Home | History | Annotate | Download | only in accessibility
      1 // Copyright 2013 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef UI_ACCESSIBILITY_AX_TREE_SERIALIZER_H_
      6 #define UI_ACCESSIBILITY_AX_TREE_SERIALIZER_H_
      7 
      8 #include <set>
      9 
     10 #include "base/containers/hash_tables.h"
     11 #include "base/logging.h"
     12 #include "base/stl_util.h"
     13 #include "ui/accessibility/ax_tree_source.h"
     14 #include "ui/accessibility/ax_tree_update.h"
     15 
     16 namespace ui {
     17 
     18 struct ClientTreeNode;
     19 
     20 // AXTreeSerializer is a helper class that serializes incremental
     21 // updates to an AXTreeSource as a AXTreeUpdate struct.
     22 // These structs can be unserialized by a client object such as an
     23 // AXTree. An AXTreeSerializer keeps track of the tree of node ids that its
     24 // client is aware of so that it will never generate an AXTreeUpdate that
     25 // results in an invalid tree.
     26 //
     27 // Every node in the source tree must have an id that's a unique positive
     28 // integer, the same node must not appear twice.
     29 //
     30 // Usage:
     31 //
     32 // You must call SerializeChanges() every time a node in the tree changes,
     33 // and send the generated AXTreeUpdate to the client.
     34 //
     35 // If a node is added, call SerializeChanges on its parent.
     36 // If a node is removed, call SerializeChanges on its parent.
     37 // If a whole new subtree is added, just call SerializeChanges on its root.
     38 // If the root of the tree changes, call SerializeChanges on the new root.
     39 //
     40 // AXTreeSerializer will avoid re-serializing nodes that do not change.
     41 // For example, if node 1 has children 2, 3, 4, 5 and then child 2 is
     42 // removed and a new child 6 is added, the AXTreeSerializer will only
     43 // update nodes 1 and 6 (and any children of node 6 recursively). It will
     44 // assume that nodes 3, 4, and 5 are not modified unless you explicitly
     45 // call SerializeChanges() on them.
     46 //
     47 // As long as the source tree has unique ids for every node and no loops,
     48 // and as long as every update is applied to the client tree, AXTreeSerializer
     49 // will continue to work. If the source tree makes a change but fails to
     50 // call SerializeChanges properly, the trees may get out of sync - but
     51 // because AXTreeSerializer always keeps track of what updates it's sent,
     52 // it will never send an invalid update and the client tree will not break,
     53 // it just may not contain all of the changes.
     54 template<typename AXSourceNode>
     55 class AXTreeSerializer {
     56  public:
     57   explicit AXTreeSerializer(AXTreeSource<AXSourceNode>* tree);
     58   ~AXTreeSerializer();
     59 
     60   // Throw out the internal state that keeps track of the nodes the client
     61   // knows about. This has the effect that the next update will send the
     62   // entire tree over because it assumes the client knows nothing.
     63   void Reset();
     64 
     65   // Serialize all changes to |node| and append them to |out_update|.
     66   void SerializeChanges(AXSourceNode node,
     67                         AXTreeUpdate* out_update);
     68 
     69   // Delete the client subtree for this node, ensuring that the subtree
     70   // is re-serialized.
     71   void DeleteClientSubtree(AXSourceNode node);
     72 
     73   // Only for unit testing. Normally this class relies on getting a call
     74   // to SerializeChanges() every time the source tree changes. For unit
     75   // testing, it's convenient to create a static AXTree for the initial
     76   // state and then call ChangeTreeSourceForTesting and then SerializeChanges
     77   // to simulate the changes you'd get if a tree changed from the initial
     78   // state to the second tree's state.
     79   void ChangeTreeSourceForTesting(AXTreeSource<AXSourceNode>* new_tree);
     80 
     81  private:
     82   // Return the least common ancestor of a node in the source tree
     83   // and a node in the client tree, or NULL if there is no such node.
     84   // The least common ancestor is the closest ancestor to |node| (which
     85   // may be |node| itself) that's in both the source tree and client tree,
     86   // and for which both the source and client tree agree on their ancestor
     87   // chain up to the root.
