Home | History | Annotate | Download | only in heap
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_HEAP_HEAP_INL_H_
      6 #define V8_HEAP_HEAP_INL_H_
      7 
      8 #include <cmath>
      9 
     10 #include "src/base/platform/platform.h"
     11 #include "src/cpu-profiler.h"
     12 #include "src/heap/heap.h"
     13 #include "src/heap/store-buffer.h"
     14 #include "src/heap/store-buffer-inl.h"
     15 #include "src/heap-profiler.h"
     16 #include "src/isolate.h"
     17 #include "src/list-inl.h"
     18 #include "src/msan.h"
     19 #include "src/objects.h"
     20 
     21 namespace v8 {
     22 namespace internal {
     23 
     24 void PromotionQueue::insert(HeapObject* target, int size) {
     25   if (emergency_stack_ != NULL) {
     26     emergency_stack_->Add(Entry(target, size));
     27     return;
     28   }
     29 
     30   if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(rear_))) {
     31     NewSpacePage* rear_page =
     32         NewSpacePage::FromAddress(reinterpret_cast<Address>(rear_));
     33     DCHECK(!rear_page->prev_page()->is_anchor());
     34     rear_ = reinterpret_cast<intptr_t*>(rear_page->prev_page()->area_end());
     35   }
     36 
     37   if ((rear_ - 2) < limit_) {
     38     RelocateQueueHead();
     39     emergency_stack_->Add(Entry(target, size));
     40     return;
     41   }
     42 
     43   *(--rear_) = reinterpret_cast<intptr_t>(target);
     44   *(--rear_) = size;
     45 // Assert no overflow into live objects.
     46 #ifdef DEBUG
     47   SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(),
     48                               reinterpret_cast<Address>(rear_));
     49 #endif
     50 }
     51 
     52 
     53 template <>
     54 bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
     55   // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
     56   return chars == str.length();
     57 }
     58 
     59 
     60 template <>
     61 bool inline Heap::IsOneByte(String* str, int chars) {
     62   return str->IsOneByteRepresentation();
     63 }
     64 
     65 
     66 AllocationResult Heap::AllocateInternalizedStringFromUtf8(
     67     Vector<const char> str, int chars, uint32_t hash_field) {
     68   if (IsOneByte(str, chars)) {
     69     return AllocateOneByteInternalizedString(Vector<const uint8_t>::cast(str),
     70                                              hash_field);
     71   }
     72   return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
     73 }
     74 
     75 
     76 template <typename T>
     77 AllocationResult Heap::AllocateInternalizedStringImpl(T t, int chars,
     78                                                       uint32_t hash_field) {
     79   if (IsOneByte(t, chars)) {
     80     return AllocateInternalizedStringImpl<true>(t, chars, hash_field);
     81   }
     82   return AllocateInternalizedStringImpl<false>(t, chars, hash_field);
     83 }
     84 
     85 
     86 AllocationResult Heap::AllocateOneByteInternalizedString(
     87     Vector<const uint8_t> str, uint32_t hash_field) {
     88   CHECK_GE(String::kMaxLength, str.length());
     89   // Compute map and object size.
     90   Map* map = one_byte_internalized_string_map();
     91   int size = SeqOneByteString::SizeFor(str.length());
     92   AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
     93 
     94   // Allocate string.
     95   HeapObject* result;
     96   {
     97     AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
     98     if (!allocation.To(&result)) return allocation;
     99   }
    100 
    101   // String maps are all immortal immovable objects.
    102   result->set_map_no_write_barrier(map);
    103   // Set length and hash fields of the allocated string.
    104   String* answer = String::cast(result);
    105   answer->set_length(str.length());
    106   answer->set_hash_field(hash_field);
    107 
    108   DCHECK_EQ(size, answer->Size());
    109 
    110   // Fill in the characters.
    111   MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(),
    112           str.length());
    113 
    114   return answer;
    115 }
    116 
    117 
    118 AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
    119                                                          uint32_t hash_field) {
    120   CHECK_GE(String::kMaxLength, str.length());
    121   // Compute map and object size.
    122   Map* map = internalized_string_map();
    123   int size = SeqTwoByteString::SizeFor(str.length());
    124   AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
    125 
    126   // Allocate string.
    127   HeapObject* result;
    128   {
    129     AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
    130     if (!allocation.To(&result)) return allocation;
    131   }
    132 
    133   result->set_map(map);
    134   // Set length and hash fields of the allocated string.
