Home | History | Annotate | Download | only in dex
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "base/logging.h"
     18 #include "base/mutex.h"
     19 #include "dex_file-inl.h"
     20 #include "dex_instruction-inl.h"
     21 #include "driver/compiler_driver.h"
     22 #include "driver/dex_compilation_unit.h"
     23 #include "mirror/art_field-inl.h"
     24 #include "mirror/art_method-inl.h"
     25 #include "mirror/class-inl.h"
     26 #include "mirror/dex_cache.h"
     27 #include "thread-inl.h"
     28 
     29 namespace art {
     30 namespace optimizer {
     31 
     32 // Controls quickening activation.
     33 const bool kEnableQuickening = true;
     34 // Control check-cast elision.
     35 const bool kEnableCheckCastEllision = true;
     36 
     37 class DexCompiler {
     38  public:
     39   DexCompiler(art::CompilerDriver& compiler,
     40               const DexCompilationUnit& unit,
     41               DexToDexCompilationLevel dex_to_dex_compilation_level)
     42     : driver_(compiler),
     43       unit_(unit),
     44       dex_to_dex_compilation_level_(dex_to_dex_compilation_level) {}
     45 
     46   ~DexCompiler() {}
     47 
     48   void Compile();
     49 
     50  private:
     51   const DexFile& GetDexFile() const {
     52     return *unit_.GetDexFile();
     53   }
     54 
     55   bool PerformOptimizations() const {
     56     return dex_to_dex_compilation_level_ >= kOptimize;
     57   }
     58 
     59   // Compiles a RETURN-VOID into a RETURN-VOID-BARRIER within a constructor where
     60   // a barrier is required.
     61   void CompileReturnVoid(Instruction* inst, uint32_t dex_pc);
     62 
     63   // Compiles a CHECK-CAST into 2 NOP instructions if it is known to be safe. In
     64   // this case, returns the second NOP instruction pointer. Otherwise, returns
     65   // the given "inst".
     66   Instruction* CompileCheckCast(Instruction* inst, uint32_t dex_pc);
     67 
     68   // Compiles a field access into a quick field access.
     69   // The field index is replaced by an offset within an Object where we can read
     70   // from / write to this field. Therefore, this does not involve any resolution
     71   // at runtime.
     72   // Since the field index is encoded with 16 bits, we can replace it only if the
     73   // field offset can be encoded with 16 bits too.
     74   void CompileInstanceFieldAccess(Instruction* inst, uint32_t dex_pc,
     75                                   Instruction::Code new_opcode, bool is_put);
     76 
     77   // Compiles a virtual method invocation into a quick virtual method invocation.
     78   // The method index is replaced by the vtable index where the corresponding
     79   // AbstractMethod can be found. Therefore, this does not involve any resolution
     80   // at runtime.
     81   // Since the method index is encoded with 16 bits, we can replace it only if the
     82   // vtable index can be encoded with 16 bits too.
     83   void CompileInvokeVirtual(Instruction* inst, uint32_t dex_pc,
     84                             Instruction::Code new_opcode, bool is_range);
     85 
     86   CompilerDriver& driver_;
     87   const DexCompilationUnit& unit_;
     88   const DexToDexCompilationLevel dex_to_dex_compilation_level_;
     89 
     90   DISALLOW_COPY_AND_ASSIGN(DexCompiler);
     91 };
     92 
     93 void DexCompiler::Compile() {
     94   DCHECK_GE(dex_to_dex_compilation_level_, kRequired);
     95   const DexFile::CodeItem* code_item = unit_.GetCodeItem();
     96   const uint16_t* insns = code_item->insns_;
     97   const uint32_t insns_size = code_item->insns_size_in_code_units_;
     98   Instruction* inst = const_cast<Instruction*>(Instruction::At(insns));
     99 
    100   for (uint32_t dex_pc = 0; dex_pc < insns_size;
    101        inst = const_cast<Instruction*>(inst->Next()), dex_pc = inst->GetDexPc(insns)) {
    102     switch (inst->Opcode()) {
    103       case Instruction::RETURN_VOID:
    104         CompileReturnVoid(inst, dex_pc);
    105         break;
    106 
    107       case Instruction::CHECK_CAST:
    108         inst = CompileCheckCast(inst, dex_pc);
    109         break;
    110 
    111       case Instruction::IGET:
    112         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_QUICK, false);
    113         break;
    114 
    115       case Instruction::IGET_WIDE:
    116         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_WIDE_QUICK, false);
    117         break;
    118 
    119       case Instruction::IGET_OBJECT:
    120         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_OBJECT_QUICK, false);
    121         break;
    122 
    123       case Instruction::IPUT:
    124       case Instruction::IPUT_BOOLEAN:
    125       case Instruction::IPUT_BYTE:
    126       case Instruction::IPUT_CHAR:
    127       case Instruction::IPUT_SHORT:
    128         // These opcodes have the same implementation in interpreter so group
    129         // them under IPUT_QUICK.