     88   //
     89   // Example 1:
     90   //
     91   //    Client Tree    Source tree |
     92   //        1              1       |
     93   //       / \            / \      |
     94   //      2   3          2   4     |
     95   //
     96   // LCA(source node 2, client node 2) is node 2.
     97   // LCA(source node 3, client node 4) is node 1.
     98   //
     99   // Example 2:
    100   //
    101   //    Client Tree    Source tree |
    102   //        1              1       |
    103   //       / \            / \      |
    104   //      2   3          2   3     |
    105   //     / \            /   /      |
    106   //    4   7          8   4       |
    107   //   / \                / \      |
    108   //  5   6              5   6     |
    109   //
    110   // LCA(source node 8, client node 7) is node 2.
    111   // LCA(source node 5, client node 5) is node 1.
    112   // It's not node 5, because the two trees disagree on the parent of
    113   // node 4, so the LCA is the first ancestor both trees agree on.
    114   AXSourceNode LeastCommonAncestor(AXSourceNode node,
    115                                    ClientTreeNode* client_node);
    116 
    117   // Return the least common ancestor of |node| that's in the client tree.
    118   // This just walks up the ancestors of |node| until it finds a node that's
    119   // also in the client tree, and then calls LeastCommonAncestor on the
    120   // source node and client node.
    121   AXSourceNode LeastCommonAncestor(AXSourceNode node);
    122 
    123   // Walk the subtree rooted at |node| and return true if any nodes that
    124   // would be updated are being reparented. If so, update |out_lca| to point
    125   // to the least common ancestor of the previous LCA and the previous
    126   // parent of the node being reparented.
    127   bool AnyDescendantWasReparented(AXSourceNode node,
    128                                   AXSourceNode* out_lca);
    129 
    130   ClientTreeNode* ClientTreeNodeById(int32 id);
    131 
    132   // Delete the given client tree node and recursively delete all of its
    133   // descendants.
    134   void DeleteClientSubtree(ClientTreeNode* client_node);
    135 
    136   // Helper function, called recursively with each new node to serialize.
    137   void SerializeChangedNodes(AXSourceNode node,
    138                              AXTreeUpdate* out_update);
    139 
    140   // The tree source.
    141   AXTreeSource<AXSourceNode>* tree_;
    142 
    143   // Our representation of the client tree.
    144   ClientTreeNode* client_root_;
    145 
    146   // A map from IDs to nodes in the client tree.
    147   base::hash_map<int32, ClientTreeNode*> client_id_map_;
    148 };
    149 
    150 // In order to keep track of what nodes the client knows about, we keep a
    151 // representation of the client tree - just IDs and parent/child
    152 // relationships.
    153 struct AX_EXPORT ClientTreeNode {
    154   ClientTreeNode();
    155   virtual ~ClientTreeNode();
    156   int32 id;
    157   ClientTreeNode* parent;
    158   std::vector<ClientTreeNode*> children;
    159 };
    160 
    161 template<typename AXSourceNode>
    162 AXTreeSerializer<AXSourceNode>::AXTreeSerializer(
    163     AXTreeSource<AXSourceNode>* tree)
    164     : tree_(tree),
    165       client_root_(NULL) {
    166 }
    167 
    168 template<typename AXSourceNode>
    169 AXTreeSerializer<AXSourceNode>::~AXTreeSerializer() {
    170   Reset();
    171 }
    172 
    173 template<typename AXSourceNode>
    174 void AXTreeSerializer<AXSourceNode>::Reset() {
    175   if (!client_root_)
    176     return;
    177 
    178   DeleteClientSubtree(client_root_);
    179   client_id_map_.erase(client_root_->id);
    180   delete client_root_;
    181   client_root_ = NULL;
    182 }
    183 
    184 template<typename AXSourceNode>
    185 void AXTreeSerializer<AXSourceNode>::ChangeTreeSourceForTesting(
    186     AXTreeSource<AXSourceNode>* new_tree) {
    187   tree_ = new_tree;
    188 }
    189 
    190 template<typename AXSourceNode>
    191 AXSourceNode AXTreeSerializer<AXSourceNode>::LeastCommonAncestor(
    192     AXSourceNode node, ClientTreeNode* client_node) {
    193   if (!tree_->IsValid(node) || client_node == NULL)
    194     return tree_->GetNull();
    195 
    196   std::vector<AXSourceNode> ancestors;
    197   while (tree_->IsValid(node)) {
    198     ancestors.push_back(node);
    199     node = tree_->GetParent(node);
    200   }
    201 
    202   std::vector<ClientTreeNode*> client_ancestors;
    203   while (client_node) {
    204     client_ancestors.push_back(client_node);
    205     client_node = client_node->parent;
    206   }
    207 
    208   // Start at the root. Keep going until the source ancestor chain and
    209   // client ancestor chain disagree. The last node before they disagree
    210   // is the LCA.