    135   String* answer = String::cast(result);
    136   answer->set_length(str.length());
    137   answer->set_hash_field(hash_field);
    138 
    139   DCHECK_EQ(size, answer->Size());
    140 
    141   // Fill in the characters.
    142   MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(),
    143           str.length() * kUC16Size);
    144 
    145   return answer;
    146 }
    147 
    148 AllocationResult Heap::CopyFixedArray(FixedArray* src) {
    149   if (src->length() == 0) return src;
    150   return CopyFixedArrayWithMap(src, src->map());
    151 }
    152 
    153 
    154 AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
    155   if (src->length() == 0) return src;
    156   return CopyFixedDoubleArrayWithMap(src, src->map());
    157 }
    158 
    159 
    160 AllocationResult Heap::CopyConstantPoolArray(ConstantPoolArray* src) {
    161   if (src->length() == 0) return src;
    162   return CopyConstantPoolArrayWithMap(src, src->map());
    163 }
    164 
    165 
    166 AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationSpace space,
    167                                    AllocationSpace retry_space) {
    168   DCHECK(AllowHandleAllocation::IsAllowed());
    169   DCHECK(AllowHeapAllocation::IsAllowed());
    170   DCHECK(gc_state_ == NOT_IN_GC);
    171 #ifdef DEBUG
    172   if (FLAG_gc_interval >= 0 && AllowAllocationFailure::IsAllowed(isolate_) &&
    173       Heap::allocation_timeout_-- <= 0) {
    174     return AllocationResult::Retry(space);
    175   }
    176   isolate_->counters()->objs_since_last_full()->Increment();
    177   isolate_->counters()->objs_since_last_young()->Increment();
    178 #endif
    179 
    180   HeapObject* object;
    181   AllocationResult allocation;
    182   if (NEW_SPACE == space) {
    183     allocation = new_space_.AllocateRaw(size_in_bytes);
    184     if (always_allocate() && allocation.IsRetry() && retry_space != NEW_SPACE) {
    185       space = retry_space;
    186     } else {
    187       if (allocation.To(&object)) {
    188         OnAllocationEvent(object, size_in_bytes);
    189       }
    190       return allocation;
    191     }
    192   }
    193 
    194   if (OLD_POINTER_SPACE == space) {
    195     allocation = old_pointer_space_->AllocateRaw(size_in_bytes);
    196   } else if (OLD_DATA_SPACE == space) {
    197     allocation = old_data_space_->AllocateRaw(size_in_bytes);
    198   } else if (CODE_SPACE == space) {
    199     if (size_in_bytes <= code_space()->AreaSize()) {
    200       allocation = code_space_->AllocateRaw(size_in_bytes);
    201     } else {
    202       // Large code objects are allocated in large object space.
    203       allocation = lo_space_->AllocateRaw(size_in_bytes, EXECUTABLE);
    204     }
    205   } else if (LO_SPACE == space) {
    206     allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
    207   } else if (CELL_SPACE == space) {
    208     allocation = cell_space_->AllocateRaw(size_in_bytes);
    209   } else if (PROPERTY_CELL_SPACE == space) {
    210     allocation = property_cell_space_->AllocateRaw(size_in_bytes);
    211   } else {
    212     DCHECK(MAP_SPACE == space);
    213     allocation = map_space_->AllocateRaw(size_in_bytes);
    214   }
    215   if (allocation.To(&object)) {
    216     OnAllocationEvent(object, size_in_bytes);
    217   } else {
    218     old_gen_exhausted_ = true;
    219   }
    220   return allocation;
    221 }
    222 
    223 
    224 void Heap::OnAllocationEvent(HeapObject* object, int size_in_bytes) {
    225   HeapProfiler* profiler = isolate_->heap_profiler();
    226   if (profiler->is_tracking_allocations()) {
    227     profiler->AllocationEvent(object->address(), size_in_bytes);
    228   }