    130         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_QUICK, true);
    131         break;
    132 
    133       case Instruction::IPUT_WIDE:
    134         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_WIDE_QUICK, true);
    135         break;
    136 
    137       case Instruction::IPUT_OBJECT:
    138         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_OBJECT_QUICK, true);
    139         break;
    140 
    141       case Instruction::INVOKE_VIRTUAL:
    142         CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_QUICK, false);
    143         break;
    144 
    145       case Instruction::INVOKE_VIRTUAL_RANGE:
    146         CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_RANGE_QUICK, true);
    147         break;
    148 
    149       default:
    150         // Nothing to do.
    151         break;
    152     }
    153   }
    154 }
    155 
    156 void DexCompiler::CompileReturnVoid(Instruction* inst, uint32_t dex_pc) {
    157   DCHECK(inst->Opcode() == Instruction::RETURN_VOID);
    158   // Are we compiling a non-clinit constructor?
    159   if (!unit_.IsConstructor() || unit_.IsStatic()) {
    160     return;
    161   }
    162   // Do we need a constructor barrier ?
    163   if (!driver_.RequiresConstructorBarrier(Thread::Current(), unit_.GetDexFile(),
    164                                          unit_.GetClassDefIndex())) {
    165     return;
    166   }
    167   // Replace RETURN_VOID by RETURN_VOID_BARRIER.
    168   VLOG(compiler) << "Replacing " << Instruction::Name(inst->Opcode())
    169                  << " by " << Instruction::Name(Instruction::RETURN_VOID_BARRIER)
    170                  << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method "
    171                  << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true);
    172   inst->SetOpcode(Instruction::RETURN_VOID_BARRIER);
    173 }
    174 
    175 Instruction* DexCompiler::CompileCheckCast(Instruction* inst, uint32_t dex_pc) {
    176   if (!kEnableCheckCastEllision || !PerformOptimizations()) {
    177     return inst;
    178   }
    179   if (!driver_.IsSafeCast(&unit_, dex_pc)) {
    180     return inst;
    181   }
    182   // Ok, this is a safe cast. Since the "check-cast" instruction size is 2 code
    183   // units and a "nop" instruction size is 1 code unit, we need to replace it by
    184   // 2 consecutive NOP instructions.
    185   // Because the caller loops over instructions by calling Instruction::Next onto
    186   // the current instruction, we need to return the 2nd NOP instruction. Indeed,
    187   // its next instruction is the former check-cast's next instruction.
    188   VLOG(compiler) << "Removing " << Instruction::Name(inst->Opcode())
    189                  << " by replacing it with 2 NOPs at dex pc "
    190                  << StringPrintf("0x%x", dex_pc) << " in method "
    191                  << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true);
    192   // We are modifying 4 consecutive bytes.
    193   inst->SetOpcode(Instruction::NOP);
    194   inst->SetVRegA_10x(0u);  // keep compliant with verifier.
    195   // Get to next instruction which is the second half of check-cast and replace
    196   // it by a NOP.
    197   inst = const_cast<Instruction*>(inst->Next());
    198   inst->SetOpcode(Instruction::NOP);
    199   inst->SetVRegA_10x(0u);  // keep compliant with verifier.