    211   AXSourceNode lca = tree_->GetNull();
    212   int source_index = static_cast<int>(ancestors.size() - 1);
    213   int client_index = static_cast<int>(client_ancestors.size() - 1);
    214   while (source_index >= 0 && client_index >= 0) {
    215     if (tree_->GetId(ancestors[source_index]) !=
    216             client_ancestors[client_index]->id) {
    217       return lca;
    218     }
    219     lca = ancestors[source_index];
    220     source_index--;
    221     client_index--;
    222   }
    223   return lca;
    224 }
    225 
    226 template<typename AXSourceNode>
    227 AXSourceNode AXTreeSerializer<AXSourceNode>::LeastCommonAncestor(
    228     AXSourceNode node) {
    229   // Walk up the tree until the source node's id also exists in the
    230   // client tree, then call LeastCommonAncestor on those two nodes.
    231   ClientTreeNode* client_node = ClientTreeNodeById(tree_->GetId(node));
    232   while (tree_->IsValid(node) && !client_node) {
    233     node = tree_->GetParent(node);
    234     if (tree_->IsValid(node))
    235       client_node = ClientTreeNodeById(tree_->GetId(node));
    236   }
    237   return LeastCommonAncestor(node, client_node);
    238 }
    239 
    240 template<typename AXSourceNode>
    241 bool AXTreeSerializer<AXSourceNode>::AnyDescendantWasReparented(
    242     AXSourceNode node, AXSourceNode* out_lca) {
    243   bool result = false;
    244   int id = tree_->GetId(node);
    245   std::vector<AXSourceNode> children;
    246   tree_->GetChildren(node, &children);
    247   for (size_t i = 0; i < children.size(); ++i) {
    248     AXSourceNode& child = children[i];
    249     int child_id = tree_->GetId(child);
    250     ClientTreeNode* client_child = ClientTreeNodeById(child_id);
    251     if (client_child) {
    252       if (!client_child->parent) {
    253         // If the client child has no parent, it must have been the
    254         // previous root node, so there is no LCA and we can exit early.
    255         *out_lca = tree_->GetNull();
    256         return true;
    257       } else if (client_child->parent->id != id) {
    258         // If the client child's parent is not this node, update the LCA
    259         // and return true (reparenting was found).
    260         *out_lca = LeastCommonAncestor(*out_lca, client_child);
    261         result = true;
    262       } else {
    263         // This child is already in the client tree, we won't
    264         // recursively serialize it so we don't need to check this
    265         // subtree recursively for reparenting.
    266         continue;
    267       }
    268     }
    269 
    270     // This is a new child or reparented child, check it recursively.
    271     if (AnyDescendantWasReparented(child, out_lca))
    272       result = true;
    273   }
    274   return result;
    275 }
    276 
    277 template<typename AXSourceNode>
    278 ClientTreeNode* AXTreeSerializer<AXSourceNode>::ClientTreeNodeById(int32 id) {
    279   base::hash_map<int32, ClientTreeNode*>::iterator iter =
    280       client_id_map_.find(id);
    281   if (iter != client_id_map_.end())
    282     return iter->second;
    283   else
    284     return NULL;
    285 }
    286 
    287 template<typename AXSourceNode>
    288 void AXTreeSerializer<AXSourceNode>::SerializeChanges(
    289     AXSourceNode node,
    290     AXTreeUpdate* out_update) {
    291   // If the node isn't in the client tree, we need to serialize starting
    292   // with the LCA.