    229 
    230   if (FLAG_verify_predictable) {
    231     ++allocations_count_;
    232 
    233     UpdateAllocationsHash(object);
    234     UpdateAllocationsHash(size_in_bytes);
    235 
    236     if ((FLAG_dump_allocations_digest_at_alloc > 0) &&
    237         (--dump_allocations_hash_countdown_ == 0)) {
    238       dump_allocations_hash_countdown_ = FLAG_dump_allocations_digest_at_alloc;
    239       PrintAlloctionsHash();
    240     }
    241   }
    242 }
    243 
    244 
    245 void Heap::OnMoveEvent(HeapObject* target, HeapObject* source,
    246                        int size_in_bytes) {
    247   HeapProfiler* heap_profiler = isolate_->heap_profiler();
    248   if (heap_profiler->is_tracking_object_moves()) {
    249     heap_profiler->ObjectMoveEvent(source->address(), target->address(),
    250                                    size_in_bytes);
    251   }
    252 
    253   if (isolate_->logger()->is_logging_code_events() ||
    254       isolate_->cpu_profiler()->is_profiling()) {
    255     if (target->IsSharedFunctionInfo()) {
    256       PROFILE(isolate_, SharedFunctionInfoMoveEvent(source->address(),
    257                                                     target->address()));
    258     }
    259   }
    260 
    261   if (FLAG_verify_predictable) {
    262     ++allocations_count_;
    263 
    264     UpdateAllocationsHash(source);
    265     UpdateAllocationsHash(target);
    266     UpdateAllocationsHash(size_in_bytes);
    267 
    268     if ((FLAG_dump_allocations_digest_at_alloc > 0) &&
    269         (--dump_allocations_hash_countdown_ == 0)) {
    270       dump_allocations_hash_countdown_ = FLAG_dump_allocations_digest_at_alloc;
    271       PrintAlloctionsHash();
    272     }
    273   }
    274 }
    275 
    276 
    277 void Heap::UpdateAllocationsHash(HeapObject* object) {
    278   Address object_address = object->address();
    279   MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address);
    280   AllocationSpace allocation_space = memory_chunk->owner()->identity();
    281 
    282   STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32);
    283   uint32_t value =
    284       static_cast<uint32_t>(object_address - memory_chunk->address()) |
    285       (static_cast<uint32_t>(allocation_space) << kPageSizeBits);
    286 
    287   UpdateAllocationsHash(value);
    288 }
    289 
    290 
    291 void Heap::UpdateAllocationsHash(uint32_t value) {
    292   uint16_t c1 = static_cast<uint16_t>(value);
    293   uint16_t c2 = static_cast<uint16_t>(value >> 16);
    294   raw_allocations_hash_ =
    295       StringHasher::AddCharacterCore(raw_allocations_hash_, c1);
    296   raw_allocations_hash_ =
    297       StringHasher::AddCharacterCore(raw_allocations_hash_, c2);
    298 }
    299 
    300 
    301 void Heap::PrintAlloctionsHash() {
    302   uint32_t hash = StringHasher::GetHashCore(raw_allocations_hash_);
    303   PrintF("\n### Allocations = %u, hash = 0x%08x\n", allocations_count_, hash);
    304 }
    305 
    306 
    307 void Heap::FinalizeExternalString(String* string) {
    308   DCHECK(string->IsExternalString());
    309   v8::String::ExternalStringResourceBase** resource_addr =
    310       reinterpret_cast<v8::String::ExternalStringResourceBase**>(
    311           reinterpret_cast<byte*>(string) + ExternalString::kResourceOffset -
    312           kHeapObjectTag);
    313 
    314   // Dispose of the C++ object if it has not already been disposed.
    315   if (*resource_addr != NULL) {
    316     (*resource_addr)->Dispose();
    317     *resource_addr = NULL;
    318   }
    319 }
    320 
    321 
    322 bool Heap::InNewSpace(Object* object) {
    323   bool result = new_space_.Contains(object);