    200   return inst;
    201 }
    202 
    203 void DexCompiler::CompileInstanceFieldAccess(Instruction* inst,
    204                                              uint32_t dex_pc,
    205                                              Instruction::Code new_opcode,
    206                                              bool is_put) {
    207   if (!kEnableQuickening || !PerformOptimizations()) {
    208     return;
    209   }
    210   uint32_t field_idx = inst->VRegC_22c();
    211   MemberOffset field_offset(0u);
    212   bool is_volatile;
    213   bool fast_path = driver_.ComputeInstanceFieldInfo(field_idx, &unit_, is_put,
    214                                                     &field_offset, &is_volatile);
    215   if (fast_path && !is_volatile && IsUint(16, field_offset.Int32Value())) {
    216     VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode())
    217                    << " to " << Instruction::Name(new_opcode)
    218                    << " by replacing field index " << field_idx
    219                    << " by field offset " << field_offset.Int32Value()
    220                    << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method "
    221                    << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true);
    222     // We are modifying 4 consecutive bytes.
    223     inst->SetOpcode(new_opcode);
    224     // Replace field index by field offset.
    225     inst->SetVRegC_22c(static_cast<uint16_t>(field_offset.Int32Value()));
    226   }
    227 }
    228 
    229 void DexCompiler::CompileInvokeVirtual(Instruction* inst,
    230                                 uint32_t dex_pc,
    231                                 Instruction::Code new_opcode,
    232                                 bool is_range) {
    233   if (!kEnableQuickening || !PerformOptimizations()) {
    234     return;
    235   }
    236   uint32_t method_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
    237   MethodReference target_method(&GetDexFile(), method_idx);
    238   InvokeType invoke_type = kVirtual;
    239   InvokeType original_invoke_type = invoke_type;
    240   int vtable_idx;
    241   uintptr_t direct_code;
    242   uintptr_t direct_method;
    243   // TODO: support devirtualization.
    244   const bool kEnableDevirtualization = false;
    245   bool fast_path = driver_.ComputeInvokeInfo(&unit_, dex_pc,
    246                                              false, kEnableDevirtualization,
    247                                              &invoke_type,
    248                                              &target_method, &vtable_idx,
    249                                              &direct_code, &direct_method);
    250   if (fast_path && original_invoke_type == invoke_type) {
    251     if (vtable_idx >= 0 && IsUint(16, vtable_idx)) {
    252       VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode())
    253                      << "(" << PrettyMethod(method_idx, GetDexFile(), true) << ")"
    254                      << " to " << Instruction::Name(new_opcode)
    255                      << " by replacing method index " << method_idx
    256                      << " by vtable index " << vtable_idx
    257                      << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method "
    258                      << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true);
    259       // We are modifying 4 consecutive bytes.
    260       inst->SetOpcode(new_opcode);
    261       // Replace method index by vtable index.
    262       if (is_range) {
    263         inst->SetVRegB_3rc(static_cast<uint16_t>(vtable_idx));
    264       } else {
    265         inst->SetVRegB_35c(static_cast<uint16_t>(vtable_idx));
    266       }
    267     }
    268   }
    269 }
    270 
    271 }  // namespace optimizer
    272 }  // namespace art
    273 
    274 extern "C" void ArtCompileDEX(art::CompilerDriver& driver, const art::DexFile::CodeItem* code_item,
    275                   uint32_t access_flags, art::InvokeType invoke_type,
    276                   uint16_t class_def_idx, uint32_t method_idx, jobject class_loader,
    277                   const art::DexFile& dex_file,
    278                   art::DexToDexCompilationLevel dex_to_dex_compilation_level) {
    279   if (dex_to_dex_compilation_level != art::kDontDexToDexCompile) {
    280     art::DexCompilationUnit unit(NULL, class_loader, art::Runtime::Current()->GetClassLinker(),
    281                                  dex_file, code_item, class_def_idx, method_idx, access_flags,
    282                                  driver.GetVerifiedMethod(&dex_file, method_idx));
    283     art::optimizer::DexCompiler dex_compiler(driver, unit, dex_to_dex_compilation_level);
    284     dex_compiler.Compile();
    285   }
    286 }
    287