    293   AXSourceNode lca = LeastCommonAncestor(node);
    294 
    295   if (client_root_) {
    296     bool need_delete = false;
    297     if (tree_->IsValid(lca)) {
    298       // Check for any reparenting within this subtree - if there is
    299       // any, we need to delete and reserialize the whole subtree
    300       // that contains the old and new parents of the reparented node.
    301       if (AnyDescendantWasReparented(lca, &lca))
    302         need_delete = true;
    303     }
    304 
    305     if (!tree_->IsValid(lca)) {
    306       // If there's no LCA, just tell the client to destroy the whole
    307       // tree and then we'll serialize everything from the new root.
    308       out_update->node_id_to_clear = client_root_->id;
    309       Reset();
    310     } else if (need_delete) {
    311       // Otherwise, if we need to reserialize a subtree, first we need
    312       // to delete those nodes in our client tree so that
    313       // SerializeChangedNodes() will be sure to send them again.
    314       out_update->node_id_to_clear = tree_->GetId(lca);
    315       ClientTreeNode* client_lca = ClientTreeNodeById(tree_->GetId(lca));
    316       CHECK(client_lca);
    317       for (size_t i = 0; i < client_lca->children.size(); ++i) {
    318         client_id_map_.erase(client_lca->children[i]->id);
    319         DeleteClientSubtree(client_lca->children[i]);
    320         delete client_lca->children[i];
    321       }
    322       client_lca->children.clear();
    323     }
    324   }
    325 
    326   // Serialize from the LCA, or from the root if there isn't one.
    327   if (!tree_->IsValid(lca))
    328     lca = tree_->GetRoot();
    329   SerializeChangedNodes(lca, out_update);
    330 }
    331 
    332 template<typename AXSourceNode>
    333 void AXTreeSerializer<AXSourceNode>::DeleteClientSubtree(AXSourceNode node) {
    334   ClientTreeNode* client_node = ClientTreeNodeById(tree_->GetId(node));
    335   if (client_node)
    336     DeleteClientSubtree(client_node);
    337 }
    338 
    339 template<typename AXSourceNode>
    340 void AXTreeSerializer<AXSourceNode>::DeleteClientSubtree(
    341     ClientTreeNode* client_node) {
    342   for (size_t i = 0; i < client_node->children.size(); ++i) {
    343     client_id_map_.erase(client_node->children[i]->id);
    344     DeleteClientSubtree(client_node->children[i]);
    345     delete client_node->children[i];
    346   }
    347   client_node->children.clear();
    348 }
    349 
    350 template<typename AXSourceNode>
    351 void AXTreeSerializer<AXSourceNode>::SerializeChangedNodes(
    352     AXSourceNode node,
    353     AXTreeUpdate* out_update) {
    354   // This method has three responsibilities:
    355   // 1. Serialize |node| into an AXNodeData, and append it to
    356   //    the AXTreeUpdate to be sent to the client.
    357   // 2. Determine if |node| has any new children that the client doesn't
    358   //    know about yet, and call SerializeChangedNodes recursively on those.
    359   // 3. Update our internal data structure that keeps track of what nodes
    360   //    the client knows about.
    361 
    362   // First, find the ClientTreeNode for this id in our data structure where
    363   // we keep track of what accessibility objects the client already knows
    364   // about. If we don't find it, then this must be the new root of the
    365   // accessibility tree.
    366   int id = tree_->GetId(node);
    367   ClientTreeNode* client_node = ClientTreeNodeById(id);
    368   if (!client_node) {
    369     Reset();
    370     client_root_ = new ClientTreeNode();
    371     client_node = client_root_;
    372     client_node->id = id;
    373     client_node->parent = NULL;
    374     client_id_map_[client_node->id] = client_node;
    375   }
    376 
    377   // Iterate over the ids of the children of |node|.
