startPos;
   1721 			const I64Vec2	v				= corners[0] - endPos;
   1722 			const deInt64	crossProduct	= (edge.x() * v.y() - edge.y() * v.x());
   1723 
   1724 			// a corner of the pixel is outside => "fully inside" option is impossible
   1725 			if (crossProduct < 0)
   1726 				return COVERAGE_NONE;
   1727 		}
   1728 
   1729 		return COVERAGE_FULL;
   1730 	}
   1731 }
   1732 
   1733 bool verifyTriangleGroupRasterization (const tcu::Surface& surface, const TriangleSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log, VerificationMode mode)
   1734 {
   1735 	DE_ASSERT(mode < VERIFICATIONMODE_LAST);
   1736 
   1737 	const tcu::RGBA		backGroundColor				= tcu::RGBA(0, 0, 0, 255);
   1738 	const tcu::RGBA		triangleColor				= tcu::RGBA(255, 255, 255, 255);
   1739 	const tcu::RGBA		missingPixelColor			= tcu::RGBA(255, 0, 255, 255);
   1740 	const tcu::RGBA		unexpectedPixelColor		= tcu::RGBA(255, 0, 0, 255);
   1741 	const tcu::RGBA		partialPixelColor			= tcu::RGBA(255, 255, 0, 255);
   1742 	const tcu::RGBA		primitivePixelColor			= tcu::RGBA(30, 30, 30, 255);
   1743 	const int			weakVerificationThreshold	= 10;
   1744 	const bool			multisampled				= (args.numSamples != 0);
   1745 	const tcu::IVec2	viewportSize				= tcu::IVec2(surface.getWidth(), surface.getHeight());
   1746 	int					missingPixels				= 0;
   1747 	int					unexpectedPixels			= 0;
   1748 	int					subPixelBits				= args.subpixelBits;
   1749 	tcu::TextureLevel	coverageMap					(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
   1750 	tcu::Surface		errorMask					(surface.getWidth(), surface.getHeight());
   1751 
   1752 	// subpixel bits in in a valid range?
   1753 
   1754 	if (subPixelBits < 0)
   1755 	{
   1756 		log << tcu::TestLog::Message << "Invalid subpixel count (" << subPixelBits << "), assuming 0" << tcu::TestLog::EndMessage;
   1757 		subPixelBits = 0;
   1758 	}
   1759 	else if (subPixelBits > 16)
   1760 	{
   1761 		// At high subpixel bit counts we might overflow. Checking at lower bit count is ok, but is less strict
   1762 		log << tcu::TestLog::Message << "Subpixel count is greater than 16 (" << subPixelBits << "). Checking results using less strict 16 bit requirements. This may produce false positives." << tcu::TestLog::EndMessage;
   1763 		subPixelBits = 16;
   1764 	}
   1765 
   1766 	// generate coverage map
   1767 
   1768 	tcu::clear(coverageMap.getAccess(), tcu::IVec4(COVERAGE_NONE, 0, 0, 0));
   1769 
   1770 	for (int triNdx = 0; triNdx < (int)scene.triangles.size(); ++triNdx)
   1771 	{
   1772 		const tcu::IVec4 aabb = getTriangleAABB(scene.triangles[triNdx], viewportSize);
   1773 
   1774 		for (int y = de::max(0, aabb.y()); y <= de::min(aabb.w(), coverageMap.getHeight() - 1); ++y)
   1775 		for (int x = de::max(0, aabb.x()); x <= de::min(aabb.z(), coverageMap.getWidth() - 1); ++x)
   1776 		{
   1777 			if (coverageMap.getAccess().getPixelUint(x, y).x() == COVERAGE_FULL)
   1778 				continue;
   1779 
   1780 			const CoverageType coverage = calculateTriangleCoverage(scene.triangles[triNdx].positions[0],
   1781 																	scene.triangles[triNdx].positions[1],
   1782 																	scene.triangles[triNdx].positions[2],
   1783 																	tcu::IVec2(x, y),
   1784 																	viewportSize,
   1785 																	subPixelBits,
   1786 																	multisampled);
   1787 
   1788 			if (coverage == COVERAGE_FULL)
   1789 			{
   1790 				coverageMap.getAccess().setPixel(tcu::IVec4(COVERAGE_FULL, 0, 0, 0), x, y);
   1791 			}
   1792 			else if (coverage == COVERAGE_PARTIAL)
   1793 			{
   1794 				CoverageType resultCoverage = COVERAGE_PARTIAL;
   1795 
   1796 				// Sharing an edge with another triangle?
   1797 				// There should always be such a triangle, but the pixel in the other triangle might be
   1798 				// on multiple edges, some of which are not shared. In these cases the coverage cannot be determined.
   1799 				// Assume full coverage if the pixel is only on a shared edge in shared triangle too.