    324   DCHECK(!result ||                 // Either not in new space
    325          gc_state_ != NOT_IN_GC ||  // ... or in the middle of GC
    326          InToSpace(object));        // ... or in to-space (where we allocate).
    327   return result;
    328 }
    329 
    330 
    331 bool Heap::InNewSpace(Address address) { return new_space_.Contains(address); }
    332 
    333 
    334 bool Heap::InFromSpace(Object* object) {
    335   return new_space_.FromSpaceContains(object);
    336 }
    337 
    338 
    339 bool Heap::InToSpace(Object* object) {
    340   return new_space_.ToSpaceContains(object);
    341 }
    342 
    343 
    344 bool Heap::InOldPointerSpace(Address address) {
    345   return old_pointer_space_->Contains(address);
    346 }
    347 
    348 
    349 bool Heap::InOldPointerSpace(Object* object) {
    350   return InOldPointerSpace(reinterpret_cast<Address>(object));
    351 }
    352 
    353 
    354 bool Heap::InOldDataSpace(Address address) {
    355   return old_data_space_->Contains(address);
    356 }
    357 
    358 
    359 bool Heap::InOldDataSpace(Object* object) {
    360   return InOldDataSpace(reinterpret_cast<Address>(object));
    361 }
    362 
    363 
    364 bool Heap::OldGenerationAllocationLimitReached() {
    365   if (!incremental_marking()->IsStopped()) return false;
    366   return OldGenerationSpaceAvailable() < 0;
    367 }
    368 
    369 
    370 bool Heap::ShouldBePromoted(Address old_address, int object_size) {
    371   NewSpacePage* page = NewSpacePage::FromAddress(old_address);
    372   Address age_mark = new_space_.age_mark();
    373   return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
    374          (!page->ContainsLimit(age_mark) || old_address < age_mark);
    375 }
    376 
    377 
    378 void Heap::RecordWrite(Address address, int offset) {
    379   if (!InNewSpace(address)) store_buffer_.Mark(address + offset);
    380 }
    381 
    382 
    383 void Heap::RecordWrites(Address address, int start, int len) {
    384   if (!InNewSpace(address)) {
    385     for (int i = 0; i < len; i++) {
    386       store_buffer_.Mark(address + start + i * kPointerSize);
    387     }
    388   }
    389 }
    390 
    391 
    392 OldSpace* Heap::TargetSpace(HeapObject* object) {
    393   InstanceType type = object->map()->instance_type();
    394   AllocationSpace space = TargetSpaceId(type);
    395   return (space == OLD_POINTER_SPACE) ? old_pointer_space_ : old_data_space_;
    396 }
    397 
    398 
    399 AllocationSpace Heap::TargetSpaceId(InstanceType type) {
    400   // Heap numbers and sequential strings are promoted to old data space, all
    401   // other object types are promoted to old pointer space.  We do not use
    402   // object->IsHeapNumber() and object->IsSeqString() because we already
    403   // know that object has the heap object tag.
    404 
    405   // These objects are never allocated in new space.
    406   DCHECK(type != MAP_TYPE);
    407   DCHECK(type != CODE_TYPE);
    408   DCHECK(type != ODDBALL_TYPE);
    409   DCHECK(type != CELL_TYPE);
    410   DCHECK(type != PROPERTY_CELL_TYPE);
    411 
    412   if (type <= LAST_NAME_TYPE) {
    413     if (type == SYMBOL_TYPE) return OLD_POINTER_SPACE;
    414     DCHECK(type < FIRST_NONSTRING_TYPE);
    415     // There are four string representations: sequential strings, external
    416     // strings, cons strings, and sliced strings.
    417     // Only the latter two contain non-map-word pointers to heap objects.
    418     return ((type & kIsIndirectStringMask) == kIsIndirectStringTag)
    419                ? OLD_POINTER_SPACE
    420                : OLD_DATA_SPACE;
    421   } else {
    422     return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
    423   }
    424 }
    425 
    426 
    427 bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) {
    428   // Object migration is governed by the following rules:
    429   //
    430   // 1) Objects in new-space can be migrated to one of the old spaces
    431   //    that matches their target space or they stay in new-space.
    432   // 2) Objects in old-space stay in the same space when migrating.
    433   // 3) Fillers (two or more words) can migrate due to left-trimming of
    434   //    fixed arrays in new-space, old-data-space and old-pointer-space.
    435   // 4) Fillers (one word) can never migrate, they are skipped by
    436   //    incremental marking explicitly to prevent invalid pattern.
    437   // 5) Short external strings can end up in old pointer space when a cons
    438   //    string in old pointer space is made external (String::MakeExternal).
    439   //
    440   // Since this function is used for debugging only, we do not place
    441   // asserts here, but check everything explicitly.