    378   // Create a set of the child ids so we can quickly look
    379   // up which children are new and which ones were there before.
    380   base::hash_set<int32> new_child_ids;
    381   std::vector<AXSourceNode> children;
    382   tree_->GetChildren(node, &children);
    383   for (size_t i = 0; i < children.size(); ++i) {
    384     AXSourceNode& child = children[i];
    385     int new_child_id = tree_->GetId(child);
    386     new_child_ids.insert(new_child_id);
    387 
    388     // This is a sanity check - there shouldn't be any reparenting
    389     // because we've already handled it above.
    390     ClientTreeNode* client_child = client_id_map_[new_child_id];
    391     CHECK(!client_child || client_child->parent == client_node);
    392   }
    393 
    394   // Go through the old children and delete subtrees for child
    395   // ids that are no longer present, and create a map from
    396   // id to ClientTreeNode for the rest. It's important to delete
    397   // first in a separate pass so that nodes that are reparented
    398   // don't end up children of two different parents in the middle
    399   // of an update, which can lead to a double-free.
    400   base::hash_map<int32, ClientTreeNode*> client_child_id_map;
    401   std::vector<ClientTreeNode*> old_children;
    402   old_children.swap(client_node->children);
    403   for (size_t i = 0; i < old_children.size(); ++i) {
    404     ClientTreeNode* old_child = old_children[i];
    405     int old_child_id = old_child->id;
    406     if (new_child_ids.find(old_child_id) == new_child_ids.end()) {
    407       client_id_map_.erase(old_child_id);
    408       DeleteClientSubtree(old_child);
    409       delete old_child;
    410     } else {
    411       client_child_id_map[old_child_id] = old_child;
    412     }
    413   }
    414 
    415   // Serialize this node. This fills in all of the fields in
    416   // AXNodeData except child_ids, which we handle below.
    417   out_update->nodes.push_back(AXNodeData());
    418   AXNodeData* serialized_node = &out_update->nodes.back();
    419   tree_->SerializeNode(node, serialized_node);
    420   // TODO(dmazzoni/dtseng): Make the serializer not depend on roles to identify
    421   // the root.
    422   if (serialized_node->id == client_root_->id &&
    423       (serialized_node->role != AX_ROLE_ROOT_WEB_AREA &&
    424        serialized_node->role != AX_ROLE_DESKTOP)) {
    425     serialized_node->role = AX_ROLE_ROOT_WEB_AREA;
    426   }
    427   serialized_node->child_ids.clear();
    428 
    429   // Iterate over the children, make note of the ones that are new
    430   // and need to be serialized, and update the ClientTreeNode
    431   // data structure to reflect the new tree.
    432   std::vector<AXSourceNode> children_to_serialize;
    433   client_node->children.reserve(children.size());
    434   for (size_t i = 0; i < children.size(); ++i) {
    435     AXSourceNode& child = children[i];
    436     int child_id = tree_->GetId(child);
    437 
    438     // No need to do anything more with children that aren't new;
    439     // the client will reuse its existing object.
    440     if (new_child_ids.find(child_id) == new_child_ids.end())
    441       continue;
    442 
    443     new_child_ids.erase(child_id);
    444     serialized_node->child_ids.push_back(child_id);
    445     if (client_child_id_map.find(child_id) != client_child_id_map.end()) {
    446       ClientTreeNode* reused_child = client_child_id_map[child_id];
    447       client_node->children.push_back(reused_child);
    448     } else {
    449       ClientTreeNode* new_child = new ClientTreeNode();
    450       new_child->id = child_id;
    451       new_child->parent = client_node;
    452       client_node->children.push_back(new_child);
    453       client_id_map_[child_id] = new_child;
    454       children_to_serialize.push_back(child);
    455     }
    456   }
    457 
    458   // Serialize all of the new children, recursively.
    459   for (size_t i = 0; i < children_to_serialize.size(); ++i)
    460     SerializeChangedNodes(children_to_serialize[i], out_update);
    461 }
    462 
    463 }  // namespace ui
    464 
    465 #endif  // UI_ACCESSIBILITY_AX_TREE_SERIALIZER_H_
    466