   1800 				if (pixelOnlyOnASharedEdge(tcu::IVec2(x, y), scene.triangles[triNdx], viewportSize))
   1801 				{
   1802 					bool friendFound = false;
   1803 					for (int friendTriNdx = 0; friendTriNdx < (int)scene.triangles.size(); ++friendTriNdx)
   1804 					{
   1805 						if (friendTriNdx != triNdx && pixelOnlyOnASharedEdge(tcu::IVec2(x, y), scene.triangles[friendTriNdx], viewportSize))
   1806 						{
   1807 							friendFound = true;
   1808 							break;
   1809 						}
   1810 					}
   1811 
   1812 					if (friendFound)
   1813 						resultCoverage = COVERAGE_FULL;
   1814 				}
   1815 
   1816 				coverageMap.getAccess().setPixel(tcu::IVec4(resultCoverage, 0, 0, 0), x, y);
   1817 			}
   1818 		}
   1819 	}
   1820 
   1821 	// check pixels
   1822 
   1823 	tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
   1824 
   1825 	for (int y = 0; y < surface.getHeight(); ++y)
   1826 	for (int x = 0; x < surface.getWidth(); ++x)
   1827 	{
   1828 		const tcu::RGBA		color				= surface.getPixel(x, y);
   1829 		const bool			imageNoCoverage		= compareColors(color, backGroundColor, args.redBits, args.greenBits, args.blueBits);
   1830 		const bool			imageFullCoverage	= compareColors(color, triangleColor, args.redBits, args.greenBits, args.blueBits);
   1831 		CoverageType		referenceCoverage	= (CoverageType)coverageMap.getAccess().getPixelUint(x, y).x();
   1832 
   1833 		switch (referenceCoverage)
   1834 		{
   1835 			case COVERAGE_NONE:
   1836 				if (!imageNoCoverage)
   1837 				{
   1838 					// coverage where there should not be
   1839 					++unexpectedPixels;
   1840 					errorMask.setPixel(x, y, unexpectedPixelColor);
   1841 				}
   1842 				break;
   1843 
   1844 			case COVERAGE_PARTIAL:
   1845 				// anything goes
   1846 				errorMask.setPixel(x, y, partialPixelColor);
   1847 				break;
   1848 
   1849 			case COVERAGE_FULL:
   1850 				if (!imageFullCoverage)
   1851 				{
   1852 					// no coverage where there should be
   1853 					++missingPixels;
   1854 					errorMask.setPixel(x, y, missingPixelColor);
   1855 				}
   1856 				else
   1857 				{
   1858 					errorMask.setPixel(x, y, primitivePixelColor);
   1859 				}
   1860 				break;
   1861 
   1862 			default:
   1863 				DE_ASSERT(false);
   1864 		};
   1865 	}
   1866 
   1867 	// Output results
   1868 	log << tcu::TestLog::Message << "Verifying rasterization result." << tcu::TestLog::EndMessage;
   1869 
   1870 	if (((mode == VERIFICATIONMODE_STRICT) && (missingPixels + unexpectedPixels > 0)) ||
   1871 		((mode == VERIFICATIONMODE_WEAK)   && (missingPixels + unexpectedPixels > weakVerificationThreshold)))
   1872 	{
   1873 		log << tcu::TestLog::Message << "Invalid pixels found:\n\t"
   1874 			<< missingPixels << " missing pixels. (Marked with purple)\n\t"
   1875 			<< unexpectedPixels << " incorrectly filled pixels. (Marked with red)\n\t"
   1876 			<< "Unknown (subpixel on edge) pixels are marked with yellow."
   1877 			<< tcu::TestLog::EndMessage;
   1878 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
   1879 			<< tcu::TestLog::Image("Result",	"Result",		surface)
   1880 			<< tcu::TestLog::Image("ErrorMask", "ErrorMask",	errorMask)
   1881 			<< tcu::TestLog::EndImageSet;
   1882 
   1883 		return false;
   1884 	}
   1885 	else
   1886 	{
   1887 		log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
   1888 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
   1889 			<< tcu::TestLog::Image("Result", "Result", surface)
   1890 			<< tcu::TestLog::EndImageSet;
   1891 
   1892 		return true;
   1893 	}
   1894 }
   1895 
   1896 bool verifyLineGroupRasterization (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
   1897 {
   1898 	const bool multisampled = args.numSamples != 0;
   1899 
   1900 	if (multisampled)
   1901 		return verifyMultisampleLineGroupRasterization(surface, scene, args, log);
   1902 	else
   1903 		return verifySinglesampleLineGroupRasterization(surface, scene, args, log);
   1904 }
   1905 
   1906 bool verifyPointGroupRasterization (const tcu::Surface& surface, const PointSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
   1907 {
   1908 	// Splitting to triangles is a valid solution in multisampled cases and even in non-multisample cases too.
   1909 	return verifyMultisamplePointGroupRasterization(surface, scene, args, log);
   1910 }
   1911 
   1912 bool verifyTriangleGroupInterpolation (const tcu::Surface& surface, const TriangleSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
   1913 {
   1914 	return verifyTriangleGroupInterpolationWithInterpolator(surface, scene, args, log, TriangleInterpolator(scene));
   1915 }
   1916 
   1917 bool verifyLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
   1918 {
   1919 	const bool multisampled = args.numSamples != 0;
   1920 
   1921 	if (multisampled)
   1922 		return verifyMultisampleLineGroupInterpolation(surface, scene, args, log);
   1923 	else
   1924 		return verifySinglesampleLineGroupInterpolation(surface, scene, args, log);
   1925 }
   1926 
   1927 } // StateQueryUtil
   1928 } // gls
   1929 } // deqp
   1930