    442   if (obj->map() == one_pointer_filler_map()) return false;
    443   InstanceType type = obj->map()->instance_type();
    444   MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
    445   AllocationSpace src = chunk->owner()->identity();
    446   switch (src) {
    447     case NEW_SPACE:
    448       return dst == src || dst == TargetSpaceId(type);
    449     case OLD_POINTER_SPACE:
    450       return dst == src && (dst == TargetSpaceId(type) || obj->IsFiller() ||
    451                             obj->IsExternalString());
    452     case OLD_DATA_SPACE:
    453       return dst == src && dst == TargetSpaceId(type);
    454     case CODE_SPACE:
    455       return dst == src && type == CODE_TYPE;
    456     case MAP_SPACE:
    457     case CELL_SPACE:
    458     case PROPERTY_CELL_SPACE:
    459     case LO_SPACE:
    460       return false;
    461     case INVALID_SPACE:
    462       break;
    463   }
    464   UNREACHABLE();
    465   return false;
    466 }
    467 
    468 
    469 void Heap::CopyBlock(Address dst, Address src, int byte_size) {
    470   CopyWords(reinterpret_cast<Object**>(dst), reinterpret_cast<Object**>(src),
    471             static_cast<size_t>(byte_size / kPointerSize));
    472 }
    473 
    474 
    475 void Heap::MoveBlock(Address dst, Address src, int byte_size) {
    476   DCHECK(IsAligned(byte_size, kPointerSize));
    477 
    478   int size_in_words = byte_size / kPointerSize;
    479 
    480   if ((dst < src) || (dst >= (src + byte_size))) {
    481     Object** src_slot = reinterpret_cast<Object**>(src);
    482     Object** dst_slot = reinterpret_cast<Object**>(dst);
    483     Object** end_slot = src_slot + size_in_words;
    484 
    485     while (src_slot != end_slot) {
    486       *dst_slot++ = *src_slot++;
    487     }
    488   } else {
    489     MemMove(dst, src, static_cast<size_t>(byte_size));
    490   }
    491 }
    492 
    493 
    494 void Heap::ScavengePointer(HeapObject** p) { ScavengeObject(p, *p); }
    495 
    496 
    497 AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) {
    498   // Check if there is potentially a memento behind the object. If
    499   // the last word of the memento is on another page we return
    500   // immediately.
    501   Address object_address = object->address();
    502   Address memento_address = object_address + object->Size();
    503   Address last_memento_word_address = memento_address + kPointerSize;
    504   if (!NewSpacePage::OnSamePage(object_address, last_memento_word_address)) {
    505     return NULL;
    506   }
    507 
    508   HeapObject* candidate = HeapObject::FromAddress(memento_address);
    509   Map* candidate_map = candidate->map();
    510   // This fast check may peek at an uninitialized word. However, the slow check
    511   // below (memento_address == top) ensures that this is safe. Mark the word as
    512   // initialized to silence MemorySanitizer warnings.
    513   MSAN_MEMORY_IS_INITIALIZED(&candidate_map, sizeof(candidate_map));
    514   if (candidate_map != allocation_memento_map()) return NULL;
    515 
    516   // Either the object is the last object in the new space, or there is another
    517   // object of at least word size (the header map word) following it, so
    518   // suffices to compare ptr and top here. Note that technically we do not have
    519   // to compare with the current top pointer of the from space page during GC,
    520   // since we always install filler objects above the top pointer of a from
    521   // space page when performing a garbage collection. However, always performing
    522   // the test makes it possible to have a single, unified version of
    523   // FindAllocationMemento that is used both by the GC and the mutator.
    524   Address top = NewSpaceTop();
    525   DCHECK(memento_address == top ||
    526          memento_address + HeapObject::kHeaderSize <= top ||
    527          !NewSpacePage::OnSamePage(memento_address, top));
    528   if (memento_address == top) return NULL;
    529 
    530   AllocationMemento* memento = AllocationMemento::cast(candidate);
    531   if (!memento->IsValid()) return NULL;
    532   return memento;
    533 }
    534 
    535 
    536 void Heap::UpdateAllocationSiteFeedback(HeapObject* object,
    537                                         ScratchpadSlotMode mode) {
    538   Heap* heap = object->GetHeap();
    539   DCHECK(heap->InFromSpace(object));
    540 
    541   if (!FLAG_allocation_site_pretenuring ||
    542       !AllocationSite::CanTrack(object->map()->instance_type()))
    543     return;
    544 
    545   AllocationMemento* memento = heap->FindAllocationMemento(object);
    546   if (memento == NULL) return;
    547 
    548   if (memento->GetAllocationSite()->IncrementMementoFoundCount()) {
    549     heap->AddAllocationSiteToScratchpad(memento->GetAllocationSite(), mode);
    550   }
    551 }
    552 
    553 
    554 void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
    555   DCHECK(object->GetIsolate()->heap()->InFromSpace(object));
    556 
    557   // We use the first word (where the map pointer usually is) of a heap
    558   // object to record the forwarding pointer.  A forwarding pointer can
    559   // point to an old space, the code space, or the to space of the new
    560   // generation.
    561   MapWord first_word = object->map_word();
    562 
    563   // If the first word is a forwarding address, the object has already been
    564   // copied.
    565   if (first_word.IsForwardingAddress()) {
    566     HeapObject* dest = first_word.ToForwardingAddress();
    567     DCHECK(object->GetIsolate()->heap()->InFromSpace(*p));
    568     *p = dest;
    569     return;
    570   }
    571 
    572   UpdateAllocationSiteFeedback(object, IGNORE_SCRATCHPAD_SLOT);
    573 
    574   // AllocationMementos are unrooted and shouldn't survive a scavenge
    575   DCHECK(object->map() != object->GetHeap()->allocation_memento_map());
    576   // Call the slow part of scavenge object.
    577   return ScavengeObjectSlow(p, object);
    578 }
    579 
    580 
    581 bool Heap::CollectGarbage(AllocationSpace space, const char* gc_reason,
    582                           const v8::GCCallbackFlags callbackFlags) {
    583   const char* collector_reason = NULL;
    584   GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
    585   return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags);
    586 }
    587 
    588 
    589 Isolate* Heap::isolate() {
    590   return reinterpret_cast<Isolate*>(
    591       reinterpret_cast<intptr_t>(this) -
    592       reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(4)->heap()) + 4);
    593 }
    594 
    595 
    596 // Calls the FUNCTION_CALL function and retries it up to three times
    597 // to guarantee that any allocations performed during the call will
    598 // succeed if there's enough memory.
    599 
    600 // Warning: Do not use the identifiers __object__, __maybe_object__ or
    601 // __scope__ in a call to this macro.
    602 
    603 #define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
    604   if (__allocation__.To(&__object__)) {                   \
    605     DCHECK(__object__ != (ISOLATE)->heap()->exception()); \
    606     RETURN_VALUE;                                         \
    607   }
    608 
    609 #define CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY)    \
    610   do {                                                                        \
    611     AllocationResult __allocation__ = FUNCTION_CALL;                          \
    612     Object* __object__ = NULL;                                                \
    613     RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE)                         \
    614     (ISOLATE)->heap()->CollectGarbage(__allocation__.RetrySpace(),            \
    615                                       "allocation failure");                  \
    616     __allocation__ = FUNCTION_CALL;                                           \
    617     RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE)                         \
    618     (ISOLATE)->counters()->gc_last_resort_from_handles()->Increment();        \
    619     (ISOLATE)->heap()->CollectAllAvailableGarbage("last resort gc");          \
    620     {                                                                         \
    621       AlwaysAllocateScope __scope__(ISOLATE);                                 \
    622       __allocation__ = FUNCTION_CALL;                                         \
    623     }                                                                         \
    624     RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE)                         \
    625     /* TODO(1181417): Fix this. */                                            \
    626     v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \
    627     RETURN_EMPTY;                                                             \
    628   } while (false)
    629 
    630 #define CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, RETURN_VALUE, \
    631                               RETURN_EMPTY)                         \
    632   CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY)
    633 
    634 #define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE)                      \
    635   CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL,                               \
    636                         return Handle<TYPE>(TYPE::cast(__object__), ISOLATE), \
    637                         return Handle<TYPE>())
    638 
    639 
    640 #define CALL_HEAP_FUNCTION_VOID(ISOLATE, FUNCTION_CALL) \
    641   CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, return, return)
    642 
    643 
    644 void ExternalStringTable::AddString(String* string) {
    645   DCHECK(string->IsExternalString());
    646   if (heap_->InNewSpace(string)) {
    647     new_space_strings_.Add(string);
    648   } else {
    649     old_space_strings_.Add(string);
    650   }
    651 }
    652 
    653 
    654 void ExternalStringTable::Iterate(ObjectVisitor* v) {
    655   if (!new_space_strings_.is_empty()) {
    656     Object** start = &new_space_strings_[0];
    657     v->VisitPointers(start, start + new_space_strings_.length());
    658   }
    659   if (!old_space_strings_.is_empty()) {
    660     Object** start = &old_space_strings_[0];
    661     v->VisitPointers(start, start + old_space_strings_.length());
    662   }
    663 }
    664 
    665 
    666 // Verify() is inline to avoid ifdef-s around its calls in release
    667 // mode.
    668 void ExternalStringTable::Verify() {
    669 #ifdef DEBUG
    670   for (int i = 0; i < new_space_strings_.length(); ++i) {
    671     Object* obj = Object::cast(new_space_strings_[i]);
    672     DCHECK(heap_->InNewSpace(obj));
    673     DCHECK(obj != heap_->the_hole_value());
    674   }
    675   for (int i = 0; i < old_space_strings_.length(); ++i) {
    676     Object* obj = Object::cast(old_space_strings_[i]);
    677     DCHECK(!heap_->InNewSpace(obj));
    678     DCHECK(obj != heap_->the_hole_value());
    679   }
    680 #endif
    681 }
    682 
    683 
    684 void ExternalStringTable::AddOldString(String* string) {
    685   DCHECK(string->IsExternalString());
    686   DCHECK(!heap_->InNewSpace(string));
    687   old_space_strings_.Add(string);
    688 }
    689 
    690 
    691 void ExternalStringTable::ShrinkNewStrings(int position) {
    692   new_space_strings_.Rewind(position);
    693 #ifdef VERIFY_HEAP
    694   if (FLAG_verify_heap) {
    695     Verify();
    696   }
    697 #endif
    698 }
    699 
    700 
    701 void Heap::ClearInstanceofCache() {
    702   set_instanceof_cache_function(the_hole_value());
    703 }
    704 
    705 
    706 Object* Heap::ToBoolean(bool condition) {
    707   return condition ? true_value() : false_value();
    708 }
    709 
    710 
    711 void Heap::CompletelyClearInstanceofCache() {
    712   set_instanceof_cache_map(the_hole_value());
    713   set_instanceof_cache_function(the_hole_value());
    714 }
    715 
    716 
    717 AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
    718     : heap_(isolate->heap()), daf_(isolate) {
    719   // We shouldn't hit any nested scopes, because that requires
    720   // non-handle code to call handle code. The code still works but
    721   // performance will degrade, so we want to catch this situation
    722   // in debug mode.
    723   DCHECK(heap_->always_allocate_scope_depth_ == 0);
    724   heap_->always_allocate_scope_depth_++;
    725 }
    726 
    727 
    728 AlwaysAllocateScope::~AlwaysAllocateScope() {
    729   heap_->always_allocate_scope_depth_--;
    730   DCHECK(heap_->always_allocate_scope_depth_ == 0);
    731 }
    732 
    733 
    734 #ifdef VERIFY_HEAP
    735 NoWeakObjectVerificationScope::NoWeakObjectVerificationScope() {
    736   Isolate* isolate = Isolate::Current();
    737   isolate->heap()->no_weak_object_verification_scope_depth_++;
    738 }
    739 
    740 
    741 NoWeakObjectVerificationScope::~NoWeakObjectVerificationScope() {
    742   Isolate* isolate = Isolate::Current();
    743   isolate->heap()->no_weak_object_verification_scope_depth_--;
    744 }
    745 #endif
    746 
    747 
    748 GCCallbacksScope::GCCallbacksScope(Heap* heap) : heap_(heap) {
    749   heap_->gc_callbacks_depth_++;
    750 }
    751 
    752 
    753 GCCallbacksScope::~GCCallbacksScope() { heap_->gc_callbacks_depth_--; }
    754 
    755 
    756 bool GCCallbacksScope::CheckReenter() {
    757   return heap_->gc_callbacks_depth_ == 1;
    758 }
    759 
    760 
    761 void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
    762   for (Object** current = start; current < end; current++) {
    763     if ((*current)->IsHeapObject()) {
    764       HeapObject* object = HeapObject::cast(*current);
    765       CHECK(object->GetIsolate()->heap()->Contains(object));
    766       CHECK(object->map()->IsMap());
    767     }
    768   }
    769 }
    770 
    771 
    772 void VerifySmisVisitor::VisitPointers(Object** start, Object** end) {
    773   for (Object** current = start; current < end; current++) {
    774     CHECK((*current)->IsSmi());
    775   }
    776 }
    777 }
    778 }  // namespace v8::internal
    779 
    780 #endif  // V8_HEAP_HEAP_INL_H_
    781